
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Electronic System-Level Synthesis Methodologies
Andreas Gerstlauer, Member, IEEE, Christian Haubelt, Member, IEEE, Andy D. Pimentel, Senior Member, IEEE,

Todor Stefanov, Member, IEEE, Daniel D. Gajski, Fellow, IEEE, and Jürgen Teich, Senior Member, IEEE

Abstract—With ever increasing system complexities, all major
semiconductor roadmaps have identified the need for moving to
higher levels of abstraction in order to increase productivity in
electronic system design. Most recently, many approaches and
tools that claim to realize and support a design process at the
so called Electronic System Level (ESL) have emerged. However,
faced with the vast complexity challenges, in most cases at best
only partial solutions are available.

In this paper, we develop and propose a novel classification for
ESL synthesis tools, and we will present six different academic
approaches in this context. Based on these observations, we can
identify such common principles and needs as they are leading
towards and are ultimately required for a true ESL synthesis
solution, covering the whole design process from specification
to implementation for complete systems across hardware and
software boundaries.

Index Terms—Electronic System Level (ESL), synthesis,
methodology

I. INTRODUCTION

IN order to increase design productivity, raising the level
of abstraction to the Electronic System Level (ESL) seems

mandatory. Surely, this must be accompanied by new EDA
tools [1]. Many approaches exist today that claim to provide
ESL solutions. In [2], Densmore et al. define an ESL clas-
sification framework that focuses on individual design tasks
by reviewing more than 90 different point tools. Many of
these tools are devoted to modeling purposes (functional or
platform) only. Other tools provide synthesis functionality
by either software code generation or C-to-RTL high-level
synthesis. However, true ESL synthesis tools show the ability
to combine design tasks under a complete flow that can
generate systems across hardware and software boundaries
from an algorithmic specification. In this paper, we therefore
aim to provide an extended classification focusing on such
complete ESL flows on top of individual point solutions.

Typically, ESL synthesis tools are domain specific and
rely on powerful computational models [3] for description
of desired functional and non-functional requirements at the

Manuscript received February 25, 2009; revised June 8, 2009.
Andreas Gerstlauer is with the Department of Electrical and

Computer Engineering, The University of Texas at Austin. E-mail:
gerstl@ece.utexas.edu.

Christian Haubelt and Jürgen Teich are with the Department of Com-
puter Science, University of Erlangen-Nuremberg. E-mail: {haubelt,
teich}@cs.fau.de.

Andy D. Pimentel is with the Informatics Institute, University of Amster-
dam. E-mail: a.d.pimentel@uva.nl.

Todor Stefanov is with the Leiden Institute of Advanced Computer Science,
Leiden University. E-mail: stefanov@liacs.nl.

Daniel. D. Gajski is with the Center for Embedded Computer Systems,
University of California, Irvine, CA. E-mail: gajski@cecs.uci.edu.

Copyright c©2009 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org.

input of the synthesis flow. Such well-defined, rich input
models are a prerequisite for later analysis and optimization.
Typical computational models in digital system design are
process networks, dataflow models or state machines. On the
other hand, implementation platforms for such systems are
often heterogeneous or homogeneous Multi-Processor System-
on-Chip (MPSoC) solutions [4]. The complexity introduced
by both, input computational model and target implementa-
tion platform, results in a complex synthesis step including
hardware/software partitioning, embedded software generation
and hardware accelerator synthesis. Beside this, at ESL, the
number of design decisions, especially in communication
synthesis, is compelling in contrast to lower abstraction levels.
Even more so, due to the increasing number of processors
in MPSoCs, the impact of the quality in computation and
communication synthesis is ever increasing.

In this paper, we aim to provide an analysis and compar-
ative overview of the state-of-the-art, current directions and
future needs in ESL synthesis methodologies and tools. After
identifying common principles based on our observations, we
develop and propose a general framework for classification
and eventually comparison of different tools in Section II. In
Section III, we then present in detail a representative selection
of three ESL approaches developed in our groups. To provide
a more complete overview, Section IV briefly discusses three
related academic approaches. After introducing all six tools,
we follow with a comparison and discussion of future research
directions based on our classification criteria in Section V.
Finally, the paper concludes with a summary in Section VI.

II. ELECTRONIC SYSTEM DESIGN

In this section, we will identify common principles in
existing ESL synthesis methodologies and develop a novel
classification for such approaches. Later, this will enable a
comparison of different methodologies. Furthermore, based on
such observations, synergies between different approaches can
be explored and corresponding interfaces between different
tools can be defined and established in the future.

A. Design Flow
Before deriving a model for ESL synthesis, we start by

defining the system design process in general. As nearly all
ESL synthesis methodologies follow a top-down approach,
a definition of the design process should support this view.
Furthermore, it should show the concurrent design of hardware
and software and required synthesis steps. A visualization of
this is given by the double roof model [5] shown in Figure 1.

The double roof model defines the ideal top-down design
process for embedded hardware/software systems. One side of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

......
uArch

ISA

Gate
Software Hardware

Architecture

RTL

Instruction Logic

System

ComponentTask

Implementation

Specification

Fig. 1. Electronic system design flow.

the roof corresponds to the software design process whereas
the other side corresponds to the hardware design process.
Each side is organized in different abstraction levels, e.g., task
and instruction levels or component and logic levels for the
software or hardware design processes, respectively. There is
one common level of abstraction, the Electronic System Level
(ESL), at which we can not distinguish between hardware and
software. At each level, in a synthesis step (vertical arrow), a
specification is transformed into an implementation. Horizontal
arrows indicate the step of passing models of individual
elements in the implementation directly to the next lower level
of abstraction as specifications at its input.

The double roof model can be seen as extending the Y-
chart [6] by an explicit separation of software and hardware
design. Furthermore, for simplicity we do not include a third
layout roof representing a physical view of the design. Note,
however, that layout information, while traditionally being of
minor importance, is increasingly employed even at the system
level, e.g., through early floorplanning, to account for spatial
effects such as activity hot spots [7], wiring capacitances or
distance-dependent latencies [8].

The design process represented by the double roof model
starts with a ESL specification given by a behavioral model
that is often some kind of network of processes communicating
via channels. Additionally, a set of mapping constraints and
implementation constraints (maximum area, minimal through-
put, etc.) is given. The platform model at ESL is typically a
structural model consisting of architectural components such
as processors, busses, memories, and hardware accelerators.
The task of ESL synthesis is then the process of selecting an
appropriate platform architecture, determining a mapping of
the behavioral model onto that architecture, and generating a
corresponding implementation of the behavior running on the
platform. The result is a refined model containing all design
decisions and quality metrics, such as throughput, latency or
area. If selected, components of this refined model are then
used as input to the design process at lower abstraction levels,
where each hardware or software processor in the system
architecture is further implemented separately.

Synthesis at lower levels is a similar process in which a
behavioral or functional specification is refined down into a
structural implementation. However, depending on the abstrac-

tion level, the granularity of objects handled during synthesis
differs and some tasks might be more important than others.
For instance, at the task level on the software side, communi-
cating processes/threads bound to the same processor must be
translated into the instruction set architecture (ISA) of the pro-
cessor, targeted towards and running on top of an off-the-shelf
real-time operating system (RTOS) or a custom-generated
runtime environment. This software task synthesis step is
typically performed using a (cross-)compiler and linker tool
chain for the selected processor and RTOS. At the instruction
level, the instruction set of programmable processors is then
realized in hardware by implementing the underlying micro-
architecture (uArch). This step results in a structural model
of the processor’s datapath organization, usually specified as
a register-transfer level (RTL) description.

On the other hand, at the component level on the hardware
side, processes selected to be implemented as hardware accel-
erators are synthesized down to an RTL description in the form
of controller state machines that drive a datapath consisting
of functional units, register files, memories and interconnect.
This refinement step is commonly referred to as behavioral or
high-level synthesis. Today, there are several tools available
to perform such high-level synthesis automatically [9], [10].
Finally, at the logic level, the granularity of the objects
considered during logic synthesis then corresponds to Boolean
formulae implemented by logic gates and flip flops.

An important observation that can be made from Figure 1 is
that at the RT level, hardware and software worlds unite again,
both feeding into (traditional) logic design processes down
to the final manufacturing output. Also, we note that a top-
down ESL design process relies on the availability of design
flows at the component or task (and eventually logic and
instruction) levels to feed into on the hardware and software
side, respectively. Lower level flows can be supplied either in
the form of corresponding synthesis tools or by providing pre-
designed intellectual property (IP) components to be plugged
into the system architecture.

B. Synthesis Process
Before identifying the main tasks in ESL synthesis, we

first develop a general synthesis framework applicable at all
levels. As discussed in the previous section, during synthesis a
specification is generally transformed into an implementation.
This abstract view can be further refined into an X-chart as
shown in Figure 2. With this refinement, we can start to define
terms essential in the context of synthesis.

A specification is composed of a behavioral model and
constraints. The behavioral model represents the intended
functionality of the system. Its expressibility and analyzability
can be declared by its underlying Model of Computation
(MoC) [3]. The behavioral model is often written in some
programming language (e.g., C, C++ or JAVA), system-level
description language (e.g., SpecC or SystemC), or a hardware
description language (such as Verilog or VHDL).

The constraints often include an implicit or explicit platform
model that describes an architecture template, e.g., available
resources, their capabilities (or services) and their intercon-
nections. Analogous to the classification of behavioral models

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Constraints

Quality
Numbers

Behavior

RefinementMaking
Decision

Synthesis

Structure

Specification

Implementation

Fig. 2. Synthesis process.

into MoCs, specific ways of describing architecture templates
can be generalized into Models of Architecture (MoA) [11].
Similar to the concept of MoCs, a MoA describes the char-
acteristics underlying a class of platform models in order
to evaluate richness of supported target architectures at the
input of a synthesis tool. ESL architecture templates can
be coarsely subdivided based on their processing, memory
and communication hierarchy. On the processing side, ex-
amples include single-processor systems, hardware/software
processor/co-processor systems, and homogeneous, symmet-
ric or heterogeneous, asymmetric multi-processor/multi-core
systems (MPSoCs) [4]1. Memory-wise we can distinguish
shared versus distributed memory architectures. Finally, com-
munication architectures can be loosely grouped into shared,
bus-based or Network-on-Chip (NoC) approaches. Beside the
architecture template, constraints typically contain mapping
restrictions and additional constraints on non-functional prop-
erties like maximum response time or minimal throughput.

The synthesis step then transforms a specification into an
implementation. An implementation consists of a structural
model and quality numbers. The structural model is a re-
fined model from the behavioral model under the constraints
given in the specification. In addition to the implementation-
independent information contained in the behavioral model,
the structural model holds information about the realization
of design decisions from the previous synthesis step, i.e.,
mapping of the behavioral model onto an architecture tem-
plate. As such, a structural model is a representation of the
resulting architecture as a composition of components that
are internally described in the form of behavioral models
for input to the next synthesis step. On top of a well-
defined combination of MoCs for component-internal behav-
ior and functional semantics, we can hence introduce the
term Model of Structure (MoS) for separate classification of
such implementation representations and their architectural or
structural semantics. Again, a MoS allows characterization of

1While details of supported architecture features and restrictions, as defined,
e.g., by tool database formats, can differ significantly, we limit discussions
and comparisons to such high-level MoA classifications in this paper.

the underlying abstracted semantics of a class of structural
models independent of their syntax. Hence, MoSs can be
used to compare expressibility and analyzability of specific
implementation representations as realized by different tools.
For example, at many levels a netlist concept is used with
semantics limited to describing component connectivity. At
the system level, pin-accurate models (PAMs) combine a
netlist with bus-functional component models. Furthermore,
transaction-level modeling (TLM) concepts and techniques are
employed to abstract away from pins and wires2. Similar to
behavioral models, structural models are often represented in
a programming language, system-level description language
(SLDL) or hardware description language (HDL).

Quality numbers are estimated values for different imple-
mentation properties, e.g., throughput, latency, response time,
area and power consumption. In order to get such estimates,
synthesis tools often use so called performance models instead
of implementing each design option3. Performance models
represent the contributions of individual elements to overall
design quality in a given implementation. Basic numbers
are composed based on specific semantics, e.g., in terms
of annotation granularity or worst/average/best case assump-
tions, such that overall quality estimates can be obtained,
e.g., through simulation or static analysis. To distinguish and
classify representations of quality numbers across different
instances and implementations of performance models, we
introduce the concept of an underlying Model of Performance
(MoP). A MoP thereby refers to the overall accuracy and
granularity in time and space. Generalizing from the detailed
definitions of specific performance models, such as timing,
power or cost/area models, a MoP can be used to judge the
accuracy of the quality numbers and the computational effort
to get them. Examples of simulation-based MoPs for different
classes of timing granularity are Cycle Accurate Performance
Models (CAPMs), Instruction Set Accurate Performance Mod-
els (ISAPMs) or Task Accurate Performance Models (TAPMs)
[12]. Quality numbers are often used as objective values during
design space exploration when identifying the set of optimal
or near-optimal implementations.

Given a specification, the task of synthesis then generates an
implementation from the specification by decision making and
refinement (Figure 2). At any level, synthesis is a process of
determining the order or mapping of elements in the behavioral
model in space and time, i.e., the where and when of their
realization. Decision making is hence the task of computing
an allocation of resources available in the platform model,
a spatial binding of objects in the behavioral model onto
these allocated resources, and a temporal scheduling to resolve
resource contention of objects in the behavioral model bound
to the same resource.

Refinement is the task of incorporating the made decisions
into the behavioral model resulting in a structural model, as
discussed above. Moreover, with these decisions, a quality
assessment of the resulting implementation can be done. The

2Again, many definitions of specific TLM variants exist but for simplicity
we limit discussions in this paper to a general classification.

3We use the term “performance” in the general sense to refer to any
measured property.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

result of this assessment are the quality numbers.
Finally, in order to optimize an implementation, a Design

Space Exploration (DSE) should be performed. As design
space exploration is a multi-objective optimization problem,
in general, we will identify a set of optimal implementations
instead of a single optimal implementation. For this purpose,
the quality numbers provided by the MoP are used. In this
paper, we define DSE being the multi-objective optimization
problem of the synthesis task. In other words, decision making
is the task of calculating a single feasible allocation, binding,
and scheduling instance, whereas DSE is the process of finding
optimal design points.

In summary, the X-chart shown in Figure 2 combines two
aspects: synthesis (left output) and quality assessment (right
output). For both aspects, corresponding so called Y-charts
exist in the literature: the synthesis aspect was presented and
later refined into a first system design methodology by Gajski
et al. in [6] and [13], respectively, while the quality assessment
aspect was proposed by Kienhuis et al. in [14].

With the above discussion, first classification criteria for
synthesis tools can be derived:
(1) Expressibility and analyzability of the specification:

(1.1) The MoC of the behavioral model. As in general
expressibility can be traded against analyzability,
the MoC has a huge influence on the automation
capabilities of a synthesis tool.

(1.2) The MoA of the platform model given in the con-
straints. The MoA as used for refinement determines
the classes of target implementations supported by a
particular tool.

(2) Representations of the implementation:
(2.1) The MoS of the structural model. As structural

models are often used for validation and virtual
prototyping, the MoS can have a large influence on
issues such as simulation performance, observability
and accuracy.

(2.2) The MoP of the performance model given through
the quality numbers. Performance models are em-
ployed for quality assessment and thus, the MoP has
large impact on the synthesis quality and estimation
accuracy.

As DSE can be performed manually or automatically, an
additional classification criteria to be considered is:
(3) Is DSE automated, i.e., does a methodology integrate

some multi-objective optimization strategy for decision
making?

C. ESL Synthesis

In general, both decision making and refinement, can be
automated. However, ESL synthesis is a more complex task
compared to synthesis at lower levels of abstractions. At
any level, tasks to be performed during decision making
and supported during refinement are computing and realizing
an allocation, binding, and scheduling. At ESL, however,
these three steps have to be performed for a design space
which is at its largest, and are required for both computations

and communications in the behavioral model. Furthermore,
compared to lower levels where refinement is often reduced
to producing a simple netlist, generating an implementation
of system-level computation and communication decisions is
a non-trivial task that requires significant coding effort.

In computation synthesis, processing elements (PEs), e.g.,
processors, hardware accelerators, memories and IP cores
have to be allocated from the platform model. The resulting
allocation has to guarantee that at least each process from
the behavioral model can be bound to an allocated processing
element. A further task in computation synthesis is process
binding where each process has to be bound to an allocated
processing element. A third task in computation synthesis is
process scheduling, i.e., a partial/total order is imposed on the
processes using a static or dynamic scheduling strategy.

In communication synthesis, communication elements (CEs)
including busses, point-to-point-connections, Networks-on-
Chip (NoCs), bus bridges and transducers have to be allocated.
Here, the resulting topology must guarantee that each applica-
tion communication channel can be bound to an ordered set of
architectural communication media, and that channel accesses
(transactions) can be routed on the communication elements. A
second task is application channel binding to route application-
level communication channels over the allocated architectural
network topology. Finally, transactions must be scheduled on
the communication media using static time division access
(TDMA) or dynamic, centralized or distributed arbitration. As
is the case in process scheduling, transaction scheduling can
result in static, dynamic, or quasi-static schedules.

It should be clearly stated that computation synthesis and
communication synthesis are by no means independent tasks.
Hence, an oversimplified synthesis method might result in
infeasible or suboptimal solutions only. Many approaches are
heavily biased towards either computation synthesis (e.g., [15],
[16]) or communication synthesis (e.g., [17], [18], [19]), as-
suming the counterpart to be done by a different tool. In order
to ensure feasibility and optimality, however, an ESL synthesis
methodology should support computation and communication
synthesis with all their respective subtasks.

As ESL synthesis with its subtasks can be automated
in decision making and/or refinement, we now can define
additional classification criteria for ESL synthesis tools:
(4) Is decision making automated and, if yes, which tasks are

automated?
(4.1) Are computation design decisions computed auto-

matically?
(4.2) Are communication design decisions computed au-

tomatically?
(5) Is refinement automated and, if yes, which tasks are

performed automatically?
(5.1) Is computation refinement automatic?
(5.2) Is communication refinement automatic?

With the criteria 1-5, we can classify and compare ESL syn-
thesis tools. In the following sections, we will discuss six ESL
synthesis approaches. For all six approaches, we will evaluate
their methodologies with respect to these classification criteria.
In addition, three ESL synthesis approaches developed in our

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

own groups will be elaborated on in some more detail.

III. A THREESOME OF ESL METHODOLOGIES

In this section, we will present three synthesis approaches
out of the authors’ own research. In addition to classification
of underlying methodologies based on previously introduced
criteria, this includes details of design steps and experiences
resulting from our development and experimental work.

A. Daedalus
Daedalus provides an integrated and highly-automated

framework for system-level architectural exploration, system-
level synthesis, programming, and prototyping of heteroge-
neous Multi-Processor System-on-a-Chip (MPSoC) platforms
[20], [21]. The Daedalus design flow, which is depicted in
Figure 3, leads the designer in a number of steps from a
sequential application (i.e., behavioral specification) to an MP-
SoC system implementation on an FPGA with a parallelized
version of the application mapped onto it. This means that
Daedalus includes or interfaces with component- and task-
level back-end synthesis processes to produce an MPSoC
implementation at the RTL and ISA levels for hardware
components and software processes, respectively. Since the
entire design trajectory can be traversed in only a matter of
hours, it offers great potentials for quickly experimenting with
different MPSoCs and exploring a variety of design options
during the early stages of design.

1) Scope of Methodology: A key assumption for the
Daedalus framework is that it considers only dataflow domi-
nated applications in the realm of multimedia, imaging, and
signal processing, that naturally contain tasks communicating
via streams of data. Such applications are conveniently mod-
eled by means of the Kahn Process Network (KPN) MoC [22].
The KPN MoC we use is a dataflow network of concurrent
processes that communicate data in a point-to-point fashion
over bounded FIFO channels, using blocking read/write on an
empty/full FIFO as synchronization mechanism. The KPNs
that Daedalus operates upon can be manually derived or
automatically generated. In the latter case, behavioral input
specifications are sequential C programs. But to allow for
automatic translation into a KPN, these C applications need to
be specified as so called Static Affine Nested Loop Programs
(SANLPs) [23], which is an important class of programs in,
e.g., the scientific and multimedia application domains.

In terms of target MoA, Daedalus considers MPSoC plat-
forms in which both programmable processors and dedicated
hardwired IP cores are used as processing components. They
communicate data only through distributed memory units.
Each memory unit can be organized as one or several FIFOs.
The data communication and synchronization between proces-
sors are realized by blocking read and write primitives. Such
platforms match and support the KPN operational semantics
very well, thereby achieving high performance when KPNs
are executed on the platforms. Also, directly supporting the
operational semantics of a KPN, i.e., the blocking mechanism,
in the target platforms allows the processors to be self-
scheduled. This means that there is no need for a global
scheduler in the platforms.

FPGA

P

PµVa
lid

at
io

n
/ C

al
ib

ra
tio

n

specification

specification

specification
System−level

Gate−levelµ

Pµ

Mem

HW IP

Mem
MP−SoC

Interconnect, e.g.,
P2P, Xbar, or Bus

RTLAuxiliary

Platform spec.
in XML

Sequential
program in C

IP cores

Models

in VHDL

Network in XML

High−level

Platform

Kahn Process
IP Library

System−level architectural exploration:

Models

code forC
processors

Sesame

ESPAM

Xilinx Platform Studio

netlist

Automated system−level synthesis:

files

in XML

RTL

KPNgen

RTL synthesis: commercial tool, e.g.

Mapping spec. Parallelization

Fig. 3. The Daedalus ESL design flow.

Daedalus architectures are constructed from a library of pre-
defined and pre-verified IP components. These components
include a variety of programmable processors, dedicated hard-
wired IP cores, memories, and interconnects, thereby allowing
the implementation of a wide range of heterogeneous MPSoC
platforms. So, this means that Daedalus aims at composable
MPSoC design, in which MPSoCs are strictly composed of
IP library components. Figure 4(b) shows a typical example
of a Daedalus MPSoC platform. Daedalus produces platforms
in the form of synthesizable VHDL (i.e., a netlist MoS)
together with the C code for KPN processes that are mapped
onto programmable processors. As a consequence, Daedalus
designs can be readily mapped on an FPGA for prototyping.

Daedalus supports the mapping of multiple KPN processes
onto a single processor. However, it tries to avoid using a
multi-threading operating system (MTOS) to execute multiple
processes on a single processor in order to avoid execution
overheads due to context switching. If possible, Daedalus per-
forms compile-time scheduling of the processes that execute
on a single processor and thus generates program code for a
given processor that does not require an MTOS. However, if
finding a compile-time schedule is not possible because of the
dynamic (data-dependent) nature of an application, Daedalus
uses a very lightweight MTOS to perform runtime scheduling
of the processes that execute on a single processor.

The above design process is guided by automated DSE,
which uses a MoP that combines a TAPM and an ISAPM to
evaluate design instances. Moreover, Daedalus’ computation
synthesis trajectory is fully automated, while its communica-
tion synthesis is semi-automatic as it uses communication IP
components which may need to be customized by hand.

2) Daedalus’ Design Steps: As illustrated in Figure 3,
Daedalus’ design flow consists of three key steps, which
are implemented by the KPNgen, Sesame and ESPAM tools
respectively. KPNgen [23] allows for automatically converting
a sequential (SANLP) behavioral specification written in C,
into a concurrent KPN [22] specification. By means of au-
tomated source-level transformations, KPNgen is also capable
of producing different input-output equivalent KPNs, in which
for example the amount of concurrency can be varied. Such
transformations enable behavioral-level DSE.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

name = "CB" type = "Crossbar"><network

name = "IO4"/><port
name = "IO3"/><port
name = "IO2"/><port

<port name = "IO1"/>

1

10

20

15

5

25

30 </platform>

name ="myPlatform">

</network>

</link>

</link>

<link

</link>

<link name = "BUS4"/>
</link>

<resource name = "IO3" />
<resource name = "IO1" />

<link />name = "BUS3"

<resource name = "IO2" />
name = "IO1" />

/>name = "BUS2"

<resource name = "IO1" />
name = "uP1"<resource name = "IO1" />

<link name = "BUS1"/>

<resource

<processor </processor>

<processor </processor>

<platform

<processor </processor>
name = "IO1"/>>

name = "uP1" > name = "IO1"/>
name = "IO1"/>

<port
> <port

<port
<processor <port name = "IO1"/> </processor>

name = "HIP2"
name = "HIP1"

> name = "uP2"

name = "CB"

name = "HIP2"
name = "CB"

name = "HIP1"
<portname = "CB"

<port
<port

<port
<port

<port

<resource name = "IO4" />
<resource name = "IO1" /><port

<port
name = "uP2"
name = "CB"

(a) Platform specification

uP − Microprocessor

MEM− Program and Data Memory
MC − Memory Controller

CC − Communication Controller
CM − Communication Memory

− CrossbarCB

HIP − Dedicated Hardwired IP Core

CB

CC3

MEM1

MC1

CM1 CM3

uP1

CC2

CM2

CC4

CM4

MC4

Legend:

HIP1

HIP2 uP2

MEM2

CC1

(b) Elaborate platform

Fig. 4. Example of a Daedalus MPSoC platform.

The generated or handcrafted KPNs are subsequently used
by the Sesame modeling and simulation environment [24]
to perform system-level architectural DSE. To this end,
Sesame uses (high-level) architecture model components from
Daedalus’ IP component library (see the left part of Figure 3).
Sesame allows for quickly evaluating the performance of
different design decisions in terms of target platform archi-
tectures (i.e., resource allocation), binding of KPN processes
to architecture resources, and scheduling policies. Here, a
balanced trade-off has been made between simulation accuracy
and performance, allowing for extremely fast TAPM-level
simulations while still yielding trustworthy estimations. But,
on the other hand, Sesame also supports a gradual refinement
of its architecture performance models to increase accuracy.
This can, for example, be realized by gradually incorporat-
ing (external) lower-level simulation models, such as cycle-
accurate instruction set simulators, into Sesame’s high-level
architecture performance models.

Besides exhaustive simulative DSE to study certain focused
regions of a design space, Sesame also supports heuristic
search methods, such as genetic algorithms, to steer DSE in
larger design spaces. Moreover, it includes an additional design
space pruning step, which is based on analytical models and
takes place before DSE to trim the design space that needs to
be studied using simulation.

Sesame’s DSE results in a set of promising candidate system
designs, each of which are described using a high-level, XML-
based platform description (illustrated in Figure 4(a)) and
process binding description. These high-level descriptions,
together with the (behavioral) KPN description, act as input to
the ESPAM tool [25]. This tool subsequently uses RTL ver-
sions of the components from the IP library to automatically
generate synthesizable VHDL that implements the candidate
MPSoC platform architecture. In addition, it also generates
the C code for those KPN processes that are mapped onto
programmable cores. Using commercial synthesis tools and
compilers, this implementation can be readily mapped onto
an FPGA for prototyping. Such prototyping also allows for
calibrating and validating Sesame’s system-level models, and
thus improves the trustworthiness of these models.

3) Daedalus Experiences: Typically, Daedalus can be de-
ployed in situations where rapid quantitative insight is needed
into a variety of different design options during the very early
stages of design. For example, Daedalus has been recently
used in a case study together with the Dutch SME Chess
B.V. [21] for studying different MPSoC implementations for
image compression of very high resolution (medical) images.
Hence, Daedalus was used for design space exploration,
both at the level of simulations and prototypes, in order to
rapidly gain detailed insight on the system performance. The
studied MPSoCs exploit concurrency at three levels: multiple
encoders are operating on different image tiles in parallel,
each encoder exploits task parallelism in a pipelined fashion
(i.e., streaming), and each encoder exploits data parallelism at
the granularity of macro-blocks. The complete design space
that has been considered in this case study consists of around
2.5 · 1013 design alternatives, of which only a few hundreds
have actually been simulated during the DSE process. Using
the DSE results, we selected 25 MPSoC design instances for
implementation as FPGA prototypes. The number of process-
ing elements in these MPSoC implementations ranges from 1
to 24 processors, where a speedup of 19.7 was obtained for
the 24 processor implementation. The encoder application in
this case study consists of 2,000 lines of C code, while the
VHDL for the synthesized MPSoC prototypes ranges from
17K to 161K lines of code, dependent on the number of
processing cores. Due to the highly automated design flow
of Daedalus, all design space exploration and prototyping
work was performed in only a short amount of time, 5 days
in total. Around 70% of this time was taken by the low-
level commercial synthesis and place-and-route FPGA tools.
The prototype implementations also demonstrated that our
design space exploration phase is not only fast (approximately
one entire system-level MPSoC simulation per second) but
is also capable of accurately predicting the overall system
performance: all measured errors were found to be below the
5%, with an average of about 3%.

Daedalus still has a number of restrictions, which will
be addressed in the (near) future. For example, the SANLP
input requirement for our KPNgen tool needs to be relaxed
to allow for automatic parallelization of a wider range of
behavioral specifications. Regarding Sesame-based DSE, high-
level power models need to be included as well. Furthermore,
the platforms studied by Sesame and generated by ESPAM
do not include runtime reconfigurable components and do
not allow runtime resource management and process binding.
This limitation should be relaxed to allow for system-level
synthesis of adaptive/reconfigurable MPSoCs that run multiple
applications simultaneously with adaptable quality of service.

B. System-On-Chip Environment

The System-On-Chip Environment (SCE) realizes an in-
teractive and automated design flow with a consistent and
seamless tool chain all the way from specification down to
hardware/software implementation (Figure 5) [26]. Starting
from an abstract, behavioral specification of the desired system
functionality, the SCE ESL synthesis frontend allows for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Specification

System Design

SW
DB

System
models

CPUn.bin

Implementation Model

CE/Bus
Models

TLMnTLMnTLMi

Hardware
Synthesis

Software
SynthesisRTL

DB

RTLnRTLnRTLn ISSnISSnISSn CPUn.binCPUn.bin
HWn.vHWn.vHWn.v

Design
Decisions

Architecture Exploration
Scheduling Exploration

Network Exploration
Communication Synthesis

PE/OS
Models

B2 C1

B1

B3
C2

C3

C4 B5

B4

CPU Mem

IPHW

Br
id

ge

Ar
bi

te
r

CPU Bus DSP Bus

B2B1 B3v1
v2

B5B4

DSP

C4C3S1

RTOSRTOS

Archn

CPU Mem

IPHW

Br
id

ge

Ar
bi

te
r

CPU Bus DSP Bus

B2B1 B3v1
v2

B5B4

DSP

C4C3S1

RTOSRTOS

ArchnTLMn

Impln

ISS

CP
U

Mem

IPHW

Br
id

ge

Ar
bi

te
r

CPU Bus DSP Bus

B5

DS
P

HAL
RTOS

B1

ISS

HAL
RTOS
B2,B3

B4

Spec

Impln

ISS

CP
U

Mem

IPHW

Br
id

ge

Ar
bi

te
r

CPU Bus DSP Bus

B5

DS
P

HAL
RTOS

B1

ISS

HAL
RTOS
B2,B3

B4

Impln

ISS

CP
U

Mem

IPHW

Br
id

ge

Ar
bi

te
r

CPU Bus DSP Bus

B5

DS
P

HAL
RTOS
B1,B2

ISS

HAL
RTOS

B3

B4

CPU Mem

IPHW

Br
id

geCPU Bus DSP Bus

B1 B2 v1
v2

B5B4

DSP

C4C2C1

OSOS

B3

C3

Fig. 5. System-On-Chip Environment (SCE) design flow.

interactive, user-driven exploration of the system-level design
space. Given design decisions and database components, SCE
will automatically implement the specification on the given
target platform and in the process generate structural TLMs
of the system architecture at various levels of abstraction.
In a component- and task-level backend process, hardware
and software processors in the TLMs are then individually
synthesized further down to their final RTL and ISA imple-
mentations, respectively.

SCE is based on the SpecC SLDL and methodology [27].
SpecC technology is standardized and was chosen, for exam-
ple, by the Japanese Aerospace Exploration Agency (JAXA) as
the basis for development of a complete ESL design solution
called ELEGANT4. ELEGANT is a joint project involving
several partners to assemble a common design environment
for all of JAXA’s suppliers. It includes a derivative of the SCE
frontend as the core system-level design component [28].

1) Scope of Methodology: At the input of the SCE or
ELEGANT design flow, the behavioral system-level specifica-
tion provides the designer with an abstract, high-level model
for parallel programming of the platform across hardware
and software processors. Computation is specified in a hi-
erarchical and concurrent fashion following a Program State
Machine (PSM) MoC [13]. SpecC behaviors at the leaves
of the hierarchy encapsulate basic algorithms in the form of
ANSI C code. Behaviors can be composed hierarchically in
arbitrary serial-parallel fashion. At each level, a sequential,
parallel, pipelined or state-machine composition is supported.
Behaviors communicate through shared variables or abstract
channels. A standard library of communication channels pro-
vides a rich set of high-level communication primitives, such
as synchronous or asynchronous message-passing, queues,
events or semaphores.

ESL refinement tools will then take an input specification
and automatically implement it on a given target platform
based on a given mapping. Through its processing element
(PE), communication element (CE) and bus databases, SCE
supports a system-level MoA that allows for heterogeneous,

4Electronic Design Guidance Tool for Space Use

bus-based MPSoCs consisting of PEs, such as custom hard-
ware and programmable software processors, IP blocks, and
memories, connected through complex networks of busses and
CEs, such as bridges and transducers.

At the output of the ESL design frontend, intermediate
TLMs represent a system-level MoS that serves as a virtual
prototype of the application computation and communication
running on the platform processors, memories and busses.
System TLMs automatically generated by SCE integrate high-
level, task-accurate MoPs (TAPMs) with back-annotated task
code running on top of abstract OS and processor models to
provide fast yet accurate analysis and design validation without
the need for slow instruction-set simulation.

At the output of the backend, behavioral hardware and
software processor models in the TLM are synthesized down
to their component- and task-level implementations ready for
further synthesis and manufacturing. On the hardware side,
both application algorithms and bus interfaces are refined into
synthesizable VHDL or Verilog RTL models. On the software
side, code for application tasks, middleware and bus drivers is
automatically synthesized into final target binaries ready for
download into the processors.

In addition to VHDL or Verilog descriptions and binary
images for each hardware or software processor, respectively,
an implementation model of the system is generated that al-
lows for co-simulation of hardware RTL models with software
instruction-set simulators (ISSs) running final target binaries.
As a result, the pin- and cycle-accurate implementation model
realizes a netlist MoS and an MoP that is based on a CAPM.

2) SCE Design Steps: SCE follows a Specify-Explore-
Refine methodology [13]. The design process starts from a
model specifying the desired functionality (Specify). In each
following design step, the designer first makes necessary
design decisions by exploring the design space (Explore).
SCE then automatically generates a new model at the next
lower level of abstraction by integrating decisions and database
component models into the design (Refine). As such, through
a gradual, stepwise refinement process, SCE automatically
generates models successively at lower levels of abstraction
and with an increasing amount of implementation detail.

SCE integrates all design steps under a common graphical
user interface (GUI). The GUI provides interactive and visual
design model and database browsing, decision entry and
design analysis. In the exploration phase of each step, users
can enter design decisions through the GUI or a command-
line scripting interface. To aid the user in the exploration
process, SCE includes retargetable profiling and estimation
tools that provide feedback about specification characteristics
and effects of decisions on design quality metrics. In addition,
SCE supports a plugin mechanism for inclusion of optimizing
algorithms that perform automated decision-making.

As shown in Figure 5, the SCE system design frontend inter-
nally consists of four design steps: architecture and scheduling
exploration for design of system computation, followed by
network exploration and communication synthesis for design
of system communication.

During architecture exploration, the processing platform
(PEs and memories) is defined and the computational aspects

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

DCT
TX

ARM7

M1Ctrl

I/O4

HW

DSP56k

MBUS

BUS1 (AMBA AHB) BUS2 (DSP)

Ar
bi

te
r1

IP Bridge

DCTBus

I/O3I/O2I/O1
DMA

M1

Enc DecJpeg

Codebk

stripe

SI BO BI SO

DCT
v3

C2

C1
C3
C4

C5 C6 C7 C8

C0

0x40
0x48

int0

0x14

0x80

0x10,int1 0xA000,intD

0x0C00,intC

0x0C50,intC

0x
08
00
,in
tA

0x
09
00
,in
tB

0x
09
50

0x
08
50

MP3

Fig. 6. SCE cellphone design example.

of the specification (behaviors and variables) are mapped
onto that platform. During scheduling exploration, the order
of execution on the inherently sequential PEs is determined.
Behaviors can be statically scheduled and grouped into se-
quential tasks, and remaining concurrent tasks are dynamically
scheduled on top of a real-time operating system (RTOS).

During network exploration, the system communication
topology (busses, CEs and their connectivity) is defined, and
the given end-to-end communication channels are mapped and
routed over that network. During communication synthesis,
point-to-point links in each network segment are implemented
over the actual bus medium, and pin- and bit-accurate param-
eters, such as bus addresses and interrupts, are selected.

Finally, in the backend, hardware and software synthesis of
each synthesizable or programmable PE and CE is performed.
Hardware synthesis follows an interactive and automated high-
level synthesis process to take behavioral hardware models
down to structural RTL descriptions. For software synthesis,
SpecC code for application software, middleware, drivers and
interrupt handlers is generated, cross-compiled, and targeted
towards and linked against real-time operating system (RTOS)
to create final target binaries.

3) SCE Experiences: SCE has been applied to a large suite
of industrial-size design examples. Figure 6 shows an example
design of a cellphone baseband MPSoC that combines an MP3
decoder and JPEG encoder running on an ARM subsystem
with a GSM voice encoder/decoder running on a Motorola
DSP. Subsystems include memories and I/O peripherals and
are assisted by custom hardware PEs for DCT and codebook
search acceleration. The complete cellphone specification con-
sists of about 16,000 lines of SpecC code and is refined down
to 30,000 lines in the final TLM.

For all investigated examples, several different design al-
ternatives were explored. Given design decisions, final system
TLMs are automatically refined by SCE within seconds, trans-
lating into productivity gains of several orders of magnitude
compared to a tedious and error-prone manual model writing
process. Furthermore, generated simulation models provide
fast and accurate feedback. Complete MPSoC TLMs simulate
at a speed of about 600 MIPS sustained and up to 2000 MIPS
peak. Depending on back-annotation of profiling or trace
based estimates, timing errors range from 12.5% down to an

model

select CPUs, busses

component library

specify mapping

behavioral synthesis
Forte Cynthesizer

component
library

hardware accelerators etc.
CPUs, busses,

includes

rapid
prototyping

select

implementation

hw accelerators,
etc. from the

solutions
optimized

model

SystemC

exploration

model

design space
exploration

Fig. 7. ESL design flow using SystemCoDesigner.

average of 3%. In all cases, however, models exhibit 100%
fidelity. Together, automatic model generation paired with fast
and accurate simulation enables rapid, early design space
exploration. For example, in a case study of a standalone
MP3 decoder on a Xilinx platform (MicroBlaze CPU plus
OPB bus), interactive exploration of more than ten alternatives
led to an optimal architecture in less than an hour, including
generation and simulation of all models at a rate of 2-4 models
per minute.

As part of the ELEGANT project, JAXA initiated a variety
of evaluations of the resulting tool environment in several
of JAXA’s suppliers and other independent investigators. For
example, with SCE at its core, a single SpaceWire5 speci-
fication could be automatically realized as both a pure hard-
ware solution and a mixed hardware/software implementation.
Both variants were successfully synthesized and validated to
conform to protocol specifications. In another evaluation, a
MPEG4 decoder was implemented on a MIPS-based platform
with varying levels of hardware acceleration. Good quality
of results could be observed for all automatically synthesized
hardware, achieving a 30 frames/s decoding rate on a 80 MHz
3-processor architecture.

With automatic refinement from specification down to
implementation, the development of the initial specification
model becomes the major bottleneck. Even though C-based
design allows reuse of a large body of existing legacy code,
the conversion of often unstructured C code into a parallelized
specification remains a challenge. As such, further research
into tool support for automation of specification capture or
conversion from other high-level models, such as Matlab or
UML, is needed in the future.

C. SystemCoDesigner
The goal of the SystemCoDesigner project is to automati-

cally map applications written in SystemC to a heterogeneous
MPSoC platform. By automating as many design steps as
possible, an early evaluation of different design options is
permitted [29]. The overall design flow is shown in Figure 7. In
a first step, the designer writes an actor-oriented application
model using SystemC. In a second step, different hardware

5A standard for high-speed and high-reliable networks in space and satellite
applications.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

accelerators are automatically generated for actors and stored
in a component library. This library also contains other syn-
thesizable IP cores like processors, busses or memories. The
designer defines an MPSoC platform model from resources
in the component library as well as mapping constraints
for the actors, resulting in a system-level specification. An
automatic design space exploration trades off several, often
conflicting, design objectives. From the set of optimized
solutions, the designer selects promising implementations for
rapid prototyping. For this purpose, design decision leading
to the optimized solution are represented as structural TLM.
For rapid prototyping, hardware accelerators are synthesized
to the RT level and software is compiled to match the ISA of
selected processors.

1) Scope of Methodology: Currently, SystemCoDesigner
supports the design of streaming applications. These applica-
tions are typically modeled by help of dataflow graphs where
vertices represent actors and edges represent data dependen-
cies. Due to the complexity of many streaming applications,
they often cannot be modeled as static dataflow graphs [30],
[31], where consumption and production rates are known at
compile time. Rather they are described as a combination
of static and dynamic dataflow models, e.g., Kahn Process
Networks [22].

On the other hand, SystemC [32] is becoming a new de-
facto standard in industrial system-level design flows. Hence,
SystemCoDesigner assumes that the application model is
written in SystemC and represents a dataflow model, i.e., Sys-
temC modules (actors) only communicate via SystemC FIFO
channels and their functionality is implemented in a single
SystemC thread. Such input descriptions can be transformed
into a special subset of SystemC called SysteMoC [29]. An
application modeled in SysteMoC resembles the FunState
MoC (Functions driven by State machines) [33] that allows to
express non-deterministic dynamic dataflow (DDF) models.

A SysteMoC model is composed of SysteMoC actors that
communicate via queues with FIFO semantics. Each Syste-
MoC actor is defined by a finite state machine (FSM) specify-
ing the communication behavior and methods controlled by the
finite state machine. If activated by the FSM, these methods
are executed atomically and data consumption and production
is only performed after computing a method.

As an example, Figure 8(a) shows a Motion-JPEG decoder
in SysteMoC. It consists of several actors interconnected by
communication channels (edges) processing a stream of data.
Figure 8(b) exemplarily shows the SystemC definition of the
PPM sink actor. The corresponding representation as Syste-
MoC actor is shown in Figure 8(c). The finite state machine
controlling the communication behavior of the SysteMoC
actor checks for available input data (e.g., #i1 ≥ 1) and
available space on the output channels (e.g., #o1 ≥ 1) to
store results. Furthermore, constant methods called guards
(e.g., check) can be used to test values of internal variables
and data in the input channels. If predicates annotated to a
state transition evaluate to true, this transition can be taken
and annotated action methods (e.g., transform) will be
processed atomically.

SysteMoC actors can be transformed into both hardware

check

return(false);

return(true);
}pixels=dimX*dimY;

size
dimX = i2[0];
dimY = i2[1];

printHeader();n=0;

dimX = i2.read();
dimY = i2.read();

JPEG Huff.
Decoder

Inverse
ZRL

DC
Decoder

Inverse
Quant.

PPM
SinkDecoder

Frame
Shuffler

IDCTInverse
ZigZag

Dup

Parser
Source

YCbCr

(b)

(a)

qstart qloop

#i2 ≥ 2 / size

& !check / transform
#i1 ≥ 1&#o1 ≥ 1

o1

i2

i1

(c)

class PPMSink: public sc module {
void process() {

}
}

}

for(int n=0; n<pixels;n++)

while(1) {

if(n<pixels) {
transform

check

n++;
printPixel(i1[0]);

printHeader();

printPixel(i1.read());

pixels = dimX*dimY;

Fig. 8. Block diagram of a Motion-JPEG decoder. b) shows the SystemC
code of an actor that can be transformed into a SysteMoC actor given in c).

accelerators and software modules [29]. The latter one is
achieved by straight forward code transformations, whereas the
hardware accelerators are built by help of Forte Cynthesizer
[9]. This allows for quick extraction of important performance
parameters like the achieved throughput and the required area
which are used to calibrate the system-level specification.
The generated hardware accelerators (synthesizable RTL code)
are stored in the component library. This component library
contains further synthesizable IP cores including processors,
busses, memories, etc. The MoA is a heterogeneous MPSoC
platform which is specified by instantiating and connecting
cores from the component library. Furthermore, the designer
has to specify mapping constraints for each SysteMoC actor.
Later, design space exploration is performed to find sets of
optimized solutions.

From the set of optimized solutions the designer selects any
MPSoC implementation best suited for his needs. Once this
selection has been made, the last step of the proposed ESL de-
sign flow is the rapid prototyping of the corresponding FPGA-
based implementation in terms of model refinement. For this
purpose, the resulting platform is assembled. Moreover, the
program code for each processor is generated according to the
binding of the actors. This results in a TLM, which is the MoS
used as implementation representation by SystemCoDesigner.
In order to generate high quality software schedules, System-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

CoDesigner supports the automatic classification of actors into
synchronous or cyclo-static dataflow [34] and clustering static
actors bound to the same processor into a single dynamic
actor [35]. Finally, the implementation is compiled into an
FPGA bit stream using the Xilinx Embedded Development
Kit (EDK) [36]. Thereby, connecting SystemCoDesigner to
lower abstraction levels in the double roof model.

2) SystemCoDesigner Design Steps: All manual work in
the SystemCoDesigner design flow has been performed after
setting up the MPSoC platform model together with the
mapping constraints. Starting with this input model, System-
CoDesigner automatically explores the design space. For this
purpose, it optimizes the implementation of the streaming ap-
plication while considering several objectives simultaneously,
e.g., latency, throughput, area and power consumption. While
area consumption is assumed to be a linear cost function,
timing and power estimation requires a simulation-based per-
formance evaluation during exploration.

SystemCoDesigner generates task-accurate MoPs (TAPM)
automatically from the SysteMoC model and the performance
values annotated in the input model [29]. For this purpose,
the MPSoC platform model is translated into a so called
virtual architecture using again SystemC. The performance
evaluation is done by linking the SysteMoC model to the
virtual architecture. Each invocation of an action of an actor
is then relayed to the virtual component the actor is bound to.
The virtual component then blocks the actor’s execution until
the estimated execution time of the action and possible other
preemption times are expired.

Beside evaluating a single design point, design space explo-
ration is responsible for covering the search space. In order
to perform decision making automatically, SystemCoDesigner
translates the input model into a Pseudo Boolean (PB) formula.
The variables of this formula encode the resource allocation,
the actor binding, the queue mapping, and the routing of
transactions on the communication structure. Each variable
assignment satisfying this formula corresponds to a feasible
implementation of the application. A Pseudo Boolean solver
is used to identify these solutions [29]. The optimization is
performed using a Multi-Objective Evolutionary Algorithm.

3) SystemCoDesigner Experiences: For the experimental
evaluation of the SystemCoDesigner design flow, a Motion-
JPEG decoder as shown in Figure 8(a) has been implemented.
The Motion-JPEG decoder case study consists of 8, 000 Syste-
MoC lines of code, supporting interleaved and non-interleaved
baseline profile without sub-sampling. The complete spec-
ification results in about 5 · 1033 possible implementation
alternatives. Thanks to the integration of Forte Cynthesizer, the
hardware accelerators for the different actors could be obtained
directly from the SysteMoC specification. Furthermore, as
SysteMoC offers a higher level of abstraction compared to
RTL, the designer can progress more quickly. Taking the
number of lines of code as a measure for complexity, the RTL
design would have been 8− 10 times more costly.

With the specification the design space has been explored
using SystemCoDesigner. The objectives taken into account
during design space exploration have been (i) throughput, (ii)
latency, (iii) number of required flip flops, (iv) look-up tables

and (v) block RAMs. During exploration 7,600 different solu-
tions have been evaluated in 2 days, 17 hours and 46 minutes.
The simulation time per solution is about 30 seconds for
Motion-JPEG streams consisting of four QCIF frames. As a
result, 366 non-dominated solutions were found, each of them
representing an arbitrary hardware/software implementation.
Hardware-only implementations show real-time performance
(≥ 25frames/s) for QCIF streams while occupying about
40, 000 4-input LUTs and 14, 500 flip flops.

Finally, many of these solutions have been automatically
prototyped onto a Xilinx Virtex II FPGA. However, a dis-
crepancy of up to 30% can be identified when comparing the
FPGA implementations with the performance estimations dur-
ing design space exploration. The differences in the required
hardware sizes (≤ 15%) occurring between the predicted val-
ues and those measured in hardware can be explained by post
synthesis optimization like elimination of useless BRAMs. The
discrepancy between the performance estimations for latency
and throughput and those measured for hardware-software
solutions is due to schedule overhead.

IV. OTHER ESL SYNTHESIS METHODOLOGIES

In the following, we will present three more related aca-
demic approaches. Note that in contrast to our own work for
which we have additional details available, discussion of other
related work is limited to a classification of their underlying
methodologies based on the criteria introduced in Section II.

A. Metropolis
Metropolis [37] is a modeling and simulation environment

based on the platform-based design paradigm [38]. Platform-
based design (PBD) is an attempt at simplifying the system-
level design problem by removing one degree of freedom: in
PBD, the allocation of the target system platform consisting
of computation and communication components is assumed
to be given or at least significantly constrained. As such,
the constraints at the input of the design process contain a
fixed architecture template with no or little flexibility. Such a
pre-defined and pre-determined platform facilitates the reuse
of common design patterns across different design instances.
Therefore, PDB follows a meet-in-the-middle approach and
the system design problem is reduced to the mapping of a
desired function onto the given target platform to create a
specific design instance.

Metropolis provides a general, proprietary metamodel lan-
guage that is used to capture separate models for “func-
tionality” (behavioral model), “architecture” (platform model)
and their “mapping” (binding and scheduling). The meta-
model employs a fundamental event-based execution model
with concepts of concurrent processes communicating through
channels (called media), including associated constraints and
quantities. In a similar manner to other system-level languages,
functionality is described in the form of event-driven process
networks that are general in the sense that many classes of
MoCs can be represented. In addition, functionality can be
annotated with non-functional constraints. The architecture is
defined following an MoA that uses processes and media

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

to describe available resources (e.g. tasks) and services (e.g.
CPUs, memories or busses), respectively. Quantities can be
associated with the architecture to define an MoP at the level
of tasks (TAPM). Finally, given a specification in the form
of functionality and architecture, synthesis or refinement is
performed by defining an MoS as a mapping between the
two through a set of additional constraints synchronizing their
event execution.

Metropolis itself does not define any specific design tools
but rather a general framework and language for modeling
with support for simulation, validation and analysis of models.
Metropolis includes a frontend for parsing of metamodels and
a backend for translation of metamodels into C++/SystemC
simulation code. In addition, several backend point tools have
emerged for scheduling, communication design, verification,
and hardware synthesis [39].

B. Koski

The Koski design flow [40] provides a single infrastructure
for modeling of applications, automatic architectural design
space exploration, and automatic ESL synthesis, programming,
and prototyping of selected MPSoCs. Koski’s design flow
starts with the capturing of requirements for an application
and architecture, including design constraints, such as the
overall maximum cost. Subsequently, the functionality of the
system is described with an application model in a UML
design environment (using the Statecharts MoC to describe the
actual functionality) and verified with functional simulations.
The architecture model consists of components which are
taken from a platform library, targeting the construction of
heterogeneous, bus-based MPSoCs (MoA). The relationship
between application and architecture models is described with
a mapping model.

The UML interface handles the transformation of applica-
tion and architecture models to an abstracted model for fast
architecture exploration. Particularly, the application model is
transformed to an abstract process network model. In addition,
the UML interface can back-annotate the UML design with
performance information obtained from lower-level simula-
tions. Finding a good application-to-architecture mapping is
carried out during a two-phase automatic architecture explo-
ration step consisting of static and dynamic (i.e., simulative)
exploration methods using a TAPM MoP. For controlling the
architecture exploration, the designer constrains the design
space by defining the platform parts that can be used as well as
the allowed mapping combinations. In addition, the designer
specifies the constraints for performance, area, and power.

In the last step, the parts of the UML description that
were mapped to processors during the architecture exploration
are passed to the automatic code generation. The generated
low-level software code and the RTL descriptions (i.e. a
netlist MoS) of the component instances from the platform
(derived from Koski’s platform library) are then combined
for physical implementation. This stage also handles the real-
time operating system (RTOS) integration, software executable
generation, and hardware synthesis.

C. PeaCE/HOPES

PeaCE (Ptolemy extension as a Codesign Environment) [41]
is an ESL synthesis framework for multimedia applications.
Starting from a Ptolemy II application model, it provides a
seamless codesign flow from functional simulation to system
synthesis and prototyping. Although Ptolemy supports the
hierarchical combination of many different Model of Com-
putation, PeaCE restricts the input model to extension of
synchronous dataflow and extended finite state machines. In
PeaCE, the application is modeled by a task graph where
tasks are either signal processing tasks or control tasks.
Signal processing tasks are modeled through synchronous
piggybacked dataflow, a dataflow model with control token.
Control tasks are modeled by flexible finite state machines
(hierarchical state machines without state transitions crossing
hierarchy boundaries).

For functional simulation of the application model, PeaCE
provides an automatic C code generation. For system syn-
thesis, the architecture platform is specified by a list of
processors and synthesizable IP cores resulting in a hetero-
geneous MPSoC Model of Architecture. The design space
exploration is a two-phased: In a first step the resource
allocation and task binding is performed. During this step,
communication overhead is assumed to be proportional to the
amount of consumed and produced data. The objective of this
step is to minimize system cost under timing constraints. In
the second step, the communication architecture exploration,
that is bus and memory allocation is performed. For this
purpose, communication and memory traces are generated for
those solutions fulfilling the timing constraints in the first
step. Design space exploration in PeaCE can be performed
automatically or manually and is guided by an instruction set
accurate performance model. After design space exploration,
optimized MPSoC implementations can be prototyped either
using a cosimulation environment or FPGAs. In both cases,
the Model of Structure is a Netlist representing the design
decisions.

Recently, a new framework called HOPES has been pro-
posed as enhancement to PeaCE [42]. The main focus is on
generating MPSoC software and overcome the limitations of
OpenMP and MPI. Its input model is called CIC (Common
Intermediate Code). A CIC models consists of two parts: The
task code defines each task by the three methods init(), go(),
and wrapup(). Intertask communication or communication to
the environment is established by help of several APIs. The
second part is the architecture information, including the
platform definition and additional constraints. The task code of
a CIC model can be either written manually or automatically
generated from PeaCE models.

A CIC translator transforms a CIC model into optimized
software for the processors in the MPSoC platform. For this
purpose, the API calls must be replaced by platform specific
code, interface code for hardware accelerators has to be gen-
erated, and scheduling of tasks bound to the same processor
has to be performed. Optionally, an OpenMP compiler can be
used for optimization.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE I
CLASSIFICATION OF DIFFERENT ESL SYNTHESIS APPROACHES.

Specification Implementation Decision Making Refinement
Approach MoC(1.1) MoA(1.2) MoS(2.1) MoP(2.2) DSE(3) Comp(4.1) Comm(4.2) Comp(5.1) Comm(5.2)

Daedalus KPN HeMPSoC Netlist T/ISAPM • • ◦ • ◦
Koski Statecharts HeMPSoC Netlist TAPM • • ◦ • ◦

Metropolis PN HeMPSoC TLM TAPM ◦ ◦
PeaCE/HoPES DDF/FSM HeMPSoC Netlist ISAPM ◦ ◦ • ◦

SCE PSM HeMPSoC TLM/Netlist T/CAPM • •
SystemCoDesigner DDF HeMPSoC TLM TAPM • • • •

DDF Dynamic Dataflow
(K)PN (Kahn) Process Network

PSM Program State Machine

HeMPSoC Heterogeneous, Bus-Based Multi-
Processor System-On-Chip

TLM Transaction-Level Model

TAPM Task Accurate Performance Model
ISAPM Instruction Set Accurate Performance Model
CAPM Cycle-Accurate Performance Model

V. DISCUSSION

A summary of all six presented tools based on the classifi-
cation criteria introduced in Section II is given in Table I. In
this table, a full circle implies that a certain synthesis aspect
(DSE, decision making or refinement) is taken care of in a
fully automated fashion by an ESL synthesis approach, while
an open circle means partial support/automation.

As can be seen, tools share many common characteristics.
For example, all discussed tools target heterogeneous, bus-
based MPSoCs and almost uniformly support task-based per-
formance models. On the other hand, tools each have their
particular strengths and weaknesses, specifically in the level
of automation for different design tasks. All together, this pro-
vides a tremendous opportunity to exploit tool synergies. By
merging automation capabilities of different tools, a complete
ESL synthesis solution should be achievable. We are currently
in the process of exploring such integration of our own tools,
e.g. by combining DSE and decision making algorithms of
SystemCoDesigner with SCE’s refinement engine.

One of the biggest hurdles for tool interoperability will
always remain the definition of proper, standardized interfaces.
As part of our integration work, we expect to obtain insights
into requirements for such interfaces, e.g. for a canonical de-
sign decision description format between decision making and
refinement. Another open question is the choice of MoC at the
specification level. While restricted MoCs show the potential
to perform domain specific optimizations, other more general
MoCs should be used for expressing implementation details
and, even, conducting platform-dependent optimization steps.
As both aspects are important ingredients for ESL synthesis
tools, a well-defined MoC hierarchy and MoC interoperability
might help to improve future design methodologies at the
system level.

On the modeling side, language and MoS standardization
efforts such as SpecC or SystemC consortia, TLM standards
and the IP-XACT netlist format are only a first step into this
direction. As exemplified by the various tools presented in this
paper, standardized languages can provide a common basis for
exchange of design models between different point tools and
design steps, even across different vendors as demonstrated by
the SCE/ELEGANT project. However, experiences from these
projects also showed that synthesis nevertheless requires tight
integration for exchange of semantic meta-information on top
of basic, inherently ambiguous simulation languages.

In general, interoperability issues will require an industry-
wide approach. In this sense, it may be worthwhile to consider
the definition and development of a Common Design Flow
Infrastructure (CDFI) which facilitates the development of
system-level design flows and fosters the re-use of design
tools. Such a CDFI would be a kind of meta-tool for devel-
oping system-level design flows, having design flow steps as
plug-ins, i.e. similar to the goals of the Metropolis project. This
requires the definition (and broad adoption) of standardized
tool, model and data descriptions and file formats to allow
the interchange of information between the CDFI framework
and external tools (i.e., plug-ins). Moreover, the framework
could also allow for explicitly defining design flows, which
would make it possible to build pre-packaged standardized or
customized design flows.

Finally, the synergy between the various ESL synthesis
efforts also necessitates the development of standard case
studies and benchmarks for ESL design. This would invigorate
ESL synthesis research as it enables the direct comparison
of research results. Currently, such a comparison between
ESL synthesis research efforts in terms of their qualitative
characteristics, remains difficult. We also believe that the flow
of ideas from academia to industry will benefit from good,
standardized benchmarks and case studies, as research results
can always be demonstrated on industrially relevant examples.

VI. SUMMARY AND CONCLUSIONS

Being an active research topic at its relative infancy, the ESL
space is as of yet characterized by fragmentation and partial
or wrongly positioned solutions. In this paper, we developed
and proposed a classification framework for evaluation of
different ESL synthesis approaches. Within the context of
this framework, we presented a comparison and analysis of
six different state-of-the art ESL tools. These observations
show that recent approaches are converging towards largely
similar design principles and flows. Nevertheless, no single
approach currently provides a complete solution and further
research in many areas is required. On the other hand, based
on the common concepts and principles identified in this
classification, it should be possible to define interfaces such
that different point tools can be combined into an overall ESL
design environment. In the future, we plan to investigate such
interoperability issues using combinations of different tools
presented in this paper.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

ACKNOWLEDGMENTS

Besides the authors, a large number of people are re-
sponsible for, or have contributed to, the work described in
Section III of this paper. The main co-contributors of the
Daedalus framework are Hristo Nikolov, Mark Thompson,
Cagkan Erbas, Simon Polstra, and Ed Deprettere. For SCE,
we would like to acknowledge the main developers, namely
Rainer Dömer, Junyu Peng, Dongwan Shin and Quoc-Viet
Dang. The main co-contributors to the SystemCoDesigner
framework are Joachim Falk, Jens Gladigau, Michael Glaß,
Joachim Keinert, Martin Lukasiewycz, Thomas Schlichter,
Martin Streubühr, and Christian Zebelein. Last, but not least,
we would like to thank the reviewers for their helpful com-
ments and suggestions in making this paper a much stronger
contribution.

REFERENCES

[1] G. Martin, “Overview of the MPSoC design challenge,” in Proc. DAC,
San Francisco, CA, Jul. 2006.

[2] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli, “A
Platform-Based Taxonomy for ESL Design,” IEEE Design & Test of
Computers, vol. September-October, pp. 359–374, 2006.

[3] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing
Models of Computation,” IEEE Trans. CAD of Integrated Circuits and
Systems, vol. 17, no. 12, pp. 1217–1229, Dec. 1998.

[4] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-
Chip (MPSoC) Technology,” IEEE Trans. CAD of Integrated Circuits
and Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[5] J. Teich, “Embedded System Synthesis and Optimization,” in Proceed-
ings of the Workshop on System Design Automation (SDA 2000), Rathen,
Germany, Mar. 2000, pp. 9–22.

[6] D. D. Gajski and R. H. Kuhn, “New VLSI tools,” IEEE Computer,
vol. 16, no. 12, pp. 11–14, Dec. 1983.

[7] C. Zhu, Z. P. Gu, R. P. Dick, and L. Shang, “Reliable Multiprocessor
System-On-Chip Synthesis,” in Proc. CODES+ISSS, 2007, pp. 239–244.

[8] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Fabsyn:
Floorplan-aware bus architecture synthesis,” IEEE Trans. VLSI Systems,
vol. 14, no. 3, pp. 241–253, March 2006.

[9] http://www.forteds.com.
[10] NEC System Technologies, Ltd., “CyberWorkBench,”

http://www.necst.co.jp/product/cwb.
[11] B. Kienhuis, E. Deprettere, P. van der Wolf, and K. Vissers, “A

methodology to design programmable embedded systems,” in Embedded
Processor Design Challenges: Systems, Architectures, Modeling, and
Simulation (SAMOS). Springer, 2002, vol. 2268, pp. 18–37.

[12] M. Gries, “Methods for Evaluating and Covering the Design Space
during Early Design Development,” VLSI Journal, vol. 38, no. 2, pp.
131–183, 2004.

[13] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and
Design of Embedded Systems. Prentice Hall, 1994.

[14] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An
Approach for Quantitative Analysis of Application-Specific Dataflow
Architectures,” in Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures and Processors, Zurich,
Switzerland, Jul. 1997, pp. 338–349.

[15] K. Huang, S. Han, K. Popovici, L. Brisolara, X. Guerin, L. Li, X. Yan,
S. Chae, L. Carro, and A. A. Jerraya, “Simulink-based MPSoC design
flow: case study of Motion-JPEG and H.264,” in Proc. DAC, 2007, pp.
39–42.

[16] G. Stitt and F. Vahid, “Binary synthesis,” ACM Trans. Design Automa-
tion of Electronic Systems, vol. 12, no. 3, pp. 1–30, 2007.

[17] K.Lahiri, A.Raghunathan, and S.Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 23, no. 6, pp. 952–961, June 2004.

[18] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. A. Jerraya,
“Flexible MPSoC platform with fast interconnect exploration for optimal
system performance for a specific application,” 2006, pp. 166–171.

[19] S. Pasricha and N. Dutt, “A framework for co-synthesis of memory
and communication architectures for MPSoC,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 26, no. 3, pp. 408–420, March
2007.

[20] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proc. CODES+ISSS, 2007, pp. 9–14.

[21] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, and E. F. Deprettere, “Daedalus: Toward
composable multimedia MP-SoC design,” in Proc. DAC, June 2008,
pp. 574–579.

[22] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74, 1974.

[23] S. Verdoolaege, H. Nikolov, and T. Stefanov, “PN: a tool for improved
derivation of process networks,” EURASIP Journal on Embedded Sys-
tems, vol. vol. 2007, Article ID 75947, 2007.

[24] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Computer, vol. 55, no. 2, pp. 99–112, 2006.

[25] H. Nikolov, T. Stefanov, and E. F. Deprettere, “Systematic and automated
multi-processor system design, programming, and implementation,”
IEEE Trans. CAD of Integrated Circuits and Systems, vol. 27, no. 3,
pp. 542–555, March 2008.

[26] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. Gajski, “System-on-Chip Environment: A SpecC-based Framework
for Heterogeneous MPSoC Design,” EURASIP Journal on Embedded
Systems, vol. 2008, no. 647953, p. 13, 2008.

[27] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Design Methodology. Kluwer, 2000.

[28] A. Gerstlauer, J. Peng, D. Shin, D. Gajski, A. Nakamura, D. Araki,
and Y. Nishihara, “Specify-Explore-Refine (SER): From specification to
implementation,” in Proc. DAC, Anaheim, CA, USA, June 2008, pp.
586–591.

[29] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SystemCoDesigner - An Automatic ESL
Synthesis Approach by Design Space Exploration and Behavioral Syn-
thesis for Streaming Applications,” ACM Trans. Design Automation of
Electronic Systems, vol. 14, no. 1, pp. 1–23, 2009.

[30] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Proc.
of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[31] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-Static
Dataflow,” IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 397–408,
Feb. 1996.

[32] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer, 2002.

[33] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich,
“FunState - An Internal Design Representation for Codesign,” IEEE
Trans. VLSI Systems, vol. 9, no. 4, pp. 524–544, Aug. 2001.

[34] C. Zebelein, J. Falk, C. Haubelt, and J. Teich, “Classification of General
Data Flow Actors into Known Models of Computation,” in Proc.
MEMOCODE, Anaheim, CA, USA, Jun. 2008, pp. 119–128.

[35] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. Bhattacharyya, “A Gen-
eralized Static Data Flow Clustering Algorithm for MPSoC Scheduling
of Multimedia Applications,” in Proc. EMSOFT, Atlanta GA, USA, Oct.
2008, to appear.

[36] Embedded SystemTools Reference Manual - Embedded Development
Kit EDK 8.1ia, XILINX, October 2005. [Online]. Available:
http://www.xilinx.com/ise/embedded/est rm.pdf

[37] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” IEEE Computer, vol. 36, no. 4, pp. 45–52,
April 2003.

[38] A. Sangiovanni-Vincentelli, “Quo Vadis SLD: Reasoning about the
Trends and Challenges of System Level Design,” Proceedings of the
IEEE, vol. 95, no. 3, pp. 467–506, March 2007. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/263.html

[39] Gigascale Systems Research Center (GSRC), “Core
design technology for complex heterogeneous systems,”
http://www.gigascale.org/theme/core/.

[40] T. Kangas et al., “UML-based multi-processor SoC design framework,”
ACM Trans. Embedded Computer Systems, vol. 5, no. 2, pp. 281–320,
May 2006.

[41] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “PeaCE: A
Hardware-Software Codesign Environment of Multimedia Embedded
Systems,” ACM Trans. Design Automation of Electronic Systems, vol. 12,
no. 3, pp. 1–25, 2007.

[42] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek, “A Retargetable
Parallel Programming Framework for MPSoC,” ACM Trans. Design
Automation of Electronic Systems, vol. 13, no. 3, 2008.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

Andreas Gerstlauer is an Assistant Professor in
Electrical and Computer Engineering at the Univer-
sity of Texas at Austin. He received a Dipl.-Ing.
degree in Eletrical Engineering from the University
of Stuttgart, Germany in 1997 and M.S. and Ph.D.
degrees in Information and Computer Science from
the University of California, Irvine (UCI) in 1998
and 2004, respectively. Prior to joining UT Austin in
2008, he was an Assistant Researcher in the Center
for Embedded Computer Systems (CECS) at UC
Irvine, leading a research group to develop electronic

system-level (ESL) design tools. Dr. Gerstlauer serves on the program com-
mittee of major conferences such as DATE and CODES+ISSS. His research
interests include system-level design automation, system modeling, design
languages and methodologies, and embedded hardware and software synthesis.

Christian Haubelt received his diploma degree
in Electrical Engineering from the University of
Paderborn, Germany, in 2001 and received his Ph.D.
degree in Computer Science from the Friedrich-
Alexander-University of Erlangen-Nuremberg, Ger-
many, in 2005. Christian Haubelt leads the System-
level Design Automation group in the Department
of Hardware-Software-Co-Design at the University
of Erlangen-Nuremberg. Dr. Haubelt serves as a
reviewer for several well-known international con-
ferences and journals. His special research interests

focus on Electronic System Level design, design space exploration, and Multi-
Objective Evolutionary Algorithms.

Andy D. Pimentel is associate professor in the
Computer Systems Architecture group of the In-
formatics Institute at the University of Amsterdam.
He holds the MSc and PhD degrees in computer
science, both from the University of Amsterdam. He
is co-founder of the International Symposium on em-
bedded computer Systems: Architectures, Modeling,
and Simulation (SAMOS) and is member of the Eu-
ropean Network of Excellence on High-Performance
Embedded Architecture and Compilation (HiPEAC).
His research interests include computer architecture,

computer architecture modeling and simulation, system-level design, design
space exploration, performance and power analysis, embedded systems, and
parallel computing. He serves on the editorial boards of Elsevier’s Simulation
Modelling Practice and Theory as well as Springer’s Journal of Signal
Processing Systems. Moreover, he has also served on the organizational
committees for a range of leading conferences and workshops, such as DATE,
IEEE ICCD, FPL, SAMOS, and IEEE ESTIMedia.

Todor P. Stefanov received the Dipl.Ing. and M.S.
degrees in computer engineering from The Technical
University of Sofia, Sofia, Bulgaria, in 1998 and
the Ph.D. degree in computer science from Leiden
University, Leiden, The Netherlands, in 2004. From
1998 to May 2000, he was a Research and Devel-
opment Engineer with Innovative Micro Systems,
Ltd., Sofia. From June 2000 to August 2007, he
was with the Leiden Institute of Advanced Computer
Science, Leiden University, where he was a Research
Assistant (PhD student) and a PostDoc Researcher

at the Leiden Embedded Research Center. From September 2007 to August
2008, he was a Senior Researcher at the Computer Engineering Lab, Delft
University of Technology, Delft, The Netherlands. Since September 1, 2008,
Todor Stefanov has been an Assistant Professor with the Leiden Institute of
Advanced Computer Science, Leiden University where he performs research
at the Leiden Embedded Research Center. His research interests include
several aspects of embedded systems design, with particular emphasis on
system-level design automation, multiprocessor systems-on-chip design, and
hardware/software codesign.

Daniel D. Gajski holds Dipl. Ing. and M.S. degrees
in electrical engineering from the University of
Zagreb, Croatia, and a doctoral degree in computer
and information sciences from the University of
Pennsylvania, Philadelphia.

After 10 years as Professor at University of Illi-
nois he has joined University of California, Irvine,
where he presently holds The Henry Samueli En-
dowed Chair in Computer System Design. He directs
the UCI Center for Embedded Computer Systems,
with a research mission to incorporate embedded

systems into automotive, communications, and medical applications. He has
authored over 300 papers and numerous textbooks, including Principles of
Digital Design (Englewood Cliffs, NJ: Prentice Hall, 1997) that has been
translated into several languages.

Jürgen Teich received his masters degree (Dipl.-
Ing.) in 1989 from the University of Kaiserslautern
(with honors). From 1989 to 1993, he was PhD
student at the University of Saarland, Saarbrücken,
Germany, where he received his PhD degree (summa
cum laude). In 1994, Dr. Teich joined the DSP
design group at UC Berkeley, where he was working
in the Ptolemy project (PostDoc). From 1995 to
1998, he held a position at the Institute of Computer
Engineering and Communications Networks Labora-
tory (TIK) at ETH Zurich, Switzerland, finishing his

habilitation in 1996. From 1998 to 2002, he was full professor in the Electrical
Engineering and Information Technology department of the University of
Paderborn, holding a chair in Computer Engineering. Since 2003, he is
appointed full professor in the Computer Science Institute of the Friedrich-
Alexander University Erlangen-Nuremberg, holding a chair in Hardware-
Software-Co-Design. Dr. Teich has been a member of multiple program
committees of well-known conferences and program chair for CODES+ISSS
2007 and FPL 2008. In 2004, Prof. Teich was elected reviewer for the
German Science Foundation (DFG) for the area of Computer Architecture
and Embedded Systems.

