Energy-efficient and High-throughput CNN
Inference on Embedded CPUs-GPUs MPSoCs

Erqian Tang'™, Svetlana Minakova!, and Todor Stefanov!

'LIACS, Leiden University, Leiden, The Netherlands
{e.tang, s.minakova, t.p.stefanov}@liacs.leidenuniv.nl

Abstract. Nowadays, many application scenarios, such as mobile phones,
drones, mobile robots, require Convolutional Neural Networks (CNNs)
inference on embedded CPUs-GPUs MPSoCs. CNN model inference is
usually computation intensive while the embedded CPUs-GPUs MPSoCs
are usually energy consumption constrained. Therefore, how to achieve
computationally-intensive CNN inference in an energy-efficient and high-
throughput way is an important issue. However, existing Deep Learning
(DL) frameworks only pay attention to achieving high-throughput infer-
ence when deploying CNN models on CPU or GPU processors without
specifically considering the energy consumption.

In this paper, we propose a novel methodology which features design-
time optimization techniques in order to achieve energy efficiency and
high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN
model onto a CPUs-GPUs MPSoC with voltage and frequency scaling
(VFS) configurations with the help of a two-objective Genetic Algorithm
(GA) which optimizes the system throughput and energy consumption
simultaneously. Moreover, we propose two analytical models, that are
used as fitness functions in the two-objective GA to evaluate very fast
the system throughput and energy consumption of CNNs mapped onto
embedded CPUs-GPUs MPSoCs. Also, we confirm the high accuracy of
these two analytical models by experimental evidence. Finally, our exper-
imental results show that our novel methodology is able to achieve both
energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs, in comparison with TensorRT which
is the best-known CNN deployment optimizer designed for NVIDIA em-
bedded MPSoCs.

Keywords: Convolutional Neural Networks - SDF - Pareto-optimal Map-
ping - High-throughput - Energy-efficient - MPSoCs - TensorRT

1 Introduction

Convolutional Neural Networks (CNNs) are biologically inspired graph computa-
tional models, characterized by high degree of available parallelism. Due to their
ability to handle large, unstructured data, CNNs are widely used to perform var-
ious tasks in areas such as computer vision and natural language processing [1].

2 E. Tang et al.

The CNNs execution typically includes two phases: training and inference [1]. At
the training phase the optimal CNN parameters are established. At the inference
phase, a trained CNN is applied to the actual data and performs the task for
which the CNN is designed. Due to the high complexity of state-of-the-art CNNs,
their training and inference phases are usually performed by high-performance
platforms, and provided as cloud services. However, some applications, e.g. [2—4],
require high-throughput execution of the CNNs inference, which cannot be pro-
vided as a cloud service. These applications are typically deployed on embedded
devices.

Many modern embedded devices are based on multi-processor systems-on-
chip (MPSoCs) [5]: complex integrated circuits, that consist of processing ele-
ments with specific functionalities. Due to their specific design, MPSoCs offer
energy-efficient and high-throughput solutions for applications running on em-
bedded devices. In addition to hosting various processing elements, capable of
running the CNN inference, such as central processing units (CPUs), embed-
ded graphics processing units (embedded GPUs), and field-programmable gate
arrays (FPGAs), MPSoCs integrate many other components, such as commu-
nication network components and video accelerators, that allow to deploy the
entire embedded application on a single chip. Therefore, MPSoCs seem to be a
promising solution for the deployment of the CNN inference phase on embedded
devices.

Embedded CPUs-GPUs MPSoCs are usually energy consumption constrained
while the CNN model inference is computation intensive. For example, in many
application scenarios requiring CNN inference on embedded MPSoCs, such as
mobile phones, drones, mobile robots, the battery capacity is usually very lim-
ited. So, how to achieve computationally-intensive CNN inference in an energy-
efficient way on embedded CPUs-GPUs MPSoCs is an important issue.

However, existing Deep Learning (DL) frameworks [6-16], that enable ex-
ecution of the CNN inference on embedded CPUs-GPUs MPSoCs, only pay
attention to achieving high-throughput inference when deploying CNN models
on CPU or GPU processors without specifically considering the energy con-
sumption, which can be influenced by the utilized number of processors and
by the possibility for CPUs-GPUs voltage and frequency scaling (VFS). These
frameworks rely on the operating system to determine the utilized number of
processors and the CPUs-GPUs operating frequency at run-time and do not
support design-time optimizations for energy-efficient deployment of the CNN
inference.

Therefore, in this paper, we extend the methodology in [16], with design-time
optimization techniques in order to achieve energy efficiency and high throughput
when deploying CNN models on embedded CPUs-GPUs MPSoCs. We propose
to extend [16] because it exploits explicitly both task- and data-level parallelism,
available in a CNN, thereby achieving higher throughput compared to the other
existing DL frameworks [6-15]. We exploit this higher throughput in combination
with different CPUs and GPUs utilization and VFS configuration possibilities to
reduce the energy consumption and to optimize the CNN inference on an MPSoC

at design-time. The goal of our optimization is to find an MPSoC configuration
which achieves the same or higher throughput with less energy consumption
compared to existing DL frameworks.

Paper contributions

In this paper, we extend the methodology in [16], which consists of three main
steps, introduced in Section 3.1. In Step 1, a CNN model is automatically con-
verted to a functionally equivalent Syndchronous Dataflow (SDF) model. In Step
2, an efficient mapping of the SDF model onto a CPUs-GPUs MPSoC is obtained
using a single-objective genetic algorithm (GA) to achieve high throughput by
utilizing the hardware resources as much as possible. Our main novel contribu-
tions are related to Step 2 and include: 1) We propose to use a two-objective
GA in order to optimize for system throughput and energy consumption si-
multaneously. To enable such two-objective GA-based optimization, we propose
novel and very accurate analytical models and use them as fitness functions
in the GA to evaluate very fast the system throughput and energy consump-
tion of CNNs mapped onto embedded CPUs-GPUs MPSoCs; 2) We confirm
the high accuracy of our aforementioned analytical models by comparing the
system throughput and energy consumption numbers provided by our models
with measured numbers obtained by deploying real-world CNNs on the Nvidia
Jetson-TX2 embedded platform; 3) We use the extended methodology and mod-
els, mentioned above, to find pareto-optimal mappings of real-world CNNs onto
the Nvidia Jetson-TX2 MPSoCs platform. The obtained results, in terms of sys-
tem throughput and energy consumption, are compared with results obtained
by the best-known DL framework for Jetson MPSoCs called TensorRT [15]. This
comparison shows that our extended methodology can achieve CNN inference on
embedded CPUs-GPUs MPSoCs with the same or higher throughput but with
less energy consumption.

The remainder of the paper is organized as follows: Section 2 gives an overview
of the related work. Section 3 introduces the background material needed for
understanding the contributions of this paper. Section 4 presents our proposed
extension of the methodology in [16], briefly introduced in Section 3.1, including
our two novel analytical models. Section 5 shows the experimental results and
Section 6 ends the paper with conclusions.

2 Related Work

Among the existing DL frameworks [6-15], NVidia TensorRT [15] is the best-
known CNN deployment optimizer designed for embedded MPSoCs such as
Nvidia Jetson TX2. This optimizer is built on top of CUDA and includes several
optimizations techniques to deliver high throughputs and low latencies for deep
neural network applications. TensorRT tries to minimize the memory footprint of
a CNN by reusing memory and applying fusion operations. Also, it exploits data-
level parallelism, available in a CNN, for efficient utilization of embedded GPUs.

4 E. Tang et al.

However, TensorRT relies on layer-by-layer (sequential) execution of CNN layers
and only one CPU processor is utilized for launching GPU engines and sending
data. In this way, the available CPUs-GPUs MPSoC hardware resources are not
utilized in the most efficient way in terms of high-throughput. Moreover, the
focus of TensorRT is only to improve the system throughput, so optimizing the
energy consumption is not considered. The CPUs and GPUs processors do not
operate at proper frequency configurations, which is not a good solution for some
energy constrained DL applications, such as drones or other light battery mobile
robots. In contrast, our extended methodology exploits both data-level paral-
lelism within the same layer and task-level parallelism among different layers of
a CNN. At the same time, our methodology also considers different number of
processors to be utilized and different CPUs-GPUs VFS to be applied. Therefore,
compared to TensorRT, our methodology can achieve same or better inference
system throughput, and lower energy consumption at the same time. Moreover,
our extended methodology is implemented on top of TensorRT, thereby inherit-
ing some benefits of TensorRT as well, such as minimizing the memory footprint
and applying fusion operations.

In [16], a novel methodology for execution of the CNN inference on embedded
CPUs-GPUs MPSoCs is proposed. It takes full advantage of all CPU and GPU
resources, available in an MPSoC, and ensures high-throughput CNN inference
execution on CPUs-GPUs MPSoCs by efficiently exploiting task-level (pipeline)
parallelism, available among CNN layers, together with data-level parallelism,
available within CNN layers. [16] achieves higher CNN inference throughput on
embedded CPUs-GPUs MPSoCs compared to the aforementioned NVidia Ten-
sorRT [15] deployment optimizer. However, utilizing all possible CPU and GPU
resources increases the energy consumption, which may fail to meet the energy
consumption budget of some battery constrained applications. In contrast, in this
paper, we extend [16] in order to enable fast and accurate multi-objective design
space exploration to find more efficient utilization of CPU and GPU resources at
proper VFS configurations. Therefore, we reduce the energy consumption while
still achieving high CNN inference throughput.

3 Background

In this section, we briefly introduce the methodology in [16] for execution of
the CNN inference on embedded CPUs-GPUs MPSoCs as well as we describe
the specific features of the embedded CPUs-GPUs MPSoCs, we consider in this
paper, and the Synchronous Dataflow (SDF) model [17]. All these are essential
for understanding our paper contributions.

3.1 CNN inference on embedded CPUs-GPUs MPSoCs

[16] proposes a novel methodology to deploy a CNN model on embedded CPUs-
GPUs MPSoCs. This methodology consists of three main steps. An overview of
this methodology is shown in Figure 1. In Step 1, a CNN model is converted

into a functionally equivalent Synchronous Dataflow (SDF) model. Unlike the
CNN model, the SDF model explicitly specifies task- and data-level parallelism,
available in a CNN, as well as it explicitly specifies the tasks communication
and synchronization mechanisms, suitable for efficient mapping and execution
of a CNN on an embedded MPSoC. Thus, a conversion of a CNN model into
a SDF model is necessary for efficient mapping and execution of a CNN on an
embedded CPUs-GPUs MPSoC. In Step 2, a Genetic Algorithm (GA) is uti-
lized to find an efficient mapping of the SDF model, obtained on Step 1, on an
embedded CPUs-GPUs MPSoC. The mapping, obtained by the GA, describes
the distribution of the CNN inference computational workload on an embed-
ded MPSoC, that exploits efficiently both task-level and data-level parallelism,
available in the CNN. In Step 3, the mapping obtained in Step 2 is utilized
to convert a CNN model into a final platform-aware executable Cyclo-Static
Dataflow (CSDF) application model [18]. The CSDF model, obtained in Step 3,
describes the CNN inference as an executable application, efficiently distributed
over embedded MPSoC processors and exploiting the right amount of task- and
data-level parallelism, which matches the computational capacity of an embed-
ded MPSoC. Thus, this methodology takes full advantage of all CPU and GPU
resources, available in an MPSoC, and enables high-throughput execution of the
CNN inference on embedded CPUs-GPUs MPSoCs.

CNN model MPSoC
Host memory
[CNN-to-SDF H Analysis GA-based CPU dlusters 13 oPU
conversion model (SDF) mappin, cPy, |||| cPu, !

g ¢ ¢ 8

| executable CNN inference model (CSDF) | < B >
Fig. 2: Embedded MPSoC

| Device memory |

CNN-to-CSDF conversion H Mapping |

Fig.1: An overview of the methodology in [16]

3.2 Embedded CPUs-GPUs MPSoCs

We define an embedded MPSoC as a tuple M PSoC/(cpu, gpu), where cpu =
{epuq, cpua, ..., cpu, } is a set of all CPU cores, available in the MPSoC; gpu =
{gpu1, gpua, ..., gpu,} is a set of all GPU devices, available in the MPSoC, and
typically m < n. An example of an embedded CPUs-GPUs MPSoC with n =5
CPU cores and m = 1 GPU device is shown in Figure 2. CPU cores are usually
divided into several clusters. The CPU cores in a cluster can operate at one of
the frequencies from the set fop = {fe1, fe2, -, fep}- Each GPU can also operate
at one of the frequencies from the set fo,. = {fg1, fg2, -, faq}-

3.3 Synchronous Dataflow (SDF) model

The SDF model [17] is a well-known dataflow model of computation, widely
used in the embedded systems community for efficient mapping of applications

6 E. Tang et al.

on embedded devices, including embedded CPUs-GPUs MPSoCs. An applica-
tion, modeled as a SDF, is a directed graph G(A, C), which consists of a set of
nodes A, also called actors, communicating through a set of FIFO channels C.
An example of a SDF model with |A|=23 actors and |C|=24 FIFO channels is
given in Figure 3. Every actor a; € A is a task, which performs certain appli-
cation functionality, represented as a function F;. An example of SDF actor as
is shown in Figure 3. Actor az performs function F3 = {ReLU}. Every FIFO
channel ¢;; € C represents data dependency and transfers data in tokens be-
tween actors a; and a;. ¢;; has data production rate U;; and data consumption
rate V;;. U;; specifies the production of data tokens into channel ¢;; by actor a;.
Vij specifies the consumption of data tokens from channel ¢;; by actor a;. An
example of a communication FIFO channel c34 is shown in Figure 3. Channel c3g4
transfers data between actors as and ag. It has production rate Usg=[112640],
specifying, that, at each firing, actor ag produces 112640 data tokens into chan-
nel c36 and consumption rate V3s=[112640], specifying, that, at each firing, actor
ag consumes 112640 data tokens from channel csg.

gg g5 §5 §§ 88 55 g5 55 .
gy — &3 &3 §§ R¥ 8§ _FE _ER ¢ EF 8% o5 §%¢ =5 ow
S5MSY M SYEE 55 33 MAEI Ml =2 88 & BERE =2 22 =22
22 |z|== (3] == 88 oo TE T b Cee o ea §8 5§ ¥H P
R HELE RS RN HE LRI Bt R £ 23 8% 8§ Y AW
o> 22> |E]ma> o7 2> o |9|2> > o> o> =3 o> = 3> o>
" I I W
Ny e 11

P F. = MaxPool)
LW F, = {MaxPool}
EW F .= {(Reshape}
W P = {(Gemm}
P F = (Softmax}

{Conv}]
ReLL))
(Conv} |

B

EpuEld . g o

= 35

s= B 350 33 Ee
88 EE EE a1 e
i i g'e 58
b JR :h>sg 32>h 55 =

Fig.3: An example of a SDF model

4 Methodology Extension

In this section, we present our proposed extension of the methodology, intro-
duced in Section 3.1, to find an energy-efficient mapping of a SDF model,
obtained automatically from a CNN model, onto an embedded CPUs-GPUs
MPSoC(cpu, gpu), defined in Section 3.2, with a proper configuration (proper
utilization of the processors and VFS). In order to achieve this, first, we give
our definition of a mapping of a SDF model onto an MPSoC with certain VFS
configuration - see Section 4.1. Then, we use a two-objective GA in order to op-
timize the MPSoC system throughput and energy consumption simultaneously
- see Section 4.2. To enable such two-objective GA-based optimization, we pro-
pose novel and very accurate analytical models, see Section 4.3, and use them
as fitness functions in the GA to evaluate very fast the system throughput and
energy consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs.

4.1 Mapping with VFS configuration

In our extended methodology, the CNN inference tasks, explicitly specified as
SDF actors, are executed on embedded CPU cores, that are able to efficiently
handle the task-level parallelism among the different tasks. To efficiently utilize
the data-level parallelism, available within the tasks, some of the CPU cores
offload computations on the embedded GPUs. Since the number of embedded
GPU devices is limited, it may occur, that the efficient exploitation of task-level
parallelism, by embedded CPUs, is disrupted due to CPUs competition for the
limited embedded GPU devices. To avoid such disruption, for every embedded
GPU gpu; € gpu, we allocate a single CPU core cpu; € cpu, which offloads
computations on gpu;.

Based on the discussion above, we define a mapping of SDF model G(A, C)
onto M PSoC(cpu, gpu) with a VFS configuration, as a partition of actors set
A into n subsets, where n = |cpu| is the number of CPU cores, available in
the MPSoC. We denote such mapping as "A = {"A;," As, ..., A, }, where each
"A; € "A is a subset of actors, mapped on cpu;, such that N ;" A; = (), and

m ,"A; = A. The first m = |gpu| number of CPU cores in mapping "A of-
fload computations on the corresponding embedded GPUs, i.e., the computa-
tions within every actor ay € "Aj;,j € [1,m] are performed on gpu;, and the
computations within every actor a; € "A;,i € [m + 1, n| are performed on cpu;.
Each cpu; operates at a frequency fcp € fcpu, and CPUs of the same cluster
operate at the same frequency. Each gpu; operates at a frequency fyq € fopu-

An example of a mapping with a VFS configuration, A = {°A;,° Ay, ° A3, ° Ay,
®As} of the SDF model G(A,C), shown in Figure 3 and explained in Section
3.3, on the embedded MPSoC, shown in Figure 2 and explained in Section 3.2,
is given in Table 1. In this example, we consider that fep, = {fe1, fe2, fes, fea}
and fopu = {fg1, fg2, fg3, fga, fg5}. Every Column in Table 1 corresponds to a
subset °A;,i € [1,5]. For example, Column 1 in Table 1 corresponds to sub-
set Ay = {ay,as,as,a4,as,a6,a7}. The actors within subset *A; are mapped
on cpuy, which offloads computations on gpu;. cpu; and gpu; operate at fre-
quencies fe1 and fgo, respectively. Column 2 in Table 1 describes subset 54, =
{as, a9, a19,a13}. Every actor a; € 5A2 is mapped on cpus, and cpus operates
at frequency f.3. Since the MPSoC does not have gpus, all computations within
actors in ° Ay are performed only on cpuy. Since cpus and cpus belong to the
same cluster, as shown in Figure 2, cpug also operates at frequency f.3. Similarly,
cpuy and cpus operate at frequency fe4.

Table 1: Example of a Mapping with a VFS configuration
cpur1Qfe1 /gpurQfga |cpus@fes cpuszQfes |cpus@feq cpusQfea
ai,a2,as, a4, ag, ag, ai1,a12 |G14,015,016,017, |G19,0G20
as, ae, a7 10, A13 ais, az1, 422, 423

8 E. Tang et al.

ay 2, 3 3 25 3 3, 3 8 @y Ay Ay, Ay A, q5 Ay A, 8y Ay Ay 8y Ay Ay

By @ o, @ | P O | 0, 0Fc
9Pz e | UGz [U8z

oy 8fes
e

@y
e

a8
puyBfce

LM

U | o 0f 00 P @f, o, 0f

o, | 0,5 | om0f, B F, 0,07 o, | o, 0, i, o, gf,,

Fig. 4: Mapping chromosome example

4.2 Two-objective GA optimization

With the aforementioned mapping in Section 4.1, we associate two system char-
acteristics, (1) the system throughput: the amount of data processed per unit of
time, for example measured in images per second (img/s); (2) the system energy
consumption: the total energy needed to process a unit of data, for example mea-
sured in joules per image (J/img). We assume a mapping to be efficient if the
system throughput is maximized and the system energy consumption is mini-
mized. As these two objectives are conflicting, i.e., the increase of the throughput
will cause increase of the energy consumption, we note, that obtaining such an
efficient mapping of an SDF graph onto a CPUs-GPUs MPSoC with a VFS
configuration is not possible. Thus, we have to perform a complex Design Space
Exploration (DSE) in order to find a set of Pareto-optimal mappings [19] that
we will consider efficient in our case. In our extended methodology, to solve
this problem, we propose to use a two-objective Genetic Algorithm (GA) [20]: a
well-known heuristic approach, widely used for finding Pareto-optimal solutions
for complex DSE problems. We use a GA with standard two-parent crossover, a
single-gene mutation, and standard user-defined GA parameters, such as initial
offspring size, number of epochs, mutation and crossover probabilities [20]. To
utilize such a GA for searching of Pareto-optimal mappings with a VFS configu-
ration, we have to specify problem-specific GA attributes, namely a chromosome
and fitness functions [20]. The chromosome is a representation of a GA solution
(in our extended methodology a solution is a mapping with a VFS configuration)
as a set of parameters (genes), joined into a string [20]. We represent mapping
" A, as a string of length | A|, where every gene is a CPU core cpu; € cpu running
at a frequency fc, € fepu- For a CPU core which offloads computations on a
GPU, the gene also includes the GPU frequency fyq € fgpu- An example of the
chromosome, corresponding to the mapping with the VFS configuration, shown
in Table 1, is given in Figure 4.

4.3 Analytical models as fitness functions

The aforementioned fitness functions are special functions that estimate the
quality of the GA solutions and guide the GA-based search. We propose two
analytical models and use them as fitness functions ¢; and ¢o during the GA-
based search.

On the one hand, ¢; estimates the system throughput during the GA search
and is given as the following equation:

=1/ (1)

Note that our SDF model, for CNN inference, features pipeline execution of
actors on CPUs to exploit both task-level and data-level parallelism (see Section
3.3). The bottleneck CPU in such pipeline execution will determine the system
throughput ¢, = 1/7, where 7 is the execution time needed for all SDF actors,
mapped on the bottleneck CPU, to process one unit of data given as an input
to the pipeline. So, we can compute 7 as follows:

li

T = max max Tepus + max Tepuws 2

{chu,;,ie[m+l,n]{ cpul} chu,;,ie[l,m]{ P }} ()

where 7.py,” and 7y, are the execution times needed for all SDF actors

mapped on cpu; to process one unit of data given as an input to the pipeline,

when cpu; offloads and does not offload tasks on a GPU, respectively. For every
CPU; € CPU, Tepu, OF Tepy, 1S computed as:

_t com
Tepu; = Tcpu;, + 7_cpw, (3)
!t ! + com (4)
Tepu; = Tcpui Tcpui

t ! t . _ .
where 7., and 7, are the times cpu; spends only on computations for

all actors mapped on cpu;, when cpu; offloads and does not offload tasks on a

GPU, respectively. 7507 is the time, spent by cpu;, on communication with other
t

!
embedded processors. T, and Tgpui are computed as:

cpuq
t — E
Tcpui - T(Fkvcpui»fcp) (5)
aRrE™A;
o = E T (6)
cpu; (Fkycpuiafcpvfgq)
ar€E™A;

where " A; is the set of actors, mapped on cpu;; F) is the function of actor
ag € "Ai; fep € fepu is the frequency of cpu;. (g, cpu,,f.,) is the time, taken by
cpu; to execute F at frequency fep; T(Fy cpui,fop.faq) 15 the time, taken by cpu;
at frequency f., to execute Fj, when the computation of F}, is offloaded on a

GPU running at frequency fgq € fypu. The time 750, is computed as:

T = > (rw (fep)* Y Ui+ 7 (fap) * Y Vik) (7)

aR€™A; cr; €C cjr€C

where "A,; is the set of all actors, mapped on cpu;; cx; € C is an output
channel of actor aj, € "A;, to which, at each firing, actor aj produces Uy; data
tokens; c;;, € C is an input channel of actor ay, from which, at each firing, actor
ay consumes Vj;, data tokens; 7, (fep) and 7, (fep) specify the times, needed by
a CPU core, to read and write one data token, at specific CPU frequency f.p,
respectively.

The accuracy of the analytical model ¢; to estimate the system throughput

depends on the accuracy of the parameter values T(r, cpu;,fop)s T(Fu,cpui,fop:foq)®

10 E. Tang et al.

Tr (fep) and Ty (fep). These values can be obtained accurately by real measure-
ments on the target CPUs-GPUs MPSoC. An experimental confirmation of the
accuracy of ¢ is given in Section 5.2.

On the other hand, ¢, estimates the system energy, consumed to process one
unit of data given as an input to the system pipeline, during the GA search and
is given as the following equation:

G2 = Z Ecpu; + Z ECP"i/ + Z Egpuj (8)

Vepu,,i€[m+1,n] Vepu,,i€[l,m] VgpujEgpu

where Ecpui/ and E.p,, are the energy consumption needed for all SDF actors,
mapped on cpu;, to process one unit of data given as an input to the pipeline,
when cpu; offloads and does not offload tasks on a GPU, respectively; Egpy; is
the energy consumption needed for all ofloaded SDF actors on gpu; to process
one unit of data given as an input to the pipeline. For every cpu; and gpu;,
Eepu, s Ecpu,;/ and Egp,; are computed as:

Ecpui = Pidle(cpui7 fcp) *T
+ (P(Cpui, fcpa A) - Pz'dle(cpuiv fcp)) * Tepu,

Ecpui/ = -Pidle(cpuh fcp) *T

10
- (P(cpis, fops A) — Pare(cpts, fon)) * Topu” (10)

Egpu; = Piaie(gpuj, foq) * T

+ (P(gpuj, fgqv A) - Pidle(gpuja fgq)) * Tgpu,

where Pigie(cpui, fop) and Piaie(gpuj, fqq) are the power consumption of cpu;
and gpuj, when there are no actors mapped on them, and they operate at fre-
quencies fo, and fyq, respectively; P(cpu;, fep, A) and P(gpuj, fgq, A) are the
average power consumption of cpu; and gpu; when all actors of the SDF model
(i.e., actor set A) are mapped on them, and they operate at frequencies f., and
fqq» Tespectively. T is the total time, taken by the system pipeline, to process
one unit of data given as an input to the pipeline and is computed as follows:

T= Z Tepu; + Z Tepu;’ (12)

Vepug,i€[m—+1,n] Vepugi€[1,m]

(11)

Tepu; and Tepy,” are calculated as shown in Equation (3) and (4), respec-
tively. Tgpu, is the time needed for gpu; to execute all tasks offloaded by its
corresponding cpu; and is computed as follows:

Tgpu; = Z T(Fr,gpu;,fqq) (13)

ak€7LAj

where "A; is the set of actors mapped on cpu; and offloaded by cpu; for
execution on gpu;; F}, is the function of actor ay € "Aj;; f4q is the frequency of
GPUj - T(Fy, . gpu;.faq) 1S the time, taken by gpu; to execute Fy at frequency fyq.

11

If no actors are mapped on cpu; or gpuj, then Tepy,, Tepu,” OF Tgpu, Will be 0.
In this case, Ecpy;, Fepu, Or Egpu,; equals to the idle energy consumption, i.e.,
Pigie(cpui, fop) * T or Pigie(gpu;, fqq) * T, as shown in Equation (9), (10), (11).

The accuracy of the analytical model ¢ to estimate the system energy
consumption depends on the accuracy of the parameter values P;ge(cpus, fep),
Piaie(gpu;, fgq), P(cpus, fep, A) and P(gpuj, fgq, A). These values can be ob-
tained accurately by real measurements on the target CPUs-GPUs MPSoC. An
experimental confirmation of the accuracy of ¢9 is given in Section 5.2.

5 Experimental Results

In this section, we present our results from experiments, in which real-world
CNNs from the ONNX models zoo [21] are mapped and executed on the NVIDIA
Jetson TX2 embedded CPUs-GPUs MPSoC [22]. The goal of the experiments
is to demonstrate that, thanks to our contributions presented in this paper, our
extended methodology can deliver CNN inference on embedded CPUs-GPUs
MPSoCs with the same or higher throughtput but with lower energy consump-
tion compared to existing DL frameworks that support CNN inference on such
MPSoCs. First, we explain the setup for our experiments in Section 5.1. Then,
in Section 5.2, we confirm the accuracy of our analytical models, introduced in
Section 4.3. Finally, in Section 5.3, we use our extended methodology and mod-
els, introduced in Section 4, to find Pareto-optimal mappings and analyze our
experimental results.

5.1 Experimental setup

We use three real-world CNNs, namely Vggl9, Alexnet and Emotion_fer, from
the ONNX models zoo [21] that take images as input for CNN inference. These
CNNs are utilized in different applications and have diverse number and type
of layers. Such diversity leads to a diverse scale of system throughtput and
energy consumption when these CNNs are mapped and executed on the same
hardware platform. Vggl9 and Alexnet are used for image classification and they
have 19 layers and 8 layers, respectively. Emotion_fer is used for body, face, and
gesture analysis and it has 10 layers. So, these three CNN models are sufficiently
representative and good examples to apply our extended methodology on and
to demonstrate its merits.

The three CNN models, mentioned above, are mapped and executed on the
NVIDIA Jetson TX2 embedded CPUs-GPUs MPSoC [22] which features 6 CPUs
(Quad-Core ARM and Dual-Core NVIDIA Denver 2) plus 1 Pascal GPU device.
The 6 CPUs are divided into two different clusters, where the CPUs from the
same cluster can operate at 12 different frequencies and the GPU can operate
at 13 different frequencies. We select NVIDIA Jetson TX2 as our experimen-
tal hardware platform because it is a well-known and easy-to-use embedded
platform. Moreover, we can easily and accurately acquire the needed system
throghput data and energy consumption data of each processor by setting timers

12 E. Tang et al.

within the executed code and by sampling the integrated power sensors onboard,
respectively. In addition, NVIDIA Jetson TX2 is supported by the TensorRT
framework [15], which is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs, as mentioned in Section 2. The results obtained by
using our extended methodology are compared with TensorRT implementation
results as reference in order to show the benefits of our extended methodology.

For every optimized reference system implementation, obtained by using Ten-
sorRT, the system throughput and energy consumption is directly measured on
the NVIDIA Jetson TX2 platform, as the average value over 50 CNN inference
executions. For the Pareto-optimal systems, obtained by using our extended
methodology, the system throughput and energy consumption data is provided
by our analytical models, introduced in Section 4.3. The two-objective GA of
our methodology is executed with initial population size 5000, number of gener-
ations = 100, mutation probability = 5%. For all experiments, the original data
precision (i.e., float32) is utilized in order to preserve the original CNN accuracy.

5.2 The accuracy of our analytical models

In this section, we confirm the accuracy of our system throughput and energy
consumption analytical models, introduced in Section 4.3. We compare the es-
timated system throughput ¢; and system energy consumption ¢, obtained by
our analytical models, with the corresponding numbers, obtained by direct mea-
surements, on the reference system implementations, as described in Section 5.1.
The results are shown in Table 2. In Column 1, we list the three experimental
CNN models, mentioned in Section 5.1. For each CNN model, the experiments
are performed with 9 different CPU and GPU frequency configurations. For the
CPU and GPU frequencies, we use the maximum frequency, the minimum fre-
quency, and a frequency in the middle, as shown in Column 2 and 3. For example,
Row 2 shows that, when we perform the experiment on Vggl9 with CPU fre-
quency 2.0 GHz and GPU frequency 1.3 GH z, we obtain system throughput of
14.30 img/s by a direct measurement, as shown in Column 4. Then, we obtain
the estimated system throughput of 14.11 img/s by our analytical model, as
shown in Column 5. Based on the data in Column 4 and 5, we calculate the
error for the system throughput as (14.11 — 14.30)/14.30 = —1.3%, shown in
Column 6. In Column 6, a negative error value means that the system through-
put is under-estimated and a positive value means that the system throughput
is over-estimated. Similarly, Column 7 shows the system energy consumption of
0.58 J/img, obtained by a direct measurement and Column 8 shows the esti-
mated system energy consumption of 0.56 J/img, obtained by our analytical
model. Column 9 shows the error rate for the system energy consumption. We
can see in Table 2 that the error rate for the system throughput is below 6%
and the error rate for the energy consumption is below 9%. This fact confirms
that our analytical models are accurate enough for finding pareto optimal points
during a complex design space exploration because such accuracy is sufficient to
relatively compare different design points [23].

13

Table 2: Accuracy evaluation for our analytical models

ONN model CPU frequency|GPU frequency| System throughput ¢1 |Throughput System energy consumption ¢o Energy
o . (GH=z) (GH=z) by measurement (img/s)|(img/s)| error (%) by measurement (J/img) (J/img) error (%)
| 2.00 1.30 14.30 14.11 1.3 0.58 © 056 -34
2.00 0.73 10.45 10.94 4.7 0.44 0.47 6.8
2.00 0.11 1.89 1.96 3.7 1.32 1.27 -3.8
1.27 1.30 13.04 12.67 28 0.54 © 052 0 37
Vegl9 1.27 0.73 10.28 10.55 2.6 0.30 0.32 6.7
1.27 0.11 1.88 1.91 1.6 0.59 0.62 5.1
0.35 1.30 6.52 6.53 0.2 1.04 1.08 3.8
0.35 0.73 6.23 6.55 5.1 0.44 0.42 4.5
0.35 0.11 1.85 1.79 32 0.54 © 057 56
2.00 1.30 81.17 82.02 1.0 0.055 0.051 7.3
2.00 0.73 70.82 70.44 -0.5 0.049 0.048 -2.0
2.00 0.11 13.47 13.56 0.7 0.148 C 0159 74
1.27 1.30 70.92 69.89 -1.5 0.054 0.055 1.9
Alexnet 1.27 0.73 61.69 62.22 0.9 0.045 0.044 -2.2
1.27 0.11 11.74 11.85 0.9 0.110 0.115 4.5
0.35 1.30 38.88 38.69 -0.5 0.090 0.088 -2.2
0.35 0.73 30.90 31.21 .0 0.068 C 0072 59
0.35 0.11 6.46 6.50 0.6 0.155 0.161 3.9
2.00 1.30 224.7 220.5 19 0.017 10016 -5.9
2.00 0.73 178.6 181.1 1.4 0.017 0.018 5.9
2.00 0.11 35.2 35.9 2.0 0.062 0.059 -4.8
1.27 1.30 192.3 189.3 16 0.015 S 0015 0
Emotion_fer 1.27 0.73 164.7 166.8 1.3 0.012 0.013 8.3
1.27 0.11 32.55 33.01 1.4 0.034 0.032 -6.3
0.35 1.30 57.77 58.21 0.8 0.033 0.032 -3.0
0.35 0.73 46.73 45.99 -1.6 0.023 0.024 4.3
0.35 0.11 27.26 27.61 1.3 0.033 S 0034 3.0

5.3 Pareto-optimal mappings

In this section, we show the benefits of using our extended methodology, in-
troduced in Section 4, through a comparison between the Pareto-optimal map-
pings, found by our methodology and the Pareto-optimal mappings, found by
exhaustive search when using TensorRT for CNN inference implementation be-
cause TensorRT [15] is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs such as the NVIDIA Jetson TX2.

First, in order to find the Pareto-optimal mappings by using our methodology,
we perform a design space exploration (DSE), by using the two-objective GA
of our methodology, introduced in Section 4.2, among possible mappings with a
CPU and GPU VFS configuration, when Vggl9, Alexnet, and Emotion_fer are
executed on the NVIDIA Jetson TX2 platform. The reason for using the two-
objective GA for DSE is that the design space, which has to be explored and
is supported by our methodology, consists of \A|Ic”ul*lgpul*lfCP“‘*lf“’“‘ possible
mappings. This is a huge number of mappings considering our experimental
setup, thus exhaustive search is not feasible.

Second, in order to find the Pareto-optimal mappings when using TensorRT
only, we perform a DSE by exhaustive search, among all possible mappings with
a CPU and GPU VEFS configuration, when Vggl9, Alexnet, and Emotion_fer are
executed on the NVIDIA Jetson TX2 platform. Since TensorRT utilizes only
one fixed CPU to offload all CNN inference tasks to one fixed GPU on NVIDIA
Jetson TX2, the size of the design space when using only TensorRT depends
on the possible CPU frequency levels |fcp,| and the possible GPU frequency
levels | fgpu|. Therefore, in this case, the design space consists of | fepu| * | fgpu| =
12 % 13 = 156 design points to explore. Such small design space can be explored

14 E. Tang et al.

by exhaustive search in order to find all Pareto-optimal mappings with 100%
guarantee.

Finally, we present and compare the Pareto-optimal mappings found by us-
ing the aforementioned two methods. The experimental results are shown in
Figure 5, 6 and 7. The horizontal axis shows the system throughput in images
per second (img/s). The vertical axis shows the system energy consumption
to process one image in joules per image (J/img). Each point in Figure 5, 6
and 7 represents a Pareto-optimal mapping with certain system throughput and
energy consumption. The red (+) points in the figures represent the Pareto-
optimal mappings found by using our extended methodology. The green (x)
points represent the Pareto-optimal mappings found by exhaustive search and
using TensorRT only.

0.60
+++ our methodology
0.55 X | xXx TensorRT
x

0.50

System Energy Consumption (J/img)
g
S

10 12 14 16 18 20
System throughput (img/s)

Fig. 5: Pareto-optimal mappings for
Vgegl9

0.09
+++ our methodology
008 xxx TensorRT

0.07 +

0.06

4

0.05 x .

0.04 §

System Energy Consumption (J/img)

0.03

0.02
50 60 70 80 90 100 110 120

System throughput (img/s)

Fig. 6: Pareto-optimal mappings for
Alexnet

0.025
0.020
0.015
X

0.010 X

0.005

System Energy Consumption (J/img)

0.000

+++ our methodology
xXx TensorRT

100 150 200 250 300 350 400 450
System throughput (img/s)

Fig. 7: Pareto-optimal mappings for Emotion_fer

From the experimental results, we can see that: (1) For Vggl9, as shown
in Figure 5, our methodology can deliver the same or better system through-
put with a lower system energy consumption compared with TensorRT; (2)
For Alexnet, as shown in Figure 6, when the system throughput is lower than

15

100 img/s, our methodology can deliver the same or better system throughput
with a lower system energy consumption compared with TensorRT. When the
system throughput is higher than 100 img/s, only our methodology can deliver
such system throughput but with a higher system energy consumption; (3) For
Emotion_fer, as shown in Figure 7, our methodology can always deliver a bet-
ter system throughput with a lower system energy consumption compared with
TensorRT. So, in conclusion, our extended methodology is able to achieve both
energy efficiency and high throughput when deploying CNN models on embed-
ded CPUs-GPUs MPSoCs.

6 Conclusions

In this paper, we propose an extended methodology to achieve energy efficiency
and high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN model onto
a CPUs-GPUs MPSoCs with VFS configurations with the help of a two-objective
GA which optimizes the system throughput and energy consumption simulta-
neously. Moreover, we propose two analytical models, that are used as fitness
functions in the two-objective GA to evaluate very fast the system throughput
and energy consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs
and we confirm the high accuracy of these two analytical models by experimental
evidence. Finally, the experimental results of real-world CNNs execution on the
NVIDIA Jetson TX2 platform show that, compared with the best-known CNN
deployment optimizer TensorRT, our extended methodology is able to achieve
both energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs.

References

1. Md Zahangir Alom et al. The history began from alexnet: A comprehensive survey
on deep learning approaches. arXiv preprint arXiv:1803.01164, 2018.

2. André et al. Deep learning in head & neck cancer outcome prediction. Scientific
reports, 9(1):1-10, 2019.

3. Truong-Dong Do et al. Real-time self-driving car navigation using deep neural net-
work. In 2018 4th International Conference on Green Technology and Sustainable
Development (GTSD), pages 7-12. IEEE, 2018.

4. Alexey A Shvets et al. Automatic instrument segmentation in robot-assisted
surgery using deep learning. In 2018 17th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages 624—628. IEEE, 2018.

5. Grant Martin. Overview of the mpsoc design challenge. In 2006 43rd ACM/IEEE
Design Automation Conference, pages 274-279. IEEE, 2006.

6. Sigi Wang et al. High-throughput cnn inference on embedded arm big. little multi-
core processors. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2019.

7. Linpeng Tang et al. Scheduling computation graphs of deep learning models on
manycore cpus. arXiw preprint arXiw:1807.09667, 2018.

16

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.
23.

E. Tang et al.

Martin Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous
systems. 2015.

Yangqing Jia et al. Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the 22nd ACM international conference on Multimedia, pages
675-678, 2014.

Aniruddha Parvat et al. A survey of deep-learning frameworks. In 2017 Interna-
tional Conference on Inventive Systems and Control (ICISC), pages 1-7. IEEE,
2017.

Linghao Song et al. Hypar: Towards hybrid parallelism for deep learning accelerator
array. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 56-68. IEEE, 2019.

Duseok Kang et al. C-good: C-code generation framework for optimized on-device
deep learning. In Proceedings of the International Conference on Computer-Aided
Design, pages 1-8, 2018.

Loc Nguyen Huynh et al. Deepsense: A gpu-based deep convolutional neural net-
work framework on commodity mobile devices. In Proceedings of the 2016 Work-
shop on Wearable Systems and Applications, pages 25-30, 2016.

Loc N Huynh et al. Deepmon: Mobile gpu-based deep learning framework for
continuous vision applications. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pages 82-95, 2017.
Nvidia tensorrt framework, https://developer.nvidia.com/tensorrt.

Svetlana Minakova, Ergian Tang, and Todor Stefanov. Combining task- and data-
level parallelism for high-throughput cnn inference on embedded cpus-gpus mp-
socs. 20th International Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation (SAMOS’20), July 05-09, 2020.

Edward Ashford Lee and David G Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEFE Transactions on computers,
100(1):24-35, 1987.

Greet Bilsen et al. Cycle-static dataflow. IEEE Transactions on signal processing,
44(2):397-408, 1996.

Kalyanmoy Deb and Himanshu Gupta. Searching for robust pareto-optimal solu-
tions in multi-objective optimization. In International conference on evolutionary
multi-criterion optimization, pages 150—164. Springer, 2005.

Kumara Sastry et al. Genetic algorithms. In Search methodologies, pages 97-125.
Springer, 2005.

Onnz models zoo, hitps://github.com/onnz/models.

Nvidia Jetson TX2, https://developer.nvidia.com/embedded/jetson-tz2.

Maurizio Palesi and Tony Givargis. Multi-objective design space exploration using
genetic algorithms. In The tenth international symposium on Hardware/software
codesign, pages 67-72, 2002.

