
Energy-Efficient and High-Throughput
CNN Inference on Embedded

CPUs-GPUs MPSoCs

Erqian Tang(B), Svetlana Minakova, and Todor Stefanov

LIACS, Leiden University, Leiden, The Netherlands
{e.tang,s.minakova,t.p.stefanov}@liacs.leidenuniv.nl

Abstract. Nowadays, many application scenarios, such as mobile
phones, drones, mobile robots, require Convolutional Neural Networks
(CNNs) inference on embedded CPUs-GPUs MPSoCs. CNN model
inference is usually computation intensive while the embedded CPUs-
GPUs MPSoCs are usually energy consumption constrained. Therefore,
how to achieve computationally-intensive CNN inference in an energy-
efficient and high-throughput way is an important issue. However, exist-
ing Deep Learning (DL) frameworks only pay attention to achieving
high-throughput inference when deploying CNN models on CPU or GPU
processors without specifically considering the energy consumption.

In this paper, we propose a novel methodology which features design-
time optimization techniques in order to achieve energy efficiency and
high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN
model onto a CPUs-GPUs MPSoC with voltage and frequency scaling
(VFS) configurations with the help of a two-objective Genetic Algorithm
(GA) which optimizes the system throughput and energy consumption
simultaneously. Moreover, we propose two analytical models, that are
used as fitness functions in the two-objective GA to evaluate very fast
the system throughput and energy consumption of CNNs mapped onto
embedded CPUs-GPUs MPSoCs. Also, we confirm the high accuracy of
these two analytical models by experimental evidence. Finally, our exper-
imental results show that our novel methodology is able to achieve both
energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs, in comparison with TensorRT which is
the best-known CNN deployment optimizer designed for NVIDIA embed-
ded MPSoCs.

Keywords: Convolutional Neural Networks · SDF · Pareto-optimal
mapping · High-throughput · Energy-efficient · MPSoCs · TensorRT

1 Introduction

Convolutional Neural Networks (CNNs) are biologically inspired graph computa-
tional models, characterized by high degree of available parallelism. Due to their
c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 127–143, 2022.
https://doi.org/10.1007/978-3-031-04580-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04580-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-04580-6_9

128 E. Tang et al.

ability to handle large, unstructured data, CNNs are widely used to perform var-
ious tasks in areas such as computer vision and natural language processing [1].
The CNNs execution typically includes two phases: training and inference [1]. At
the training phase the optimal CNN parameters are established. At the inference
phase, a trained CNN is applied to the actual data and performs the task for
which the CNN is designed. Due to the high complexity of state-of-the-art CNNs,
their training and inference phases are usually performed by high-performance
platforms, and provided as cloud services. However, some applications, e.g. [2–4],
require high-throughput execution of the CNNs inference, which cannot be pro-
vided as a cloud service. These applications are typically deployed on embedded
devices.

Many modern embedded devices are based on multi-processor systems-
on-chip (MPSoCs) [5]: complex integrated circuits, that consist of processing
elements with specific functionalities. Due to their specific design, MPSoCs
offer energy-efficient and high-throughput solutions for applications running on
embedded devices. In addition to hosting various processing elements, capable
of running the CNN inference, such as central processing units (CPUs), embed-
ded graphics processing units (embedded GPUs), and field-programmable gate
arrays (FPGAs), MPSoCs integrate many other components, such as commu-
nication network components and video accelerators, that allow to deploy the
entire embedded application on a single chip. Therefore, MPSoCs seem to be a
promising solution for the deployment of the CNN inference phase on embedded
devices.

Embedded CPUs-GPUs MPSoCs are usually energy consumption con-
strained while the CNN model inference is computation intensive. For example,
in many application scenarios requiring CNN inference on embedded MPSoCs,
such as mobile phones, drones, mobile robots, the battery capacity is usually
very limited. So, how to achieve computationally-intensive CNN inference in an
energy-efficient way on embedded CPUs-GPUs MPSoCs is an important issue.

However, existing Deep Learning (DL) frameworks [6–16], that enable execu-
tion of the CNN inference on embedded CPUs-GPUs MPSoCs, only pay atten-
tion to achieving high-throughput inference when deploying CNN models on
CPU or GPU processors without specifically considering the energy consump-
tion, which can be influenced by the utilized number of processors and by the
possibility for CPUs-GPUs voltage and frequency scaling (VFS). These frame-
works rely on the operating system to determine the utilized number of proces-
sors and the CPUs-GPUs operating frequency at run-time and do not support
design-time optimizations for energy-efficient deployment of the CNN inference.

Therefore, in this paper, we extend the methodology in [16], with design-time
optimization techniques in order to achieve energy efficiency and high throughput
when deploying CNN models on embedded CPUs-GPUs MPSoCs. We propose
to extend [16] because it exploits explicitly both task- and data-level parallelism,
available in a CNN, thereby achieving higher throughput compared to the other
existing DL frameworks [6–15]. We exploit this higher throughput in combination
with different CPUs and GPUs utilization and VFS configuration possibilities to

Energy-Efficient and High-Throughput CNN Inference 129

reduce the energy consumption and to optimize the CNN inference on an MPSoC
at design-time. The goal of our optimization is to find an MPSoC configuration
which achieves the same or higher throughput with less energy consumption
compared to existing DL frameworks.

Paper Contributions
In this paper, we extend the methodology in [16], which consists of three main
steps, introduced in Sect. 3.1. In Step 1, a CNN model is automatically converted
to a functionally equivalent Syndchronous Dataflow (SDF) model. In Step 2, an
efficient mapping of the SDF model onto a CPUs-GPUs MPSoC is obtained
using a single-objective genetic algorithm (GA) to achieve high throughput by
utilizing the hardware resources as much as possible. Our main novel contribu-
tions are related to Step 2 and include: 1) We propose to use a two-objective
GA in order to optimize for system throughput and energy consumption simul-
taneously. To enable such two-objective GA-based optimization, we propose
novel and very accurate analytical models and use them as fitness functions
in the GA to evaluate very fast the system throughput and energy consump-
tion of CNNs mapped onto embedded CPUs-GPUs MPSoCs; 2) We confirm
the high accuracy of our aforementioned analytical models by comparing the
system throughput and energy consumption numbers provided by our models
with measured numbers obtained by deploying real-world CNNs on the Nvidia
Jetson-TX2 embedded platform; 3) We use the extended methodology and mod-
els, mentioned above, to find pareto-optimal mappings of real-world CNNs onto
the Nvidia Jetson-TX2 MPSoCs platform. The obtained results, in terms of sys-
tem throughput and energy consumption, are compared with results obtained
by the best-known DL framework for Jetson MPSoCs called TensorRT [15]. This
comparison shows that our extended methodology can achieve CNN inference on
embedded CPUs-GPUs MPSoCs with the same or higher throughput but with
less energy consumption.

The remainder of the paper is organized as follows: Sect. 2 gives an overview
of the related work. Section 3 introduces the background material needed for
understanding the contributions of this paper. Section 4 presents our proposed
extension of the methodology in [16], briefly introduced in Sect. 3.1, including
our two novel analytical models. Section 5 shows the experimental results and
Sect. 6 ends the paper with conclusions.

2 Related Work

Among the existing DL frameworks [6–15], NVidia TensorRT [15] is the best-
known CNN deployment optimizer designed for embedded MPSoCs such as
Nvidia Jetson TX2. This optimizer is built on top of CUDA and includes several
optimizations techniques to deliver high throughputs and low latencies for deep
neural network applications. TensorRT tries to minimize the memory footprint of
a CNN by reusing memory and applying fusion operations. Also, it exploits data-
level parallelism, available in a CNN, for efficient utilization of embedded GPUs.
However, TensorRT relies on layer-by-layer (sequential) execution of CNN layers

130 E. Tang et al.

and only one CPU processor is utilized for launching GPU engines and sending
data. In this way, the available CPUs-GPUs MPSoC hardware resources are not
utilized in the most efficient way in terms of high-throughput. Moreover, the
focus of TensorRT is only to improve the system throughput, so optimizing the
energy consumption is not considered. The CPUs and GPUs processors do not
operate at proper frequency configurations, which is not a good solution for some
energy constrained DL applications, such as drones or other light battery mobile
robots. In contrast, our extended methodology exploits both data-level paral-
lelism within the same layer and task-level parallelism among different layers of
a CNN. At the same time, our methodology also considers different number of
processors to be utilized and different CPUs-GPUs VFS to be applied. Therefore,
compared to TensorRT, our methodology can achieve same or better inference
system throughput, and lower energy consumption at the same time. Moreover,
our extended methodology is implemented on top of TensorRT, thereby inherit-
ing some benefits of TensorRT as well, such as minimizing the memory footprint
and applying fusion operations.

In [16], a novel methodology for execution of the CNN inference on embedded
CPUs-GPUs MPSoCs is proposed. It takes full advantage of all CPU and GPU
resources, available in an MPSoC, and ensures high-throughput CNN inference
execution on CPUs-GPUs MPSoCs by efficiently exploiting task-level (pipeline)
parallelism, available among CNN layers, together with data-level parallelism,
available within CNN layers. [16] achieves higher CNN inference throughput on
embedded CPUs-GPUs MPSoCs compared to the aforementioned NVidia Ten-
sorRT [15] deployment optimizer. However, utilizing all possible CPU and GPU
resources increases the energy consumption, which may fail to meet the energy
consumption budget of some battery constrained applications. In contrast, in this
paper, we extend [16] in order to enable fast and accurate multi-objective design
space exploration to find more efficient utilization of CPU and GPU resources at
proper VFS configurations. Therefore, we reduce the energy consumption while
still achieving high CNN inference throughput.

3 Background

In this section, we briefly introduce the methodology in [16] for execution of
the CNN inference on embedded CPUs-GPUs MPSoCs as well as we describe
the specific features of the embedded CPUs-GPUs MPSoCs, we consider in this
paper, and the Synchronous Dataflow (SDF) model [17]. All these are essential
for understanding our paper contributions.

3.1 CNN Inference on Embedded CPUs-GPUs MPSoCs

[16] proposes a novel methodology to deploy a CNN model on embedded CPUs-
GPUs MPSoCs. This methodology consists of three main steps. An overview
of this methodology is shown in Fig. 1. In Step 1, a CNN model is converted
into a functionally equivalent Synchronous Dataflow (SDF) model. Unlike the

Energy-Efficient and High-Throughput CNN Inference 131

CNN model, the SDF model explicitly specifies task- and data-level parallelism,
available in a CNN, as well as it explicitly specifies the tasks communication
and synchronization mechanisms, suitable for efficient mapping and execution
of a CNN on an embedded MPSoC. Thus, a conversion of a CNN model into
a SDF model is necessary for efficient mapping and execution of a CNN on an
embedded CPUs-GPUs MPSoC. In Step 2, a Genetic Algorithm (GA) is uti-
lized to find an efficient mapping of the SDF model, obtained on Step 1, on an
embedded CPUs-GPUs MPSoC. The mapping, obtained by the GA, describes
the distribution of the CNN inference computational workload on an embed-
ded MPSoC, that exploits efficiently both task-level and data-level parallelism,
available in the CNN. In Step 3, the mapping obtained in Step 2 is utilized
to convert a CNN model into a final platform-aware executable Cyclo-Static
Dataflow (CSDF) application model [18]. The CSDF model, obtained in Step 3,
describes the CNN inference as an executable application, efficiently distributed
over embedded MPSoC processors and exploiting the right amount of task- and
data-level parallelism, which matches the computational capacity of an embed-
ded MPSoC. Thus, this methodology takes full advantage of all CPU and GPU
resources, available in an MPSoC, and enables high-throughput execution of the
CNN inference on embedded CPUs-GPUs MPSoCs.

Fig. 1. An overview of the methodol-
ogy in [16]

Fig. 2. Embedded MPSoC

3.2 Embedded CPUs-GPUs MPSoCs

We define an embedded MPSoC as a tuple MPSoC(cpu, gpu), where cpu =
{cpu1, cpu2, ..., cpun} is a set of all CPU cores, available in the MPSoC; gpu =
{gpu1, gpu2, ..., gpum} is a set of all GPU devices, available in the MPSoC, and
typically m ≤ n. An example of an embedded CPUs-GPUs MPSoC with n =
5 CPU cores and m = 1 GPU device is shown in Fig. 2. CPU cores are usually
divided into several clusters. The CPU cores in a cluster can operate at one of
the frequencies from the set fcpu = {fc1, fc2, ..., fcp}. Each GPU can also operate
at one of the frequencies from the set fgpu = {fg1, fg2, ..., fgq}.

3.3 Synchronous Dataflow (SDF) Model

The SDF model [17] is a well-known dataflow model of computation, widely
used in the embedded systems community for efficient mapping of applications

132 E. Tang et al.

on embedded devices, including embedded CPUs-GPUs MPSoCs. An applica-
tion, modeled as a SDF, is a directed graph G(A,C), which consists of a set of
nodes A, also called actors, communicating through a set of FIFO channels C.
An example of a SDF model with |A|=23 actors and |C|=24 FIFO channels is
given in Fig. 3. Every actor ai ∈ A is a task, which performs certain applica-
tion functionality, represented as a function Fi. An example of SDF actor a3 is
shown in Fig. 3. Actor a3 performs function F3 = {ReLU}. Every FIFO channel
cij ∈ C represents data dependency and transfers data in tokens between actors
ai and aj . cij has data production rate Uij and data consumption rate Vij . Uij

specifies the production of data tokens into channel cij by actor ai. Vij specifies
the consumption of data tokens from channel cij by actor aj . An example of a
communication FIFO channel c36 is shown in Fig. 3. Channel c36 transfers data
between actors a3 and a6. It has production rate U36=[112640], specifying, that,
at each firing, actor a3 produces 112640 data tokens into channel c36 and con-
sumption rate V36=[112640], specifying, that, at each firing, actor a6 consumes
112640 data tokens from channel c36.

Fig. 3. An example of a SDF model

4 Methodology Extension

In this section, we present our proposed extension of the methodology, intro-
duced in Sect. 3.1, to find an energy-efficient mapping of a SDF model,
obtained automatically from a CNN model, onto an embedded CPUs-GPUs
MPSoC(cpu, gpu), defined in Sect. 3.2, with a proper configuration (proper uti-
lization of the processors and VFS). In order to achieve this, first, we give our
definition of a mapping of a SDF model onto an MPSoC with certain VFS
configuration - see Sect. 4.1. Then, we use a two-objective GA in order to opti-
mize the MPSoC system throughput and energy consumption simultaneously -
see Sect. 4.2. To enable such two-objective GA-based optimization, we propose
novel and very accurate analytical models, see Sect. 4.3, and use them as fitness
functions in the GA to evaluate very fast the system throughput and energy
consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs.

Energy-Efficient and High-Throughput CNN Inference 133

4.1 Mapping with VFS Configuration

In our extended methodology, the CNN inference tasks, explicitly specified as
SDF actors, are executed on embedded CPU cores, that are able to efficiently
handle the task-level parallelism among the different tasks. To efficiently utilize
the data-level parallelism, available within the tasks, some of the CPU cores
offload computations on the embedded GPUs. Since the number of embedded
GPU devices is limited, it may occur, that the efficient exploitation of task-level
parallelism, by embedded CPUs, is disrupted due to CPUs competition for the
limited embedded GPU devices. To avoid such disruption, for every embedded
GPU gpuj ∈ gpu, we allocate a single CPU core cpui ∈ cpu, which offloads
computations on gpuj .

Based on the discussion above, we define a mapping of SDF model G(A,C)
onto MPSoC(cpu, gpu) with a VFS configuration, as a partition of actors set
A into n subsets, where n = |cpu| is the number of CPU cores, available in the
MPSoC. We denote such mapping as nA = {nA1,

nA2, ...,
nAn}, where each

nAi ∈ nA is a subset of actors, mapped on cpui, such that ∩n
i=1

nAi = ∅,
and ∪n

i=1
nAi = A. The first m = |gpu| number of CPU cores in mapping nA

offload computations on the corresponding embedded GPUs, i.e., the computa-
tions within every actor ak ∈ nAj , j ∈ [1,m] are performed on gpuj , and the
computations within every actor ak ∈ nAi, i ∈ [m + 1, n] are performed on cpui.
Each cpui operates at a frequency fcp ∈ fcpu, and CPUs of the same cluster
operate at the same frequency. Each gpuj operates at a frequency fgq ∈ fgpu.

An example of a mapping with a VFS configuration, 5A =
{5A1,

5A2,
5A3,

5A4,
5A5} of the SDF model G(A,C), shown in Fig. 3 and

explained in Sect. 3.3, on the embedded MPSoC, shown in Fig. 2 and explained
in Sect. 3.2, is given in Table 1. In this example, we consider that fcpu =
{fc1, fc2, fc3, fc4} and fgpu = {fg1, fg2, fg3, fg4, fg5}. Every Column in Table 1
corresponds to a subset 5Ai, i ∈ [1, 5]. For example, Column 1 in Table 1 cor-
responds to subset 5A1 = {a1, a2, a3, a4, a5, a6, a7}. The actors within subset
5A1 are mapped on cpu1, which offloads computations on gpu1. cpu1 and gpu1

operate at frequencies fc1 and fg2, respectively. Column 2 in Table 1 describes
subset 5A2 = {a8, a9, a10, a13}. Every actor ai ∈ 5A2 is mapped on cpu2, and
cpu2 operates at frequency fc3. Since the MPSoC does not have gpu2, all com-
putations within actors in 5A2 are performed only on cpu2. Since cpu2 and cpu3

belong to the same cluster, as shown in Fig. 2, cpu3 also operates at frequency
fc3. Similarly, cpu4 and cpu5 operate at frequency fc4.

Table 1. Example of a Mapping with a VFS configuration

cpu1@fc1/gpu1@fg2 cpu2@fc3 cpu3@fc3 cpu4@fc4 cpu5@fc4

a1, a2, a3, a4, a5, a6, a7 a8, a9, a10, a13 a11, a12 a14, a15, a16, a17, a18, a21, a22, a23 a19, a20

134 E. Tang et al.

Fig. 4. Mapping chromosome example

4.2 Two-objective GA Optimization

With the aforementioned mapping in Sect. 4.1, we associate two system charac-
teristics, (1) the system throughput: the amount of data processed per unit of
time, for example measured in images per second (img/s); (2) the system energy
consumption: the total energy needed to process a unit of data, for example mea-
sured in joules per image (J/img). We assume a mapping to be efficient if the
system throughput is maximized and the system energy consumption is mini-
mized. As these two objectives are conflicting, i.e., the increase of the throughput
will cause increase of the energy consumption, we note, that obtaining such an
efficient mapping of an SDF graph onto a CPUs-GPUs MPSoC with a VFS
configuration is not possible. Thus, we have to perform a complex Design Space
Exploration (DSE) in order to find a set of Pareto-optimal mappings [19] that
we will consider efficient in our case. In our extended methodology, to solve
this problem, we propose to use a two-objective Genetic Algorithm (GA) [20]: a
well-known heuristic approach, widely used for finding Pareto-optimal solutions
for complex DSE problems. We use a GA with standard two-parent crossover, a
single-gene mutation, and standard user-defined GA parameters, such as initial
offspring size, number of epochs, mutation and crossover probabilities [20]. To
utilize such a GA for searching of Pareto-optimal mappings with a VFS configu-
ration, we have to specify problem-specific GA attributes, namely a chromosome
and fitness functions [20]. The chromosome is a representation of a GA solution
(in our extended methodology a solution is a mapping with a VFS configuration)
as a set of parameters (genes), joined into a string [20]. We represent mapping
nA, as a string of length |A|, where every gene is a CPU core cpui ∈ cpu running
at a frequency fcp ∈ fcpu. For a CPU core which offloads computations on a
GPU, the gene also includes the GPU frequency fgq ∈ fgpu. An example of the
chromosome, corresponding to the mapping with the VFS configuration, shown
in Table 1, is given in Fig. 4.

4.3 Analytical Models as Fitness Functions

The aforementioned fitness functions are special functions that estimate the
quality of the GA solutions and guide the GA-based search. We propose two
analytical models and use them as fitness functions φ1 and φ2 during the GA-
based search.

On the one hand, φ1 estimates the system throughput during the GA search
and is given as the following equation:

φ1 = 1/τ (1)

Energy-Efficient and High-Throughput CNN Inference 135

Note that our SDF model, for CNN inference, features pipeline execution
of actors on CPUs to exploit both task-level and data-level parallelism (see
Sect. 3.3). The bottleneck CPU in such pipeline execution will determine the
system throughput φ1 = 1/τ , where τ is the execution time needed for all SDF
actors, mapped on the bottleneck CPU, to process one unit of data given as an
input to the pipeline. So, we can compute τ as follows:

τ = max{ max
∀cpui,i∈[m+1,n]

{τcpui
}, max

∀cpui,i∈[1,m]
{τcpui

′}} (2)

where τcpui
′ and τcpui

are the execution times needed for all SDF actors mapped
on cpui to process one unit of data given as an input to the pipeline, when cpui

offloads and does not offload tasks on a GPU, respectively. For every cpui ∈ cpu,
τcpui

or τcpui
′ is computed as:

τcpui
= τ t

cpui
+ τ com

cpui
(3)

τcpui

′ = τ t
cpui

′ + τ com
cpui

(4)

where τ t
cpui

′ and τ t
cpui

are the times cpui spends only on computations for all
actors mapped on cpui, when cpui offloads and does not offload tasks on a
GPU, respectively. τ com

cpui
is the time, spent by cpui, on communication with

other embedded processors. τ t
cpui

and τ t
cpui

′ are computed as:

τ t
cpui

=
∑

ak∈nAi

τ(Fk,cpui,fcp) (5)

τ t
cpui

′ =
∑

ak∈nAi

τ(Fk,cpui,fcp,fgq) (6)

where nAi is the set of actors, mapped on cpui; Fk is the function of actor
ak ∈ nAi; fcp ∈ fcpu is the frequency of cpui. τ(Fk,cpui,fcp) is the time, taken by
cpui to execute Fk at frequency fcp; τ(Fk,cpui,fcp,fgq) is the time, taken by cpui

at frequency fcp to execute Fk, when the computation of Fk is offloaded on a
GPU running at frequency fgq ∈ fgpu. The time τ com

cpui
is computed as:

τ com
cpui

=
∑

ak∈nAi

(τw (fcp) ∗
∑

ckj∈C

Ukj + τr (fcp) ∗
∑

cjk∈C

Vjk) (7)

where nAi is the set of all actors, mapped on cpui; ckj ∈ C is an output channel
of actor ak ∈ nAi, to which, at each firing, actor ak produces Ukj data tokens;
cjk ∈ C is an input channel of actor ak, from which, at each firing, actor ak

consumes Vjk data tokens; τr (fcp) and τw (fcp) specify the times, needed by a
CPU core, to read and write one data token, at specific CPU frequency fcp,
respectively.

The accuracy of the analytical model φ1 to estimate the system throughput
depends on the accuracy of the parameter values τ(Fk,cpui,fcp), τ(Fk,cpui,fcp,fgq),

136 E. Tang et al.

τr (fcp) and τw (fcp). These values can be obtained accurately by real measure-
ments on the target CPUs-GPUs MPSoC. An experimental confirmation of the
accuracy of φ1 is given in Sect. 5.2.

On the other hand, φ2 estimates the system energy, consumed to process one
unit of data given as an input to the system pipeline, during the GA search and
is given as the following equation:

φ2 =
∑

∀cpui,i∈[m+1,n]

Ecpui
+

∑

∀cpui,i∈[1,m]

Ecpui

′ +
∑

∀gpuj∈gpu

Egpuj
(8)

where Ecpui

′ and Ecpui
are the energy consumption needed for all SDF actors,

mapped on cpui, to process one unit of data given as an input to the pipeline,
when cpui offloads and does not offload tasks on a GPU, respectively; Egpuj

is
the energy consumption needed for all offloaded SDF actors on gpuj to process
one unit of data given as an input to the pipeline. For every cpui and gpuj ,
Ecpui

, Ecpui

′ and Egpuj
are computed as:

Ecpui
= Pidle(cpui, fcp) ∗ T

+(P (cpui, fcp, A) − Pidle(cpui, fcp)) ∗ τcpui
(9)

Ecpui

′ = Pidle(cpui, fcp) ∗ T

+(P (cpui, fcp, A) − Pidle(cpui, fcp)) ∗ τcpui

′ (10)

Egpuj
= Pidle(gpuj , fgq) ∗ T

+(P (gpuj , fgq, A) − Pidle(gpuj , fgq)) ∗ τgpuj
(11)

where Pidle(cpui, fcp) and Pidle(gpuj , fgq) are the power consumption of cpui and
gpuj , when there are no actors mapped on them, and they operate at frequencies
fcp and fgq, respectively; P (cpui, fcp, A) and P (gpuj , fgq, A) are the average
power consumption of cpui and gpuj when all actors of the SDF model (i.e.,
actor set A) are mapped on them, and they operate at frequencies fcp and fgq,
respectively. T is the total time, taken by the system pipeline, to process one
unit of data given as an input to the pipeline and is computed as follows:

T =
∑

∀cpui,i∈[m+1,n]

τcpui
+

∑

∀cpui,i∈[1,m]

τcpui

′ (12)

τcpui
and τcpui

′ are calculated as shown in Eq. (3) and (4), respectively. τgpuj

is the time needed for gpuj to execute all tasks offloaded by its corresponding
cpui and is computed as follows:

τgpuj
=

∑

ak∈nAj

τ(Fk,gpuj ,fgq) (13)

Energy-Efficient and High-Throughput CNN Inference 137

where nAj is the set of actors mapped on cpui and offloaded by cpui for execution
on gpuj ; Fk is the function of actor ak ∈ nAj ; fgq is the frequency of gpuj .
τ(Fk,gpuj ,fgq) is the time, taken by gpuj to execute Fk at frequency fgq.

If no actors are mapped on cpui or gpuj , then τcpui
, τcpui

′ or τgpuj
will be 0.

In this case, Ecpui
, Ecpui

′ or Egpuj
equals to the idle energy consumption, i.e.,

Pidle(cpui, fcp) ∗ T or Pidle(gpuj , fgq) ∗ T , as shown in Eq. (9), (10), (11).
The accuracy of the analytical model φ2 to estimate the system energy

consumption depends on the accuracy of the parameter values Pidle(cpui, fcp),
Pidle(gpuj , fgq), P (cpui, fcp, A) and P (gpuj , fgq, A). These values can be
obtained accurately by real measurements on the target CPUs-GPUs MPSoC.
An experimental confirmation of the accuracy of φ2 is given in Sect. 5.2.

5 Experimental Results

In this section, we present our results from experiments, in which real-world
CNNs from the ONNX models zoo [21] are mapped and executed on the NVIDIA
Jetson TX2 embedded CPUs-GPUs MPSoC [22]. The goal of the experiments
is to demonstrate that, thanks to our contributions presented in this paper, our
extended methodology can deliver CNN inference on embedded CPUs-GPUs
MPSoCs with the same or higher throughtput but with lower energy consump-
tion compared to existing DL frameworks that support CNN inference on such
MPSoCs. First, we explain the setup for our experiments in Sect. 5.1. Then,
in Sect. 5.2, we confirm the accuracy of our analytical models, introduced in
Sect. 4.3. Finally, in Sect. 5.3, we use our extended methodology and models,
introduced in Sect. 4, to find Pareto-optimal mappings and analyze our experi-
mental results.

5.1 Experimental Setup

We use three real-world CNNs, namely Vgg19, Alexnet and Emotion fer, from
the ONNX models zoo [21] that take images as input for CNN inference. These
CNNs are utilized in different applications and have diverse number and type
of layers. Such diversity leads to a diverse scale of system throughtput and
energy consumption when these CNNs are mapped and executed on the same
hardware platform. Vgg19 and Alexnet are used for image classification and they
have 19 layers and 8 layers, respectively. Emotion fer is used for body, face, and
gesture analysis and it has 10 layers. So, these three CNN models are sufficiently
representative and good examples to apply our extended methodology on and
to demonstrate its merits.

The three CNN models, mentioned above, are mapped and executed on the
NVIDIA Jetson TX2 embedded CPUs-GPUs MPSoC [22] which features 6 CPUs
(Quad-Core ARM and Dual-Core NVIDIA Denver 2) plus 1 Pa GPU device. The
6 CPUs are divided into two different clusters, where the CPUs from the same
cluster can operate at 12 different frequencies and the GPU can operate at 13

138 E. Tang et al.

different frequencies. We select NVIDIA Jetson TX2 as our experimental hard-
ware platform because it is a well-known and easy-to-use embedded platform.
Moreover, we can easily and accurately acquire the needed system throghput
data and energy consumption data of each processor by setting timers within
the executed code and by sampling the integrated power sensors onboard, respec-
tively. In addition, NVIDIA Jetson TX2 is supported by the TensorRT frame-
work [15], which is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs, as mentioned in Sect. 2. The results obtained by
using our extended methodology are compared with TensorRT implementation
results as reference in order to show the benefits of our extended methodology.

For every optimized reference system implementation, obtained by using Ten-
sorRT, the system throughput and energy consumption is directly measured on
the NVIDIA Jetson TX2 platform, as the average value over 50 CNN inference
executions. For the Pareto-optimal systems, obtained by using our extended
methodology, the system throughput and energy consumption data is provided
by our analytical models, introduced in Sect. 4.3. The two-objective GA of our
methodology is executed with initial population size 5000, number of genera-
tions = 100, mutation probability = 5%. For all experiments, the original data
precision (i.e., float32) is utilized in order to preserve the original CNN accuracy.

5.2 The Accuracy of Our Analytical Models

In this section, we confirm the accuracy of our system throughput and energy
consumption analytical models, introduced in Sect. 4.3. We compare the esti-
mated system throughput φ1 and system energy consumption φ2, obtained by
our analytical models, with the corresponding numbers, obtained by direct mea-
surements, on the reference system implementations, as described in Sect. 5.1.
The results are shown in Table 2. In Column 1, we list the three experimen-
tal CNN models, mentioned in Sect. 5.1. For each CNN model, the experiments
are performed with 9 different CPU and GPU frequency configurations. For
the CPU and GPU frequencies, we use the maximum frequency, the minimum
frequency, and a frequency in the middle, as shown in Column 2 and 3. For
example, Row 2 shows that, when we perform the experiment on Vgg19 with
CPU frequency 2.0 GHz and GPU frequency 1.3 GHz, we obtain system through-
put of 14.30 img/s by a direct measurement, as shown in Column 4. Then, we
obtain the estimated system throughput of 14.11 img/s by our analytical model,
as shown in Column 5. Based on the data in Column 4 and 5, we calculate the
error for the system throughput as (14.11 − 14.30)/14.30 = −1.3%, shown in
Column 6. In Column 6, a negative error value means that the system through-
put is under-estimated and a positive value means that the system throughput
is over-estimated. Similarly, Column 7 shows the system energy consumption
of 0.58 J/img, obtained by a direct measurement and Column 8 shows the esti-
mated system energy consumption of 0.56 J/img, obtained by our analytical
model. Column 9 shows the error rate for the system energy consumption. We
can see in Table 2 that the error rate for the system throughput is below 6%
and the error rate for the energy consumption is below 9%. This fact confirms

Energy-Efficient and High-Throughput CNN Inference 139

that our analytical models are accurate enough for finding pareto optimal points
during a complex design space exploration because such accuracy is sufficient to
relatively compare different design points [23].

Table 2. Accuracy evaluation for our analytical models

CNN model CPU fre-

quency

(GHz)

GPU fre-

quency

(GHz)

System

through-

put by

measure-

ment

(img/s)

φ1 (img/s) Throughput

error (%)

System

energy

consump-

tion by

measure-

ment

(J/img)

φ2
(J/img)

Energy

error (%)

2.00 1.30 14.30 14.11 −1.3 0.58 0.56 −3.4

2.00 0.73 10.45 10.94 4.7 0.44 0.47 6.8

2.00 0.11 1.89 1.96 3.7 1.32 1.27 −3.8

1.27 1.30 13.04 12.67 −2.8 0.54 0.52 −3.7

Vgg19 1.27 0.73 10.28 10.55 2.6 0.30 0.32 6.7

1.27 0.11 1.88 1.91 1.6 0.59 0.62 5.1

0.35 1.30 6.52 6.53 0.2 1.04 1.08 3.8

0.35 0.73 6.23 6.55 5.1 0.44 0.42 −4.5

0.35 0.11 1.85 1.79 −3.2 0.54 0.57 5.6

2.00 1.30 81.17 82.02 1.0 0.055 0.051 −7.3

2.00 0.73 70.82 70.44 −0.5 0.049 0.048 −2.0

2.00 0.11 13.47 13.56 0.7 0.148 0.159 7.4

1.27 1.30 70.92 69.89 −1.5 0.054 0.055 1.9

Alexnet 1.27 0.73 61.69 62.22 0.9 0.045 0.044 −2.2

1.27 0.11 11.74 11.85 0.9 0.110 0.115 4.5

0.35 1.30 38.88 38.69 −0.5 0.090 0.088 −2.2

0.35 0.73 30.90 31.21 1.0 0.068 0.072 5.9

0.35 0.11 6.46 6.50 0.6 0.155 0.161 3.9

2.00 1.30 224.7 220.5 −1.9 0.017 0.016 −5.9

2.00 0.73 178.6 181.1 1.4 0.017 0.018 5.9

2.00 0.11 35.2 35.9 2.0 0.062 0.059 −4.8

1.27 1.30 192.3 189.3 −1.6 0.015 0.015 0

Emotion fer 1.27 0.73 164.7 166.8 1.3 0.012 0.013 8.3

1.27 0.11 32.55 33.01 1.4 0.034 0.032 −6.3

0.35 1.30 57.77 58.21 0.8 0.033 0.032 −3.0

0.35 0.73 46.73 45.99 −1.6 0.023 0.024 4.3

0.35 0.11 27.26 27.61 1.3 0.033 0.034 3.0

5.3 Pareto-optimal Mappings

In this section, we show the benefits of using our extended methodology, intro-
duced in Sect. 4, through a comparison between the Pareto-optimal mappings,
found by our methodology and the Pareto-optimal mappings, found by exhaus-
tive search when using TensorRT for CNN inference implementation because
TensorRT [15] is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs such as the NVIDIA Jetson TX2.

First, in order to find the Pareto-optimal mappings by using our methodology,
we perform a design space exploration (DSE), by using the two-objective GA

140 E. Tang et al.

of our methodology, introduced in Sect. 4.2, among possible mappings with a
CPU and GPU VFS configuration, when Vgg19, Alexnet, and Emotion fer are
executed on the NVIDIA Jetson TX2 platform. The reason for using the two-
objective GA for DSE is that the design space, which has to be explored and
is supported by our methodology, consists of |A||cpu|∗|gpu|∗|fcpu|∗|fgpu| possible
mappings. This is a huge number of mappings considering our experimental
setup, thus exhaustive search is not feasible.

Second, in order to find the Pareto-optimal mappings when using TensorRT
only, we perform a DSE by exhaustive search, among all possible mappings with
a CPU and GPU VFS configuration, when Vgg19, Alexnet, and Emotion fer are
executed on the NVIDIA Jetson TX2 platform. Since TensorRT utilizes only
one fixed CPU to offload all CNN inference tasks to one fixed GPU on NVIDIA
Jetson TX2, the size of the design space when using only TensorRT depends
on the possible CPU frequency levels |fcpu| and the possible GPU frequency
levels |fgpu|. Therefore, in this case, the design space consists of |fcpu| ∗ |fgpu| =
12 ∗ 13 = 156 design points to explore. Such small design space can be explored
by exhaustive search in order to find all Pareto-optimal mappings with 100%
guarantee.

Finally, we present and compare the Pareto-optimal mappings found by using
the aforementioned two methods. The experimental results are shown in Fig. 5, 6
and 7. The horizontal axis shows the system throughput in images per second
(img/s). The vertical axis shows the system energy consumption to process one
image in joules per image (J/img). Each point in Fig. 5, 6 and 7 represents a
Pareto-optimal mapping with certain system throughput and energy consump-
tion. The red (+) points in the figures represent the Pareto-optimal mappings
found by using our extended methodology. The green (×) points represent the
Pareto-optimal mappings found by exhaustive search and using TensorRT only.

Fig. 5. Pareto-optimal mappings for
Vgg19

Fig. 6. Pareto-optimal mappings for
Alexnet

Energy-Efficient and High-Throughput CNN Inference 141

Fig. 7. Pareto-optimal mappings for Emotion fer

From the experimental results, we can see that: (1) For Vgg19, as shown in
Fig. 5, our methodology can deliver the same or better system throughput with
a lower system energy consumption compared with TensorRT; (2) For Alexnet,
as shown in Fig. 6, when the system throughput is lower than 100 img/s, our
methodology can deliver the same or better system throughput with a lower sys-
tem energy consumption compared with TensorRT. When the system through-
put is higher than 100 img/s, only our methodology can deliver such system
throughput but with a higher system energy consumption; (3) For Emotion fer,
as shown in Fig. 7, our methodology can always deliver a better system through-
put with a lower system energy consumption compared with TensorRT. So, in
conclusion, our extended methodology is able to achieve both energy efficiency
and high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs.

6 Conclusions

In this paper, we propose an extended methodology to achieve energy efficiency
and high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN model onto
a CPUs-GPUs MPSoCs with VFS configurations with the help of a two-objective
GA which optimizes the system throughput and energy consumption simulta-
neously. Moreover, we propose two analytical models, that are used as fitness
functions in the two-objective GA to evaluate very fast the system throughput
and energy consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs
and we confirm the high accuracy of these two analytical models by experimental
evidence. Finally, the experimental results of real-world CNNs execution on the
NVIDIA Jetson TX2 platform show that, compared with the best-known CNN
deployment optimizer TensorRT, our extended methodology is able to achieve
both energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs.

142 E. Tang et al.

References

1. Alom, Md.Z., et al. The history began from Alexnet: a comprehensive survey on
deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)

2. Diamant, A., et al.: Deep learning in head & neck cancer outcome prediction. Sci.
Rep. 9(1), 1–10 (2019)

3. Do, T.-D., et al.: Real-time self-driving car navigation using deep neural network.
In: 2018 4th International Conference on Green Technology and Sustainable Devel-
opment (GTSD), pp. 7–12. IEEE (2018)

4. Alexey A Shvets et al. Automatic instrument segmentation in robot-assisted
surgery using deep learning. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 624–628. IEEE (2018)

5. Martin, G.: Overview of the MPSOC design challenge. In 2006 43rd ACM/IEEE
Design Automation Conference, pp. 274–279. IEEE (2006)

6. Wang, S., et al.: High-throughput CNN inference on embedded arm big little multi-
core processors. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39, 2254–2267
(2019)

7. Linpeng Tang et al. Scheduling computation graphs of deep learning models on
manycore cpus. arXiv preprint arXiv:1807.09667 (2018)

8. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous sys-
tems (2015)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678 (2014)

10. Parvat, A., et al.: A survey of deep-learning frameworks. In 2017 International
Conference on Inventive Systems and Control (ICISC), pp. 1–7. IEEE (2017)

11. Song, L., et al.: Hypar: towards hybrid parallelism for deep learning accelerator
array. In: 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 56–68. IEEE (2019)

12. Kang, D., et al.: C-good: C-code generation framework for optimized on-device
deep learning. In: Proceedings of the International Conference on Computer-Aided
Design, pp. 1–8 (2018)

13. Huynh, L.N., et al.: Deepsense: a GPU-based deep convolutional neural network
framework on commodity mobile devices. In: Proceedings of the 2016 Workshop
on Wearable Systems and Applications, pp. 25–30 (2016)

14. Huynh, L.N., et al.: Deepmon: mobile GPU-based deep learning framework for
continuous vision applications. In: Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 82–95 (2017)

15. Nvidia tensorrt framework. https://developer.nvidia.com/tensorrt
16. Minakova, S., Tang, E., Stefanov, T.: Combining task- and data-level parallelism

for high-throughput CNN inference on embedded CPUs-GPUs mpsocs. In: 20th
International Conference on Embedded Computer Systems: Architectures, Model-
ing and Simulation (SAMOS 2020), July 05–09 (2020)

17. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 100(1), 24–35 (1987)

18. Bilsen, G., et al.: Cycle-static dataflow. IEEE Trans. Signal Process. 44(2), 397–408
(1996)

19. Deb, K., Gupta, H.: Searching for robust pareto-optimal solutions in multi-
objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 150–164. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31880-4 11

http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1807.09667
https://developer.nvidia.com/tensorrt
https://doi.org/10.1007/978-3-540-31880-4_11

Energy-Efficient and High-Throughput CNN Inference 143

20. Sastry, K., et al.: Genetic algorithms. In: Search Methodologies, pp. 97–125.
Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-29623-9 7150

21. Onnx models zoo. https://github.com/onnx/models
22. Nvidia Jetson TX2. https://developer.nvidia.com/embedded/jetson-tx2
23. Palesi, M., Givargis, T.: Multi-objective design space exploration using genetic

algorithms. In: The Tenth International Symposium on Hardware/Software code-
sign, pp. 67–72 (2002)

https://doi.org/10.1007/3-540-29623-9_7150
https://github.com/onnx/models
https://developer.nvidia.com/embedded/jetson-tx2

	Energy-Efficient and High-Throughput CNN Inference on Embedded CPUs-GPUs MPSoCs
	1 Introduction
	2 Related Work
	3 Background
	3.1 CNN Inference on Embedded CPUs-GPUs MPSoCs
	3.2 Embedded CPUs-GPUs MPSoCs
	3.3 Synchronous Dataflow (SDF) Model

	4 Methodology Extension
	4.1 Mapping with VFS Configuration
	4.2 Two-objective GA Optimization
	4.3 Analytical Models as Fitness Functions

	5 Experimental Results
	5.1 Experimental Setup
	5.2 The Accuracy of Our Analytical Models
	5.3 Pareto-optimal Mappings

	6 Conclusions
	References

