
Realizing FIFO Communication When

Mapping Kahn Process Networks onto the Cell

Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed Deprettere

Leiden Institute of Advanced Computer Science
Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands

{dmitryn,smeijer,stefanov,edd}@liacs.nl

Abstract. Kahn Process Networks (KPN) are an appealing model of
computation to specify streaming applications. When a KPN has to exe-
cute on a multi-processor platform, a mapping of the KPN model to the
execution platform model should mitigate all possible overhead intro-
duced by the mismatch between primitives realizing the communication
semantics of the two models. In this paper, we consider mappings of KPN
specification of streaming applications onto the Cell BE multi-processor
execution platform. In particular, we investigate how to realize the FIFO
communication of a KPN onto the Cell BE in order to reduce the synchro-
nization overhead. We present a solution based on token packetization
and show the performance results of five different streaming applications
mapped onto the Cell BE.

Keywords: Models of Computation, Kahn Process Networks,
distributed FIFO communication, the Cell BE platform.

1 Introduction

One of the driving forces that motivated the emergence of multi-processor sys-
tems on chip (MPSoCs) originates from the complexity of modern applica-
tions [1]. Many applications are specified with complex block diagrams that
incorporate multiple algorithms. Such applications are called heterogeneous. The
emergence of heterogeneous applications led to the design of heterogeneous MP-
SoC architectures which provide improved performance behavior by executing
different algorithms, which are part of an application, on optimized/specific pro-
cessing components of an MPSoC. However, heterogeneous MPSoCs are very
hard to program efficiently, and still it is not very clear how this could be done
in a systematic and possibly automated way.

It is a common believe that the key to solve the programming problem is
to use parallel models of computation (MoC) to specify applications [2]. This
is because the structure and executional semantics of parallel MoCs match the
structure and executional semantics of MPSoCs, i.e., a parallel MoC consists of
tasks that can execute in parallel and an MPSoC consists of processing com-
ponents that run in parallel. Nevertheless, in many cases there is a mismatch
between the communication semantics of a MoC and the communication infras-
tructure available in an MPSoC. Therefore, a major issue when programming

K. Bertels et al. (Eds.): SAMOS 2009, LNCS 5657, pp. 308–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Realizing FIFO Communication on the Cell 309

an MPSoC, is to figure out how to bridge such mismatch, i.e., how to realize the
communication semantics of a MoC using the available communication infras-
tructure of the MPSoC. Unfortunately, a solution approach to the mentioned
mismatch is specific for a given MPSoC platform and MoC.

In this paper, we share our experience in bridging the mismatch between the
communication semantics of the Kahn Process Network (KPN) model of com-
putation and the communication infrastructure of the Cell BE platform. The
Cell BE platform [3] is a very good representative example of a state-of-the-art
heterogeneous MPSoC platform. It has a PowerPC host processor (PPE) and
a set of eight computation-specific processors, known as synergistic processing
elements (SPEs). The memory subsystem offers private memories for each SPE
processing elements and a global memory space, to which only PPE has direct
access, while each SPE utilizes accompanied Memory Flow Controller. The pro-
cessors and I/O interfaces are connected by the coherent interconnect bus which
is a synchronous communication bus. The KPN model is a very good represen-
tative of the class of dataflow models used to specify streaming applications.
A KPN is a graph in which the nodes are active entities (processes or tasks
or threads) that communicate point-to-point over FIFO channels. Most of the
dataflow models are of the same nature, i.e., they consist of tasks connected with
FIFO channels.

The mismatch mentioned earlier is illustrated by the example in Figure 1
where a KPN consisting of 7 processes and 7 FIFO channels is mapped onto the
Cell BE platform. Processes P1, P2 and P7 are mapped on the PPE, and pro-
cesses P3 to P6 are mapped on the SPEs. The FIFO communication channels has
to be mapped onto the Cell BE communication, synchronization and storage in-
frastructure. On the one hand, the semantics of the FIFO communication is very
simple: Producer and Consumer processes in a producer/consumer pair interact
asynchronously with the communication channel that they are connected to, and
the synchronization is by means of blocking read/write. On the other hand, in
the Cell BE platform the processors are connected to a synchronous communica-
tion bus and there is no specific HW support for blocking FIFO communication.
Therefore, the KPN communication model and the Cell BE communication in-
frastructure do not match. The KPN FIFO channels have to be realized by using

Fig. 1. A 6-process dataflow network mapped onto the Cell BE platform

310 D. Nadezhkin et al.

the private memory of a SPE, and/or the global memory, and the Cell BE spe-
cific synchronization methods which may be costly in terms of communication
latency. The challenge is how to do this in the most efficient way, i.e., to minimize
the communication latency.

In the following section, we give a survey of related works. In Section 3 we
consider the particular issues of realizing FIFO communication semantics of the
KPN model of computation on the Cell BE platform. Section 4 illustrates our
realization of the FIFO communication channels on the Cell BE platform. In
Section 5, we show some experiments with real-world applications. Section 6
concludes the paper.

2 Related Work

In a similar work [4], KPNs have been mapped onto the Intel IXP processor.
The IXP, however, has hardware support for FIFO buffers and no optimizations
have been applied to reduce communication latencies.

Another model-based project that is similar to our approach in programming
the Cell BE platform is the architecture-independent stream-oriented language
StreamIt [5], which shares some properties with the Synchronous DataFlow
(SDF) [6] model of computation. The Multicore Streaming Layer (MSL) [7]
framework realizes the StreamIt language on the Cell BE platform focusing on
automatic management and optimization of communication between cores. All
data transfers in the MSL are explicitly controlled by static scheduler, and thus, a
synchronization in FIFO communication is not an issue. However, this approach
is limited to applications that can be specified with SDF. Our approach is more
general as a broader class of applications can be specified with KPNs compared
to SDF, at the cost of introducing blocking read and write FIFO primitives,
ensuring that processes block if data is not available or cannot be written. The
introduced synchronization becomes an issue, which we tackle in this paper.

As to the low-level communication on the Cell, MPI like The Cell Messaging
Layer[8] library is implemented guided by the similar idea as in our approach, i.e.,
receiver-initiated communication. However, the library offers just low-level send
and receive primitives without focusing on realization of FIFO abstraction.

3 Issues of Mapping KPNs onto the Cell BE Platform

In mapping KPN processes onto processing elements of the Cell BE platform,
different assignment options are possible: each processor can host one or more
KPN tasks. For the PPE processor which has two hardware threads and runs a
multitasking operating system, a threaded library can be utilized to host several
KPN tasks. Although multitasking for the SPEs is also possible, in practice it
is inefficient as the context switching is very expensive: all the code and data,
while switching, should be saved in the global memory. Thus, in this paper we
consider that only one KPN process can be assigned to each SPE processor.

Realizing FIFO Communication on the Cell 311

Given the considerations above, there is a variety of mapping strategies which
lead to the appearance of different types of FIFO communication channels. For
example, in Figure 1 processes P1 (producer) and P2 (consumer) are mapped
onto the PPE, and we say that the FIFO channel connecting them is of PPE-
to-PPE type. If the producer and the consumer are one and the same process
mapped onto the SPE (like process P3 in Figure 1), then we refer to the FIFO
channel as of SPE-to-self type. Similarly, we identify PPE-to-self, SPEi-to-SPEj,
PPE-to-SPE, and SPE-to-PPE types of FIFO communication channels. All of
them require different implementations as different components of the Cell BE
platform are involved. Thus, we identify the following classes of FIFO channels,
classified by connection type: a) class self (PPE-to-self and SPE-to-self), b) class
intra (PPE-to-PPE), and c) class inter (SPEi-to-SPEj, PPE-to-SPE and SPE-
to-PPE).

The first two classes of FIFO channels are easy to implement efficiently, as
FIFOs from these classes are realized using just local memories and synchroniza-
tion primitives. We will not discuss the detailed implementation of these FIFOs
in this paper, however, we briefly explain the realization. In the class self, the
FIFO channel connects a process with itself. Since there is only one thread of
control, the access to the FIFO is ordered and therefore no special synchroniza-
tion is required. In the class intra, where producer and consumer processes are
mapped on the PPE, a FIFO channel is a shared resource in shared memory to
which mutual exclusive access is applied. We rely on the pthread library to deal
with this producer/consumer communication.

In this paper we focus on the class inter FIFO channels, which connect the
producer and consumer processes mapped onto two different processing elements
of the Cell BE platform. The first issue to be addressed is where the memory
buffer of a FIFO has to reside? The Cell BE platform provides two memory
storages, thus, the buffer can reside in global memory or be distributed partly
between private memories of the producer and consumer processes. The cons of
the former approach lie in the presence of the shared component, which should be
accessed with mutually exclusive pattern. For example, a SPE process connected
to class inter FIFO, should not only compete for the memory resource, but also
move the data from the global storage to the local memory prior to computa-
tion. The implication of this is enormous synchronization overhead making the
performance of this approach not better than the performance of the sequential
version of an application.

When the memory buffer of a FIFO channel is distributed between private
memory storages of a producer and consumer processes, the issue is how to im-
plement the FIFO semantics over the distributed memory buffer such that it does
not mask the performance benefits of going distributed. The FIFO semantics is
realized by means of Direct Memory Access (DMA) transfers and synchroniza-
tion messages between producer and consumer processes. The more a KPN is
communication dominant, the more synchronization overhead is generated which
can lead to a performance penalty. Therefore, the issue is to minimize the number
of data transfers over the distributed FIFO channels as much as possible.

312 D. Nadezhkin et al.

4 Solution Approach

Our approach in minimizing the DMA data transfers is based on packetizing of
tokens. In this case, a number of tokens are grouped into a single packet, which
is transferred as one DMA transfer. Packetizing decreases the number of DMA
data transfers or in other words, it decreases the number of synchronizations.
Determining the packet size becomes a very important issue, and as it will be
shown, it depends on how the DMA data transfers are initiated. Also, it will be
shown, that in some cases an incorrect packet size may lead to a deadlock.

Before determining the size of a packet, we need to consider the possible pro-
tocols for realizing the FIFO semantics over the distributed memory buffer in
detail. As all FIFO channels we consider are point-to-point, tokens can be trans-
ferred either in a data driven or a data demand fashion. The former case follows
a push strategy in which the producer initiates a data transfer as soon as it has
produced data, whereas the latter case follows a pull strategy in which the con-
sumer initiates a data transfer as soon as it requires data. The two strategies are
shown in Figure 2, where the numbered circles indicate the order of synchroniza-
tion messages along with the DMA data transfer; nodes P and C represent the
producer and the consumer, respectively. We explain both strategies in detail
and discuss pros and cons, and provide our solution choice.

In the push strategy depicted in Figure 2a, the producer first makes a write
request as soon as one or more tokens have been produced (1). Then, the con-
sumer transfers the data with a DMA (2) and sends the notification message to
the producer (3). Thus, two synchronization messages are required to complete
one DMA data transfer. Packetizing of tokens happens on the producer side
and the size of the packet should be known before the data transfer. However,
wrong computed size may result in a deadlock in some network topologies. For
example, consider Figure 3. The network consists of 3 tasks (P1, P2 and P3) and
3 FIFO channels (F1, F2 and F3). Assume that for channel F1, the packet size,
which guarantees deadlock free network evaluation equals to 3. Then, we change
the packet size of F1 to 4 tokens. When P1 has generated 3 tokens, instead of
sending them to P2, P1 continues to produce new tokens to fill a packet, reading
from the input channel F3. The P2 process cannot proceed, as packet from P1

has not been sent because the packet is not complete, and the data is not avail-
able. Similarly, the P3 process gets blocked in reading data from P2, and thus,
it cannot produce the token for P1. The network is in a deadlock. Hence, for the

1Request
Write

P C
3Notify

DMA 2

(a) push

P

Request

Ack 3

CDMA 2

1

(b) pull

Fig. 2. Push and pull strategies for class inter FIFO channels

Realizing FIFO Communication on the Cell 313

Read

Read

Read

F1 F2

F3P1

P2

P3

Fig. 3. An example of a deadlock in the push strategy

push strategy the safe size of a packet for all FIFO channels should be computed
at compile time.

The pull strategy for realizing FIFO semantics over the distributed memory
buffer is composed of the following three steps shown in Figure 2b:

1. Read request (1). The consumer first tries to read from its local buffer. If this
buffer does not contain the required data, then it sends a request message
to the producer and gets blocked on reading the acknowledgement message
from the producer. The request message contains the maximum number of
tokens the consumer may accept.

2. Data transfer (2). The producer which receives the read request can either
be blocked on writing to its local storage or be busy executing a function.
If it is blocked, it serves other requests immediately, and if it is executing
then it immediately serves the request after execution. So in any case the
producer handles the request and transfers all tokens it has available for the
consumer as one packet by means of a DMA transfer.

3. Acknowledgement (3). The producer notifies the consumer after completion
of the data transfer issuing a message containing the total number of tokens
which have been transferred as one packet in the previous step.

In the pull strategy, for every DMA data transfer, also two synchronization
messages are required and the size of the packet to be transferred is computed
dynamically in step (2) of the protocol given above. The only way we can control
the dynamic packetizing is by setting the size of the memory buffer. The larger
the size, the larger packet can be assembled. Since a consumer gets the data as
soon as it is available, a deadlock is impossible in the pull strategy.

Both strategies have their own advantages and disadvantages. On the one
hand, in the push strategy, the required computation of packet sizes at compile
time is not always possible for any KPN. This is because, the rate of production
and consumption of tokens in channels might not be known at compile time.
In the pull strategy, the computation of packet sizes is dynamic, i.e., computed
at run-time, hence always possible. On the other hand, the push strategy is
predictable, i.e., packet sizes are know at compile time and this information
can be used to reason about performance, while in the the pull strategy such
reasoning is not possible. Moreover, in some networks, the dynamically computed
packet sizes may not be larger than one token. A simple example of such network
is a producer/consumer pair where the rate of token production and consumption
is the same. Regarding the synchronization overhead, both strategies require the

314 D. Nadezhkin et al.

same number of synchronization messages for a single DMA data transfer. Based
on the above comparison between the push and the pull strategies, we have chosen
the pull strategy as it is generic and can be used for any KPN.

5 Experimental Evaluation

In this section we present several experiments of KPNs mapped onto the Cell
platform. The main goal is to show the impact of tokens packetizing on syn-
chronization overhead induced in the class inter FIFO channels using the pull
strategy.

To carry out the experiments, we have developed a tool named Leiden Cell C-
code Generator (LCCG), which performs a mapping of a KPN specification onto
the Cell BE platform in an automated way. The tool accepts KPNs generated
by the pn and the Compaan compilers [9,10]. Given a KPN specification and
a mapping file in which processes are assigned to processors, LCCG generates
C-code for the PPE and SPE processor elements, as well as specific FIFO read
and write primitives for each type of communication channel. After running the
LCCG tool, the generated code is compiled on the Playstation3 platform with
IBM’s XLC compiler using the libspe2 library.

Experiment: JPEG Encoder

In this experiment we map a JPEG encoder application onto the Cell BE plat-
form. The encoder takes a stream of frames with sizes of 512 × 512 pixels and
applies the JPEG algorithm on these frames. The KPN is depicted as a graph in
Figure 4. The KPN consists of 7 processes and 15 FIFO channels. Each task of
the application corresponds to a node in the graph; every channel is annotated
by a name of a data structure which specifies a token, and FIFO sizes which
guarantee deadlock free execution of the network. We map the computationally
intensive processes DCT, Q and VLE on different SPEs, whereas the other pro-
cesses are mapped onto the PPE. For this application, buffer sizes of 1 will give
a deadlock free network, which means that we can observe token packetizing

DefaultTables

VideoInInit

c1: 1

Q
LuminanceQTable: 1

ChrominanceQTable: 1

VLE
LuminanceHuffTableDC: 1

ChrominanceHuffTableDC: 1

LuminanceHuffTableAC: 1

ChrominanceHuffTableAC: 1

VideoOut
LuminanceTablesInfo: 1

ChrominanceTablesInfo: 1

VideoInMain
c2: 1

HeaderInfo: 1

DCT
Block: 1

Block: 1

Block: 1

Packets: 1

Fig. 4. KPN specification of the JPEG encoder

Realizing FIFO Communication on the Cell 315

by increasing the buffer sizes. Therefore, we run the KPN with four different
configurations: we use FIFO buffer sizes of 1, 16, 32 and 48 tokens.

All columns in Figure 5a depict the distribution of the time the DCT, Q and
VLE tasks spend in computing, stalling and communicating. It shows how much
time processes spend on real computations and thus also how much time is spend
in the communication overhead. While stalling, a process is awaiting the syn-
chronization messages from other processes, i.e., showing the synchronization
overhead. In the communicating phase, a process is transferring the actual data.
The first 3 bars in Figure 5a correspond to the configuration with all buffer
sizes set to one token; the remaining bars show results of configurations with
larger buffer sizes illustrating the effect of token packetizing. We observe a re-
distribution between computation and stalling fractions in all tasks: the stalling
parts have been decreased, while the computation parts were increased. Thus,
the packetizing decreases the synchronization overhead. The overall performance
of different versions is depicted in Figure 5b. We observe that as the processors
spend less time in synchronization, the performance increases.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

DCT Q VLE DCT Q VLE DCT Q VLE DCT Q VLE

Tasks on SPE

D
is

tr
ib

u
tio

n

Compute Stall Comm

FIFOs=1 FIFOs=48FIFOs=16 FIFOs=32

(a)

0

2

4

6

8

10

12

1 16 32 48

FIFO sizes

T
h

ro
u

g
h

p
u

t (
M

b
s)

(b)

Fig. 5. Results of experiments with JPEG encoder: a) distribution of times the DCT,
Q and VLE processes of JPEG encoder spend in computation, stalling and communica-
tion for non-packetized and packetized versions; b) throughput of JPEG encoder with
different FIFO sizes

Other Experiments

In other experiments we investigated the benefits of packetizing in applica-
tions with different computation-to-communication ratio. For that purpose, we
mapped JPEG2000, MJPEG, Sobel, and Demosaic applications onto the
Cell BE. The first two application have coarse-grained computation tasks, while
the latter two are communication dominant. For each application, we compared
the throughput of the sequential version running on the PPE and two paral-
lel versions: the first one is with minimum buffer sizes that guarantee deadlock
free network, i.e., without packetizing possible, and the second, with buffer sizes
which are larger then the previous version to allow packetizing. The experiments
are depicted in Figure 6. The y-axis is a log scale of throughput in Mbit/s.

For all algorithms, the packetized versions work better than non-packetized.
As the JPEG2000 and MJPEG are characterized by their coarse grain tasks, the

316 D. Nadezhkin et al.

0,000

0,001

0,010

0,100

1,000

10,000

JPEG2000 (8/6) MJPEG (7/5) Sobel (5/3) Demosaic
(14/6)

T
h

ro
u

g
h

p
u

t
M

b
s

(lo
g

)

Sequential

Not packetized

Packetized

Fig. 6. Throughput comparison of sequential, non-packetized and packetized versions
of JPEG2000, MJPEG, Sobel, and Demosaic applications

communication overhead is insignificant and we see that the parallel versions
are faster than the sequential version for all, but non-packetized MJPEG algo-
rithms. The Sobel and the Demosaic kernels have very lightweight tasks, thus,
the introduced inter-processor communication and overhead are more costly than
the computations itself. This is the reason the columns in the third and fourth
experiments in Figure 6 show a significant slow-down compared to the sequen-
tial application. The conclusion is not to consider fine-grained parallelization of
applications on the Cell BE platform using FIFO communication.

6 Conclusion

In this paper, we presented a solution for bridging the mismatch between the
KPN communication model and communication primitives of the Cell BE plat-
form. The absence of hardware support for FIFO communication in the Cell BE,
makes reading and writing from/to FIFO channels expensive operations. We
have investigated several approaches to realize the FIFO communication on the
Cell. As a result of our investigation we selected an approach called the pull
strategy which is based on packetizing of tokens. The experimental results show
that this approach gives a performance that is always better than the perfor-
mance of a network without packetization. All types of FIFO communication
channels have been implemented in a tool which automatically generates C-code
for the KPN tasks and FIFO channels, or in other words, automatically maps a
KPN specification onto the Cell BE platform.

Acknowledgments. We would like to thank Bart Kienhuis and Hristo Nikolov
for the useful discussions on this paper and its results.

References

1. Wolf, W., Jerraya, A.A., Martin, G.: Miltiprocessor System-on-chip (mpsoc) Tech-
nology. IEEE Transactions on Computer-Aided Desing of Integrated Circuits and
Systems 27(10) (2008)

2. Martin, G.: Overview of the mpsoc design challenge. In: DAC 2006: Proceedings of
the 43rd annual conference on Design automation, pp. 274–279. ACM, New York
(2006)

Realizing FIFO Communication on the Cell 317

3. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.:
Introduction to the cell multiprocessor. IBM J. Res. Dev. 49(4/5), 589–604 (2005)

4. Meijer, S., Kienhuis, B., Walters, J., Snuijf, D.: Automatic partitioning and map-
ping of stream-based applications onto the intel ixp network processor. In: SCOPES
2007: Proceedings of the 10th international workshop on Software & compilers for
embedded systems, pp. 23–30. ACM, New York (2007)

5. Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamit: A language for streaming
applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

6. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Computers 36(1), 24–35 (1987)

7. Zhang, X.D., Li, Q.J., Rabbah, R., Amarasinghe, S.: A lightweight streaming layer
for multicore execution

8. Pakin, S.: Receiver-initiated message passing over rdma networks. In: IEEE Inter-
national Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008,
pp. 1–12 (April 2008)

9. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: a tool for improved derivation of
process networks. EURASIP Journal on Embedded Systems, Special Issue on Em-
bedded Digital Signal Processing Systems 2007 (2007)

10. Kienhuis, B., Rijpkema, E., Deprettere, E.F.: Compaan: Deriving Process Networks
from Matlab for Embedded Signal Processing Architectures. In: Proc. 8th Interna-
tional Workshop on Hardware/Software Codesign (CODES 2000), San Diego, CA,
USA, May 3-5 (2000)

	Realizing FIFO Communication When Mapping Kahn Process Networks onto the Cell
	Introduction
	Related Work
	Issues of Mapping KPNs onto the Cell BE Platform
	Solution Approach
	Experimental Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

