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Abstract—In this paper, we investigate the problem of using the
state-of-the-art C=D task-splitting approach to energy efficiently
schedule real-time tasks on a single-ISA heterogeneous multicore
system. We first extend the existing task-splitting approach for
heterogeneous multicore systems. Based on our extension, we
propose an algorithm, called ASHM, to allocate and split real-
time tasks on a heterogeneous multicore system. The experimen-
tal results demonstrate the effectiveness of our proposed ASHM

algorithm compared to existing allocation approaches in terms
of energy savings.

I. INTRODUCTION

Multicore systems are widely adopted to satisfy the increas-

ing computational demands of applications and at the same

time to reduce energy consumption. Homogeneous multicore

systems which consist of identical cores are ubiquitous in

modern electronic systems spanning from mobile devices to

supercomputing systems. However, the emergence of mul-

ticore systems brings a new issue, called the dark silicon

problem [1], i.e., not all cores on the chip can be powered on

at the same time due to power density issues. Several solutions

[2], [3] have been proposed in the recent years to mitigate the

dark silicon issue. Heterogeneous multicore systems [4] have

been considered to be one of the promising solutions for the

dark silicon problem and a good alternative to homogeneous

multicore systems.

A single-ISA heterogeneous multicore system [5] is a

special heterogeneous multicore system, where the cores on

the chip have the same instruction set architecture (ISA) but

differentiate with each other in terms of power and perfor-

mance. Typical single-ISA heterogeneous multicore systems

usually consist of two types of cores; The ‘big’ cores with

complex micro-architecture, e.g., deep pipeline and wider issue

width, are designed for high performance and the ‘little’ cores

with simple micro-architecture, e.g., shallow pipeline and

narrower issue width, are optimized for low power execution.

Several leading semiconductor companies have mass-produced

their own single-ISA heterogeneous multicore systems for

commodity products, e.g., Qualcomm Snapdargon 810 and

808, Samsung’s Exynos 5 Octa series [6], and Nvidia’s Tegra

X1 [7]. In the remainder of this paper, when we refer to

heterogeneous multicore systems, we mean single-ISA het-

erogeneous multicore systems.

The energy efficiency of heterogeneous multicore systems

also attracts attentions when designing real-time systems.

Several works [8]–[10] consider to schedule real-time tasks

on heterogeneous multicore systems in an energy-efficient

manner. Real-time scheduling on multicore systems falls into

two categories, partitioned scheduling and global scheduling.

Partitioned scheduling algorithms which statically allocate

tasks to fixed cores are easy to implement and can use

existing uniprocessor scheduling algorithms to schedule tasks

on each core, but they suffer from the capacity loss, i.e.,

resource utilization inefficiency [11]. On the other hand, global

scheduling algorithms allow tasks to migrate at runtime in

order to achieve higher resource utilization. However, global

scheduling suffers from high scheduling overheads, e.g., the

task migration overhead and cache coherency problems.
In order to overcome the above scheduling problems, an

alternative, called semi-partitioned scheduling/task-splitting

[12]–[15], is proposed to improve schedulability and resource

utilization. In semi-partitioned/task-splitting approaches, most

of the tasks are statically allocated to cores and only a few

tasks are permitted to migrate between cores. Among these

proposed semi-partitioned/task splitting approaches, the C=D

task-splitting [12] has been shown in [14] to outperform

others in terms of schedulability. Moreover, the C=D approach

provides a practical paradigm in terms of implementation on

real platforms. Burns et al. in [12] provide an implementation

guide for the Ada language or on Linux systems. More details

about the C=D are given in Section III-D.
The task-splitting approach has been investigated by Lu and

Guo [16] to energy-efficiently schedule real-time tasks under

fixed-priority scheduling on homogeneous multicore systems.

However, there is no work investigating the task-splitting

approach on heterogeneous multicore systems to optimize

the energy efficiency of a system. Therefore, in this paper,

we investigate how to adopt the task-splitting approach with

dynamic priority scheduling to better utilize the resources

on heterogeneous multicore systems for energy efficiency.

We select the C=D approach [12], discussed above, to split

tasks among heterogeneous multicores. We extend the C=D

approach for heterogeneous multicore systems and propose

an allocation algorithm to schedule real-time tasks with C=D

task-splitting on heterogeneous multicore systems. Formally,

our novel technical contributions are summarized as follows:

• We analyze the properties of the C=D task-splitting

and extend it for heterogeneous multicore systems. We

present a new definition, namely ‘valid split’, for the C=D

task-splitting on heterogeneous multicore systems. This

analysis is presented in Section V;

• Based on the analysis of the C=D task-splitting and

the characteristics of heterogeneous multicore systems,

we propose an energy-efficient algorithm, called ASHM,

to allocate and split real-time tasks on heterogeneous

multicore systems. Algorithm ASHM is presented in
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Section VI;

• Since the existing methods to compute the minimum

operational frequency for each core cannot work with

the C=D approach, we propose a new approach based

on Quick convergence Processor-demand Analysis (QPA)

[17] to compute the minimum frequency for each core

in the system. This proposed approach is presented in

Section VI-D

The reminder of this paper is organized as follows. Section

II discusses the related work. Section III gives the preliminar-

ies. Section IV shows an example to motivate the application

of the task-splitting approach on heterogeneous multicore sys-

tems for energy reduction. Then in Section V, we analyze the

C=D task-splitting and extend it for heterogeneous multicore

systems. Based on Section V, Section VI presents the proposed

algorithm, ASHM, to allocate and split tasks on heterogeneous

multicore systems. Finally, Section VII evaluates the proposed

algorithm in comparison to existing approaches and Section

VIII concludes this paper.

II. RELATED WORK

Energy-efficient scheduling for real-time systems has been

widely explored in the past two decades. Chen and Kuo in

[18] comprehensively reviewed most of the papers addressing

energy-efficient real-time scheduling problems before 2007.

An updated review for energy-efficient real-time scheduling is

provided by Bambagini et al. in [19]. We can see from [18],

[19] that most of the works consider homogeneous systems,

whereas in this paper we consider heterogeneous multicore

systems which are more energy-efficient but more difficult to

effectively schedule the tasks.

A few works consider heterogeneous systems. Chen and

Thiele in [20] proposed a polynomial algorithm to energy ef-

ficiently schedule periodic tasks on heterogeneous systems but

the systems they considered had only two cores. In contrast,

we consider a more general system model where the system

has two types of cores, and for each core type we can have any

number of cores which can be seen on many real commercial

processors. Chen et al. [21] developed two polynomial-time

algorithms to energy efficiently allocate real-time tasks on a

more general system model that can have different types of

processors and different number of processors for each type

like we consider in our work. However, in their work, they

do not take dynamic voltage/frequency scaling (DVFS) into

account, whereas we consider DVFS as a crucial technique

to improve the energy efficiency. With the consideration of

DVFS, we can further minimize the energy consumption of

the heterogeneous system. In [22], Huang et al. proposed an

allocation algorithm to schedule frame-based real-time tasks

on heterogeneous multicore systems, where a non-preemptive

scheduling is considered. The main difference compared to our

work is: (1) they consider frame-based real-time task model,

whereas we consider the periodic task model which is more

general; (2) non-preemptive scheduling they consider is known

to be NP-hard in strong sense even on uniprocessor [23]. In

contrast, we consider preemptive scheduling.

Recently, more interests have risen for energy efficient

real-time scheduling on single-ISA heterogeneous multicore

systems. Liu et al. [8] consider an optimal cluster scheduling

to schedule real-time tasks on cluster heterogeneous multicore

systems. However, from practical perspective the optimal

cluster scheduling suffers from a very high overhead caused

by frequent context switching and task migration. When

the overhead is taken into account, the achieved resource

utilization may be quite low in practice [15]. In contrast,

the C=D task-splitting, we consider, has a limited number of

migrations and on each core a normal EDF scheduler is used

to schedule real-time tasks, hence it significantly reduces the

context-switching and task migration overhead and makes it

more practical for real implementation. Colin et al. [9] and

Elewi et al. [10] adopt the partitioned EDF scheduling to

schedule real-time tasks on heterogeneous multicore systems,

where both consider energy minimization as the objective. Due

to the capacity loss of partitioned scheduling, the proposed

approaches from [9] and [10] do not fully utilize ‘little’ cores

on a heterogeneous multicore system and thus possibly lose

some opportunities to further reduce the energy consumption.

Contrarily, in our work, we adopt the state-of-the-art C=D

task-splitting approach to exploit the energy efficiency of a

heterogeneous multicore system. Our experimental results on

randomly generated task sets demonstrate the merit of the task-

splitting on heterogeneous multicore systems.
A few works study the task migration/splitting approaches

for energy-efficient real-time multicore system. Chen et al.

[24] address the energy-efficient scheduling problem on ho-

mogeneous multicore systems with task migration, in which

all tasks have the same release time and a common deadline.

In our work, we consider a more general and widely-used

periodic task model and instead of homogeneous multicore

systems, we consider heterogeneous multicore systems which

are more energy efficient. Lu and Guo [16] adopt the task-

splitting approach proposed by Guan et al. [13] on homo-

geneous multicore systems to achieve energy efficiency. The

main difference between [16] and our work is twofold:1) they

consider fixed priority scheduling, whereas dynamic priority

scheduling, i.e., earliest deadline first (EDF) [25], is adopted

in our work. It is known that EDF can achieve better resource

utilization than fixed-priority scheduling; 2) they consider

homogeneous multicore systems, whereas we target hetero-

geneous multicore systems which are more energy-efficient.

III. BACKGROUND

In this section, we present the system model, task model,

and energy model used in this paper. Then, we give a brief

description of the C=D task-splitting approach [12] and the

schedulability analysis technique [26] [17] which we use in

this paper.

A. System Model

We consider a heterogeneous multicore system M which

consists of two types of cores, the ‘big’ core for performance

and the ‘little’ core for low power. In our paper, we use PE

and EE to denote a ‘big’ core and a ‘little’ core, respectively.

We use MEE and MPE to denote the sets consisting of all EE

cores and all PE cores, respectively. The power consumption

of one core can be computed by the following equation,

P (f) = αf b + s (1)

where α and b ∈ [2, 3] are technology-based parameters

[18], f is the operational frequency. For different types of
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cores, α and b are different. The first term of Eq. (1) is the

frequency-related power consumption, i.e., the dynamic power

consumption. s denotes the power consumption unrelated to

the frequency, i.e., the static power consumption. Each core

executes independently from the others and has a discrete

frequency set at which the core can run. Let fj = {f1, · · · , fl}
denote the frequency set of core j. Without loss of generality,

we assume that the frequencies in the set are sorted in

increasing order, i.e., fk < fk+1.

B. Task Model

Consider a task set Γ which consists of n independent real-

time tasks. We adopt the widely-used periodic task model,

where a periodic task which might produce an infinite number

of jobs is characterized by a tuple of parameters τi =
{CEE

i , CPE
i , Di, Ti}.

• CEE
i and CPE

i are the worst-case execution times

(WCETs) of task τi executing on the EE core and PE

core at the maximum frequency, respectively;

• Di is the relative deadline of task τi;

• Ti is the period of task τi. In this work, we consider that

each task has an implicit deadline, i.e., Di = Ti.

C. Energy Model

With the system and task models discussed above, we ex-

plain how to compute the energy consumption for the system.

After all tasks are allocated to cores, the energy consumption

for each core can be computed as follows:

Ej = hp

(
αjf

bj
j

fmax

fj

∑

∀i∈Γj

Ci

Ti

+ sj

)
(2)

where Γj is the task set containing all tasks allocated to core

j and hp is the hyper-period of task set Γ. The hyper-period is

the least common multiple (LCM) of all tasks’ periods. Every

hyper-period has the same workload and thus we compute

the energy consumption within one hyper-period. The energy

consumption of the whole system is the summation of the

energy consumption Ej of all cores.

D. C=D Task-Splitting

In this work, we adopt the C=D task-splitting to schedule

real-time tasks on a heterogeneous multicore system. Burns

et al. in [12] proposed the C=D approach to split real-time

tasks on homogeneous systems. They use a preemptive earliest

deadline first (EDF) scheduling [25] to schedule the tasks on

each core. The tasks are first allocated to cores according to

a certain allocation algorithm. If task τi cannot be integrally

allocated to a core, the C=D approach splits unassigned task

τi into two parts/subtasks, τ1i and τ2i . The split procedure is

as follows:

• Find a processor x and then compute the maximum

computation time C1
i for subtask τ1i which ensures the

schedulablility of subtask τ1i on processor x. For subtask

τ1i , its deadline D1
i is set to be equal to C1

i and its

period T 1
i is equivalent to its original period Ti, i.e.,

τ1i = {C1
i , D

1
i = C1

i , T
1
i = Ti}. Then, subtask τ1i is

allocated to processor x;

• According to subtask τ1i , we can obtain the second

subtask τ2i . The WCET C2
i of τ2i is computed as C2

i =
Ci−C1

i , its deadline D2
i is computed as D2

i = Di−D1
i

and its period T 2
i equals to its original period, T 2

i = Ti,

i.e., τ2i = {C2
i = Ci − C1

i , D
2
i = Di − D1

i , T
2
i = Ti}.

Subtask τ2i is allocated to a processor which has enough

space to schedule subtask τ2i and is different from pro-

cessor x on which subtask τ1i is allocated.

In the remainder of this paper, we call subtask τ1i the first

subtask and subtask τ2i the second subtask.

The C=D task-splitting permits each core to have only one

first subtask τ1i . This means that the whole system has at most

m split tasks, where m is the number of cores. This task-

splitting scheme can be realized by using task migration. τ1i
completes its execution on the allocated core. Then it migrates

to the core where τ2i is assigned and continues the execution

of subtask τ2i . From the experimental results in [14], the C=D

task-splitting outperforms other existing semi-partition/task-

splitting approaches in terms of schedulability.

Migration Overhead: Like [12], in our work the migration

overhead is assumed to be negligible. An extensive number

of experiments on real hardware systems [15] have shown

that with cache coherence among cores the task migration

overhead is at the similar order of magnitude as the normal

context switching. The cache coherence hardware architecture,

like CoreLink CCI-400 Cache Coherent Interconnect [27],

has been adopted by the big.LITTLE multicore systems to

maintain the cache coherence between cores. Therefore, the

migration overhead is accounted for in the WCET of a task.

E. Schedulability Analysis for EDF

For implicit deadline tasks on one core, the total utilization

U ≤ 1 is an exact test, i.e., necessary and sufficient, to ensure

the schedulability of a task set under EDF [25]. However, after

adopting the C=D task-splitting, the split subtasks become

constrained deadline tasks where Di < Ti and the exact test

for such tasks is more complicated which is based on the

computation of the demand bound function (DBF) [26]. To

better deal with the complexity of the exact test, Zhang and

Burns [17] proposed a new exact test, namely Quick con-

vergence Processor-demand Analysis (QPA) [17], to quickly

test the schedulability of a task set under EDF scheduling.

The extensive experimental results in [17] demonstrate the

efficiency of QPA in terms of reducing the time complexity of

testing the schedulability. Therefore, in our work, we use QPA

to test the schedulability when there are subtasks (constrained

deadline tasks) on a core. We refer interested readers to [17]

for more details about QPA.

IV. MOTIVATIONAL EXAMPLE

In this section, we use an example to motivate the appli-

cation of the C=D task-splitting approach on heterogeneous

multicore systems for energy efficiency purpose. For simplic-

ity, assume that we have a multicore system with one PE core

and one EE core. The PE core and EE core have different

power parameters α and b (see Eq. (1) and (2)). In this

example, we use the parameters from [8], where they obtained

these parameters based on measurements on the real hardware
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Core type α(W/Mhzb) b s(W )

PE 3.03 × 10−9 2.621 0.155

EE 2.62 × 10−9 2.12 0.022

TABLE I: Power parameters for different core types

CPE(ms) CEE(ms) D(ms) T(ms)

τ1 55 110 100 100
τ2 20 40 100 100
τ3 20 40 100 100
τ4 15 30 100 100

TABLE II: The original task set

platform ODROID XU-3 [28]. Table I gives these parameters.

Suppose to have four tasks with the parameters given in

Table II. As far as the deadlines can be ensured, we strive to

partition/allocate as many tasks as possible to the EE core in

order to save energy consumption. However, since scheduling

τ1 on the EE core will violate the deadline guarantee, only τ2,

τ3, and τ4 are eligible to be scheduled on the EE core. But

we cannot schedule τ2, τ3, and τ4 together on the EE core,

because a total utilization of 1.1 > 1 leads to infeasibility.

One task has to be scheduled on the PE core along with τ1.

Then, we obtain a fully partitioned allocation for the given

task set, where τ1 and τ4 are scheduled on the PE core and

τ2 and τ3 are scheduled on the EE core. In contrast to the

above fully partitioned allocation, we adopt the C=D task-

splitting (explained in Section III-D) to schedule the tasks on

the multicore system. In the splitting case, τ1 is scheduled on

the PE core while τ2 and τ3 are scheduled on the EE core. But

τ4 is split into two subtasks, τ14 and τ24 , and then we schedule

τ14 on the EE core and τ24 on the PE core. The parameters for

the subtasks are shown in the following table,

CPE(ms) CEE(ms) D(ms) T(ms)

τ14 10 20 20 100

τ24 5 10 80 100

TABLE III: Split subtasks

With the given allocation and the power parameters, we can

compute a minimum frequency for each core such that the

energy consumption can be minimized by using DVFS while

deadlines are still ensured. Table IV shows the allocation,

the minimum operational frequency of each core, and the

energy consumption of the multicore system. We can see

that the splitting approach saves energy consumption by 32%

compared to the partitioned approach because it can effectively

utilize the EE core to save energy and at the same time it can

reduce the workload allocated to the PE core. As a result, the

PE core in the splitting approach executes at a lower frequency

compared to the partitioned approach.

From the example, we see the advantage of the C=D

task-splitting approach on heterogeneous systems in terms

of energy efficiency. In the subsequent sections, we will

introduce our novel approach to exploit the C=D task-splitting

on heterogeneous multicore systems for minimizing the energy

consumption.

Mapping PE EE fPE fEE Energy(mJ)

Partitioned τ1, τ4 τ2, τ3 1.4GHz 1.2GHz 5.42

Splitting τ1, τ2

4
τ2, τ3, τ1

4
1.2GHz 1.4GHz 3.69

TABLE IV: Energy consumption

CPE CEE D T

τ1 60 120 100 100

τ1

1
25 50 50 100

τ2

1
35 70 50 100

τ1

1
41 82 82 100

τ2

1
19 38 18 100

TABLE V: Split Example

V. C=D TASK-SPLITTING ON HETEROGENEOUS

MULTIPROCESSOR SYSTEMS

In [12], the C=D task-splitting is devised for homogeneous

multiprocessor systems. However, in our work, we target

heterogeneous multicore systems [4] [29] which have been

emerging as an alternative of the conventional homogeneous

multicore systems. In this section, we investigate how to adopt

the C=D task-splitting on a heterogeneous system.

A. Task Splitting

Since, on heterogeneous multicore systems, a task’s WCET

is varying upon the allocated core, the splitting on the hetero-

geneous multicore system should pay more attention to the

varying WCET and the relation between the obtained two

subtasks. First, the deadline of the first subtask τ1i is set

according to where the first subtask is allocated. For instance,

assume that a subtask τ1i has its CPE
i = 5 and CEE

i = 10.

If it is allocated to a PE core, its deadline D1
i equals to

CPE
i = 5, otherwise D1

i = CEE
i = 10 if allocated to an

EE core. Moreover, in some cases an improper split might

cause a deadline miss for the second subtask τ2i . The following

example demonstrates this issue:

Example 1. Suppose to have task τ1 given in row 2 of Table V.

Let us assume that we split τ1 into two subtasks τ11 and τ21 and

allocate τ11 and τ21 to an EE core and a PE core, respectively.

We assume that there is no constraint on the split. We give two

different splits for τ1 shown in rows 3,4 and 5,6. For the first

split shown in rows 3,4, there is no problem to schedule the

subtasks. However, for the second split, although the execution

time on the EE core is maximized, it causes a deadline miss

for subtask τ21 due to CPE > D, seen in the last row with red

color.

From the above example, we observe the potential split issue

on a heterogeneous multicore system. Thus, we give the fol-

lowing property to ensure that a proper split on heterogeneous

multicore systems is obtained:

Property 1. On a heterogeneous multicore system, the follow-

ing inequality must hold for a split task τi,

Ti − C1
i ≥ C2

i (3)

where C1
i and C2

i are the WCETs of subtasks τ1i and τ2i ,

depending on which type of core the subtasks have been

allocated.
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This property is to ensure enough space to execute the

second subtask τ2i on a heterogeneous system. We can see

that for subtask τ2i it must have,

D2
i ≥ C2

i (4)

Since D2
i = Di −D1

i = Ti −D1
i and D1

i = C1
i , see Section

III-D, we obtain

Ti − C1
i ≥ C2

i (5)

Thus, the property is observed. Based on this property, we

give the following definition,

Definition 1 (valid split). If two subtasks τ1i and τ2i obtained

by splitting task τi satisfy Property 1, we call such split a valid

split.

If the split is not a valid split, then the second subtask cannot

meet its deadline.

B. Subtask Allocation

In Section V-A, we discussed how to find a valid split for a

task on a heterogeneous multicore system. Here, we continue

to discuss the allocation of subtasks. Before proceeding to the

discussion, we distinguish tasks in two categories and give

their definitions as follows,

Definition 2. If a task can be integrally scheduled on an EE

core, we call such task an eligible task (E-task).

Definition 3. If a task cannot be integrally scheduled on an

EE core, we call such task a non-eligible task (NE-task).

If we look at the motivational example in Section IV-

Table II, τ2, τ3, and τ4 are E-tasks and τ1 is NE-task. Now,

we discuss the possible allocation destinations for these two

categories of tasks.

1) E-task: When an E-task is selected to be split, any split

is a valid split regardless of which type of core the subtasks

are allocated. Therefore, for an E-task, the two subtasks can

be allocated to any type of core, as long as the schedulability

of the system is ensured. Thus, we can have three possible

combinations to allocate the two subtasks of an E-task:

• Allocate the two subtasks to two EE cores;

• Allocate the two subtasks to one EE core and one PE

core; and

• Allocate the two subtasks to two PE cores.

2) NE-task: When a NE-task is about to be split, we need

to ensure that the obtained split is a valid split by satisfying

Property 1. For a NE-task, we cannot allocate the two subtasks

to two EE cores, because Property 1 will be violated and then it

leads to an invalid split. Excluding the invalid combination, we

have two possible combinations to allocate the two subtasks

of a NE-task:

• Allocate the two subtasks to one EE core and one PE

core; and

• Allocate the two subtasks to two PE cores.

With the above possible allocation destinations for the two

categories of tasks, in the next section, we will use this

information to devise an energy-efficient allocation strategy

for each category of tasks.

VI. ALLOCATION AND SPLIT ON HETEROGENEOUS

MULTICORE SYSTEMS (ASHM)

In [20], Chen and Thiele have shown that allocating real-

time tasks onto two different processors is an NP-hard prob-

lem. Their problem is just a subset of our problem, so our

problem is also an NP-hard problem. Hence, we propose

a heuristic algorithm to energy-efficiently schedule real-time

tasks on heterogeneous multicore systems with task-splitting.

We call this algorithm ASHM. ASHM first handles all E-tasks

and then all NE-tasks. For the sake of clarity, we first explain

the different parts in the ASHM algorithm and after that we

explain the whole ASHM algorithm. Before proceeding to the

detailed discussion, we introduce the following property for

the core with first subtask τ1i allocated on it,

Property 2. A core must run at the maximum frequency if

first subtask τ1i of a split task τi is assigned to it.

It is trivial to see this property because the first subtask of

a split task has its WCET equal to the deadline. Scaling down

the frequency leads to a deadline miss. This property is useful

to determine the allocation of the subtasks.

A. Allocation and splitting of E-tasks

ASHM first starts to allocate and split E-tasks. The proce-

dure to allocate and split E-tasks is summarized as follows:

1) Use a bin-packing algorithm, first-fit-decreasing (FFD)

[30], to integrally allocate E-tasks to EE cores;

2) Split unallocated E-tasks on the platform. For a given

unallocated E-task τi, we use the following allocation

and splitting order,

a) Split τi among two EE cores. If it fails, try step

b);

b) Split τi among one EE core and one PE core. If

fails, try step c);

c) Allocate τi integrally to one PE core. If it fails, try

step d);

d) Split τi among two PE cores. If it fails, the sys-

tem is unschedulable on the platform with M =
{MEE ,MPE}.

For the first step, we use FFD to integrally allocate EE tasks to

EE cores because FFD is proven to be the resource efficient

bin-packing algorithm [31]. By using FFD we could leave

some EE cores with a lot of free capacity. This could later

benefit the NE-tasks for energy saving.

After some E-tasks are integrally allocated to EE cores, we

might have some E-tasks left unallocated. The next step is to

split and allocate them on the system. The allocation and split

order summarized above prioritizes the EE cores to explore

the energy-efficient potential on the EE cores. Therefore, we

first try to allocate the subtasks of a split E-task to two EE

cores. If the task cannot be split among two EE cores, this

means that there is no enough space on EE cores. So, we try

one EE core and one PE core. Since, a PE core consumes

much more power than an EE core and Property 2 indicates

the maximum frequency requirement, it is not favorable to

allocate the first subtask to a PE core. Therefore, we constrain

ourself to allocate the first subtask to an EE core and the

second subtask to a PE core. For the selection of the PE cores,

we use the approach proposed in [9] which selects the core
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Algorithm 1: E-task Allocation and Split (EAS)

input : All E-tasks ΓE and the heterogeneous multicore
platform M = {MEE ,MPE}

output: Allocation for all E-tasks
1 MEE ← using FFD to allocate tasks from ΓE

2 Γun ← unallocated tasks from ΓE

3 for ∀τi ∈ Γun in order of decreasing U do
4 for ∀x ∈MEE in order of increasing U do

5 τ1i ,τ2i = SPLIT(τi, x)
6 if τ1i �= ∅ then

7 x← τ1i
8 y ← mpwr(M = {MEE ,MPE}, τ

2
i )

9 if y = ∅ then

10 x← x− τ1i

11 if τi is not allocated successfully then
12 x← mpwr(MPE , τi)
13 if x �= ∅ then
14 x← τi

15 else
16 for ∀x ∈MPE in order of decreasing U do

17 τ1i ,τ2i = SPLIT(τi, x)
18 if τ11 �= ∅ then

19 x← τ1i
20 y ← mpwr(MPE , τ

2
i )

21 if y = ∅ then

22 x← x− τ1i

23 else

24 y ← τ2i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓE

with the smallest energy cost contribution to the whole system

when the task is allocated to it. If the combination of one EE

core and one PE core still fails, we need to find an allocation

among PE cores.

On PE cores, we first try to integrally allocate the E-task

to one PE core because if we split an E-task among two PE

cores, Property 2 requires that one PE core must execute at

the maximum frequency which leads to a very high power

consumption. Hence, we prefer to integrally allocate the E-

task to one PE core than split it among two PE cores. We also

use the approach from [9] to select the energy-efficient core

for the task. If it still fails, we try the final step to split it on

two PE cores in order to ensure its schedulability.

Algorithm 1 presents the pseudo-code to allocate and split

E-tasks, called EAS, following the procedure explained above.

EAS takes as inputs task set ΓE consisting of all E-tasks and

the heterogeneous multicore platform consisting of EE core

set MEE and PE core set MPE and outputs the allocation of

all E-tasks. At Line 1, we first use FFD to allocate E-tasks

to EE cores integrally. If there are some unallocated E-tasks,

we follow the steps introduced above to split unallocated E-

tasks among two EE cores or one EE core and one PE core

- see Line 3-10. We use function mpwr() to represent the

core selection approach from [9], where the inputs of mpwr()
are a core set and a task and the output is a core which

can schedule the task and has the smallest contribution to

the energy consumption. However, if the task is not allocated

successfully, we have to try to allocate or split the task among

PE cores - see Line 11-24. From Line 12-14, the integral

allocation on one PE core is first tried. If it fails, from Line

15-24 EAS splits τi among two PE cores. Function SPLIT
in Algorithm 1 finds the first subtask τ1i with the maximum

WCET which is schedulable on core x and also gives the

corresponding τ2i . We will explain SPLIT in details later in

Section VI-C.

B. Allocation and Splitting of NE-tasks

After all E-tasks are allocated, we proceed towards allocat-

ing and splitting NE-tasks on the system. The procedure to

allocate and split NE-task τi is summarized as follows:

1) Split τi among one EE core and one PE core. If it fails,

try step 2);

2) Allocate τi integrally onto one PE core. If it fails, try

step 3);

3) Split τi among two PE cores. If it fails, it is unschedu-

lable.

Since, after the allocation of E-tasks, EE cores might have

some free space to execute parts of NE-tasks, we first try

to split a NE-task among one EE core and one PE core in

order to utilize EE cores for energy saving. Since the first

subtask needs a maximum operational frequency (Property 2),

we constrain the first subtask to the EE core and allocate the

second subtask to a PE core for ensuring the schedulability.

However, when we maximize the execution time of the first

subtask on an EE core, it might bring a negative effect on the

second subtask. Maximizing the execution of the first subtask

will reduce the slack time for the second subtask, see Example

1, i.e., D2
i − C2

i . As a consequence, the reduced slack time

leaves a little space to scale down the frequency of the PE

core which might compromise the energy saving from the EE

core. Hence, in order to provide an energy-efficient split, we

set the following constraint for splitting a NE-task on one EE

core and one PE core.

C2
i

D2
i

≤
Ci

Ti
(6)

Constraint (6) can guarantee that after the split the slack ratio

of the second subtask is not smaller than before. Therefore,

it would not require to run at a higher frequency. If the

task cannot be split on one EE core and one PE core, we

integrally allocate NE-task τi to one PE core. For the integral

allocation, we try to allocate task τi to the PE core given by

function mpwr(). If task τi cannot be allocated to a PE core,

then we split it among two PE cores in order to ensure its

schedulability.

Algorithm 2 presents the pseudo-code to allocate and split

NE-tasks, where we call this algorithm NEAS. The inputs

for NEAS are all NE-tasks and the platform. From Line 2-13

NEAS splits task τi among one EE core and one PE core. For

this combination NEAS selects the EE core with the smallest

utilization and the PE core given by function mpwr() to split

task τi in order to save the energy consumption. At Line 5-7

constraint (6) is checked. If the combination of one EE core

and one PE core fails to allocate task τi, then from Line 14-

17 NEAS tries to integrally allocate task τi to one PE core
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Algorithm 2: NE-task Allocation and Split (NEAS)

input : All NE-tasks ΓNE and the heterogeneous multicore
platform M = {MEE ,MPE}

output: Allocation for all NE-tasks
1 for ∀τi ∈ ΓNE in order of decreasing U do
2 for ∀x ∈MEE in order of increasing U do

3 τ1i ,τ2i = SPLIT(τi, x)
4 if τ1i �= ∅ then

5 while
C2

i

D2

i

> Ci

Ti
do

6 C1
i ← C1

i − 1
7 Recompute C2

i according to the new C1
i (see

Section III-D)

8 x← τ1i
9 y ← mpwr(MPE , τ

2
i )

10 if y = ∅ then

11 x← x− τ1i

12 else

13 y ← τ2i

14 if τi is not allocated then

15 y ← mpwr(MPE , τ
2
i )

16 if y �= ∅ then
17 y ← τi; break

18 for ∀pe ∈MPE in order of increasing U do

19 τ1i ,τ2i = SPLIT(τi, pe)
20 if τ1i �= ∅ then

21 x← τ1i
22 y ← mpwr(MPE , τ

2
i )

23 if y = ∅ then

24 pe← pe− τ1i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓNE

which can schedule τi and has the minimum contribution to

the energy consumption. If it does not successfully allocate τi
to one PE core, NEAS splits τi among two PE cores from

Line 18-24. In this case, it finds the PE core with the largest

utilization to schedule the first subtask τ1i . Because τ1i requires

the maximum frequency to guarantee the schedulability and

the PE core with the largest utilization should execute at a

high frequency compared to others, allocating τ1i to the PE

core would not increase the frequency too much which in turn

does not lead to a lot of extra energy consumption for the task

allocated to the PE core. For τ2i , we still use function mpwr()
to find the candidate core. If splitting among two PE cores

fails, NEAS returns a failure.

C. Split function

In this section, we present the SPLIT function used in EAS
and NEAS discussed above. Algorithm 3 presents the pseudo-

code for SPLIT. The concept behind the SPLIT algorithm is

based on the approach proposed in [12] and the properties

of the C=D approach on heterogeneous multicore systems

identified and discussed in Section V. The inputs for SPLIT

are a task τi and a core x while the output is two subtasks

τ1i and τ2i . The objective of function SPLIT is to find the

Algorithm 3: SPLIT

Input : τi and one processor x
Output: subtasks τ1i , τ

2
i

1 C1
i = D1

i = (0.999− Ux)Ti;

2 Compute subtask τ2i according to the parameters of τ1i (see
Section III-D)

3 while C2
i > Ti − C1

i and τi is a NE-task and x is an EE core
do

4 C1
i ← C1

i − 1
5 Recompute C2

i according to the new C1
i (see Section III-D)

6 Γx ← Γx + τ1i ;
7 while True do

8 if C1
i < 1 then

9 return τ1i = τ2i = ∅

10 if QPA(Γx) reports unschedulable then
11 t←the failure point from QPA
12 while True do

13 I = (t− dbf(Γx − τ1i , t))/�
t+Ti−(C

1

i−1)

Ti
�

14 if I �= C1
i then

15 C1
i = C1

i − 1

16 else
17 Break;

18 else

19 Compute parameters for subtask τ2i (see Section III-D)

20 return τ1i , τ
2
i

maximum WCET of τ1i which can satisfy the schedulability

on core x. The procedure is as follows:

• Initialize the parameters of subtasks. For τ1i let C1
i =

D1
i = (0.999−Ux)Ti (Line 1) and configure subtask τ2i

according to subtask τ1i (Line 2), as explained in Section

III-D, where Ux denotes the total utilization of processor

x;

• If τi is a NE-task and x is an EE core (Line 3-5), ensure

valid split according to Property 1;

• Use QPA [17] to test whether subtask τ1i can be allocated

onto core x. If it is schedulable, return the subtasks τ1i
and τ2i (Line 10, 18-20);

• If QPA reports ‘unschedulable’, recompute the WCET for

subtask τ1i . In this case, we use the recurrence approach

from [12] to make sure that

C1
i = (t− dbf(Γx − τ1i , t))/�

t+ Ti − (C
1
i − 1)

Ti

� (7)

where t is the failure point returned by QPA, i.e., the time

instance dbf(Γx, t) > t and dbf(Γx − τ1i , t) represents

the demand of tasks on core x excluding subtask τ1i .

The recurrence equation in Eq. (7) computes a maximum

value for C1
i such that dbf(Γx, t) ≤ t which ensures the

schedulability of task set Γx at time instant t. If Eq. (7) is

satisfied, the recurrence procedure stops and returns C1
i

for subtask τ1i . Otherwise, it decrements C1
i by 1 and

repeats the previous procedure (Line 10-17);

• Return failure if it cannot split task τi on core x (Line

8-9).

Note that we use 0.999 instead of 1 to initialize a subtask at

Line 1, because if utilizing 1 would result in that QPA uses the

hyper-period of all tasks as bound to test the schedulability.
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Algorithm 4: Compute Minimum Frequency (CMF)

Input : core x and task set Γx

Output: the minimum operating frequency for core x
1 if x has a first subtask then
2 return fmax

3 else
4 Compute a minimum achievable frequency fcrit based on

Ux

5 f ← {∀fi|fi ≥ fcrit} and sort f in order of increasing
frequency

6 for ∀fi ∈ f, i = {1, 2, ..., k} do
7 if QPA(γx, fi) reports schedulable then
8 return fi

9 return fmax

Then, QPA would be very complex and time-consuming.

D. Computing the minimum frequency

We use DVFS to scale down the frequency of each core

so that the energy consumption is further reduced. However,

next to implicit deadline tasks (unsplit), we might have some

subtasks obtained by splitting on some cores which are con-

strained deadline tasks. In such case, we cannot simply use the

utilization-based approach [18] [19] to compute the minimum

frequency. Hence, we integrate the frequency into QPA [17]

to efficiently compute the minimum frequency for a core.

Algorithm 4 (CMF) presents the pseudo-code to compute

the minimum operational frequency for each core. The inputs

are one core x and a task set Γx which includes all tasks

allocated to core x. The output is the minimum operational

frequency for core x. If the core has first subtask τ1i , its

frequency will be set to the maximum frequency according to

Property 2 - see Line 1-2. Otherwise, we compute a minimum

operational frequency for the core from Line 4-8. First, we

compute a frequency called fcrit based on utilization Ux of

core x [18]. Frequency fcrit can be deemed as the lower

bound of the operational frequency of core x. If the operational

frequency is lower than fcrit, the system is not schedulable.

Then, we select all frequencies from the core’s frequency set

which are greater than fcrit and let these frequencies form a

frequency set f sorted in order of increasing frequency - see

Line 5. We start with the smallest frequency fi in frequency

set f and use QPA to test whether the task set is schedulable at

this frequency - see Line 7. If it is schedulable, CMF returns

frequency fi as the operational frequency. Otherwise, we take

frequency fi+1 and use QPA to test whether the task set is

schedulable at this frequency.

E. ASHM Algorithm

Given all algorithms explained earlier, we present our com-

plete Allocation and Split algorithm ASHM using the pseudo-

code in Algorithm 5. We first divide all tasks into two task sets

ΓE and ΓNE , one for all E-tasks ΓE and another for all NE-

tasks ΓNE . Then, we use EAS (Algorithm 1) to allocate all E-

tasks - see Line 2. If all E-tasks are successfully allocated, we

proceed to allocate all NE-tasks by using NEAS (Algorithm 2)

- see Line 3. Finally, we apply CMF (Algorithm 4) to compute

the minimum frequency for each core - see Line 4-5.

Algorithm 5: ASHM

Input : all tasks Γ and the platform M = {MEE ,MPE}
Output: the allocation for all tasks and the minimum

operational frequency for each core on the platform
1 ΓE ←all E-tasks, ΓNE ←all E-tasks
2 M ← EAS(ΓE , M )
3 M ← NEAS(ΓNE , M )
4 for ∀x ∈M do
5 fx ← CMF(x,Γx)

Complexity Analysis: In the worst case, EAS, NEAS,

SPLIT and CMF are all pseudo-polynomial algorithms due

to QPA. Although QPA has shown its efficiency in [17], its

complexity is still pseudo-polynomial in the worst case. This

worst-case scenario happens when the utilization U equals

to 1. However, in function SPLIT, we strive to avoid the

worst-case scenario to occur by setting the utilization bound

as 0.999 - see Line 1 of Algorithm 3. Therefore, in practice,

our algorithms can be executed very efficiently.

VII. EVALUATION

In this section, we present extensive experimental results

to show the effectiveness of our ASHM algorithm in terms

of energy consumption compared to two widely-used bin-

packing algorithms [30] and two existing related approaches

[9] [10]. We do not compare with [8], because when we use

their approach on per-core DVFS system (per-cluster DVFS is

considered in [8]1) their approach is very similar to [9]. We

do not compare with [21], because they do not take DVFS

into account. Therefore, our approach will always save more

energy consumption than [21]. Since the authors in [9] have

shown that their approach outperforms the allocation approach

proposed in [22], we do not compare our ASHM to [22].

A. Experimental Setup

1) Task Generation: To evaluate the effectiveness of

ASHM, we adopt the widely-used random task generator

based on UUnifast-discard [32]. UUnifast-discard enables the

generation of unbiased task sets. It takes as inputs the number

of tasks n and the total utilization U and generates utilization

ui for n tasks. The generation procedure is summarized as

follows:

• For each task, utilization ui is generated using UUnifast-

discard;

• Period Ti is generated using a log-uniform distribution

with a factor of 100 difference between the minimum and

maximum possible task period. This presents a range of

task periods from 10ms to 1s in real-time applications

[12] [32];

• CPE
i is computed as CPE

i = ui · Ti; and

• CEE
i is computed as CEE

i = CPE
i · cei, where cei is

selected from a uniform random distribution in the range

[1.8, 2.3] which represents the variance of the execution

time on different types of cores [33].

1Here, the per-core DVFS system can be considered as each cluster with one
core. The approach proposed in [8] actually becomes a partitioned approach.
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2) Platforms: We have two types of cores (PE and EE) in

the platforms and the core’s power parameters are shown in

Table I taken from [8]. In this experiment, we evaluate the ef-

fectiveness of our ASHM algorithm mainly on platforms with

limited number of resources because on a platform with more

resources our approach will always perform good, especially

with more EE cores. Therefore, we conduct experiments on

following three limited platforms:

1) Platform 1: 2 PE cores and 2 EE cores

2) Platform 2: 2 PE cores and 3 EE cores

3) Platform 3: 3 PE cores and 2 EE cores

On the three platforms, we experiment with task sets with

different U and a different number of tasks.

3) Comparison approaches: We compare our proposed

ASHM algorithm with the following approaches in terms of

energy consumption:

• FFD: Allocate E-tasks and NE-tasks to EE cores and PE

cores, respectively, using FFD [30]. If E-tasks cannot be

allocated to EE cores, then they are allocated to PE cores

using FFD;

• WFD: Similar to FFD, but instead of FFD we use WFD

[30] to allocate tasks;

• EFD: The allocation algorithm proposed in [10];

• m-pwr: The allocation algorithm proposed in [9];

4) Comparison Metric: In the experimental results, we

show the energy saving by using our ASHM compared to

the above four reference approaches. The energy saving is

computed as follows:

Energy saving =
Eref − EASHM

Eref

· 100[%] (8)

where Eref is the energy consumption of one of the four ap-

proaches given above and EASHM is the energy consumption

of our proposed ASHM.

B. Experimental Results

All the experimental results are plotted in Figure 1 and 2.

For each point in the figures, we generate 100 random task sets

and compute an average energy saving. Note that only when all

reference approaches can schedule the generated task set we

compute an energy saving using Eq. (8). Our ASHM always

can schedule more task sets than the other approaches because

ASHM uses task-splitting. Since the schedulability advantage

of the task-splitting approach has been reported in [12], we do

not compare the number of schedulable task sets in this work.

1) Impact of the Utilization: In this experiment, we fix

the number of tasks for different platforms and then vary

the total utilization to evaluate the effectiveness of ASHM.

In order to have both NE-tasks and E-tasks in the generated

task set, the number of tasks is fixed to 7 for all platforms.

The results are plotted in Figure 1 where the y-axis is the

energy saving computed using Eq. (8) and the x-axis is the

variable utilization. We can see that our ASHM outperforms

all allocation approaches in terms of energy efficiency. From

the experimental results, we observe:

• The average energy saving by ASHM decreases as the

total utilization increases. In the comparison between

ASHM and WFD, EFD and m-pwr, this trend is easy

to be observed although there is some variation due to

the randomness of the generated task sets. The reason

is that when we increase the total utilization, the slack

space on the EE cores is reduced such that the task set

cannot benefit from our ASHM too much. However, for

FFD in Platform 1 and 3, see Figure 1(a) and 1(c), the

energy saving increases until a point and then gradually

decreases. The reason is that when we have task sets with

a low utilization, FFD always tries to use the smallest

number of cores to schedule tasks which might cause

the PE cores to execute at a high frequency. The high

frequency in turn leads to a high energy consumption.

• ASHM saves more energy consumption on a platform

with more EE cores, see Figure 1(b). The advantage of

ASHM is to effectively utilize EE cores on the platform to

achieve energy efficiency. More EE cores provide more

space to split tasks and thus ASHM reduces more the

energy consumption.

2) Impact of the Number of Tasks: In this experiment,

we fix the utilization for different platforms and then vary the

number of tasks to evaluate the effectiveness of ASHM. Since

larger total utilization leads to smaller number of schedulable

task sets, we fix the utilization to 2 for all platforms in order

to compare our ASHM to the reference approaches on more

schedulable task sets. We ensure that the number of tasks is

greater than the number of cores, so we start with 4 tasks for

Platform 1 and 5 tasks for Platform 2 and 3. The results are

plotted in Figure 2.

Compared to the well-performed allocation approaches

WFD and m-pwr, we can see that the the energy saving is

decreasing with the increasing number of tasks. The reason is

that when the number of tasks increases with a fixed utiliza-

tion, the tasks in the set become lighter, i.e., with a smaller

utilization. Therefore, these tasks are easy to be allocated

among the cores and then EE cores might be completely

fulfilled or just have a little space for splitting of tasks.

Therefore, ASHM cannot save too much in this case. However,

as can be seen in Figure 2(a) and 2(c), compared to FFD, the

energy saving by ASHM increases gradually. Since we have

more tasks with a low utilization, FFD might allocate all tasks

onto one core which will execute at a high frequency. However,

since the dynamic power consumption still dominates the total

power consumption, executing on two PE cores with lower

frequencies is more energy-efficient than on one PE core with

a high frequency.

VIII. CONCLUSION

The state-of-art C=D task-splitting [12] is studied in this

work to energy efficiently schedule real-time tasks on hetero-

geneous multicore systems. We analyze and extend the C=D

task-splitting for heterogeneous multicore systems. With our

analysis and extension, we propose the ASHM algorithm to

allocate and split real-time tasks on a heterogeneous multicore

system. In contrast to fully partitioned allocation approaches,

our proposed ASHM algorithm can effectively utilize EE

cores to achieve more energy saving. The experimental results

show the effectiveness of our proposed ASHM in terms of

energy saving, where the maximum energy saving by ASHM
compared to previous approaches is up to 60%.
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Fig. 1: Varying U on different platforms
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