
Flexible Pipelining Design for Recursive Variable Expansion

Zubair Nawaz, Thomas Marconi, Koen Bertels

Computer Engineering Lab

Delft University of Technology

The Netherlands

{z.nawaz, t.m.thomas, k.l.m.bertels}@tudelft.nl

Todor Stefanov

Leiden Embedded Research Center

Leiden University

The Netherlands

stefanov@liacs.nl

Abstract

Many image and signal processing kernels can be

optimized for performance consuming a reasonable

area by doing loops parallelization with extensive use

of pipelining. This paper presents an automated flexible

pipeline design algorithm for our unique acceleration

technique called Recursive Variable Expansion. The

preliminary experimental results on a kernel of real life

application shows comparable performance to hand

optimized implementation in reduced design time. This

make it a good choice for generating high performance

code for kernels which satisfy the given constraints, for

which hand optimized codes are not available.

1. Introduction

A large number of the computer programs spend

most of their time in executing loops, therefore

the loops are an important source of performance

improvement, for which there exist a large number of

compiler optimizations [1]. A major performance can

be achieved through loop parallelization. Loop par-

allelization plays an important role in reconfigurable

systems to achieve better performance as compared to

general purpose processor (GPP). Since the reconfig-

urable systems have large amount of processing ele-

ments as compared to GPP they beat the GPP albeit the

higher frequency of GPP. In previous work on Recur-

sive Variable Expansion (RVE) [2], we have removed

the loop carried data dependencies among the various

statements of the program to execute every statement

in parallel, which showed the maximum parallelism

that can be achieved assuming we have unlimited hard-

ware resources on a FPGA. Since assuming unlimited

resources is not practical, we would like to achieve

maximum parallelism given some limited hardware

resources. Pipelining is a technique, in which various

similar tasks are sequenced and overlapped in time, so

that all the available resources are being utilized at a

time by scheduling different tasks in different stages.

So pipelining gives parallelism as various tasks are

executing in parallel in different stages. In this paper,

we introduce a flexible pipelining design algorithm for

RVE, which not only fulfills the area constraints on a

given FPGA but also hides the memory access latency

behind computation.

The contributions of this paper are :

1) an algorithm for certain class of problems, which

gives alternative option for pipelining, flexible

enough to suit the memory and area constraint;

2) applying the algorithm on a kernel from real

world application showing comparable perfor-

mance to the hand optimized implementation at

the cost of more area.

3) an automated approach which considerably re-

duces the design time.

1.1. Related Work

A lot of work has been done in the area of loop

pipelining. Few techniques only work with intra-loop

dependencies in loop nest. Software pipelining [3] is

one such technique, in which the various iterations

of the loop are overlapped and run in parallel with

the scheduling of compiler. This technique which is

primarily developed for VLIW architecture is now also

used for reconfigurable computing. It is used in Garp

Compiler [4], which pipeline inner loops with the intra-

loop dependencies only. Other reconfigurable compil-

ers which use the software pipelining are NAPA-C [5]

and PICO [6]. In another similar approach [7], the

iterative modulo scheduling of the software pipelining

is integrated with the retiming and slowdown [8] (that

is used to pipeline synchronous circuit) to reduce the

pipelining delays in the reconfigurable hardware. In

addition to dealing with intra-loop dependencies in

loop nest, our algorithm can also produce pipeline for

any type of loop nest with loop carried dependencies.

Loops with loop carried dependencies are more

difficult to parallelize and pipeline. There has been sig-

nificant work in exploiting the parallelism for the loop

carried dependencies. For example in the pipeline vec-

torization [9], various loop transformations like loop

unrolling, loop tiling, loop fusion and loop merging are

used to remove the loop-carried dependencies in the

innermost loop, so that they can be easily pipelined.

Beside this, the retiming technique [8] is also used

in pipeline vectorization [9] for efficient pipelining.

Some new loop transformations like the unroll and

squash [10] is also proposed to deal with the inner

loops with the loop carried dependencies. Our pipeline

algorithm is based on a very different technique RVE

which remove loop carried dependencies from all the

loops and exploits extreme parallelism.

Some techniques use the data flow graph instead of

using the conventional loop transformations. In these

technique, the functions or loops waiting for some

data may start computing as soon as the required

data is available, which can be out of order. One

of the earliest example is [11], which uses FIFO

mechanism to synchronize between the subsequent

stages. Another is called the Reconfigurable Dataflow

control [12] scheme, which is also applicable to nested

loop carried dependencies loops. This approach uses

Tagged-Token execution model [13] to control the

sequence of execution. A more recent technique called

the pipelining of sequences of loops [14] uses a more

fine grain synchronization and buffering scheme. In

it, the iteration of a loop starts before the end of

the previous iteration, if the data is available. The

inter-stage buffers are maintained, which signal and

triggers the subsequent stage. Therefore the sequence

of the production and consumption of the data can be

different. The hash functions are used to reduce the size

of the inter-stage buffers. As our pipeline algorithm

is based on RVE, which removes all the loop carried

dependencies, therefore the computation can be done

out of order.

The paper is organized as follows. First, we provide

the necessary background to understand the following

material. Section 3 defines and describes the problem

by giving a simple example. In Section 4, we describe

our flexible pipeline design algorithm. Section 5 gives

the architecture to hide the memory access latency.

In Section 6, the experimental setup and results are

presented and discussed. Finally, Section 7 concludes

the paper with future work.

2. Background

The work presented in this paper is related to the

Delft Workbench (DWB) project. The DWB is a semi-

automatic toolchain platform for integrated hardware-

software co-design targeting the Molen machine orga-

nization [15]. Although Molen targets a reconfigurable

fabric, our algorithm is also applicable to ASIC design.

In this work, we do a profiling and extract out a part

of a given program which takes most of the time in the

total time of the program and satisfies the limitations

stated later in this paper. We call such part a kernel.

We now define few terms related with string ma-

nipulation. A string is a finite set of symbols from an

alphabet Σ. The length of a string T denoted by |T | is

the number of symbols in that string. Let Σ∗ denotes

the set of all finite length strings formed using symbols

from the alphabet Σ. The zero-length empty string,

denoted by ε, also belongs to Σ∗ . The concatenation

of two string T and S is written as TS, i.e. the string T

followed by the string S, where |TS| = |T |+ |S|. T [i]
denotes the ith character of T . T [i..j] is the substring

T [i]T [i + 1]...T [j] of T . A Kleene star of a string

T , denoted by T ∗, is the set of all strings obtained

by concatenating zero or more copies of string T .

We define T + = TT ∗, which means that T + is the

smallest set that contain T and all strings that are

concatenation of more than one copies of T .

2.1. Recursive Variable Expansion

Recursive Variable Expansion (RVE) [2] is a par-

allelization technique which removes all loop carried

data dependencies among different statements in a

program, thereby making it prone to more parallelism.

The basic idea is the following. If any statement Gi

is waiting for some statement Hj to complete for

some iteration i and j respectively due to some data

dependency, both of the statements can be executed in

parallel, if the computation done in Hj is replaced with

all the occurrences of the variable in Gi which creates

the dependency with Hj . This makes Gi independent

of Hj . Similarly, computations can be substituted for

all the variables which creates dependencies in other

statements. This process can be repeated recursively

till all the statements are function of known values

and all data dependencies are removed. Hence, all the

statements can be executed in parallel provided the

required resources are available. RVE can be applied

to a class of problems, which satisfy the following

conditions.

1) The bounds of the loops must be known at the

compile time.

Example 1 A simple example

for i=1 to 5

A[i]=0

for j=1 to 4

A[i]=A[i]+d[j]*i

end for

A[i]=A[i]>>8

end for

A[1]=A[1]>>8

=A[1]+d[4]*1>>8

=A[1]+d[3]*1+d[4]*1>>8

=A[1]+d[2]*1+d[3]*1+d[4]*1>>8

=A[1]+d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8

=0+d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8

=d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8

...

A[5]=d[1]*5+d[2]*5+d[3]*5+d[4]*5>>8

Figure 1: Expanded expressions after applying RVE on

Example 1

2) The loops does not have any conditional state-

ment.

3) Data is read at the beginning of a kernel from

the memory and written back at the end of the

kernel.

4) The indexing of the variables should be a func-

tion of surrounding loop iterators and/or con-

stants.

Furthermore, the parallelism is greatly enhanced, when

the operators used in the loop body of the kernel

are associative in nature. This restriction, however,

does not prevent us to apply the RVE technique on

non-associative operators as there are some special

ways [16] to handle this. For some problems, RVE

produces exponential number of terms, which cannot

be reduced efficiently [17] only by RVE. However still

good acceleration can be achieved, when mixed with

a dataflow approach [17].

d[1] 1

x

+

d[2] 1

x

d[3] 1

x

d[4] 1

x

+

+

8

>>

A[1]

…

d[1] 5

x

+

d[2] 5

x

d[3] 5

x

d[4] 5

x

+

+

8

>>

A[5]

Figure 2: Circuits for Figure 1.

i = i*c+i*c+i*c+i*c>>c

...

i = i*c+i*c+i*c+i*c>>c

A[1]

A[5]

Figure 3: Generic Expressions

x

+

x x x

+

+

>>

i

cycle 1

cycle 2

cycle 3

cycle 4

i c i c i c i c c

(a) Pipelined circuit for
i*c+i*c+i*c+i*c>>c

x

+

x

44

cycle 1

cycle 2

i c i c

i

(b) Pipelined cir-
cuit for i*c+i*c

x

cycle 1

i c

i

(c)
Pipelined
circuit for
i*c

Figure 4: Pipeline circuit for repeats in generic expres-

sion as given in Figure 3

3. Problem Statement

3.1. Motivational example

We will use the simple example shown in Example 1

in the rest of the paper to illustrate the RVE technique

and to show how we can perform the computation

in Example 1 in a pipeline fashion. d[1], d[2], d[3]

and d[4] are the four inputs and A[1], A[2], ..., A[5]

are the five outputs to Example 1. After applying the

RVE, we get the expanded expressions shown in Figure

1. As all loop carried dependencies are removed, all

the expanded statements in Figure 1 can be computed

efficiently by computing all the outputs in parallel

by using a binary tree structure for each output as

shown in Figure 2. Computing like this gives a lot

of parallelism, at the same time it requires a lot of

area. This area can be reduced at the cost of little

degradation in parallelism if all the circuits can be

pipelined.

When a circuit is to be made from an expression,

then the type and sequence of operators along with the

type of operands is important. Therefore the expanded

expressions in Figure 1 can be transformed to the

generic expressions in Figure 3, by replacing variables

with their types. In Figure 3, i stands for integer and c

for constant. The information in a generic expression

is sufficient enough to infer the type and sequence of

the operator along with the type of operands, which

means a circuit can be drawn easily. Figure 3 shows

that the generic expression (i.e. i*c+i*c+i*c+i*c>>c)

for all outputs (A[1], A[2], ..., A[5]) is the same, which

means that the sequence and type of operators in a

circuit of all outputs is the same. Therefore, we can

map a circuit for an output along with intermediate

registers on to an FPGA as shown in Figure 4a,

provided it meets the area and memory constraints.

The rest of the elements can be pipelined one after

the other just by feeding the corresponding variables

after each cycle in the circuit. However, if the memory

or area constraints are not met, then the expression

for an element has to be divided further and further

into some smaller repeated equivalent sub-expressions

such that when a circuit is to be made for any of

those sub-expressions, it satisfies the area and mem-

ory constraints. This smaller sub-expression can be

pipelined easily as small enough to satisfy the area

and memory constraints and there are more than one

such expression, for which corresponding data can be

provided accordingly. For example in Figure 3, some

smaller repeats are: i*c+i*c repeated 10 times and

i*c repeated 20 times. The corresponding pipelined

circuits are shown in Figure 4b and Figure 4c. This

means that the problem of enumerating pipelining

candidates for expanded expression is equivalent to

finding repeated equivalent sub-expressions or repeats

in the corresponding generic expression. The chances

of finding various repeats is very high in a RVE generic

expression because it is generated from loop body

without conditional statement which is doing some

repetitive task, as shown in Figure 3.

Let E be a generic expression of length L. There

can be many possible repeated sub-expressions e ∈
{

el1 , el2 , . . . , elj

}

with corresponding number of re-

peats n ∈
{

nl1 , nl2 , . . . , nlj

}

, where lj is the length of

the sub-expression elj , l1 ≤ l2 ≤ ... ≤ lj and lj ≤ L
2

.

The repeated sub-expression e in generic expression E

is defined as

E = (xey)
+

(xey)
+

(1)

where x ∈ Σ∗ and y ∈ Σ∗. In other words, e is any

non-overlapping sub-expression in E which is repeated

at least twice.

3.2. Problem Statement

Following are the notations used to define the prob-

lem statement. Let

– E denotes the generic expression of length L.

– AE is the estimated area required by E.

– TE is the time to transfer data for expression E

from memory.

– TC is the time to compute the expression E on

FPGA F .

Figure 5: Suffix tree of i*c+i*c+i*c+i*c>>c

– AF is the available area on the FPGA F .

Let AE > AF , which means expression E as a whole

cannot be mapped on to the FPGA or TE > TC , which

means that the data transfer for expression E cannot

be hidden behind computation time. Find such k non-

trivial repeated expressions eGr
∈

{

el1 , el2 , . . . , elj

}

of length lGr
∈ {l1, l2, . . . , lj} > 1 for 1 ≤ r ≤ k

and k ≥ 1, which is repeated nGr
time where nGr

∈
{

nl1 , nl2 , . . . , nlj

}

such that

nGr
lGr

= max
1≤i≤j

nli li (2)

for which AeGr
≤ AF and TeGr

≤ TcGr
. The

condition nGr
lGr

≤ L is always true. where

– AeGr
is the area required by the expression eGr

when mapped on to the FPGA F ,

– TeGr
is the time to transfer the data of expression

eGr
from memory and

– TcGr
is the time to compute the expression eGr

on the FPGA F .

Equation 2 mean that we choose all the k repeated

expressions whose product is maximum among all

expressions, when the length of each expression is

multiplied with the corresponding number of times it is

repeated in E and they also meet the memory and area

constraints. The lengths of those expressions should be

greater than 1 to make it non-trivial.

Finally we would choose the repeat e and call

it optimal repeat, which satisfy Equation 2 and the

following equation.

e =

{

eGm
| lGm

= max lGr

∀eGr

}

(3)

Equation 3 means that we will choose the expression

eGm
, which has the maximum length among all eGr

when k > 1.

4. Flexible Pipelining Design Algorithm

This section describes the flexible pipelining design

algorithm. Three main steps in our algorithm are as

follows:

4.1. Find possible candidates for pipelining

As mentioned in Section 3.1, finding all possible

candidates for pipelining is equivalent to finding all

repeats in a generic expression E. The simplest ap-

proach to find all candidate expressions is to start

from a pattern of length 2 and find all the repeated

expressions for all the possible patterns of length 2
in the expression E of length L. Increase the pattern

length by one and try to find the repeated expressions

for all the patterns of that length until we get some

pattern length l + 1 for which repeated pattern is not

found for any possible pattern of that length. This

means that the last pattern length l for which there

were some repeated expression or expressions is the

largest repeat. The upper bound for l is L
2

. If we use

one of the best string matching algorithm like Knuth-

Morris-Pratt [18], string matching for one pattern will

take Θ(L), as there are Θ(L) possible patterns for

any pattern length l ≤ L
2

. Therefore to find repeated

pattern for one pattern length will take Θ(L2). Since

the possible pattern lengths can be L
2
−1 ranging from

2 to L
2

, it will take Θ(L3) to find the optimal repeat.

We will now describe a better repeat finding algo-

rithm using suffix tree, well known in Bioinformatics

[19]. It can find the optimal repeat in O(L2) instead of

Θ(L3) as described earlier. A string S is terminated by

an end marker $. A suffix tree T for a length L string S$

has leaf nodes numbered 1 to L. The edge labels on the

path from root to each leaf node i give a suffix S[i..L].
Every internal node except the root has at least two

children. The starting character of the label of every

edge coming out of a node is unique. It can be better

understood by the example shown in Figure 5, which

is a suffix tree for the string i*c+i*c+i*c+i*c>>c.

The suffix tree for L length string is built in O(L)
[20]. Once a suffix tree is built, finding a repeat is

trivial, as the path from the root to any internal node

represents a repeat, which can be found in O(L). There

can be no more than O(L) internal nodes or repeats,

as there are L leaf nodes and every internal node has

at least two children, therefore it won’t take more

than O(L2) to find the optimal repeat. In Figure 5, all

nodes without labels are internal nodes, each defining

a repeat. Some of the repeats in i*c+i*c+i*c+i*c>>c

as shown by Figure 5 are i*c+i*c+i*c, *c+i*c+i*c,

+i*c+i*c, i*c+i*c and *c+i*c.

By making a suffix tree for the generic expression

E shown in Figure 3, it gives us all the repeats along

with their start positions in E. Every repeat is a

candidate for converting into a circuit for pipelining.

The list of repeats can be refined by removing non-

valid repeats like *c+i*c+i*c, +i*c+i*c, *c+i*c etc.

To remove non-valid repeats, we fully parenthesize

the generic expression E according to the priority of

the operators to make it ((i*c)+(i*c)+(i*c)+(i*c)>>c)

and then build suffix tree from it. We filter only those

repeats which are properly parenthesized and remove

any substring after matching closing parenthesizes. For

example, non-trivial valid repeats in parenthesized E

are (i*c), (i*c)+(i*c) and (i*c)+(i*c)+(i*c) . The non

trivial non-overlapping valid repeats in parenthesized

E are (i*c) and (i*c)+(i*c).

4.2. Select the optimal repeat from among the

possible candidates.

Once the candidate repeats are shortlisted, we find

the effective lengths of the repeats by removing all the

parenthesizes and apply Equation 2 and Equation 3

for all of them to get the optimal repeat. In the exam-

ple, the shortlisted candidates from generic expression

i*c+i*c+i*c+i*c>>c are (i*c) and (i*c)+(i*c) with

effective lengths 3 and 7 and frequencies 4 and 2

respectively. Applying Equation 2 gives max(3×4, 7×
2) = 7 × 2, which selects (i*c)+(i*c) considering

it satisfies the memory and area constraints as the

only option, which becomes the optimal repeat after

applying Equation 3. We call our algorithm a flexible

pipelining design algorithm as it chooses the best

among many candidates with different area and mem-

ory requirement and can adapt when the requirements

are changed.

4.3. Convert optimal repeat to a pipeline cir-

cuit.

Once the optimal repeat e is selected, it is con-

verted to a deep pipelined circuit and mapped on

to the FPGA. When e is evaluated, then expression

E can be computed serially as given by Equation

1 either on GPP or FPGA. In the given example,

E=i*c+i*c+i*c+i*c>>c and let the optimal repeat

e=i*c+i*c, then e is computed for two different sets

of input using the pipelined circuit in Figure 4b and

let the results are temporarily saved as e1 and e2.

The Example 1 is changed to Example 2 and can be

computed on GPP or FPGA by making a pipelined

circuit for E, provided enough area is there. The values

that need to be fed to registers after each cycle at the

Example 2 Computing kernel in Example 1 using

optimal repeat i*c+i*c

for i=1 to 5

A[i]=e1+e2>>8 (E)

end for

Datapath for

E
RI RO

Memory

Stage I Stage I

Stage II

Figure 6: Architecture to balance datapath with mem-

ory access

inputs of the pipeline are extracted by comparing the

generic expression with the expanded expression in the

all the regions where e is repeated, as there is one to

one correspondence between the expanded expression

and generic expression.

After applying the pipelining to an expanded expres-

sion E, it is divided into very few serial computations

as compared to number of iterations of the loop body,

which means extensive parallelism. Beside extensive

parallelism, another advantage of finding the optimal

repeat is the minimal memory accesses, as a lot of

the expanded expression E is computed in a large

pipelined circuit for e without saving the intermediary

results in the memory.

If the kernel produces some number of output vari-

ables. When RVE is applied to those output variables,

then it is recommended that the length of the generic

expression for those output variables should be the

same as in Figure 3, the length of the generic ex-

pression for all the 5 outputs is the same. This is a

limitation for the current pipelining algorithm. How-

ever, there are many kernels from real life applications

which satisfy this limitation like DCT, Finite Impulse

Response (FIR) filter, Fast Fourier transform (FFT) and

Matrix Multiplication.

Tr Tc

Tc

Tc

Tp

0 1 2 3 4 5

Tw

Tw

Tw

TpTpTpTp

Tr

Tr

Figure 7: 2 stage pipelining, when Tp = Tc ≥ Tr +Tw

Table 1: Memory access time for a kernel of DCT

Description cycles

Time to read 8-bit 64 elements 8×64

64
× 3 = 24

Time to transfer 2 parameters 2 × 3 = 6

Time to write 9-bit 64 elements 9×64

64
× 1 = 9

Total memory access time 39

Table 3: Design time comparison of hand Optimized

DCT with our automated approach

Description Design time

Hand optimized DCT > 1 man-month

Our automated DCT ≈5 sec

5. Architecture for balancing data path

and memory access operation

Usually kernels are continually run in many appli-

cations. In the current FPGA board, it is not possible

to read from and write to memory at the same time,

therefore it is recommended to divide the kernel com-

putation as a two stage pipeline as shown in Figure

6. In the first stage, all the data computed earlier

and saved in register set RO is written to the on

chip memory, then data for the next iteration of the

kernel is read from the memory into a register set

RI for one run of the kernel . In the second stage,

data is read from RI and datapath operations are done

and output is saved in register set RO as shown in

Figure 6. As both the stages read/write(Stage I) and

computation(Stage II) use their own resources, we

can pipeline them as shown in Figure 7 and call it

memory-computation pipeline. Let the time for reading

memory, doing datapath operations and writing back to

memory are Tr, Tc and Tw respectively. The latency

of this pipeline is defined as Tp = max(Tr + Tw, Tc).
The best is to choose the largest datapath for which

Tp = Tc ≥ Tr +Tw provided it also fits the area on the

FPGA. By doing this, memory access latency is totally

concealed and datapath is being computed efficiently

in every stage by using the optimal resources. The

pipelining approach in Section 4 is different from what

is discussed here as the pipelining in Section 4 refers

to pipelining in datapath operations. Reading at the

beginning and writing to the memory at the end of the

kernel has two advantages as the total time to access

the memory is minimized as all ports are used on every

cycle and secondly the ordering of the accesses does

not matter.

6. Experiments

In this section, we will discuss the things we have

implemented to do the experiments, describe the se-

Table 2: Comparison of automatically optimized DCT with Xilinx hand optimized DCT

Frequency
(MHz)

Initial latency
(cycles)

Computation time for a block of 8 × 8

(cycles)
Time
(ns)

Slices

Xilinx DCT core 171.223 92 64 373.8 1213

DCT full element 121.479 13 64 526.8 9215

DCT one-third element 265.354 8 192 723.6 2031

Example 3 DCT code

for (i=0; i<8; i++) {

for (j=0; j<8; j++) {

s1=0; s2=0;

for (k=0; k<8; k++) {

s1+=(block[8*i+k])*(c1[j][k]);

s2+=(block[8*i+k])*(c2[j][k]);

}

tmp1[8*i+j]=s1; tmp2[8*i+j]=s2;

}

}

for (i=0; i<8; i++) {

for (j=0; j<8; j++) {

s1=0; s2=0;

for (k=0; k<8; k++) {

s1+=(c1[i][k])*tmp1[8*k+j];

s2+=(c1[i][k])*tmp2[8*k+j]

+(c2[i][k])*tmp1[8*k+j];

}

s2+=8388591;

out[8*i+j]=((s2>>8)+s1)>>16;

}

}

lected platform and kernel and finally we will show

and discuss our results.

We have implemented the RVE transformation, find-

ing repeats in an expression and giving all the short-

listed candidates for pipelining listed in ascending

order with their lengths to estimate the area and time

to transfer the data. The user can choose the first sub-

expression that fits memory and area requirements in

that order. The variables that need to be transferred

after every cycle in the start of the pipeline shown in

Figure 4 are generated automatically for the chosen re-

peated sub-expression. Finally, a synthesizable VHDL

code is also generated automatically.

We use a Molen [15] prototype implemented on the

Xilinx Virtex II pro platform XC2VP30 FPGA, which

contains 13696 slices. The automatically generated

code was simulated and synthesized on ModelSIM and

Xilinx XST of ISE 8.2.022 respectively.

To evaluate and demonstrate the pipelining algo-

rithm for RVE, we have used an integer implemen-

tation of DCT as given in Example 3, which satisfies

all the constraints of the technique given in Sections

2.1 and 4. The results of the automatically optimized

and different pipeline sizes for the DCT are compared

with the hand optimized and pipelined DCT core

(https://secure.xilinx.com/webreg/clickthrough.do?cid=55758) pro-

vided by Xilinx on the same platform. All the imple-

mentations take 8-bit input block elements and output

DCT of 9-bit. The port size to access on chip memory

is 64 bits, which means at most 64 bits can be read or

write simultaneously. It takes 3 cycles to read from on

chip memory and store it in register set RI , whereas

it takes 1 cycle to write from RO to on chip memory.

The total memory access time to transfer the data for

a block of DCT is 39 cycles as given in Table 1.

A kernel of DCT outputs 64 elements whose generic

expressions are the same. The repeat finding algorithm

gives the optimal repeat in generic equation to be equal

to expanded expression of one of these elements, we

refer to it as full element in the experiment. This is

the largest repeat which satisfy the area and memory

requirements, therefore it is the optimal repeat. How-

ever, if there is less area available on FPGA, The next

largest repeat is equal to one third of the expanded

expression of the element, we refer to it as one-third

element.

Table 2 shows the results for different implementa-

tion of DCT after synthesis. The Xilinx DCT core is

hand optimized by knowing the properties of 2D DCT.

In it, 1D DCT is only implemented with buffering and

taking the transpose of the 8 × 8 block. Initially 1D

DCT is computed from the inputs, then the output is

transposed and fed back to the same 1D DCT circuit to

produce 2D DCT. The generated code is very small and

well pipelined, therefore it has very few slices and high

frequency. However the initial latency is high due to

transposition and computing again the 1DCT. Once the

initial latency is spent, the circuit produces an entire

DCT block every 64 cycles.

Our automatic optimization does not take advantage

of the knowledge of the properties of 2D DCT. It

takes the unoptimized code of 2D DCT, follows some

generic steps to apply the RVE and then design a

flexible deep pipeline as discussed in Section 4 try-

ing to satisfy the area and memory constraints. The

code generated for DCT full element is very large

as compared to hand optimized, therefore it has low

frequency. However, it extracts lots of parallelism and

utilizes the resources to its capacity and produces a

output of DCT block every 64 cycles with low initial

latency of 13 cycles, which is basically the depth of

the pipeline. The code for DCT one-third is relatively

small but still larger than Xilinx DCT core. It produces

better frequency than Xilinx core at the cost of 3 times

more cycles and low initial latency of 8 cycles to

compute one DCT block. The time to compute DCT

using one third element is increased by 37% with a

78% decrease in area as compared to computing with

full element.

The results show that our pipelining design algo-

rithm for RVE which applies on some limited type

of problems gives a comparable performance at the

cost of extra hardware than the hand optimized code.

Although it is not better than hand optimized in perfor-

mance, the main benefits of our approach is automated

design, optimization, and HW generation of kernels

starting from a program code. The design time for the

two approaches is shown in Table 3, which shows that

our approach due to automation takes negligible time

as compared to hand optimized DCT and produces

comparably fast circuit.

7. Conclusion

In this paper, we have presented a pipelining al-

gorithm for RVE, which automatically generates an

extensively parallel and pipelined VHDL code for

a certain class of problems, which can compare in

performance with hand optimized codes. Although the

algorithm produce better performance for large area

FPGA, still it can be used to get good performance

for reasonably small FPGA. Our algorithm is a good

choice for kernels which satisfy the given constraints

for which hand optimized codes are not available, area

is not major concern and high performance is the

requirement in short design time. As a future work,

we will apply our algorithm on more kernels for real

life application and remove the equal size constraint

of generic expressions for different outputs.

Acknowledgments

Delft Workbench is sponsored by the hArtes (IST-

035143), the MORPHEUS (IST-027342) and RCOSY

(DES-6392) projects. Also, we would like to thank

Mudassir Shabbir.

References

[1] D. F. Bacon et al., “Compiler transformations for high-
performance computing,” ACM Comput. Surv., vol. 26,
pp. 345–420, 1994.

[2] Z. Nawaz et al., “Recursive variable expansion: A loop
transformation for reconfigurable systems,” in ICFPT
2007, 2007.

[3] V. H. Allan et al., “Software pipelining,” ACM Comput.
Surv., vol. 27, pp. 367–432, 1995.

[4] T. J. Callahan et al., “Adapting software pipelining for
reconfigurable computing,” in CASES ’00, 2000.

[5] M. B. Gokhale et al., “Co-synthesis to a hybrid
risc/fpga architecture,” J. VLSI Signal Process. Syst.,
vol. 24, pp. 165–180, 2000.

[6] R. Schreiber et al., “High-level synthesis of nonpro-
grammable hardware accelerators,” in ASAP ’00, 2000.

[7] G. Snider, “Performance-constrained pipelining of soft-
ware loops onto reconfigurable hardware,” in FPGA
’02, 2002.

[8] C. E. Leiserson et al., “Retiming synchronous cir-
cuitry,” Algorithmica, vol. 6, pp. 5–35, 1991.

[9] M. Weinhardt et al., “Pipeline vectorization,” IEEE
Transactions on CAD, vol. 20(2), pp. 234–248, 2001.

[10] D. Petkov et al., “Efficient pipelining of nested loops:
Unroll-and-squash,” in IPDPS 02, 2002.

[11] H. E. Ziegler et al., “Compiler-generated communica-
tion for piplined fpga applications,” in DAC2003, 2003.

[12] H. Styles et al., “Pipelining design with loop carried
dependencies,” in ICFPT2004, 2004.

[13] A. H. Veen, “Dataflow machine architecture,” ACM
Computing Surveys, vol. 18(4), 1986.

[14] R. Rodrigues et al., “A data-driven approach for
pipelining sequences of data-dependent loops,” in
FCCM ’07, 2007.

[15] S. Vassiliadis et al., “The molen polymorphic proces-
sor,” IEEE Transactions on Computers, pp. 1363– 1375,
2004.

[16] D. Kuck et al., “On the number of operations simul-
taneously executable in fortran-like programs and their
resulting speedup,” Transactions on Computers, vol. C-
21, pp. 1293– 1310, 1972.

[17] Z. Nawaz et al., “Acceleration of smith-waterman using
recursive variable expansion,” in DSD’08, 2008.

[18] D. E. Knuth et al., “Fast pattern matching in strings,”
SIAM Journal on Computing, vol. 6, pp. 323–350,
1977.

[19] D. Gusfield, Algorithms on Strings, Trees and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1997.

[20] E. Ukkonen, “On-line construction of suffix trees,”
Algorithmica, vol. 14, pp. 249–260, 1995.

