
Y-Chart Based System Level Performance Analysis:
An M-JPEG Case Study

Todor Stefanov1 Paul Lieverse2 Ed Deprettere1 Pieter van der Wolf3
1 Leiden Institute of Advanced Computer Science, Leiden, The Netherlands

2 Delft University of Technology, Delft, The Netherlands
3 Philips Research Laboratories, Eindhoven, The Netherlands

Abstract— In the Artemis project an architecture workbench is being
developed. One of the inputs for defining this workbench is the SPADE
methodology. SPADE (System level Performance Analysis and Design space
Exploration) follows the Y-chart approach; application and architecture
are modeled separately, and the mapping of the application onto the ar-
chitecture is an explicit design step. As an advantage we can easily modify
the application, architecture, or mapping, resulting in a quick turnaround
time to explore alternative system implementations.

In this paper we introduce and evaluate SPADE through an illustrative
case study. In this case study we start from a modified M-JPEG application
and map this application onto a shared memory multi-processor architec-
ture. The example system is also used in the Artemis project as a driver
and case study for the design and evaluation of the workbench. We define
the application as a Kahn Process Network. The architecture and mapping
are specified using Spade architecture and mapping languages. We present
results of simulations for alternative architecture instances and mappings.

Keywords—system level design, M-JPEG, design space exploration, sig-
nal processing, application modeling, architecture modeling

I. I NTRODUCTION

Modern signal processing systems are increasingly becoming
multi-functional systems that also have to support multiple stan-
dards. For example, digital televisions, set-top boxes, and mo-
bile devices need to offer a variety of functions and must support
different standards for transmission and coding of digital con-
tents. In order to provide the required flexibility such systems
need to be implemented using programmable components. On
the other hand, in order to meet performance requirements and
cost constraints, parts of these systems are still required to be
implemented in dedicated hardware blocks.

Designing suchheterogeneoussystems, composed pro-
grammable and dedicated components and various kinds of
communication structures, is not an easy task. Each of the com-
ponents still can be designed by using current methodologies
and tools, such as writing RT level HDL descriptions or using
high level synthesis tools. However, these methodologies are
no longer sufficient at the system level. The questions a sys-
tem designer has to deal with are, e.g, which parts of an ap-
plication are implemented in software and which in hardware,
which hardware components are selected, what kind of commu-
nication structure is going to be used, what are the critical parts
of the system. To find an answer to these questions designers
need to be supported by a different kind of design technology
than which is used to design the components. Today, several
methodologies and tools are being developed to support the de-
signer at the system level, e.g., Polis [1], VCC [2], SystemC [3],
and eArchitect [4].

In this paper we present and evaluate a methodology, named
SPADE (System level Performance Analysis and Design space
Exploration) [5], forarchitecture explorationof heterogeneous

signal processing systems. This exploration starts from exe-
cutable specifications of a set of representative target applica-
tions. The result is the definition of a heterogeneous hardware
architecture capable of executing these applications within pre-
defined constraints with respect to cost, real-time response, etc.

We evaluate SPADE in the context of a case study in which
we are mapping a modified M-JPEG application onto a shared
memory multi-processor architecture. This case study is part
of the Artemisproject, and is calledStartemis. The Artemis
project [6] (ARchitectures and meThods for Embedded MedIa
Systems) is a research project that aims at reducing the devel-
opment time of embedded media systems with a high degree
of programmability. One of the research challenges that is ad-
dressed in Artemis is the development an architecture simulation
workbench which provides methods, tools, and libraries for the
efficient exploration of heterogeneous embedded system archi-
tectures. SPADE will be one of the methodologies used in this
workbench; the Sesame (Simulation of Embedded System Ar-
chitecture for Multilevel Exploration) framework [7] is another
methodology being used. The case study will be used as a driver
for the development of the Artemis workbench. Therefore, the
application used in the case study should be realistic, yet not too
complex, and it should be possible to refine it later on. Also, it
should be extensible, in order to add complexity when needed.
As we are building a workbench for heterogeneous systems, the
architecture onto which the application is mapped should be het-
erogeneous in the components and protocols used. The archi-
tecture should also be sufficiently complex in order to allow for
refinement of the components. The Startemis case study meets
these requirements.

In the next section first a description of the SPADE method-
ology and tool is given. The Startemis case study is described
in Section III, including the modeling of the case study using
SPADE. The exploration we did, and the results and conclusions
obtained from the exploration are presented in Section IV. Fi-
nally, some overall conclusions are given.

II. SPADE

SPADE is a methodology, implemented in a tool, that enables
modeling and exploration of heterogeneous signal processing
systems. In this section we first describe the basic concepts on
which SPADE is based. Then we go into some detail of the ap-
plication modeling, architecture modeling, and mapping. For
more details on SPADE we refer the reader to [5].

2 PROGRESS WORKSHOP 2000

A. Concepts

The main concept on which SPADE is based is theY-chart[8],
as depicted in Figure 1. The Y-chart represents a general scheme
for the design of heterogeneous systems. In the Y-chart a
clear distinction is made betweenapplicationsand architec-
tures, which are related via an explicitmappingstep. This con-
cept can be applied at various levels of abstraction; here we fo-
cus on the system level, but the Y-chart can be applied at more
detailed levels, such as RT level, as well. The Y-chart approach
permits multiple target applications to be mapped one after an-
other onto candidate architectures in order to evaluate their per-
formance. The resulting performance numbers may inspire an

Applications

Performance
Numbers

Performance
Analysis

Mapping
Architecture

Fig. 1. The Y-chart

architecture designer to improve the architecture. He may also
decide to restructure the application(s) or to modify the mapping
of the application(s). These options are indicated in Figure 1 by
light bulbs.

The distinction between applications and architectures can be
rephrased as the distinction betweenworkload and resources.
An application imposes a workload onto resources which are
defined by an architecture. A workload consists of bothcom-
putation workloadandcommunication workload; resources can
be processing resources, communication resources, andmem-
ory resources. Computation workload requires processing re-
sources; communication workload requires a combination of
communication resources and memory resources. The architec-
ture design process is concerned with the specification of re-
sources that can best handle the workloads imposed by target
applications.

The explicit mapping defines how an application is mapped
onto an architecture, in other words, how the workload of an ap-
plication is mapped onto the resources of an architecture. Within
SPADE, we are using simulation as the means for performance
evaluation. So, we need a way to capture this mapping such
that we can simulate a system, consisting of both an applica-
tion and an architecture. For this purpose we extend a technique
called trace-driven simulation. This is a simulation technique
that has been applied extensively for memory system simulation
in the field of general-purpose processor design [9]. The work-
load of an application is captured in one or moretraces. A trace
contains symbols, calledtrace entries, that represent the compu-
tation and communication operations performed by an applica-
tion; data dependent behavior in the application is thus captured
by these traces. The resources in an architecture accept these

trace entries as the workload to be executed. The tracesdrive
computation and communication activities in the architecture.

B. Application modeling

One of the objectives of application modeling in SPADE is to
expose task level parallelism and to make communication ex-
plicit. We have chosen the Kahn Process Networks [10] model
of computation for application modeling. In the Kahn model,
parallelprocessescommunicate via unbounded FIFOchannels.
There are two main reasons for choosing this Model of Compu-
tation. First, the model fits nicely with signal processing appli-
cations as it can modelstream processingand as it guarantees
that no data is lost. Second, the execution of a Kahn Process
Network is deterministic, meaning that for a given input always
the same output is produced and the same workload is generated,
irrespective of the execution schedule.

Each process in the network produces a trace to capture the
workload of that process. The communication workload is also
captured in these process related traces.

Spade uses the YAPI Application Programmers Interface [11]
for application modeling. The following three functions are pro-
vided1.
� A read function. This function is used to read data from a

channel via a process port. Furthermore, the function gener-
ates atrace entryin the trace of the process by which it is
invoked, reporting on the execution of a read operation at the
application level.

� A write function. This function is used to write data to a chan-
nel via a process port. It also generates a trace entry, reporting
on the execution of a write operation.

� An executefunction. This function performs no data process-
ing, but only generates a trace entry, reporting on processing
activities at the application level. The execute function takes
a symbolic instructionas an argument in order to distinguish
between different processing activities. For example, such an
instruction may correspond to an IDCT operation on an eight
by eight matrix.

The trace entries generated by the read and write functions rep-
resent thecommunication workloadof a process. The trace en-
tries generated by the execute function represent thecomputa-
tion workloadof a process. The trace entries can be used either
to drive the architecture simulation, or, when executing the ap-
plicationstand-alone, to analyze the computation and commu-
nication workload of an application.

C. Architecture modeling

In order to efficiently explore different architectures, it is re-
quired that architecture models can be easily constructed. In
SPADE, functional behavior is described at the application level.
If this behavior is data dependent, the traces, which drive the op-
eration of the architecture, also depend on the input data. There-
fore, we can use architecture models that do not need to model
the functional behavior, while maintaining functional correct-
ness. Such architecture models can be constructed fromgeneric
building blocks. As the building blocks are generic, we can pro-
vide a library of such blocks. The generic building blocks need

1Note that the YAPIselect function is not supported by SPADE.

Y-CHART BASED SYSTEM LEVEL PERFORMANCE ANALYSIS: AN M-JPEG CASE STUDY 3

to model the different types of resources in an architecture, such
as processing resources, communication resources, and mem-
ory resources. Defining an architecture then becomes as easy as
instantiating building blocks from a library and interconnecting
them.

The processing resources in the architecture model take the
traces generated by the application as an input. We have taken
a modular approach to allow the construction of a great variety
of processing resources from a small number of basic building
blocks. A processing resource is built from the following two
types of blocks.
� A trace driven execution unit (TDEU)which interprets trace

entries. The entries are interpreted in the order in which they
are put in the trace, thereby retaining the order of execution of
the application process. A TDEU has a configurable number
of I/O ports. Communication via these I/O ports is based on a
generic protocol.

� A number of interfaceswhich connect the I/O ports of a
TDEU to a specific communication resource. An interface
translates the generic protocol into a communication resource
specific protocol, and may also include buffers to model in-
put/output buffering of processing resources. Currently, we
have interfaces for point-to-point communication via a bus,
and for communication via a bus and shared memory, both
buffered and unbuffered. No interfaces are needed for com-
munication via a FIFO or an unbuffered direct link; these
communication blocks can be directly connected to the I/O
ports of a TDEU.

The current library contains the TDEU and interface blocks de-
scribed above, a generic bus block, including a first-come-first-
served arbiter, a FIFO block, an unbuffered direct link block,
and a generic memory block. All blocks are parameterized. For
each instantiated TDEU a list ofsymbolic instructionsand their
latencieshas to be given. This list specifies which instructions
from the traces can be executed by the processing resource and
how many cycles each instruction takes when executed on this
processing resource. These latencies can be obtained either from
a lower level model of a processing resource, from estimation
tools, or they can be estimated by an experienced designer. For
instances of the FIFO and interface blocks, buffer sizes can be
given. For a bus instance, the bus width, setup delay, and trans-
fer delay can be specified.

An architecture is specified by means of a textual description
using some dedicated architecture description language. In this
description first the processors, buses, and FIFOs are defined.
Here the user does not need to define the exact interfaces; these
are inserted automatically when the architecture model is con-
structed. Only the parameters, such as, latencies, buffer sizes,
and bus width need to be specified. After the components are de-
fined, the structure of the architecture is defined, by describing
for each FIFO and each bus which processor ports are connected
to them. An example of such textual architecture description is
given in Figure 4.

D. Mapping

Once both an application model and an architecture model
have been defined, mapping can be performed. This means that
the workload of the application has to be assigned to resources

in the architecture as follows.

� Each process is mapped onto a TDEU. This mapping can be
many-to-one, in which case the trace entries of the processes
need to be scheduled by the TDEU.

� Each process port is mapped one-to-one onto an I/O port. This
mapping also implicitly maps the channels onto a combina-
tion of communication resources and memory resources.

If it appears that the functionality of a single process needs to
be distributed over more than one processing resource, then the
designer first has to rewrite the application such that this process
is partitioned into two or more processes. Then these processes
can be mapped onto separate TDEUs.

The mapping is also specified by means of a textual descrip-
tion using a dedicated mapping description language. First, for
each process in the application it is specified onto which proces-
sor in the architecture it is mapped. At the same time, the map-
ping of process ports onto processor ports is specified. Then
some characteristics of the channels are specified, such as the
physical size of tokens that are communicated, and whether
communication is done via shared memory. Finally, for each
processor a scheduler can be defined, including some parame-
ters. An example of such textual mapping description is given
in Figure 6.

E. Simulation

Performance analysis in SPADE is done using simulation. We
use trace driven simulation to co-simulate an application model
with an architecture model. The simulation of the application
model is based on the Pamela [12] multi-threading environment,
where each Kahn process is executed in a separate thread. The
simulation of the architecture model is currently based on TSS
(Tool for System Simulation), which is a Philips in-house archi-
tecture modeling and simulation framework [13].

F. Performance Metrics

In order to evaluate a system, the SPADE library blocks from
which an architecture is built collect several numbers during
simulation. From these numbersperformance metricscan be
calculated. These metrics give an indication of the performance
of the system, such as, throughput, frame rate, overall latency,
and bus utilization. For example, for a video processing system
we can collect the times at which a new frame is output; from
those times we can calculate the frame rate of the system.

The numbers that are currently collected in the library blocks
are the following. For each TDEU we keep track of the number
of cycles it was busy with computations, the number of cycles
it was doing I/O, split out into reads and writes, the number of
cycles it was waiting either for data or for room, and the number
of cycles it had nothing to do at all, i.e., was idle. In addition, for
each input and output port we get the number of reads or writes
that were performed, plus the number of cycles no room or data
was available. For each bus we get the number of cycles it was
in use and the amount of data transported via this bus. Also, for
each interface connected to the bus, we get a histogram of the
delays between issuing a bus request and being granted access
to the bus.

4 PROGRESS WORKSHOP 2000

III. STARTEMIS CASE STUDY

A. Startemis Application

The application we have chosen for the Startemis case study
is an M-JPEG encoder. A traditional M-JPEG encoder typi-
cally compresses a sequence of video frames, applying a JPEG
based compression technique [14][15] to each frame in the video
sequence. M-JPEG is used for motion pictures compression
like MPEG [16] but withoutinterframe predictive coding. This
means that M-JPEG does not performmotion estimationand
compensation. We have modified a traditional M-JPEG encoder
in order to add data dependent behavior to it. The modified en-
coder, named M-JPEG*, has three main differences from tradi-
tional M-JPEG:
� M-JPEG* supports only lossy encoding, whereas M-JPEG

typically supports both lossy encoding and lossless encoding.
� M-JPEG* can operate on video data in both 4:2:2 YUV and

RGB formats on a per-frame basis, whereas traditional M-
JPEG uses only YUV format.

� M-JPEG* can process the incoming video frames with differ-
ent quantization and Huffman tables. These tables can dif-
fer per video frame, depending on the output bit-rate and the
accumulated statistics from previous video frames. Such dy-
namic change of the tables is not performed by a traditional
M-JPEG encoder.

The possibility of M-JPEG* to handle two video data formats
and different tables on a per-frame basis means that M-JPEG*
is data dependent.

B. M-JPEG* Application Model

We started the application modeling from a C-code specifica-
tion of a JPEG codec that is publicly available from UC Berke-
ley. First, we studied this C-code of the JPEG codec in order
to fully understand it, and then we modified the code in order
to implement our M-JPEG* application. For example, the de-
coder part was removed and some code was added to implement
the Huffman and quantization table adaptation and the RGB to
YUV conversion.

Having the M-JPEG* encoder C-code specification we used
the SPADE application modeling technique, described in Sec-
tion II-B, to transform this sequential C-code into a set of paral-
lel communicating processes. Some global data structures were
removed in order to be able to parallelize the C-code. The ob-
tained Kahn Process Network which models the M-JPEG* ap-
plication is shown in Figure 2.

The Video in process fetches video data (frames) and infor-
mation about the dimensions and the format, i.e., RGB or YUV,
of each incoming frame. Also,Video in sends all of this data to
theDMUX process which distributes it to the different processes
within M-JPEG*. TheDMUX process checks the format of the
incoming video frames and forwards the frames to theDCT pro-
cess (YUV frames) or to theRGB2YUV process (RGB frames)
in a block-wise fashion. The RGB2YUV process converts the
RGB blocks into YUV blocks. This conversion includes also
sub-sampling of the color pixel data in order to obtain 4:2:2
YUV format.

TheDCT process receives YUV blocks via two data channels.
Via another channel theDCT process receives control tokens

Table-in
fo

fra
me

YUV blocks (4:1)Select_channel block

Y
U

V
 b

lo
ck

s
(4

:1
)

RGB block
s (

3:1)

St
at

is
tic

s,
 B

itr
at

e

bl
oc

k

H
-t

ab
le

s

block
Q blocks (4:1)

DCT b
loc

ks
 (4

:1
)

bl
oc

k

(3:1 or 4:1)
Data blocks

{(H,V),B,b} frame

(H,V) frame

B
frame

{N
T,

E
O

F,
O

T}{N
T,O

T}

Q
-tables if N

T

if
N

T

{NLP,LP}
packet

Bitstream packets

block = 8x8 pixels
pixel = integer
packet = 16 bits
H = Horizontal size of frame (in pixels)
V = Vertical size of frame (in pixels)
B = Blocks per frame

b = frame format bit = {RGB,YUV}
NT = New Tables
OT = Old Tables
EOF = End Of Frame
NLP = Not Last Package
LP = Last Package

OB-Control

Video outQuantizerVideo in

DCT

RGB2YUV

VLEDMUX

Fig. 2. The M-JPEG* Kahn Process Network.

specifying which data channel is active at the moment. TheDCT
process transforms YUV blocks into blocks of DCT coefficients
using Forward Discrete Cosine Transform and sends the trans-
formed blocks to theQuantizer process. After quantization, the
Quantizer process forwards them to theVLE (Variable Length
Encoder) process. TheVLE process receives quantized DCT co-
efficients, applies run length encoding and Huffman encoding to
the data and transmits the resulting data in 16-bits packets to the
Video out process. A special token indicates whether or not a
packet is the last one for the current compressed frame. At the
end of the M-JPEG* data flow, theVideo out process makes a
standard JPEG header of the compressed image. TheVideo out
process prepends the header to the compressed image bit stream.

The Quantizer and VLE processes use tables produced by
an output bit-rate control process, namedOB Control. The
OB Control process is responsible for generating and distribut-
ing these tables to the quantizer and the variable length encoder.
The synchronization of the table transmission is performed by a
special token which can assume three values: NewTable (NT),
OldTable (OT) and EndOfFrame (EOF). At the end of each
frame the control process makes a decision whether or not the
tables for the next video frame have to be changed. To make this
decision it uses the output bit-rate of the current video frame. If
the tables have to be changed the control process first computes
the new tables using image statistics of the current frame and
then sends these tables to theQuantizer andVLE processes. The
OB Control process receives image statistics and output bit-rate
from theVLE process. For each frame, theOB Control process
sends the Huffman and quantization tables which are used in the
process of compression to theVideo out process.

C. Startemis Architecture

The initial Startemis architecture shown in Figure 3 consists
of five processing components connected to a bus and communi-
cating with each other via shared memory. We have chosen such
shared memory multi-processor architecture because it is suffi-
ciently complex in order to allow refinement of its components.
Also, by changing the implementation of the components, we
can easily obtain different heterogeneous architectures, i.e., ar-

Y-CHART BASED SYSTEM LEVEL PERFORMANCE ANALYSIS: AN M-JPEG CASE STUDY 5

chitectures consisting of programmable, reconfigurable and/or
dedicated components.

HEADER
BUFFER

DCT -> QTABLES
BUFFER

Q -> VLE PACKET
BUFFERS BUFFER

line 1

line 8

line 1

line 8
:: ...

IMAGE BUFF NIMAGE BUFF 1

MEMORY
STATISTICS

BUFFERS BUFFERS

FIFO FIFO FIFO

VIP mP
 DCT
RGB2YUV VLEP VOP

Fig. 3. Abstract view of the Startemis architecture.

Below we give a brief description of the components in the
Startemis architecture, depicted in Figure 3. Note that this fig-
ure is an abstract view of the architecture; some details, such
as the synchronization channels between the processors, are not
shown.
VIP (Video In Processor)TheVIP scans video frames in aline-

wise fashionand writes the video lines into animage bufferin
shared memory. There are at least two image buffers, which
are used in a round-robin fashion. This allows theVIP pro-
cessor to fill a buffer while the other buffer(s) are consumed.
Each image buffer consists of 8 video lines. The size of one
line is 1024 pixels. Each pixel in a line is represented by a
32-bit value, containing either the R, G, and B components
of the pixel, or the Y, U, and V components. TheVIP also
writes specific information such as the size of the frame, and
the frame format, RGB or YUV, for each frame into aheader
buffer.

RGB2YUV/DCT This processor reads theimage buffersin a
block-wise fashionand performs a DCT transform onto the
fetched blocks. Also, it reads the format of the current frame
from theheader buffer. If the format is RGB an RGB to YUV
conversion including 4:2:2 sub-sampling is performed before
the DCT transform. TheRGB2YUV/DCT processor writes
the transformed blocks into shared memory in a FIFO buffer
calledDCT�>Q. This buffer is used for intercommunication
between theRGB2YUV/DCT processor and the microproces-
sor.

mP (microProcessor)The microprocessor has three main func-
tions. First, it reads DCT blocks from theDCT�>Q buffer,
makes a quantization, and writes the quantized blocks into
the Q�>VLE FIFO buffer. Second, it handles the synchro-
nization of the data exchanges between the components in the
architecture. Third, the microprocessor handles the adapta-
tion of the quantization and Huffman tables. It uses the infor-
mation stored in thestatistics bufferto decide how to change
the tables. It updates thetables bufferif the tables have been
changed. This buffer contains the Huffman and quantization
tables for the current video frame.

VLEP (Variable Length and huffman Encoding Processor)The
VLEP fetches the quantized data blocks from theQ�>VLE
buffer, applies run length encoding and Huffman encoding
to them, and writes the resulting bit-stream packets into the
packetFIFO buffer. Also, theVLEP derives statistics from the
current block and stores it in thestatistics buffer.

VOP (Video Out Processor)The VOP uses the information

stored in theheader bufferandtables bufferin order to make
the header of the compressed image. It appends to this header
the bit-stream stored in thepacketFIFO buffer.

D. Startemis Architecture Model

The architecture model was made in accordance with the pro-
posed Startemis architecture shown in Figure 3. We constructed
the model using SPADE’s library of generic building blocks, de-
scribed in Section II-C. These blocks are parameterized which
means that an important part of the modeling process is to as-
sign realistic numbers to the parameters in order to obtain some
realistic results from simulation and exploration.

For each processor a set ofsymbolic instructionsand asso-
ciatedlatency valueshad to be defined. In order to determine
realistic latencies we assumed that for the initial Startemis archi-
tecture model theVIP andVOP are implemented using ASICs,
the microprocessor is a MIPS, and theRGB2YUV/DCT pro-
cessor andVLEP are DSPs. For the high-level symbolic in-
structions associated with the microprocessor, theVLEP, and
the RGB2YUV/DCT processor, low-level instruction models
were constructed. These models are simple assembler pro-
grams. Then we used the data books of the MIPS micro-
processor [17][18] and the Analog Devices DSP – ADSP-
21160 [19][20] to determine the latencies of the assembler in-
structions used in the low-level models. From these latencies
and the low-level instruction models we calculated the latencies
of the symbolic instructions. For the symbolic instructions as-
sociated with theVIP and theVOP, we defined ranges of latency
values which have to be explored.

The SPADE architecture description language was used to
specify the architecture. A fragment of the architecture descrip-
tion is shown in Figure 4. In the architecture model we defined
1 simulation cycle to be 10ns. We relate all times to this uniform
time unit, even though different components may run at differ-
ent clock speeds. All sizes in the architecture and the mapping
description are expressed in units of 8 bits, i.e., 1 byte. For ex-
ample, a buffer size of 64 means a size of 512 bits, i.e., 64 bytes.
The architecture description consists of three main parts. In the
first part the processor resources are described. For example,
theVIP has two output portso1 ando2 , no input ports, and one
symbolic instructionop ElaborateFrame with a latency of
20 simulation cycles. In the second part the communication re-
sources are specified. Figure 4 shows that two types of commu-
nication resources are used: a bus and FIFO buffers. For each of
the buffers anumberof buffer places and thesizeof each place
is specified, e.g., FIFOF6 has 4 places and the size of each
place is 64 bytes. BusB1 is specified by three parameters: the
width of the bus, thesetuptime for a transaction, and thetrans-
fer time per transfered item with the size of the bus width. The
last part of the description specifies the structure of the architec-
ture. In this part the connections among the processor resources
and communication resources are described. For example, the
description in Figure 4 specifies that output porto6 of themP
is connected to input porti1 of the RGB2YUV/DCT processor
via FIFOF3. Output porto1 of theVIP is connected to busB1
via a buffer with a total size of 7 bytes. The architecture model
described in Figure 4 is depicted in the lower part of Figure 5.

6 PROGRESS WORKSHOP 2000

Architecture MJPEG_Arch;
// 1 unit of size = 1 byte = 8 bits
// 1 cycle = 10 ns

// Processor resources
Processor VIP {

InPorts { }
OutPorts {o1; o2;}
Instructions {op_ElaborateFrame = 20;}

}

Processor RGB2YUVDCT {
InPorts {i1; i2; i3; i4;}
OutPorts {o1;o2;}
Instructions {op_DCT = 1024; op_RGB2YUV = 192;}

}
:
:

// Communication resources
Fifo F3 {number = 4; size = 1;}
Fifo F6 {number = 4; size = 64;}
Fifo F8 {number = 1; size = 64;}
Fifo F9 {number = 1; size = 64;}

:
:

Bus B1 {width = 8; setup = 1; transfer = 2;}

// Connections
Structure
{

Fifo F3 {mP.o6 -> RGB2YUVDCT.i1;}
Fifo F6 {RGB2YUVDCT.o2 -> RGB2YUVDCT.i4;}
Fifo F8 {mP.out3 -> RGB2YUVDCT.in2;}
Fifo F9 {mP.out4 -> RGB2YUVDCT.in3;}

:
:

Bus B1 {
VIP.o1 {number = 1; size = 7;};
VIP.o2 {number = 1; size = 64;};
RGB2YUVDCT.o1 {number = 1; size = 128;};

:
:

}
}

Fig. 4. Fragment of the description of the architecture model.

E. Startemis Mapping

The final step of the modeling process is the mapping of
the M-JPEG* application model onto the Startemis architecture
model. Figure 5 shows this mapping in detail. Both the appli-
cation and the architecture are depicted in terms of the SPADE

specific modeling technique. For the mapping we used the
SPADE mapping mechanism, described in Section II-D. Within
Startemis, theVideo in and Video out processes are mapped
onto theVIP and theVOP, respectively. TheVLE process is
mapped onto theVLEP. The two processesRGB2YUV andDCT
are mapped onto theRGB2YUV/DCT processor. The remaining
processes are mapped onto the microprocessor. The mapping
of the M-JPEG* channels onto the communication structures of
the architecture was determined by mapping the processes’ ports
onto the processors’ ports.

For the purpose of mapping, SPADE offers a mapping descrip-
tion language. A fragment of the mapping description is shown
in Figure 6.

The first part of the mapping description in Figure 6 specifies
the mapping of the processes and their ports onto the proces-
sor components and their ports. For instance, processVideo in
is mapped onto theVIP. The portsout HeaderInfo and
out BlockData of theVideo in process are mapped onto the
portso1 ando2 of theVIP, respectively. Next, for each appli-
cation channel atokensizeis specified. If the channel is mapped
onto a bus and the communication should take place via shared
memory, then the number of places and the size of each place

f_Video_DMUX_Header

f_DM
UX_DCT_BlockData

f_DM
UX_DCT_ChannelSelectf_DM

UX_Control_Num
berO

fBlocks

f_
DCT_Q

_B
loc

kD
at

a

f_C
ontrol_Q

_Q
Tables

f_C
ontrol_Q

_C
om

m
and f_

C
on

tro
l_

V
LE

_C
om

m
an

d

f_
C

on
tr

ol
_V

LE
_H

uf
fT

ab
le

s

f_Contro
l_Video_TablesIn

fo

f_VLE_Video_PacketFlag

f_VLE_Video_BitStream

f_
VL

E_
C

on
tro

l_
St

at
is

tic
s

f_Video_DMUX_BlockData

f_DMUX_RGB2YUV_Block
Data

f_DMUX_Video_FrameSize

f_Q_VLE_BlockData

f_
R

G
B

2Y
U

V
_D

C
T

_B
lo

ck
D

at
a

i2

i1

i3 i4 i5

i6i7

o1
o2

o6

o7

o9
o10 o11

o1 o2

i1

i4o1

o2

i1 i2

i3

o1 o2

o3

i1 i2

i3

i4

A B A J J B I L I L N O Q P Q

G(F1)

K(F2)

F(F3)

C(F4)

H(F6)

R(F7)

O

M(F5)

P

JI

A

C

E

H

F

L

N
M

R

Q

O

B

HEADER
BUFFER

DCT -> QTABLES
BUFFER

Q -> VLE PACKET
BUFFERS BUFFER

line 1

line 8

line 1

line 8
:: ...

IMAGE BUFF NIMAGE BUFF 1

MEMORY

BUS(B1)

STATISTICS
BUFFERS BUFFERS

FIFO FIFO FIFO

D

G

o5 o8 o4
o3

N P

i2
i3D(F8)

E(F9)

VIP
RGB2YUV
 DCT VLEPmP VOP

K

OB-Control

Video outQuantizerVideo in

RGB2YUV

DCT

VLEDMUX

Fig. 5. The application model, the architecture model, and the mapping.

Mapping MJPEG_Map (MJPEG_Appl, MJPEG_Arch);

pr_Video_in : VIP {
out_HeaderInfo : o1;
out_BlockData : o2;

}

pr_DCT : RGB2YUVDCT {
in_BlockData1 : i4;
in_BlockData2 : i3;
in_BlockType : i1;
out_BlockData : o1;

}

pr_RGB2YUV : RGB2YUVDCT {
in_BlockData : i2;
out_BlockData : o2;

}
:
:

Channels {
f_Video_DMUX_Header {

tokensize = 7;
numbermembufs = 1; membufsize = 7;

};
f_RGB2YUV_DCT_BlockData {tokensize = 64;};
f_DCT_Q_BlockData {

tokensize = 128;
numbermembufs = 4;membufsize = 128;

};
:
:

}

Schedulers {
mP : default { };
RGB2YUVDCT : default { };

}

Fig. 6. Fragment of the description of the mapping shown in Figure 5

of the buffers in shared memory are specified. For example, the
tokens which are transfered via channelf DCTQ BlockData
have a size of 128 bytes; 4 buffers of 128 bytes are allocated in
shared memory for this channel. The last part of the mapping
description shown in Figure 6 specifies the type of the sched-
ulers. For the microprocessor and theRGB2YUV/DCT processor

Y-CHART BASED SYSTEM LEVEL PERFORMANCE ANALYSIS: AN M-JPEG CASE STUDY 7

the default scheduler is selected.

IV. EXPERIMENTS AND RESULTS

In this section we present some of the experiments we have
done using the SPADE simulation framework in order to quantify
the proposed Startemis architecture. Also, we present and ana-
lyze the results we have obtained from the simulations. We eval-
uated whether the performance metrics provided by the SPADE

tool can be used effectively for exploration. We were interested
in finding what kind of useful information about the architecture
performance we could obtain from the performance numbers,
having in mind that the exploration was made at a high level of
abstraction.

In our experiments we were interested in themaximum frame
rate at the output, measured inframes per second, to which we
refer asRATE. TheRATEdepends on the parameters of the ar-
chitecture template, the size of the incoming frames, and the
format, YUV or RGB, of the frames. For the purpose of the ex-
periments, the architecture parameters that we looked into have
been: the number of processor components, the latencies of pro-
cessor components, the speed of the bus, and the speed and size
of shared memory. In order to simplify the simulation process
and analysis we initially kept the frame size and the frame for-
mat constant. For our experiments the frame size is 128�128
pixels (8 bits per pixel) and the frame format is RGB. For larger
frames theRATEwill decrease; if we increase the horizontal and
vertical sizes of the frames by a factorx and a factory, respec-
tively, then theRATEof the architecture will decrease roughly
by a factor ofx�y. For YUV frames, theRATEwill be as good
as, or better than, theRATEfor RGB frames, because the only
difference is that the RGB to YUV conversion does not need to
be performed.

The initial speed and width of the bus have been set to
100MHz and 64 bits, respectively. These values are assumed
to be at the upper limit of the range in which they could have
been chosen. A similar decision was made for the shared mem-
ory for which we selected an SRAM-type memory of size 64KB
with write and read cycles of 10ns each.

We started our experiments with a simulation of the given
M-JPEG* application-architecture pair using the SPADE simu-
lation environment. The application, the architecture and their
specifications (modeling) are described in Section III-B and
Section III-D, respectively. From the SPADE simulation we ob-
tained numbers, relevant to the evaluation of the performance of
the implementation. Some of them are given in Table I. We used
the SPADE performance numbers related to the times at which a
new frame appears at the output in order to calculate theRATE
of the initial architecture which turned out to be167 frames per
second.

After this first step, we can have three possible scenarios to
proceed:
� Scenario 1: The RATEof the architecture satisfies the re-

quirements and we stop the exploration process.
� Scenario 2: The RATEof the architecture satisfies the re-

quirements and we start exploring (part of) the parameter
space of the architecture for modifications that can improve
the currentperformance–costratio. This process includes
finding and removing some resource redundancy and excess

TABLE I

PERFORMANCE NUMBERS OF THE INITIALSTARTEMIS ARCHITECTURE.

Processor executing busy with I/O waiting
RGB2YUV/DCT 95% 1% 4%

mP 35% 20% 45%
VLEP 26% 5% 69%
VIP 1% 3% 96%
VOP 1% 1% 98%

Bus utilization 40%

speed without a significant change of theRATEand the flex-
ibility of the architecture. We use the SPADE performance
numbers as a guidance in this process. As the performance
indicated by theRATEshould not be changed, we can only
improve the performance–cost ratio by a reduction in terms
of cost, e.g., silicon area or power consumption.

� Scenario 3:TheRATEof the architecture does not satisfy the
requirements and we start exploring (part of) the parameter
space of the architecture for modifications that can improve
the performance (RATE). Again, we use the SPADE perfor-
mance numbers as a guidance in the process.

We looked into Scenario 2 and Scenario 3 independently. The
results of these experiments are presented in Section IV-A and
Section IV-B, respectively.

A. Scenario 2

The performance numbers in Table I suggest that the given ar-
chitecture has a poor load balance because themP and theVLEP
are not utilized very well. Also, the DSP which we have chosen
for theVLEP is too powerful for the kind of operations needed
by theVLE process. That is why theVLEP is waiting most of
the time (69%). On the other hand, themP is executing and busy
with I/O only 55% of the time. Taking these observations into
account we conclude that we might not need a separate proces-
sor component for the run length encoding and Huffman encod-
ing. We decided to remove theVLEP and to map theVLE pro-
cess onto themP, expecting that theRATEwould not decrease
significantly. We simulated this modified architecture in order
to see how the performance was changed. Table II presents the
new values of the performance numbers given before in Table I.

TABLE II

PERFORMANCE NUMBERS AFTER REMOVING THEVLEP.

Processor executing busy with I/O waiting
RGB2YUV/DCT 95% 1% 4%

mP 63% 9% 28%
VIP 1% 2% 97%
VOP 1% 1% 98%

Bus utilization 12%

Again we used the SPADE performance numbers to calculate
theRATEand we saw that it was unchanged at 167 frames per
second. This fact shows that we have removed a redundant pro-

8 PROGRESS WORKSHOP 2000

cessor component. This results in a reduction of the cost in terms
of silicon area. Currently, cost measures are indirectly derived
quantities. SPADE does not yet provide metrics related to the
silicon area and power dissipation.

Next, we analyzed the new simulation results and we saw that
the bus is utilized only 12% of the time which means that the
speed of the architecture will not be verysensitiveto a decrease
of the speed of the bus and the shared memory. We observed by
SPADE simulation that if we decrease the speed of the bus and
the memory five times, then theRATEof the architecture is162
frames per second. The decrease of theRATEis only 3%, which
means that we do not have a significant change of theRATE.
This fact shows that we have removed some excess speed in the
architecture. Moreover, the fact that we decreased the speed of
the memory five times means that we can use DRAM instead
of SRAM which leads again to a reduction of the silicon area,
because the silicon area of the DRAM is significantly smaller
than the silicon area of the SRAM.

This experiment demonstrates that the SPADE performance
metrics provide useful measures to detect resource redundancy
and excess speed in the architecture. We showed above that find-
ing and removing this redundancy can lead to a reduction of the
silicon area cost of the architecture.

B. Scenario 3

We now follow a different scenario in which we assume that
the initial RATEdoes not satisfy the requirements. As we men-
tioned before, after the first step of our exploration process, we
found that theRATEof the architecture is 167 frames per sec-
ond for video frames of size 128�128 pixels. If we assume
that for real-time applications we need at least 25 frames per
second, then the architecture can process these frames in real
time. But theRATEof the proposed architecture depends on
the frame size. For example, theRATEof the architecture for
video frames with size 512�512 pixels is 10 frames per sec-
ond. This means that if we want to achieve a real-time speed
for large video frames we have to make some changes in the
architecture parameters. The main parameters we can change
in order to increase theRATEare the latencies of the architec-
ture components. The possible values of the latency parameters
should however stay within reasonable bounds.

From the SPADE simulation numbers presented in Table I we
see that theRGB2YUV/DCT processor executes 95% of the time
while the other components execute less than 36% of the time.
This result suggests that theRATEof the architecture is very
sensitiveto the latency of theRGB2YUV/DCT processor. We
decreased the latency of this component five times. TheRATE
of the architecture became256 frames per secondfor images
of size 128�128 pixels. Using thisRATEnumber, we can eas-
ily estimate that theRATEfor images of size 512�512 pixels
is about16 frames per secondwhich is still not high enough.
Simulation results are shown in Table III.

The results shown in Table III show that theRGB2YUV/DCT
processor is no longer the bottleneck for the performance. If we
go on decreasing the latency of theRGB2YUV/DCT processor
we will unbalance the architecture and we will not achieve a sig-
nificant increase of theRATE. The results in Table III show that
we can expect a significant increase of theRATEif we decrease

TABLE III

PERFORMANCE NUMBERS AFTER DECREASING THE LATENCY OF THE

RGB2YUV/DCT PROCESSOR.

Processor executing busy with I/O waiting
RGB2YUV/DCT 36% 1% 63%

mP 55% 39% 6%
VLEP 42% 23% 35%
VIP 1% 8% 91%
VOP 1% 4% 95%

Bus utilization 62%

the latency of the microprocessor. We decreased the latency of
the mP two times. In this case, the SPADE simulation results
show that theRATEof the architecture is354 frames per sec-
ond. EstimatedRATEfor video frames of size 512�512 is22
frames per second. The SPADE performance numbers for each
of the components are given in Table IV.

TABLE IV

PERFORMANCE NUMBERS AFTER DECREASING THE LATENCY OF THE

MICROPROCESSOR.

Processor executing busy with I/O waiting
RGB2YUV/DCT 46% 1% 53%

mP 40% 59% 1%
VLEP 54% 33% 13%
VIP 1% 18% 81%
VOP 1% 5% 94%

Bus utilization 81%

Analyzing the results presented above we saw that the de-
crease of the latency of the processor components increases the
RATEof the architecture. But still theRATEdoes not satisfy the
real-time requirement for large images. If we continue to de-
crease the latencies of the processor components, they will get
outside the feasible range of these latencies. Also, we will not
achieve a significant speedup of the architecture, because Ta-
ble III and Table IV show a significant increase of the time the
processor components spend on performing I/O operations. The
latter means that the communication structure of the architec-
ture becomes a bottleneck. If we increase the speed of the bus
we will not change theRATEof the architecture, because the
speed of the shared memory is unchanged. We cannot increase
the speed of the memory because it will lead to unrealizable
memory.

According to the results of the experiment we presented
above we can conclude that although our architecture consists
of five fast processor components working in parallel, we can-
not achieve real-time speed for large video frames. The main
reason is that the architecture cannot exploit the maximum par-
allelism of the application, because the communication structure
– a common bus and shared memory – obstructs the parallelism.

Starting from a given application and a given architecture
template, we have demonstrated how we can use the SPADE

environment and tools to obtain performance numbers that can

Y-CHART BASED SYSTEM LEVEL PERFORMANCE ANALYSIS: AN M-JPEG CASE STUDY 9

help evaluating theperformance–costratio at an abstract level
early in a design process. In the experiments presented in this
paper, we have looked at the impact of some of the parameters
of the architecture template. The three experiments conducted
can be seen as part of an exploration trajectory around the ini-
tial Startemis architecture. The results of this session suggest
that the next step might be to change the overall architecture
template and to go into another exploration step using this new
template.

V. CONCLUSIONS

We have presented a case study of an M-JPEG encoder appli-
cation mapped onto a shared memory multi-processor architec-
ture, which is used in the Artemis project as a driver for the de-
velopment of the Artemis workbench. We did some explorations
of the initial application and architecture at an abstract level us-
ing SPADE. By doing these experiments we evaluated the use of
SPADE early in the design process of heterogeneous signal pro-
cessing architectures. It appears that SPADE can give a designer
useful feedback on the performance of a system, which may help
a designer in improving the system. This was illustrated by the
scenarios in Section IV. The simulations done in these scenar-
ios typically took a few minutes for an input sequence of several
frames. Also, changes to the architecture and mapping could be
easily made to the textual descriptions. SPADE currently lacks
feedback on other metrics than performance metrics, such as,
silicon area and power dissipation. Also, the representation of
data is still something that can be improved. These issues will
be topic of further research, of which part will be covered in the
Artemis project.

REFERENCES

[1] F. Balarin, E. Sentovich, M Chiodo, P. Giusto, H. Hsieh, B Tabbara,
A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-
Vincentelli, Hardware-Software Co-design of Embedded Systems – The
POLIS approach, Kluwer Academic Publishers, 1997.

[2] Grant Martin and Bill Salefski, “Methodology and technology for design
of communications and multimedia products via system-level IP integra-
tion,” in Proc. DATE’98 Designers’ Forum, 1998, pp. 11–18.

[3] Stan Liao, Steve Tjiang, and Rajesh Gupta, “An efficient implementation
of reactivity for modeling hardware in the Scenic design environment,” in
Proc. DAC’97, Anaheim, CA, June 9-13 1997, pp. 70–75.

[4] http://www.innoveda.com/product/earchitect, Innoveda, Inc.
[5] Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, “A

methodology for architecture exploration of heterogeneous signal process-
ing systems,” inProc. 1999 Workshop on Signal Processing Systems
(SiPS’99), Taipei, Taiwan, Oct. 20-22 1999, pp. 181–190.

[6] Andy Pimentel, Pieter van der Wolf, Bob Hertzberger, Ed Deprettere,
Jos T.J. van Eijndhoven, and Stamatis Vassiliadis, “The Artemis architec-
ture workbench,” inProgress Workshop 2000, Utrecht, The Netherlands,
Oct. 13 2000.

[7] A.D. Pimentel, A.W. van Halderen, and L.O. Hertzberger, “Sesame:
Simulation of embedded system architectures for multi-level exploration,”
Tech. Rep., University of Amsterdam, 2000, Artemis internal report.

[8] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An approach
for quantitative analysis of application-specific dataflow architectures,” in
Proc. ASAP’97, July 14-16 1997.

[9] Richard A. Uhlig and Trevor N. Mudge, “Trace-driven memory simula-
tion: A survey,” ACM Computing Surveys, vol. 29, no. 2, pp. 128–170,
June 1997.

[10] Gilles Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74. 1974, North-Holland Publishing
Co.

[11] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel,
W.M. Kruijtzer, P. Lieverse, and K.A. Vissers, “YAPI: Application mod-
eling for signal processing systems,” inProc. 37th Design Automation
Conference (DAC’2000), Los Angeles, CA, June 5-9 2000, pp. 402–405.

[12] A.J.C. van Gemund, “Performance prediction of parallel processing sys-
tems: The PAMELA methodology,” inProc. 7th ACM Int. Conference on
Supercomputing, Tokyo, July 1993, pp. 318–327.

[13] Wido Kruijtzer, “TSS: Tool for System Simulation,”IST Newsletter, vol.
17, pp. 5–7, Mar. 1997, Philips Internal Publication.

[14] Vasudev Bhaskaran and Konstantinos Konstantinides,Image and Video
Compression Standards; Algorithms and Architectures, Kluwer Academic
Publishers, 1995.

[15] W.B. Pennebacker and J.L. Mitchel,JPEG Still Image Data Compression
Standard, Van Nostrand Reinhold, New York, 1993.

[16] W.B. Pennebacker, J.L. Mitchel, C.E. Fogg, and D.J. LeGall,MPEG Video
Compression Standard, Chapman and Hall, 1996.

[17] Joe Heinrich,MIPS 4000 Microprocessor - Users’s Manual, MIPS Tech-
nologies Inc., 1994.

[18] http://www.mips.com/products, MIPS Technologies Inc.
[19] Analog Devices Inc.,ADSP-21160 SHARC DSP; Instruction Set Refer-

ence, Nov. 1999.
[20] Analog Devices Inc.,ADSP-21160 Preliminary Data Sheet, Jan. 2000.

