
A Systematic Comparison of Side-channel
Countermeasures for RISC-V-based SoCs

Abolfazl Sajadi∗ , Nusa Zidaric∗ , Todor Stefanov∗ , Nele Mentens∗†
∗LIACS, Leiden University, Leiden, The Netherlands
† ES&S, COSIC, ESAT, KU Leuven, Leuven, Belgium

Abstract—In this study, we conduct a systematic comparison
of various countermeasures against power side-channel attacks
on RISC-V-based Systems-on-Chip implemented on an FPGA.
Focusing on the AES cryptographic algorithm running on a
RISC-V Ibex core, we evaluate a range of countermeasures,
including software masking, hardware/software noise generation,
and dummy instruction insertion. We also examine the impact of
unprotected software implementations on the specialized CoCo-
Ibex micro-architecture by evaluating the Tiny-AES implemen-
tation. Our findings reveal significant trade-offs between security
and overhead, offering critical insights for selecting appropriate
countermeasures tailored to the specific requirements of resource-
and energy-constrained systems.

Index Terms—Power Side-Channel Attacks, RISC-V, FPGA,
Countermeasures, Tiny-AES, Ibex

I. INTRODUCTION

Mobile edge computing (MEC) is a modern paradigm aimed
at pushing applications, data, and services geographically
closer to where they are requested. Edge devices utilize low-
power Systems-on-Chip (SoCs) and are limited in resources
and energy budgets. These SoCs commonly use a single
CPU core, based on architectures such as RISC-V [1] or
ARM [2], which can be realized on different implementation
platforms. One such platform is a Field Programmable Gate
Array (FPGA).

A significant concern for MEC systems is security because
of their extensive connection with various nodes and users
in the immediate vicinity. Nowadays, the majority of these
systems use standardized cryptographic algorithms such as
AES [3] in different modes of operation to ensure the con-
fidentiality, integrity, and authenticity. Despite the theoretical
robustness of these algorithms, their practical utilization puts
them at risk of physical side-channel analysis (SCA) attacks.
Furthermore, MEC systems frequently operate in unsupervised
and remote locations, allowing adversaries to obtain direct
physical access to the computing hardware. SCA exploits
physical characteristics, such as the power consumption [4],
electromagnetic emanations [5], or timing behavior [6] to
obtain secret information like the cryptographic key. Power
consumption measurements capture the switching activity of
the transistors while the device performs a cryptographic oper-
ation. In circuits without protection mechanisms, the switching
activity is data-dependent, i.e., it depends on variables such as
the plaintext and the key. To increase resilience against such
vulnerabilities, various countermeasures have been designed
[7]–[9]. The choice of the countermeasure is a trade-off

between increasing the security and minimizing overheads in
terms of hardware resources, power consumption, and timing.

Therefore, in this work, we systematically compare the ef-
fectiveness and overhead of different countermeasures against
power side-channel vulnerabilities for RISC-V-based SoCs
implemented on an FPGA. To the best of our knowledge,
our work is the first to conduct such systematic evaluation
and comparison, which is the main novel contribution of the
paper. We focus on Tiny-AES [10] software implementations
executed on the commonly used Ibex RISC-V CPU core. We
evaluate and compare the following countermeasures: software
masking, obfuscation using hardware- and software-generated
noise, and insertion of dummy instructions. In addition, we
analyze Tiny-AES executed on CoCo-Ibex [11] to determine
the effect of this specialized Ibex core micro-architecture on
unprotected Tiny-AES software implementations.

This paper is organized as follows. Section II briefly
discusses some related work and Section III the necessary
background to understand our work. Section IV presents
our experimental methodology and Section V discusses the
experimental results. The conclusions are given in Section VI.

II. RELATED WORK

In the past decades, AES has been subjected to rigorous
cryptanalysis and SCA attacks, including power SCA. Early
comprehensive works on this topic include [12], describing
different power SCA and fault injection on both software and
hardware implementations of AES, different leakage models
and statistical analyses, and possible countermeasures. Re-
cently published work [13], is focusing on power SCA on
FPGA implementations of AES. Correlation Power Analysis
(CPA) is particularly efficient, as it requires a smaller number
of measured traces [14] than the originally proposed Differ-
ential Power Analysis (DPA) [4]. Another line of work is
focusing on leakage detection, using methods such as Test
Vector Leakage Assessment (TVLA), instead of key recovery
attacks such as DPA or CPA. Recent work in [15] performed
comparative analysis of leakage detection methods on two
RISC-V cores. Among other experiments, they detected leak-
age from the execution of the Tiny-AES implementation on the
Ibex core. Their primary focus was to identify the source of
the leakage on the microarchitectual level, e.g., leakage from
the ALU, without applying any countermeasures.

Since the first SCA attacks, numerous countermeasures
based on different approaches have been designed. In gen-

979-8-3315-1766-3/24/$31.00 © 2024 IEEE

20
24

 IE
EE

 N
or

di
c

C
irc

ui
ts

 a
nd

 S
ys

te
m

s C
on

fe
re

nc
e

(N
or

C
A

S)
 |

97
9-

8-
33

15
-1

76
6-

3/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

or
C

A
S6

44
08

.2
02

4.
10

75
24

77

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

eral, the aim of SCA countermeasures is to minimize the
dependence of power consumption on intermediate data values
and/or executed operations. The countermeasures can be clas-
sified into two categories: hiding and masking. Hiding is trying
to achieve either equal or random power consumption in each
clock cycle. In our work, we focus on the latter, which can be
achieved by randomizing execution times or by increasing the
noise and thus decreasing the signal-to-noise ratio. Masking,
on the other hand, involves concealing intermediate data values
with random values (masks). Examples of hiding countermea-
sures are shuffling the order in which operations are executed,
inserting dummy operations [12], on-chip noise generation [8]
and the use of secure logic styles [7]. A comprehensive survey
of masking schemes can be found in [16]. Examples span from
generalized secret sharing ISW masking schemes [17], [18] to
Instruction Set Extensions for RISC-V [19]–[21].

In contrast to the aforementioned related work, our work
systematically evaluates and compares software and hardware
countermeasures against power analysis attacks on RISC-V-
based SoCs implemented on an FPGA with a focus on the
Ibex and CoCo-Ibex RISC-V CPU cores. It provides important
insights in the trade-offs between computational resources,
delay, power/energy consumption, and SCA resistance.

III. BACKGROUND

This section lays the foundation for understanding our
methodology and the analysis of various countermeasures.

A. The Ibex core

Ibex is an open source 32-bit RISC-V CPU core. It was
first introduced as “Zero-riscy” [22] within the PULP platform
and has since then contributed to lowRISC, by which it is
maintained and further developed. The core is implemented
in SystemVerilog and provides support for multiple instruc-
tion set extensions: Integer (I,E), Integer Multiplication and
Division (M), Compressed (C), and Bit Manipulation (B).
It offers optional configurations, e.g., three variants of the
Multiplier/Divider Block with different trade-offs between the
area and the cycle count for multiplication instructions. We
use the Fast Multi-Cycle Multiplier Block executing the MUL
instruction in 3 cycles. The same long division algorithm is
used regardless of the configuration, which requires 37 cycles.
However, the first cycle performs a divide-by-zero check. If
the check is positive the division terminates in 2 cycles.

B. The Secure-Ibex core

The Ibex CPU core integrates a range of additional security
features that can be activated at runtime by using the CPU
Control and Status Register cpuctrl. The Data-Independent
Timing feature ensures that the execution time is constant,
regardless of whether a branch is taken or not. Additionally,
the premature termination of multiplication by zero/one and di-
vision by zero is eliminated. The Dummy Instruction Insertion
feature randomly inserts dummy instructions. The frequency of
insertion is controlled by the 3-bit dummy_instr_mask in
the cpuctrl register. At runtime, the next dummy instruction

Knownkey

AES Model
(First Round)

Leakage Model
(HW)

Correlation
Calculation

Attack
Statist ics
Results

Container

P la in text

Measurements
Trace Container

Fig. 1. Flowchart of Correlation Power Analysis [23]

is inserted in the cycle chosen randomly from the interval
[0,D], where D = 1 + (dummy_instr_mask∥11)2.We are
particularly interested in the two corner cases that we denote
with -max and -min:

• Secure-Ibex-max: to achieve the maximum random inser-
tion frequency, we set D = 1 + (00011)2 = 4;

• Secure-Ibex-min: to achieve the minimum random inser-
tion frequency, we set D = 1 + (11111)2 = 32.

The inserted instruction is selected among four different
instructions: ADD, AND, MUL, and DIV, for which the cycles-
per-instruction (CPI) are 2, 2, 3, and 37 clock cycles, respec-
tively. Additionally, the source registers for these instructions
are selected randomly, and the destination register is set to 0.

C. The CoCo-Ibex core

CoCo-Ibex is relevant to our study as an Ibex CPU core
modified for robust execution of masked software implemen-
tations. The CoCo tool [11] was employed to identify side-
channel leakage sources within the Ibex CPU core netlist.
CoCo is a formal verification tool designed to model leakage
of masked software implementations in a time-constrained
probing model at the gate level. It requires access to the CPU
gate-level netlist and simulates the execution of a masked
assembly implementation, where a sensitive value is split
into two shares using internal randomness. If CoCo detects
a recombination of shares within a specific cycle, it reports
the gate and cycle as a leakage point. This helps determine
whether the leakage originates from the software or the CPU’s
micro-architectural side effects. To mitigate secret-dependent
glitches, gating is applied in the Ibex CPU core, on the one
hand consisting of Register Gating to address issues in the
register file such as switching wires in the multiplexer tree,
glitchy address signals and unintended reads, and on the other
hand consisting of Computation Unit Gating to disable always-
active computation units and clearing the hidden state in the
Load/Store Unit to prevent unintended leakage.

D. Correlation Power Analysis

In CPA, we compute Pearsons’s correlation coefficient be-
tween the estimated power consumption (based on hypothet-
ical calculations) and the measured power consumption. We
focus on the absolute value of the correlation coefficient, as
we are interested in the strength of this relationship. For our
analysis, we employ the online calculation method from [23],
[24], allowing the incorporation of new power traces without
recalculations.

Fig. 1 illustrates the data flow of CPA. The system utilizes
online updates during the computation of attack statistics to
monitor the progress as new traces are incorporated. Data

2
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I. Implemented countermeasures
Type of Countermeasure Hardware Software

Algorithm-agnostic Secure-Ibex
HW-NG SW-NG

Algorithm-specific CoCo-Ibex Mask-AES

from the ‘Trace Container’ might undergo preprocessing or
be selectively sampled from a specific window of data rather
than using the entire trace range. The outcomes are recorded
in the ‘Attack Statistics Container’, which logs results after a
certain number of traces and computes metrics such as Partial
Guessing Entropy (PGE) in the current state [23], [24].

IV. EXPERIMENTAL METHODOLOGY

Our study aims to systematically compare different counter-
measures against power side-channel attacks when a specific
cryptographic algorithm is executed on a RISC-V-based SoC
implemented on an FPGA. We choose AES as the target
algorithm because it is widely used and well known, and many
countermeasures against side-channel analysis on AES have
been proposed in the past decades. We select and compare
the various types of countermeasures, shown in Table I,
classifying them in two ways: (a) algorithm-agnostic vs.
algorithm-specific, and (b) modifying/extending the hardware
vs. modifying/extending the software.

In the algorithm-agnostic category, we analyze the impact
of the security features of the Secure-Ibex core and evaluate
their implementation overhead. These security features utilize
specific hardware modules to alter the software execution time.
Therefore, in Table I, the Secure-Ibex security features are
classified as hardware and software countermeasures. Addi-
tionally, we analyze the effect of generating noise within the
RISC-V-based SoC implemented on an FPGA by utilizing
hardware (HW-NG) and software (SW-NG) techniques. In
hardware, we generate noise using a specific Noise Generation
module (Section IV-A3), which utilizes Shift Register LUTs
(SRL) to randomize the power consumption. In software, we
generate noise through redundant computation with different
secret data, i.e., we mirror the S-box computation in AES
with a different key and the same plaintext (Section IV-A4).
Although mirroring the S-box is algorithm-specific, noise gen-
eration in software (SW-NG) through redundant computation
is an algorithm-agnostic technique in general, thus we include
it in both categories (the dashed line in Table I).

In the algorithm-specific hardware category, we use CoCo-
Ibex, which helps reduce exploitable leakage in algorithms
with protections based on secret sharing [25]. The original
work on CoCo [11] focuses on test cases using various
masking approaches, and presents results for S-box assem-
bly implementations executed on CoCo-Ibex. We want to
analyze whether CoCo-Ibex has any effect on unprotected
algorithms, thus we use Tiny-AES as the cryptographic al-
gorithm. Finally, we analyze a masked version of Tiny-AES
using boolean masking [26],which we nickname Mask-AES.
This algorithm-specific software countermeasure follows the
description in [12].

Ib
e
x
 C

o
re

P
M

P
 C

heck

D
ata M

em
ory

Interface

LS
U

Instruction M
em

ory Interface

R
egister F

ile

SP
I

B
ri

dg
e

PRNG

00
00

00
00

-0
1F

F
F

F
F

F
C

tr
l-

R
V

 I
m

em

Po
rt

 A

Po
rt

 B

02
00

00
00

-0
3F

F
F

F
F

F
C

tr
l-

R
V

 D
m

em

Po
rt

 A

Po
rt

 B

00
00

00
00

-0
3F

F
F

F
F

F

Po
rt

 A

Po
rt

 B

08
00

00
00

-0
9F

F
F

F
F

F

0x20000000

Timer

Control Register

Status Register

0x
10

08
00

00

SW
-R

V
 D

m
em

SW
-R

V
 I

m
em

Po
rt

 A

Po
rt

 B

C
s

M
O

SI

SC
K

T
x

R
x

0x
10

00
00

00

Decode

 & Execute

Instruction
 Fetch

Writeback

D a t a B u s

Ib
e
x
 C

o
re

P
M

P
 C

heck

D
ata M

em
ory Interface

LS
U

Instruction M
em

ory Interface

R
egister F

ile

Decode

 & Execute

Instruction
 Fetch

Writeback

SW-RVCtrl-RV

Ibex Core Ibex Core

CoCo-Ibex
Secure-Ibex

D
a

ta
 B

u
s

Noise GeneratorU
A

R
T

Optional feature

Control SoC Target SoC

Fig. 2. Block Diagram of the Experimental Platform

A. The Experimental Platform - Components and Features

To conduct our experiments and gather actual data, such
as timing performance and power consumption, we have
developed an experimental platform. This platform enables
side-channel analysis (CPA) of cryptographic software running
on a general-purpose CPU. In our experiments, we use the
platform for a systematic comparison of different counter-
measures (Table I) against CPA on the Tiny-AES software
running on the RISC-V CPU cores described in Section III.
Fig. 2 shows our platform, which is implemented on an FPGA.
In the platform, we have two parts: Control SoC and Target
SoC. The Control SoC part contains an Ibex core (Ctrl-RV)
and two 32-bit registers (Control Reg and Status Reg) used to
control and monitor the Target SoC part. This part contains a
target RISC-V CPU core (SW-RV) executing the cryptographic
software. Before the platform synthesis, we select either the
Ibex core, the Secure-Ibex core, or the CoCo-Ibex core as the
target CPU core. Additionally, the Target SoC part includes
optional units such as a Pseudo Random Number Generator
(PRNG) and Noise Generator module. We use the Target
SoC to run and analyze the cryptographic software, while the
Control SoC is used to manage all data input/output and the
activation/deactivation of components in the Target SoC. Such
an approach increases the platform’s flexibility and enables the
analysis of different Target SoC configurations.

1) Control SoC Features: The Serial Peripheral Interface
(SPI) protocol is utilized to initially program the Ctrl-RV.
In this process, the SPI module, depicted in Fig. 2, receives
memory data and places it in the specified locations. Sub-
sequently, Ctrl-RV establishes a communication channel with
a host computer using UART for the purpose of processing
commands. Receiving commands from the host, the Ctrl-
RV can load the target core (SW-RV) instruction and data
memories, and activate the core by setting a flag in the Control
Reg. The Ctrl-RV monitors the status of SW-RV by reading
the Status Reg.

2) Target SoC Features: This experimental platform is
specifically designed to function as a collaborative tool that
establishes suitable triggers for the accurate acquisition of

3
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Noise generation based on SRLs [8]

power (or other) traces, i.e., a cooperative target. For the
trigger signal, we use one bit in Status Reg. The SW-RV can
set this bit to make the trigger signal high or reset it to make
the trigger signal low.

3) Noise Generation Module [HW-NG]: This module, in-
troduced in [8], can be used to generate Gaussian noise and
it utilizes SRLs. SRLs are highly effective for generating
noise because they increase the toggle rate, which significantly
impacts the power consumption of a gate in SRAM-based
FPGA devices. By configuring LUTs as shift registers (SRLs),
cascading them, and initializing them with alternating toggle
bit patterns as depicted in Fig. 3, we can efficiently produce
high noise levels. The enable signals CE of the cascaded SRLs
are connected to a random number generator, thereby creating
an effective noise source.

4) Noise Generating Software [SW-NG]: The S-box com-
putation in AES running on SW-RV is mirrored with the same
plaintext but a different key in Ctrl-RV to observe the effect of
this noise technique. Mirroring the computation can be done
by creating a specific hardware module, but in our platform,
we have the ability to reuse Crtl-RV as such module.

B. The Experimental Platform - Hardware Setup

The experimental platform, described in Section IV-A, is
implemented on the hardware setup, shown in Fig. 4, that
includes the CW305 target board, featuring an XC7A100T
Artix-7 FPGA. This board is designed for power analysis
and fault injection attacks on cryptographic algorithms in
FPGAs [23]. We use a 50 MHz input clock frequency for
our implementation. To upload the control program executed
by Ctrl-RV from the host computer, we use the MCP2210
chip (a USB-to-SPI Master converter) to connect the host with
the Control SoC. Similarly, to establish the communication
channel for sending commands from the host to the Control
SoC, we use the MCP2200 chip (a USB-to-UART converter).
The plaintexts and ciphertexts processed by SW-RV in the
Target SoC are transmitted via this communication channel as
well.

In order to capture power traces of the Target SoC, we em-
ploy the ChipWhisperer-Husky [27]SCA platform [23] shown
in Fig. 4. We utilize the highest capturing frequency available,
i.e., 200 MHz, which is four times higher than the 50 MHz
clock frequency of our platform, in order to obtain the highest
level of accuracy in the power traces. To capture each trace,
we first send a randomly generated plaintext from the host
computer through the UART to the platform. The Ctrl-RV
places it in the SW-RV data memory and waits for the start
signal from the ChipWhisperer-Husky, indicating it is ready
to capture a trace. Upon receiving this signal, Ctrl-RV sets

Fig. 4. Hardware Setup for our Experimental Platform

the second bit of Control Reg to activate the SW-RV core,
which then performs AES encryption. The attack targets the
S-box computation in the first round of AES. Before executing
the first round, SW-RV sets the trigger signal high, initiating
the trace capturing on the ChipWhisperer-Husky, and sets the
signal low at the end of the S-box computation. The ciphertext
is stored in the data memory of SW-RV and sent by Ctrl-RV
to the host computer via the UART for verification. We use
the trigger signal to activate the HW-NG module or SW-NG
execution when noise have to be generated.

To measure the power consumption of the Target SoC,
we utilize the Power Profiler Kit II (PPK2), developed by
Nordic Semiconductor, that is shown in Fig. 4. This is be-
cause ChipWhisperer-Husky uses AC-coupling, thus it only
measures changes in the power consumption and not a direct
DC offset. The resolution of this kit ranges from 100 nA
to 1 mA, depending on the measuring range, and it offers a
sampling speed of 100 kS/s. The CW305 board has a banana
jack as an input power source, allowing to measure the power
of the FPGA component on the board. According to the PPK2
specifications, our resolution is set to 50 uA. To enhance the
precision, we decrease the clock frequency on the CW305
board to the minimum frequency of 630 kHz and measure the
average power over 1000 consecutive measurements.

V. EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental
results obtained by applying our methodology presented in
Section IV.

A. Security Analysis of Target SoCs with Countermeasures

After the capturing of power traces, the next step is the
security analysis of our Target SoC running Tiny-AES and
implementing the countermeasures against power side-channel
attacks shown in Table I. For this purpose, we use CPA [28],
illustrated in Fig. 1, to try to reveal the secret key. To reduce
the analysis time and number of traces needed to find the secret
key successfully, we place the trigger signal in the first S-box
of the first round of the Tiny-AES implementation.

4
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Corr. vs #Traces for Tiny-AES on Ibex (unprotected)

Fig. 6. Corr. vs #Traces for Software Mask-AES on Ibex

1) Tiny-AES on Ibex: This Target SoC configuration is
our baseline because the AES algorithm is unprotected. We
analyze 18K traces and Fig. 5 shows the correlation versus
the number of traces for each sub-key when the Target SoC
executes Tiny-AES on the SW-RV core, where a sub-key in
AES is a smaller part of the key that is analyzed individually
using a divide and conquer approach instead of analyzing the
full key at once. The correct sub-key is indicated with a dashed
line and each candidate sub-key is shown in a different color.
The results indicate that to achieve a highly distinguishable
correlation for all sub-keys in this baseline configuration, we
need approximately 250 traces per sub-key to successfully
reveal the full secret key.

2) Mask-AES on Ibex: In this Target SoC configuration,
we examine the software masked version of Tiny-AES and
increase the number of traces to 21K. Fig. 6 shows the
correlation versus the number of traces for all sub-keys. In
order to execute the Mask-AES software implementation, we
activate the PRNG module in our experimental platform. The
results indicate that, with our setup and using Power Side-
Channel attacks, we cannot find any distinguishable correlation
for any sub-key, thus the full secret key is not revealed.

Sub-key [0] Sub-key [1]

C
o

r
r

e
la

t
io

n

 Number of Traces []

Sub-key [2]

Fig. 7. Corr. vs #Traces for Tiny-AES on Ibex with SW-NG

Fig. 8. Corr. vs #Traces for Tiny-AES on Ibex with HW-NG

3) Tiny-AES on Ibex with SW-NG: In this configuration,
we generate software noise by mirroring the S-box computa-
tion in the Ctrl-RV using the same plaintext but a different key.
According to the correlation equation in [23], no new correla-
tion will be observed if the key in the mirroring technique is
changed randomly for each measurement. This is because the
CPA method calculates the correlation across all measurements
and only a fixed key will produce a consistent correlation.
When using a fixed and incorrect key in the mirrored S-
box computation, two high correlations are observed in the
results: one for the correct key and another for the incorrect
key, as shown in Fig. 7. For some sub-keys, such as sub-
key [0], the incorrect key (blue solid curve) shows a higher
correlation. In other cases, like sub-key [2], the correct (dashed
curve) and incorrect (solid curve) sub-keys exhibit nearly equal
correlations. Despite these cases, the correct full key can still
be identified using brute force attacks over the key candidates.

4) Tiny-AES on Ibex with HW-NG: In this configuration,
we implement a noise generation module using SRLs, as
shown in Fig. 3, by using as much as possible resources on
the FPGA to construct a big noise generator. Fig. 8 shows
results for three different cases of sub-keys. In some cases,
we observed a high and distinguishable correlation, such as
for sub-key [4], although this correlation is lower than when
running Ibex without generating noise, and we need more
traces to get it (at least 400 traces). In other cases, such
as sub-keys [6] and [9], we find low correlation, and it is
not distinguishable in some of them. However, the correlation
increases with the number of traces, indicating that we can
bypass this countermeasure by simply increasing the number
of traces.

5) Tiny-AES on Secure-Ibex: In this Target SoC config-
uration, we use Secure-Ibex by activating the two security
features described in Section III-B for the entire AES en-
cryption process. This helps change the location of the S-box
computation over time, making the attack more challenging.
We analyze the two corner cases of randomly inserted dummy
instructions described in Section III-B, namely Secure-Ibex-
min and Secure-Ibex-max, using 18K traces. In both cases, we
do not find any high or distinguishable correlation with the

5
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II. Timing, Energy, and Power of Target SoC Configurations

Parameter Ibex Mask- Secure-Ibexa SW- HW- CoCo-
AES max min NG NG Ibex

#Cycles 11559 16993 59315 16348 11559 11559 11559
Time (ms) 18.35 26.36 94.15 25.95 18.35 18.35 18.348

Power (mW) 31.42 31.42 33.86 33.86 31.47 37.41 31.45
Energy (µJ) 576.48 828 3188 878.65 577.41 686.39 577.04
a Average

TABLE III. Overhead of SoCs with Countermeasures
LUTs FFs Code Size Time

Mask-AES - - 2.03 1.47

Secure-Ibex max 1.03 1.036 - 5.13
min 1.41

HW-NG 3.98 - - -
SW-NG - - 1.34a -

CoCo-Ibex 1.4 1.52 - -
a Controller code size overhead.

correct key in any sub-key for our setup.
6) Tiny-AES on CoCo-Ibex: In this Target SoC configura-

tion, we analyze Tiny-AES running on the CoCo-Ibex core
to determine whether this core has any effect on leakage
in unmasked AES. As expected, we obtain the same results
as with the standard Ibex core, discussed in Section V-A1,
indicating that CoCo-Ibex does not affect unmasked AES.
Indeed, the CoCo-Ibex core is designed to effectively reduce
leakage only in masked cryptographic algorithms based on
secret sharing.

B. Overhead Analysis of Target SoCs with Countermeasures

Table II shows the performance and power/energy con-
sumption of the six Target SoC configurations discussed in
Section V-A. The numbers in Column 2 correspond to the
baseline configuration Tiny-AES on Ibex where no counter-
measures are implemented. The other columns correspond to
the configurations with different countermeasures. Comparison
of the numbers in Table II shows that some countermeasures
can introduce significant overhead in terms of clock cycles,
execution time, and power/energy consumption that is un-
avoidable when we want to enhance the security of a system.
In particular, Secure-Ibex shows a wide range of overhead
(Columns 4 and 5) depending on the activation of the security
features, suggesting that careful tuning is necessary to balance
the security with the performance and energy consumption.

Table III shows the overhead of each configuration with
countermeasure (listed in Column 1) compared to the baseline
configuration in terms of hardware resources (Columns 2 and
3), code size, and execution time. It can be seen that the
HW-NG countermeasure exhibits a large overhead (3.98x) in
terms of utilized LUTs in the FPGA implementation while no
overhead is present in terms of code size and execution time.
This is because the noise is generated by a large hardware
module using SRLs that runs in parallel with the Tiny-AES
algorithm on the Ibex core. The Mask-AES countermeasure
shows the largest code size overhead (2.03x) because the
masking is implemented in software, wheres the Secure-Ibex
countermeasure exhibits significant and variable time overhead
(in the range of 1.41x to 5.13x) due to the variable frequency
at which dummy instructions are inserted.

Finally, Fig. 9 visually summarizes the security anal-
ysis results (Section V-A) and the overhead analysis re-
sults by qualitative comparison of all Target SoC config-
urations in terms of Attack Success (security) and Hard-
ware/CodeSize/Time/Energy overhead introduces by the corre-
sponding countermeasure. For example, comparing the Mask-

Fig. 9. Qualitative Comparison of Target SoC Configurations
in Terms of Security and Overhead

AES (purple area) and Secure-Ibex-max (yellow area) con-
figurations, it can be seen that the countermeasures in both
configurations are equally effective in terms of security be-
cause we are not able to perform a successful attack. However,
Secure-Ibex-max exhibits significantly larger Time and Energy
overhead. In Fig. 9, #SKF shows the number of sub-keys
found with a given number of traces denoted as #Traces. For
example, the Baseline and CoCo-Ibex configurations require
around 250 traces to retrieve all 16 sub-keys, thus the attack
is successful which is marked with ”Yes” in the figure.

VI. CONCLUSIONS

We have systematically evaluated various hardware and
software countermeasures against power side-channel attacks
when running the Tiny-AES cryptographic algorithm on RISC-
V-based SoCs implemented on an FPGA. Our experiments
show that the unprotected Tiny-AES running on the Ibex
RISC-V core is vulnerable, while different countermeasures
offer varying trade-offs between security and overhead. Some
countermeasures, such as noise generation, can be bypassed
with exhaustive search or an extended number of power
traces. Others, like adding dummy instructions and software
masking, provide greater resilience but introduce an overhead
in different areas. These findings underscore the critical need
to balance security with performance, power/energy consump-
tion, and resource utilization when selecting countermeasures,
particularly for resource-constrained systems.

6
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was funded by the Dutch Research Council
(NWO) through the PROACT project (NWA.1215.18.014).

REFERENCES

[1] P. Arul, N. Abirami, S. Sayeekumar, P. Vanmathi, and V. Annapoorani,
“Implementation of risc-v instruction set architecture for edge iot com-
puting platform,” in 2024 Fourth International Conference on Advances
in Electrical, Computing, Communication and Sustainable Technologies
(ICAECT), pp. 1–6, IEEE, 2024.

[2] T. Gomes, S. Pinto, T. Gomes, A. Tavares, and J. Cabral, “Towards an
fpga-based edge device for the internet of things,” in 2015 IEEE 20th
Conference on Emerging Technologies Factory Automation (ETFA),
pp. 1–4, 2015.

[3] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances

in Cryptology–CRYPTO’99, LNCS, Vol.1666, pp. 388–397, Springer
Berlin Heidelberg, 1999.

[5] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Systems
— CHES 2001 (Ç. K. Koç, D. Naccache, and C. Paar, eds.), (Berlin,
Heidelberg), pp. 251–261, Springer Berlin Heidelberg, 2001.

[6] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Advances in Cryptology–CRYPTO’96, LNCS,
Vol.1109, pp. 104–113, Springer Berlin Heidelberg, 1996.

[7] K. Tiri and I. Verbauwhede, “Secure logic synthesis,” in Field Pro-
grammable Logic and Application (J. Becker, M. Platzner, and S. Ver-
nalde, eds.), (Berlin, Heidelberg), pp. 1052–1056, Springer Berlin Hei-
delberg, 2004.

[8] T. Güneysu and A. Moradi, “Generic side-channel countermeasures for
reconfigurable devices,” in Cryptographic Hardware and Embedded Sys-
tems – CHES 2011 (B. Preneel and T. Takagi, eds.), (Berlin, Heidelberg),
pp. 33–48, Springer Berlin Heidelberg, 2011.

[9] L. Goubin and A. Martinelli, “Protecting aes with shamir’s secret sharing
scheme,” in Cryptographic Hardware and Embedded Systems – CHES
2011 (B. Preneel and T. Takagi, eds.), pp. 79–94, Springer Berlin
Heidelberg, 2011.

[10] kokke, “tiny-aes-c (small portable aes128/192/256 in c).” GitHub repos-
itory, 2024. Available at: https://github.com/kokke/tiny-AES-c, Ac-
cessed: August 14, 2024.

[11] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem, “Coco:{Co-
Design} and {Co-Verification} of masked software implementations on
{CPUs},” in 30th USENIX Security Symposium (USENIX Security 21),
pp. 1469–1468, 2021.

[12] S. Mangard, M. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007. XXIII, 337
S.

[13] M. Tehranipoor, N. Nalla Anandakumar, and F. Farahmandi, Power
Analysis Attacks on AES, pp. 137–161. Cham: Springer International
Publishing, 2023.

[14] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004 (M. Joye and J.-J. Quisquater, eds.), (Berlin, Heidelberg),
pp. 16–29, Springer Berlin Heidelberg, 2004.

[15] K. Miteloudi, A. Adhikary, N. van Drueten, L. Batina, and I. Buhan,
“Plan your defense: A comparative analysis of leakage detection meth-
ods on RISC-v cores.” Cryptology ePrint Archive, Paper 2024/423, 2024.
https://eprint.iacr.org/2024/423.

[16] N. Müller, T. Moos, and A. Moradi, “Low-latency hardware masking
of prince,” in Constructive Side-Channel Analysis and Secure Design
(S. Bhasin and F. De Santis, eds.), (Cham), pp. 148–167, Springer
International Publishing, 2021.

[17] M. Rivain and E. Prouff, “Provably secure higher-order masking of
aes,” in Cryptographic Hardware and Embedded Systems, CHES 2010
(S. Mangard and F.-X. Standaert, eds.), (Berlin, Heidelberg), pp. 413–
427, Springer Berlin Heidelberg, 2010.

[18] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert,
“”on the cost of lazy engineering for masked software implemen-
tations”.” Cryptology ePrint Archive, Paper 2014/413, 2014. https:
//eprint.iacr.org/2014/413.

[19] S. Cui and J. Balasch, “Efficient software masking of aes through
instruction set extensions,” in 2023 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1–6, 2023.

[20] S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham, and F. Regaz-
zoni, “An instruction set extension to support software-based masking,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2021, p. 283–325, Aug. 2021.

[21] S. Cui and J. Balasch, “Efficient software masking of aes through
instruction set extensions,” in 2023 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1–6, 2023.

[22] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Fla-
mand, and L. Benini, “Slow and steady wins the race? a comparison
of ultra-low-power risc-v cores for internet-of-things applications,” in
2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), pp. 1–8, 2017.

[23] C. O’flynn and Z. Chen, “Chipwhisperer: An open-source platform for
hardware embedded security research,” in Constructive Side-Channel
Analysis and Secure Design: 5th International Workshop, COSADE
2014, Paris, France, April 13-15, 2014. Revised Selected Papers 5,
pp. 243–260, Springer, 2014.

[24] J. van Woudenberg and C. O’Flynn, The Hardware Hacking Handbook.
No Starch Press, 2021.

[25] H. Gross, D. Schaffenrath, and S. Mangard, “Higher-order side-channel
protected implementations of keccak.” Cryptology ePrint Archive, Paper
2017/395, 2017. https://eprint.iacr.org/2017/395.

[26] CENSUS, “masked-aes-c (proof-of-concept c implementation of aes
with masking technique to prevent side-channel analysis attacks),” 2024.
Available at: https://github.com/CENSUS/masked-aes-c, Accessed: Au-
gust 14, 2024.

[27] NewAE Technology Inc., “Chipwhisperer-husky - newae hardware prod-
uct documentation,” 2024. Available at: https://rtfm.newae.com/Capture/
ChipWhisperer-Husky/, Accessed: August 14, 2024.

[28] NewAE Technology Inc., “Chipwhisperer jupyter course.” GitHub repos-
itory, 2024. Available at: https://tinyurl.com/Cw-CPA-Algo, Accessed:
August 14, 2024.

7
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 20,2024 at 09:43:14 UTC from IEEE Xplore. Restrictions apply.

