
System-level Design For Efficient Execution of CNNs
at the Edge

Svetlana Minakova

This work has received funding from the European Unions Horizon 2020
Research and Innovation project under grant agreement No. 780788.

System-level Design For Efficient Execution of CNNs at the Edge. Svetlana
Minakova. - Dissertation Universiteit Leiden.

Copyright © 2022 by Svetlana Minakova.
This dissertation was typeset using LATEX.
Cover design: from images generated using DALL·E mini Deep Learning algo-
rithm [20]. The images are combined and post-processed by Anna Minakova.

System-level Design For Efficient Execution of CNNs
at the Edge

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op donderdag 24 november 2022

klokke 11.15 uur

door

Svetlana Minakova
geboren te Ryazan, Rusland

in 1993

Promotores:
Dr. T.P. Stefanov
Prof.dr. H.A.G. Wijshoff

Promotiecommissie:
Prof.dr. S. Ha (Seoul National University)
Prof.dr. J. Castrillon (Technical University of Dresden)
Prof.dr. H.E. Bal (Vrije Universiteit Amsterdam)
Prof.dr. A. Plaat
Prof.dr. N. Mentens
Prof.dr. M.S.K. Lew

To my family and friends

Contents

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Accuracy and platform-aware characteristics of a CNN 3
1.2 Requirements posed on a CNN executed at the Edge 4
1.3 Current trends in the design of CNNs executed at the Edge . . 4
1.4 Limitations of the state-of-the-art design flow for CNNs exe-

cuted at the Edge . 7
1.4.1 Limitation 1 . 7
1.4.2 Limitation 2 . 8

1.5 Research contributions . 9
1.5.1 RC1: Methodology for high-throughput CNN inference 12
1.5.2 RC2: Methodology for low-memory CNN inference . . 13
1.5.3 Methodology for run-time adaptive inference of CNN-

based applications . 13
1.5.4 Methodology for joint memory optimization of multiple

CNNs . 14
1.6 Thesis organization . 15

2 Background 17
2.1 CNN model . 18

2.1.1 Layer in the CNN model 18
2.1.2 Edge in the CNN model 22

2.2 CNN deployment and inference at the Edge 22

viii Contents

2.3 Edge platform used for CNN inference 24
2.4 Task- and data-level parallelism available in a CNN 25
2.5 CSDF and SDF models of computation 28
2.6 Genetic Algorithm (GA) . 30

3 Methodology for high-throughput CNN inference 33
3.1 Problem statement . 34
3.2 Contributions . 35
3.3 Related work . 36
3.4 Edge platform model . 37
3.5 Methodology . 38

3.5.1 CNN-to-SDF conversion 41
3.5.2 GA-based mapping . 42
3.5.3 CNN-to-CSDF model conversion 44

3.6 Experimental results . 47
3.7 Conclusion . 49

4 Methodology for low-memory CNN inference 51
4.1 Problem statement . 51
4.2 Contributions . 52
4.3 Related Work . 54
4.4 Motivational Example . 55
4.5 Methodology . 60

4.5.1 Phases derivation . 61
4.5.2 CNN-to-CSDF model conversion 62

4.6 Experimental Results . 66
4.7 Conclusion . 69

5 Methodology for run-time adaptive inference of CNN-based applica-
tions 71
5.1 Problem statement . 71
5.2 Contributions . 72
5.3 Related Work . 73
5.4 Motivational Example . 74
5.5 SBRS methodology . 78
5.6 Automated scenarios derivation 79
5.7 SBRS application model . 81

5.7.1 Scenarios supergraph 82
5.7.2 Control node . 85
5.7.3 Control edges . 85

Contents ix

5.7.4 Deployment and inference 86
5.8 SBRS MoC automated derivation 86
5.9 Transition protocol . 89
5.10 Experimental Study . 94

5.10.1 Automated scenarios derivation 95
5.10.2 SBRS MoC memory reuse efficiency 99
5.10.3 SBRS-TP efficiency . 101
5.10.4 Comparative study . 103

5.11 Conclusion . 105

6 Methodology for joint memory optimization of multiple CNNs 107
6.1 Problem statement . 107
6.2 Contributions . 108
6.3 Related Work . 109
6.4 CNN-based application . 111
6.5 Methodology . 113

6.5.1 Buffers Reuse Algorithm 115
6.5.2 Buffers Reduction Algorithm 118
6.5.3 Final application derivation 123

6.6 Experimental Results . 124
6.6.1 Comparison to existing memory reuse methodologies . 124
6.6.2 Joint use of quantization and our proposed methodology128

6.7 Conclusions . 132

7 Summary and concluding remarks 133

Bibliography 137

Summary 149

Samenvatting 151

List of Publications 153

Curriculum Vitae 155

Acknowledgments 157

List of Figures

1.1 CNN . 2
1.2 Execution of CNNs as cloud services and at the Edge 2
1.3 Current trends in the design and inference of CNN-based ap-

plications executed at the Edge 5
1.4 CNNs associated with alternative manners of execution 7
1.5 Extended CNN design flow . 10

2.1 CNN model . 18
2.2 Processing of input data X2 by layer l2 21
2.3 Padding . 22
2.4 Jetson TX2 edge platform . 24
2.5 data-level parallelism . 26
2.6 task-level (pipeline) parallelism 27
2.7 CSDF model of computation . 29
2.8 SDF model of computation . 29
2.9 Chromosome . 30
2.10 Single-gene mutation . 30
2.11 Simple two-parent recombination (cross-over) 30

3.1 Methodology for high-throughput CNN inference 38
3.2 CNN (input) model . 39
3.3 SDF (analysis) model . 39
3.4 CSDF (executable CNN inference) model 40
3.5 Mapping chromosome example 43

4.1 Example CNN . 57
4.2 Input data processing by layer l2 58
4.3 Input data processing by layer l3, Ex4 59
4.4 Methodology for low-memory CNN inference 60
4.5 CSDF model, derived from the CNN model shown in Figure 4.1 62

xii List of Figures

5.1 Execution of a CNN-based application, affected by the applica-
tion environment and designed using different methodologies 76

5.2 SBRS methodology . 79
5.3 Application scenarios . 80
5.4 SBRS MoC . 82
5.5 Switching from scenario CNN1 to scenario CNN2 90
5.6 Pareto-fronts based on 3 evaluation parameters, namely, accu-

racy (F1-score for Pascal VOC), throughput and energy 98
5.7 SBRS-TP efficiency evaluation 102
5.8 Comparison between SBRS MoC and MSDNet CNN [39], per-

forming classification on the CIFAR-10 dataset with throughput-
driven adaptive mechanism . 104

6.1 Example CNN-based application APP 111
6.2 Our methodology design flow 114
6.3 Experimental results . 130

List of Tables

2.1 Attributes of layer li . 19
2.2 Most common CNN layer types and operators 19

3.1 Mapping example . 43
3.2 Experimental results, average over 100 runs 48

4.1 Execution of CNN inference with phases 56
4.2 Evaluation of our memory reduction methodology 66
4.3 CNN characteristics affecting CNN memory reduction and

throughput decrease . 67

5.1 Capturing of scenarios’ components (layers and edges) in the
scenarios supergraph . 83

5.2 CNN-based applications . 96
5.3 Algorithm parameters for platform-aware NAS [82] 97
5.4 Scenarios derived from pareto-fronts shown in Figure 5.6 for

three applications shown in Table 5.2 98
5.5 SBRS MoC memory reuse efficiency evaluation 100

6.1 Naive CNN buffers allocation 112
6.2 Reused CNN buffers . 115
6.3 reduced CNN buffers . 120
6.4 Chromosome . 121
6.5 Comparison of the memory reduction principles and features

associated with the memory reuse methodologies in [76], [65],
and our proposed methodology 125

6.6 Experimental Results . 126
6.7 Applications . 128
6.8 Quantization in the TensorFlow DL framework [1] 129

List of Abbreviations

BFS Breadth-First Search

CNN Convolutional Neural Network

CPU Central Processing Unit

CSDF Cyclo-Static Data Flow

DL Deep Learning

DSE Design Space Exploration

FC Fully Connected

FLOP floating-point operation

FPGA Field-programmable Gate Array

GA Genetic Algorithm

GPU Graphics Processing Unit

HAR Human Activity Recognition

IoT Internet-of-Things

KD Knowledge Distillation

MB MegaBytes

MoC Model of Computation

MPSoC Multi-Processor System-on-Chip

NAS Neural Architecture Search

xv

xvi List of Abbreviations

ONNX Open Neural Network Exchange Format

SBRS Scenario-Based Run-time Switching

SDF Synchronous Data Flow

SOTA State Of The Art

SSR Scenario Switch Request

TPU Tensor Processing Unit

UAV Unmanned Aerial Vehicle

Chapter 1

Introduction

IN recent years, the field of Deep Learning (DL) [33] has received great atten-
tion. This new and rapidly developing field has achieved state-of-the-art

results in solving problems in areas such as image processing, computer vi-
sion, speech recognition, machine translation, medical information processing,
robotics and control, bio-informatics, natural language processing, and many
others [4]. One of the most popular DL algorithms are Convolutional Neural
Networks (CNNs) [56]. Nowadays, CNNs are the front-runners of image pro-
cessing and computer vision tasks such as image segmentation, classification,
and object detection in both academia and industry [4]. The success of CNNs
is due to their ability to automatically, effectively, and adaptively extract and
process high- and low-level abstractions from multi-dimensional (2D and 3D)
data such as images or video. This capability is mostly associated with the
CNNs architecture, inspired by the biological processes in the visual cortex of
an animal [55].

A CNN consists of a set of interconnected elements, called neurons. The
connected neurons exchange data: each neuron accepts input data, provided
by other neurons or external sources, and generates data for other neurons.
To generate its output data, a neuron applies a mathematical operator such
as convolution, dot product, pooling, and others [59] to its input data. To
perform the operator, the neuron uses a set of parameters, also referred as
weights. The values of the weights are obtained via training: a computationally
intensive procedure, through which a CNN processes large volumes of data
and learns how to perform its respective task. The neurons performing the
same operator form hierarchically organized groups called layers. Typically, a
CNN has one input layer, one output layer, and one or more hidden layers.
The input layer receives the CNN input data (e.g. an image) and passes it to

2 Chapter 1. Introduction

the first hidden layer. The hidden layers transform the input data using the
respective operators, and pass the data from the input layer to the output layer.
Finally, the output layer produces the CNN output (e.g. an image classification
result). A simplified example of a CNN, performing image classification, is
shown in Figure 1.1. The CNN has one input layer, one output layer, and six
hidden layers. The number of layers in the CNN and the number of neurons
per layer are often referred as the CNN depth and width, respectively.

The state-of-the-art CNNs are characterized with large width (hundreds of
neurons per layer) and depth (hundreds to thousands of layers). They have
millions of parameters and perform billions of computations, requiring large
amount of hardware platform resources for their deployment and execution.
Therefore, CNNs are usually deployed on high-performance platforms: GPU
clusters and data centres. For applications, deployed on Edge platforms (mobile
phones, tablets, cameras, etc.), CNNs are typically provided as cloud services.
Execution of a CNN as a cloud service is shown in Figure 1.2 (on the left).
To use a CNN provided as a cloud service, an application deployed at the
Edge communicates with a server over the Internet. First, the application
sends a request to the cloud server. The request contains data collected at
the Edge, e.g., images from a CCTV camera. Then, a CNN deployed on a
high-performance platform in the cloud processes the data (e.g., performs
classification of the images) and sends the result back to the Edge platform.

It is important to note that the communication between the cloud server
and the Edge platform takes place over the Internet. Because of this, execution
of CNNs as cloud services suffers from low responsiveness and has privacy
issues. This is unacceptable for many CNN-based applications. For example,

Figure 1.1: CNN Figure 1.2: Execution of CNNs as cloud services and at the
Edge

1.1. Accuracy and platform-aware characteristics of a CNN 3

CNN-based navigation in self-driving cars [24] cannot tolerate variable and
large response delays occurring due to the communication between the car
and a server. These delays can lead to incorrect navigation of the car and,
subsequently, endanger the life of passengers. Another example is applications
in medicine [62] that use CNNs to analyse private data of patients. These
applications cannot send their data over the Internet because this could lead
to private data leakages and violation of patients’ privacy rights. To address
these concerns, many modern CNN-based applications shift the execution of
CNNs to the Edge. Execution of a CNN at the Edge is shown in Figure 1.2 (on
the right). When executed at the Edge, CNNs are deployed close to the source
of data (e.g. camera or sensors) and to the rest of the CNN-based application
(e.g. camera software, which collects the application data). They do not require
communication over the Internet and ensure high application responsiveness
and security. In this thesis, we focus on deployment and execution of CNNs
at the Edge.

1.1 Accuracy and platform-aware characteristics of a
CNN

Execution of a CNN is characterized by accuracy and platform-aware charac-
teristics. The accuracy of a CNN (typically measured in %) is the fraction of
correct predictions generated by the CNN from the total number of predic-
tions generated by the CNN. It is the main quality metric of a CNN which
quantifies the CNN’s ability to perform its respective task, e.g., to classify
images correctly. The higher the CNN accuracy is, the better the CNN is at
performing its respective task.

The platform-aware characteristics characterize the execution of a CNN on a
target platform. The most common platform-aware characteristics of a CNN
are:

• throughput (typically measured in frames per second, fps), i.e., the amount
of data samples (e.g. images) processed per second;

• latency (typically measured in seconds, s), i.e., the time taken by a CNN
to process one input sample (e.g. one image);

• energy cost (typically measured in Joules), i.e., the total amount of energy,
required by a CNN to process one input sample;

• memory cost (typically measured in MegaBytes, MB), i.e., the total amount
of memory, required to deploy and execute a CNN.

4 Chapter 1. Introduction

1.2 Requirements posed on a CNN executed at the
Edge

While execution of CNNs at the Edge is desirable and beneficial, it is also very
challenging due to numerous requirements posed on the CNNs by the CNN-
based applications and target edge platforms. These requirements concern
the characteristics of a CNN introduced in Section 1.1. With respect to these
characteristics, the most common requirements, posed on CNNs executed at
the Edge, are:

• high accuracy: the CNNs should be able to perform their tasks very well;

• high throughput: applications, such as CNN-based navigation in self-
driving cars [24], require CNNs to process their input data streams fast,
i.e., to have high throughput;

• low latency: many applications, such as navigation in drones [53], re-
quire CNNs to have low latency, i.e., as small as possible delay between
accepting an input and providing the respective output;

• low memory cost: typical edge platforms, used for CNN execution, have
limited amount of memory available. Thus, to be deployed and executed
on these platforms, CNNs should have low memory footprint;

• low energy cost: the energy budget of edge platforms, especially battery-
powered ones such as drones [58], is very limited. Thus, CNNs executed
on such platforms should have low energy consumption.

1.3 Current trends in the design of CNNs executed at
the Edge

State-of-the-art methodologies for designing CNNs executed at the Edge typi-
cally follow the design flow shown in Figure 1.3. The heart of the design flow
is the CNN optimization engine which performs automated search for optimal
CNN architecture and weights. To perform the search, the CNN optimization
engine uses techniques such as platform-aware Neural Architecture Search
(NAS) [9,25,34,38,46,92,105] and CNN compression [41,99,106]. As inputs, the
CNN optimization engine accepts: 1) A set of requirements posed on the CNN.
The typical requirements posed on a CNN executed at the Edge are introduced
in Section 1.2; 2) A search space which determines how the architecture of a

1.3. Current trends in the design of CNNs executed at the Edge 5

Figure 1.3: Current trends in the design and inference of CNN-based applications executed
at the Edge

CNN can be constructed, i.e., which operators can be used by the CNN layers,
which connections exist among the neurons of the layers, how many neurons
and layers can a CNN have, etc. Also, it determines which CNN architectures
are valid. Often specified as a set of rules, the search space defines a very large
or even unbound set of valid CNNs that are able to solve the desired task;
3) (Optionally) A baseline CNN: a well-known, typically hand-crafted CNN,
proven to solve the required task with high accuracy. The baseline CNN de-
termines how the search is initialized, i.e., which CNNs are considered at the
first step of the search. If no baseline CNN is specified, the CNN optimization
engine initializes the search with CNNs randomly selected from the search
space.

After the search is initialized with the first sample set of CNNs, the CNN
optimization engine starts to explore the search space. The sample CNNs
are passed to the CNN characteristics estimation component, which estimates
the accuracy and platform-aware characteristics of the CNNs and returns the
estimations back to the CNN optimization engine. The estimation of the CNN
accuracy typically involves training and validation of the CNN. During the
training, the CNN processes large volumes of data and learns how to perform

6 Chapter 1. Introduction

its task. During the validation, the CNN is applied to new data, unseen during
the CNN training, and the CNN accuracy is computed [78]. The estimation
of the platform-aware characteristics of a CNN involves either direct mea-
surements on the target edge platform [105], or analytical formulas [34], or a
combination of measurements on the platform together with analytical formu-
las [105]. It is worth noting that most of the approaches used for estimation of
the platform-aware characteristics employ the combined estimation. There-
fore, these approaches enable for more efficient (in terms of time and labour)
estimation compared to only measurements on the platform, and more precise
estimation compared to only analytical formulas [54, 60, 103].

Based on the received estimations, the input requirements, and the em-
ployed search/optimization strategy, the CNN optimization engine tries to
improve the characteristics of the sample CNNs by altering the architecture
and (possibly) the amount of CNNs. Typical alterations of a CNN architecture
include changing the size (width and depth) of the CNN, adding and remov-
ing connections between the CNN neurons, reducing the precision of the CNN
data and weights, and others [9,25,41,99,106]. The updated sample CNNs are
then forwarded again for characteristics estimation. Thus, the exploration of
the search space is a cycle, where every iteration involves sampling of CNNs
and estimation of the CNNs’ characteristics. The cycle continues until either a
certain number of iterations is performed or a special condition is met (e.g.,
characteristics of the CNNs no longer improve). The result of the exploration
is a set of CNNs, characterized with different architecture, weights, accuracy,
and platform-aware characteristics. Hereinafter, we refer to these CNNs as to
design points. The design points are passed to the selection component which
chooses a single optimal design point from these CNNs.

The optimal design point is implemented, i.e., represented as an executable
application and deployed on the target edge platform. The implementation
and deployment of a CNN on an edge platform is a complex task requiring in-
depth knowledge in the fields of Deep Learning (DL) and Embedded Systems
Design. Fortunately, this task can be greatly simplified through the use of DL
frameworks such as Keras [19], Pytorch [75], Tensorflow [1], TensorRT [72]
and others [74]. These frameworks provide a highly abstract user-friendly
API for implementation and deployment of CNNs at the Edge together with
a library of highly optimized operators performed by the CNN layers. The
deployed CNN is ready for its inference phase, at which the CNN performs its
respective task on the real-world data collected at the Edge.

1.4. Limitations of the state-of-the-art design flow for CNNs executed at the Edge 7

1.4 Limitations of the state-of-the-art design flow for
CNNs executed at the Edge

In this section, we highlight two limitations that exist in the design flow shown
in Figure 1.3. Also, we show the negative impact of these limitations on the
design of CNNs executed at the Edge.

1.4.1 Limitation 1

The first limitation concerns the search for design points performed by the
CNN optimization engine. As mentioned in Section 1.3, the CNN optimiza-
tion engine explores CNNs with different architectures and weights and tries
to find CNNs that are optimal in terms of the characteristics introduced in
Section 1.1. To estimate the characteristics of the CNNs, the CNN optimization
engine relies on the CNN characteristics estimation component. At this point,
the CNN characteristics estimation component and the CNN optimization
engine adopt Limitation 1: a CNN is assumed to be executed sequentially,
i.e., layer-by-layer. This sequential manner of CNN execution is widely ac-
cepted by the DL frameworks [1, 19, 72, 74, 75] and is often used to execute
CNNs. Nonetheless, layer-by-layer execution is not guaranteed to be optimal
with respect to every edge platform and every set of requirements posed on a
CNN. Recent works [22, 44, 45, 48, 50, 101, 110] show that there are alternative
(non-sequential) manners to execute a CNN at the Edge. Moreover, these
works show that a CNN may have better characteristics when executed in an
alternative manner than when executed layer-by-layer. However, alternative
manners of CNN execution are not explored by the CNN optimization en-
gine. Thus, due to Limitation 1, the existing methodologies for designing
CNNs, executed at the Edge, may miss optimal design points. We illus-
trate this in Figure 1.4 where we show three example CNNs, characterized
with accuracy and throughput, and associated with two manners of CNN

Figure 1.4: CNNs associated with alternative manners of execution

8 Chapter 1. Introduction

execution: 1) the sequential manner, accepted by the DL frameworks and
assumed by the CNN optimization engine (shown as round points); 2) an
alternative (non-sequential) manner, optimal with respect to the target edge
platform and requirement of high throughput, posed on the CNNs (shown as
triangle points). The accuracy of the CNNs does not depend on the manner
the CNNs are executed, and therefore the accuracy is the same for a round
point and a triangle point, associated with the same CNN. For example, the
accuracy of CNN 1 is 95% irrespective of the manner CNN 1 is executed. The
throughput of the CNNs is higher (i.e., better) when a CNN is executed in the
non-sequential manner, optimal with respect to the target edge platform and
requirements posed on the CNN - see the triangle points in Figure 1.4. Thus,
these CNNs have better characteristics (same accuracy and better throughput)
when they are executed in the non-sequential manner (triangle points), than
when they are executed in the sequential manner (round points). However,
due to Limitation 1 mentioned above, the triangle points are missed by the
CNN optimization engine.

1.4.2 Limitation 2

The second limitation concerns the selection of the final CNN from the set
of design points, performed by the selection component shown in Figure 1.3.
Limitation 2 is formulated as follows: currently, from the set of design points
provided by the CNN optimization engine, only one design point (CNN)
is selected to perform the required task in a CNN-based application. With
respect to the posed requirements, the selected CNN is characterized with
certain accuracy and platform-aware characteristics that remain unchanged
during the CNN-based application run-time. As a consequence, the needs of
CNN-based applications, affected by changes in the application environ-
ment during run-time, cannot be optimally served. To illustrate this we give
an example of a CNN-based road traffic monitoring application [53], which
needs vary at the application run-time. The example application is executed
on a drone. While flying, the drone takes images of the road and performs
CNN-based recognition on these images. If there is a car accident or a traffic
jam, the drone reports to the human operator. Depending on the situation on
the roads and the level of the drone battery, the example application poses
different requirements on the CNN. If the traffic is heavy, the application
requires the CNN to have high throughput and high accuracy to process its
input data, which typically means high energy consumption. During a traffic
jam, when the high throughput is not required, or in case the battery of the
drone is running low, the application would function optimally if the CNN

1.5. Research contributions 9

has reduced energy consumption at the cost of decreased throughput. If the
example CNN-based application uses only one CNN to perform road traffic
monitoring, it can either use a CNN with high throughput, high accuracy, and
high energy cost, needed for a heavy-traffic application scenario, or use a CNN
with reduced energy cost, as well as reduced accuracy and throughput. If the
application uses a CNN with high throughput, high accuracy, and high energy
cost, it optimally serves the application needs when the traffic is heavy, but
does not optimally serve the application needs during a traffic jam or when
the drone battery is low. Analogously, if the application uses a CNN with
reduced energy cost, as well as reduced accuracy and throughput, it optimally
serves the application needs during a traffic jam or when the drone battery is
low, but not when the traffic is heavy. Thus, if the application uses only one
CNN, the needs of the application cannot be optimally served during run-time
in a changing application environment.

1.5 Research contributions

In this thesis, we try to relax the two limitations, outlined in Section 1.4,
concerning the state-of-the-art CNN design flow shown in Figure 1.3. By
relaxing the limitations, we try to reduce the negative impact of the limitations
on the design of CNNs executed at the Edge. To this end, we extend the state-
of-the-art CNN design flow shown in Figure 1.3 and explained in Section 1.3.
The extended design flow is shown in Figure 1.5. The new components are
shown in dark green. The extended design flow is one of our important
research contributions. To realize the extended design flow, we propose
other important research contributions (RC), summarized in Section 1.5.1,
Section 1.5.2, Section 1.5.3, and Section 1.5.4, and denoted in Figure 1.5 as RC
1, RC 2, RC 3, and RC 4, respectively.

To relax Limitation 1, we extend the design flow with the system-level
optimization engine. The system-level optimization engine accepts as an input
the design points (CNNs), produced by the CNN optimization engine and
assumed to be executed sequentially (layer-by-layer). The system-level opti-
mization engine searches for alternative (non-sequential) manners to execute
the input CNNs, thereby trying to find optimal design points missed by the
CNN optimization engine. Along with the input CNNs, the system-level
optimization engine accepts requirements posed on the CNNs and an edge
platform model. The edge platform model which will be explained in details
in Section 3.4 provides simplified, yet accurate description of a target edge
platform to aid the search. As an output, the system-level optimization engine

10 Chapter 1. Introduction

manner

Figure 1.5: Extended CNN design flow

produces a set of augmented design points which contains the input CNNs as-
sociated with multiple alternative manners of execution. An example set of
augmented design points is shown in Figure 1.4 and explained in Section 1.4.
As shown in Figure 1.5, we place the system-level optimization engine after
the CNN optimization engine. We note that the system-level optimization en-
gine can also be placed within the CNN optimization engine. However, such
positioning leads to a problem: it requires modifications of existing platform-
aware NAS and CNN compression techniques and tools, used by the CNN
optimization engine. Thus, it violates the principle of software architecture

1.5. Research contributions 11

modularity [80] and greatly complicates the reuse of existing platform-aware
NAS and CNN compression techniques and tools. To avoid this problem,
we place the system-level optimization engine after the CNN optimization
engine. To realize the system-level optimization engine, in this thesis, we
propose and utilize two novel methodologies that explore alternative manners
of CNN execution: the methodology for high-throughput CNN inference,
summarized in Section 1.5.1 and the methodology for low-memory CNN
inference, summarized in Section 1.5.2. In Figure 1.5, the methodologies are
denoted as research contributions RC 1 and RC 2, respectively. It is worth
noting that, while the two proposed methodologies are important for finding
optimal design points, the capabilities of the system-level optimization engine
are not limited to these methodologies. To enrich the performed system-level
optimizations, the system-level optimization engine may integrate other com-
plimentary methodologies such as methodologies proposed in [101] and [93].

To relax Limitation 2, we extend the design flow with the extended selection
component and the post-selection optimization component. The extended selec-
tion component enables for selection of multiple pareto-optimal [18] design
points (CNNs) along with the selection of the single optimal design point,
offered by the (original) selection component. The post-selection optimization
component determines how to optimally use multiple design points to best
serve the needs of a CNN-based application. The post-selection optimization
component introduces run-time adaptivity into a CNN-based application af-
fected by changes in the application environment at run-time, and performs
joint CNNs memory optimization of multiple design points (CNNs) used by a
CNN-based application. As an output, the post-selection optimization com-
ponent produces the final CNN-based application model which embeds the
functionality of the CNNs used by the application as well as the system-level
optimizations introduced into the application. To realize the post-selection
optimization component, we propose and utilize two novel methodologies:
the methodology for run-time adaptive inference of CNN-based applications,
summarized in Section 1.5.3, and the methodology for joint memory opti-
mization of multiple CNNs, summarized in Section 1.5.4. In Figure 1.5, the
methodologies are denoted as research contributions RC 3 and RC 4, respec-
tively.

Finally, we extend the design flow with a component that performs gen-
eration of code with system-level optimizations support. The code generation
component accepts as an input the optimized CNN-based application model,
produced by the post-selection optimization component, and implements this
model. We introduce the code generation component because the optimized

12 Chapter 1. Introduction

CNN-based application model cannot be implemented using only the DL
frameworks that generate CNN-based application code in the state-of-the-art
design flow shown in Figure 1.3. More precisely, the existing DL frameworks
do not support the system-level optimizations (e.g., alternative manners of
CNN execution and run-time adaptivity) embedded into the optimized CNN-
based application model as explained above. Therefore, we extend the design
flow with the code generation component which uses: 1) the existing DL
frameworks to implement the CNNs functionality; 2) custom system-level
design tools to implement the system-level optimizations. As an output, the
code generation component provides an executable file with implementation
of the input CNN-based application model. Although the code generation
component is not presented as a separate research contribution in this thesis,
it is used for implementation of the CNN-based applications and evaluation
of the methodologies summarized in Section 1.5.1, Section 1.5.2, Section 1.5.3,
and Section 1.5.4.

1.5.1 RC1: Methodology for high-throughput CNN inference

In this section, we summarize our novel methodology for high-throughput
CNN inference at the Edge. The proposed methodology is based on our publi-
cation [67] and is explained in details in Chapter 3. The methodology exploits
two types of parallelism, data-level parallelism and task-level parallelism,
available in a CNN, to efficiently distribute (map) the computations within
the CNN to the computational resources of an edge platform. The CNN distri-
bution (mapping) is considered efficient if it ensures high CNN throughput.
To find an efficient CNN mapping, our proposed methodology uses a Ge-
netic Algorithm (GA) [85]. Exploitation of task-level (pipeline) parallelism
together with data-level parallelism is the main novel feature of our proposed
methodology. This feature distinguishes our methodology from the existing
DL frameworks, introduced in Section 1.3, that utilize only task-level (pipeline)
parallelism or only data-level parallelism, available in a CNN, to ensure high
CNN throughput. Thanks to the combined use of task- and data-level paral-
lelism, our proposed methodology takes full advantage of all computational
resources that are available on the edge platform, and ensures very high CNN
throughput. To evaluate our proposed methodology, we perform experiments
where we apply our methodology to real-world CNNs from the Open Neural
Network Exchange Format (ONNX) models zoo [7] and execute the CNNs
on the NVIDIA Jetson TX2 edge platform [71]. We compare the throughput
demonstrated by the CNNs mapped on the Jetson TX2 platform using: 1) our
proposed methodology; 2) the best-known and state-of-the-art TensorRT DL

1.5. Research contributions 13

framework [72] for the Jetson TX2 edge platform. The experimental results
shown that 1.36% to 42% higher throughput is achieved, when the CNNs are
mapped using our methodology. We note that our proposed methodology
considers edge platforms with computational resources composed of CPUs
and GPUs because such platforms are most often used to execute applica-
tions, requiring high CNN throughput [32, 109]. However, extending our
proposed methodology to other types of edge platforms (e.g., FPGA-based
platforms [32]) is straightforward due to the modularity and generality of our
methodology.

1.5.2 RC2: Methodology for low-memory CNN inference

In this section, we summarize our novel methodology for low-memory CNN
inference at the Edge. The proposed methodology is based on our publica-
tion [65] and is explained in details in Chapter 4. To ensure low memory
cost of the CNN inference, the methodology splits the data, processed by
layers of a CNN, in parts and efficiently reuses the edge platform memory,
allocated to store the data parts. Processing data by parts is the key novel fea-
ture of our proposed methodology. It enables our methodology to reduce the
CNN-based application memory footprint without affecting the main CNN
quality metric, i.e., the CNN accuracy. This compares favourably with the
most common CNN memory reduction methodologies such as pruning and
quantization [41, 99, 106] that reduce the CNN inference memory footprint at
the cost of decreased CNN accuracy. However, data processing by parts may
cause CNN execution time overheads (e.g., CNN layers may require time to
switch among the data parts), leading to CNN throughput decrease. Thus, the
proposed methodology reduces the amount of memory occupied by a CNN
at the cost of reduced CNN throughput. The experimental results show that
taking real-world CNNs from the ONNX models zoo [7] and applying our
memory reduction methodology to these CNNs, the CNNs memory cost is
reduced by 2.8% to 38% when compared to the memory reduction achieved
by the state-of-the-art TensorRT DL framework [72].

1.5.3 RC3: Methodology for run-time adaptive inference of CNN-
based applications

In this section, we summarize our novel methodology for run-time adaptive
inference of CNN-based applications. The proposed methodology is based on
our publication [64] and is explained in details in Chapter 5. The methodol-
ogy enables to adapt a CNN-based application to changes in the application

14 Chapter 1. Introduction

environment during run-time. It is based on the concept of scenarios [15],
widely used in embedded systems design. According to this concept, an ap-
plication can have different internal operation modes, called scenarios, each
with its own typical characteristics or/and functionality. During run-time,
the application can switch among the scenarios, thereby adapting its charac-
teristics or functionality to changes in the application environment. In our
scenario-based run-time switching (SBRS) methodology, a scenario is a CNN
designed to conform to a specific set of requirements in terms of accuracy and
platform-aware characteristics. An application can have multiple scenarios
that conform to different application needs. During run-time, the application
can switch among the scenarios, thereby adapting its characteristics to its
needs. To enable for run-time adaptivity, our SBRS methodology represents a
CNN-based application as a novel SBRS model of computation (MoC) which
embeds the functionality of the application scenarios as well as mechanisms
for run-time adaptivity. Additionally, the methodology proposes an SBRS
transition protocol which ensures high application responsiveness during the
scenarios switching. The experimental results, where we apply our methodol-
ogy to three real-world applications from two different domains, show that
our SBRS methodology: 1) Adapts a CNN-based application to changes in the
environment, thereby ensuring optimal service to the needs of the application
at any given point in time; 2) Enables for fast switching between the applica-
tion scenarios due to our novel SBRS transition protocol; 3) Outperforms the
most relevant existing methodology called MSDNet [39].

1.5.4 RC4: Methodology for joint memory optimization of multi-
ple CNNs

In this section, we summarize our novel methodology for joint memory op-
timization of multiple CNNs. The proposed methodology is based on our
publication [66] and is explained in details in Chapter 6. As mentioned ear-
lier, to relax Limitation 2, our extended design flow allows a CNN-based
application to use multiple CNNs instead of one CNN to perform its func-
tionality. However, this may dramatically increase the application memory
cost, while as explained in Section 1.2, low memory cost is required for CNN-
based applications executed at the Edge. Thus, execution of a multi-CNN
application (an application using multiple CNNs) at the Edge may require
aggressive optimizations to reduce the application memory cost. Typically,
these optimizations are performed using methodologies such as pruning and
quantization [41,99,106]. These methodologies reduce the number or precision
of CNN parameters, thereby reducing the CNN memory cost. However, at

1.6. Thesis organization 15

high CNN memory reduction rates, these methodologies decrease the CNN
accuracy, while as mentioned above, high CNN accuracy is very important
for many CNN-based applications. To achieve high CNN memory reduc-
tion and avoid substantial decrease of CNN accuracy, the CNN pruning and
quantization methodologies can be combined with the CNN memory reuse
methodologies such as the methodologies in [47] and [76]. Orthogonal to the
pruning and quantization methodologies, the CNN memory reuse method-
ologies reuse the platform memory allocated to store intermediate CNN com-
putational results, produced by the CNN layers. Thus, these methodologies
further reduce the application memory cost without decreasing the CNN ac-
curacy. However, these methodologies account for the state-of-the-art CNN
design flow shown in Figure 1.3, and thus adopt Limitation 1 and Limitation
2, outlied in Section 1.4. Due to Limitation 1, these methodologies do not
account for non-sequential manners of CNN execution, and are often unfit
for CNNs executed in a non-sequential manner. Due to Limitation 2, these
methodologies can reuse platform memory within a CNN, but not among mul-
tiple CNNs, thereby missing opportunities for inter-CNN memory reuse. To
address these issues, we propose our methodology for joint memory optimiza-
tion of multiple CNNs. Unlike the existing memory reuse methodologies, our
proposed methodology reuses memory among multiple CNNs, and is suitable
for CNNs executed in a non-sequential manner. To evaluate our proposed
methodology, we perform experiments where we apply our methodology to
six real-world state-of-the-art CNN-based applications. The experimental re-
sults show that our methodology enables for up to 6 times memory reduction,
compared to deployment of CNN-based applications with no memory reduc-
tion and 10% to 30% memory reduction, compared to other CNN memory
reuse methodologies. Additionally, the experimental results demonstrate that
our methodology can be efficiently combined with orthogonal methodologies
such as CNN pruning and quantization.

1.6 Thesis organization

Below, we give an outline of this thesis, summarizing the contents of the
following chapters. Chapter 2 presents the background, i.e., concepts neces-
sary to understand the contributions of this thesis. Chapter 3 to Chapter 6
contain the main contributions of this thesis. Each chapter is organized in a
self-containing manner, meaning that each chapter contains a more specific
introduction to the research problem and contribution, a related work, the pro-
posed solution methodology, an experimental evaluation, and a concluding

16 Chapter 1. Introduction

discussion.
Chapter 3 presents our novel methodology for high-throughput CNN

inference. This chapter is based on our publication [67].
Chapter 4 presents our novel methodology for low-memory CNN infer-

ence. This chapter is based on our publication [65].
Chapter 5 presents our novel methodology for run-time adaptive inference

of CNN-based applications. This chapter is based on our publication [64].
Chapter 6 presents our novel methodology for joint memory optimization

of multiple CNNs. This chapter is based on our publication [66].
Finally, Chapter 7 ends this thesis by providing a summary and concluding

remarks for the research work presented in this thesis.

Chapter 2

Background

IN this chapter, we present an overview of concepts essential to understand
the contributions of this thesis. In Section 2.1, we present the CNN model

used to represent a CNN in this thesis. In Section 2.2, we describe the CNN
deployment and inference at the Edge, briefly introduced in Section 1.3 because
in this thesis, we study and propose novel methodologies for efficient CNN
deployment and inference at the Edge. In Section 2.3, we introduce a typical
edge platform used to execute CNNs inference. Namely, we introduce the
well-known and state-of-the-art NVIDIA Jetson TX2 platform [71], used to
perform experiments in this thesis. In Section 2.4, we explain the task- and
data-level parallelism available in a CNN. We exploit the aforementioned
types of parallelism to ensure efficient inference of CNNs at the Edge. In
Section 2.5, we briefly describe the Cyclo-Static Data Flow (CSDF) [10] and
the Synchronous Data Flow (SDF) [57] models of computation, widely used
in the Embedded Systems community to represent applications executed
at the Edge. Unlike the CNN model, introduced in Section 2.1, the SDF
model and the CSDF model explicitly specify the parallelism, available within
an application (or a part of an application such as a CNN), and enable for
modelling of various manners of application execution. In this thesis, we use
the CSDF model and the SDF model to represent an augmented design point
(i.e., a CNN, executed in a specific manner) briefly introduced in Section 1.5.
Finally, in Section 2.6, we describe the basic concepts of a Genetic Algorithm
(GA): a well-known heuristic approach, widely used for finding optimal
solutions for complex Design Space Exploration (DSE) problems. Some of the
methodologies, presented in this thesis, are based on a GA.

18 Chapter 2. Background

2.1 CNN model

A Convolutional Neural Network (CNN) is commonly represented as a di-
rected acyclic computational graph CNN(L, E) with a set of nodes L, also
called layers, and a set of edges E. An example of a CNN model with a set of
layers L = {l1, l2, l3, l4, l5} and a set of edges E = {e12, e23, e34, e45} is shown in
Figure 2.1.

Figure 2.1: CNN model

The CNN model specifies transformations over the CNN input data (e.g.
an image), that result into the CNN output data (e.g. an image classification
result). The transformations are specified by the set of layers L. Edges in the
set E specify data dependencies between the layers and determine the flow
of data in a CNN. The detailed explanation and formal definition of a layer
li ∈ L and an edge eij ∈ E of the CNN model are given in Section 2.1.1 and
Section 2.1.2, respectively.

2.1.1 Layer in the CNN model

Every layer li in the CNN model represents part of the CNN functionality.
It accepts as an input some data, produced by other layers, transforms this
data using a mathematical operator, and provides output data. Formally, we
define layer li as a set of attributes, summarized in Table 2.1. Column 1 lists
the attributes; Column 2 provides a description of each attribute; Column 3
lists limitations, posed on the attribute by the CNN model; Column 4 shows
the default value of an attribute, i.e., the value assigned to the attribute which
is not defined explicitly. We note that some of the attributes (e.g., attributes Ii
and Oi shown in Rows 4 to 5 in Table 2.1) only take the default value. Below,
we explain the attributes of layer li, summarized in Table 2.1, using as an
example layer l2 shown in Figure 2.1.

Attributes typei and opi (Rows 2 to 3 in Table 2.1) specify the type and
performed operator of layer li, respectively [4]. These attributes determine
the main difference between the layers of a CNN. The most common types of

2.1. CNN model 19

Table 2.1: Attributes of layer li

attribute description limitations default value

typei
layer supported by the for known opi
type CNN model (see Table 2.2) see Table 2.2

opi operator restricted by -typei (see Table 2.2)
Ii input edges Ii ⊆ E : ∀eji ∈ E, eji ∈ Ii

Oi output edges Oi ⊆ E : ∀eij ∈ E : eij ∈ Oi
Xi input data see Equation 2.1
Yi output data see Equation 2.2

Θi
sliding has smaller or equal window of size

window size compared to Xi khix kwi

khi

0 < khi ≤ Xi.h; Xi.h if typei ∈{data,FC},
kernel typically khi = kwi; else 1
height khi = Xi.h if

typei ∈{data,FC}

kwi

0 < kwi ≤ Xi.w; Xi.w if typei ∈{data,FC},
kernel typically kwi = khi; else 1
width kwi = Xi.w if

typei ∈{data,FC}
si = 1 if opi /∈

si stride {conv, max pool, 1
average pool}

padi padding an array of four [0,0,0,0]integer numbers

pari
(trainable) a set of parameters, ∅parameters specific for CNN layer [4]

Table 2.2: Most common CNN layer types and operators

layer type operators
convolutional conv
pooling (global) max pool, (global) average pool
activation ReLU, thn, sigmoid
data input, output
fully connected (FC) GEMM, MatMUL, dot
loss softmax
normalization BatchNormalization, LRN
arithmetic add
transformation concat

20 Chapter 2. Background

layers and operators performed by layers of these types are shown in Table 2.2.
For example, layer l2 shown in Figure 2.1 has type2 = convolutional and
performs operator op2 = conv. Operator op2 performed by layer l2 is explicitly
specified in Figure 2.1, thus the type of layer l2 is determined using Table 2.2.

Attributes Ii and Oi (Rows 4 to 5 in Table 2.1) specify the input and output
edges of layer li, respectively. For example, layer l2 shown in Figure 2.1 has
input edges I2 = {e12} and output edges O2 = {e23}.

Attributes Xi and Yi (Rows 6 to 7 in Table 2.1) specify the input and output
data of layer li, respectively. These attributes always take the default value,
computed using Equation 2.1 and Equation 2.2.

Xi =

{
eji.data : eji ∈ Ii if |Ii| = 1
{eji.data}, ∀eji ∈ Ii otherwise

(2.1)

Yi =

{
eij.data : eij ∈ Oi if |Oi| > 0
∅ otherwise

(2.2)

The value of attribute Xi is computed using Equation 2.1, where eji.data is
the data accepted by layer li and associated with input edge eji ∈ Ii of layer
li; |Ii| is the total number of input edges of layer li. Typically, layer li has
one input edge, i.e., |Ii| = 1. In this case, input data Xi of layer li is the data
eji.data, associated with the only input edge eji of layer li. For example, layer l2
shown in Figure 2.1 has one input edge e12, and has input data X2 = e12.data.
However, some layers may accept as an input data coming from multiple
input edges (e.g., layers performing operator concat [4]) or accept no input
data (e.g., layers performing the operator input [4]). Layers that accept no
input data have |Ii| = 0 and Xi = ∅.

Analogously, the value of attribute Yi is computed using Equation 2.2,
where eij.data is the data produced by layer li and associated with output edge
eij ∈ Oi of layer li; |Oi| is the total number of output edges of layer li. Typically,
layer li has at least one output edge and produces data Yi ̸= ∅, broadcasted
to every output edge of layer li. For example, layer l2 shown in Figure 2.1
produces output data Y2 = e23.data onto its output edge e23. However, some
layers (e.g., layers performing the operator output [4]) do not produce data.
These layers have |Oi| = 0 and Yi = ∅.

Attributes Θi, khi, kwi, si, and padi (Rows 8 to 12 in Table 2.1) are the
hyper-parameters of layer li [4]. These attributes, obtained during the CNN
design, specify how the layer processes its input data. To process its input data
Xi, layer li moves along Xi with sliding window Θi and stride si, applying
operator opi to the area of Xi, covered by Θi. The sliding window Θi has

2.1. CNN model 21

Figure 2.2: Processing of input data X2 by layer l2

smaller or equal size, compared to Xi. The height and width of window Θi are
typically equal to the kernel height khi and kernel width kwi of layer li, while
the number of channels of Θi is typically equal to the number of channels of
Xi [4]. The areas, covered by Θi, can overlap. Figure 2.2 shows an example,
where layer l2 shown in Figure 2.1 processes its input data by four parts,
covered by sliding window Θ2 of size 3 x 3 x 3 pixels, and stride s2 = 1 pixel.

Before processing its input data, layer li may crop or extend its input data
Xi to data X′i with padding [4]. Typically, this is done to ensure that the input
data of layer li can be covered by sliding window Θi of layer li integer number
of times [4]. We specify the padding of layer li as attribute padi (Row 12 in
Table 2.1). padi is an array of four integer numbers. Elements of padi, referred
as padi[0], padi[1], padi[2], and padi[3], respectively, specify the crop/extension
of the height and width of data Xi as given in Equation 2.3 and Equation 2.4,
respectively.

X′i .w = padi[0] + Xi.w + padi[2] (2.3)

X′i .h = padi[1] + Xi.h + padi[3] (2.4)

By default, layer li has padi = [0, 0, 0, 0], which means that layer li does
not crop or extend its input data Xi before processing. Figure 2.3 shows an
example where layer l2 crops (see Figure 2.3 (a)) and extends (see Figure 2.3
(b)) its input data Xi with padding pad2 = [0,0,-1,-1] and pad2 = [1,1,1,1],
respectively.

Beside the hyper-parameters, layer li has (trainable) parameters such as
weights and biases [4], specified as attribute pari (Row 13 in Table 2.1). As
mentioned in Chapter 1, these parameters of layer li are obtained during the

22 Chapter 2. Background

(a) crop (b) extension

Figure 2.3: Padding

CNN training and are used by operator opi of layer li. For example, layer l2
has parameters par2 composed of weights W2 and biases B2, used to perform
op2 = conv.

2.1.2 Edge in the CNN model

Every edge eij ∈ E in the CNN model specifies a data dependency between
layers li and lj of a CNN, such that the data produced by layer li is accepted as
an input by layer lj. Formally, we define edge eij as a tuple (li, lj, data), where
data is the data produced by layer li, accepted by layer lj, and associated with
edge eij. The data associated with edge eij is stored in a multidimensional array
called tensor [4]. In this thesis, every data tensor has the shape [batch, h, w, ch],
where batch, h, w, ch are the batch size [4], the height, the width, and the
number of channels of the tensor, respectively. An example of edge e12 =
(l1, l2, data) is shown in Figure 2.1. Edge e12 represents the data dependency
between layers l1 and l2, where layer l2 accepts as an input the data produced
by layer l1. Edge e12 is annotated with shape [1,4,4,3]. This means that the
data tensor, exchanged between layers l1 and l2, and associated with edge e12
has batch size = 1, height and width = 4, and number of channels = 3.

2.2 CNN deployment and inference at the Edge

The CNN inference is a process of applying the CNN to real-world data
(e.g., images) and obtaining the CNN output (e.g., results of the input images
classification). Nowadays, the CNN inference can be performed on a wide
variety of hardware platforms. In this thesis, we concentrate on the CNN
inference performed on edge (mobile and embedded) platforms, presented in
Section 2.3.

2.2. CNN deployment and inference at the Edge 23

Before the CNN inference can start, the CNN is deployed on a target plat-
form, i.e., some memory of the platform is allocated to the CNN. The total
amount of memory (in bytes), allocated to a CNN is computed as:

m = mpar + mbu f (2.5)

where mpar is the memory, required to store the CNN parameters (weights
and biases) and computed using Equation 2.6; mbu f is the memory, required
to store the CNN intermediate computational results and computed using
Equation 2.7.

mpar = ∑
i∈[1,|L|]

|pari| ∗ par_size (2.6)

In Equation 2.6, |pari| is the total number of parameters, associated with
layer li ∈ L of the CNN; par_size is the size of one parameter in bytes;

mbu f = ∑
Bk∈B

Bk.size (2.7)

In Equation 2.7, B is a set of buffers, i.e., the memory segments, allocated
to store the intermediate computational results of a CNN [76]. Every buffer
Bk ∈ B has one or several CNN edges eij allocated to it. Buffer Bk stores data
eij.data, exchanged between CNN layers li and lj during the CNN inference
and is characterized with size (in bytes) computed as:

Bk.size = maxeij∈Bk .edges{|eij.data| ∗ token_size} (2.8)

In Equation 2.8, eij ∈ Bk.edges is an edge, storing data in buffer Bk; |eij.data|
is the total number of data elements (tokens), exchanged through edge eij;
token_size is the size of one token in bytes.

A CNN deployed on an edge platform can start its inference phase when
the CNN can utilize the memory and the computational resources available
on the platform to perform the CNN functionality, i.e., to execute all the
layers in the CNN. Every layer can be executed on processors, such as CPUs,
GPUs and/or FPGAs [17], available in the platform. If a platform has parallel
processors (accelerators), such as GPUs or FPGAs, computations within the
layer can be represented as one or multiple kernels [17] and offloaded on these
accelerators by the CPUs. Otherwise, these computations are performed on the
CPUs. If the computations within a CNN layer are offloaded on an accelerator
with local memory, e.g., a GPU, the CNN layer input data and parameters,
required to perform the computations, are copied from the main memory into

24 Chapter 2. Background

the local memory of the accelerator and the results of the computation are
copied back to the main memory.

The layers of a CNN are executed in a specific order, determined by the data
dependencies within the CNN and the manner the CNN is executed. Typically,
the CNN layers are executed in a sequential manner, where the CNN execution
is represented as |L| computational steps and at every i-th computational step,
CNN layer li ∈ L is executed. However, as it will be explained in Section 2.4,
a CNN can also be executed in alternative (non-sequential) manners, that involve
exploitation of task-level (pipeline) parallelism, where the layers of the CNN
are executed in parallel (pipelined) fashion. In this thesis, we consider both
sequential and non-sequential manners of CNN execution. To represent a
CNN, executed in a specific manner, we use the CSDF and SDF models of
computation, presented in Section 2.5.

2.3 Edge platform used for CNN inference

Modern edge platforms used to execute the CNN inference are complex sys-
tems that host a large number of specific hardware components: processors,
memory, power supply elements, sensors and others [32, 109]. Figure 2.4
shows a simplified structure of the NVIDIA Jetson TX2 edge platform [71]:
one of the best-known edge platforms used to execute CNNs.

To perform computations within a CNN, an edge platform may host
multiple heterogeneous processors such as central processing units (CPUs),
graphics processing units (GPUs), field-programmable gate arrays (FPGAs),
and/or Tensor Processing Units (TPUs) [32, 109]. For example, the Jetson
TX2 platform shown in Figure 2.4 hosts a double-core Denver 2 CPU and a

Figure 2.4: Jetson TX2 edge platform

2.4. Task- and data-level parallelism available in a CNN 25

quad-core ARM Cortex A57 CPU as well as an integrated Pascal GPU with
a total of 256 CUDA cores. When the inference of a CNN is executed on the
Jetson TX2 platform, computations within the CNN are typically performed
on the GPU.

The memory infrastructure of an edge platform is used to store the CNN
data and parameters, required for proper CNN inference. It typically consists
of a main memory, accessible by all processes available on the platform, and
a set of local memories, only accessible by specific processor(s). For example,
the memory infrastructure of the Jetson TX2 platform shown in Figure 2.4
consists of the 8 GB LDDR4 DRAM, accessible by all the processors, available
on the platform, as well as the host_memory and device_memory, i.e., the local
memories, accessible only by the CPUs and the GPU, respectively.

The power supply elements of an edge platform provide power to all
components available on the platform. Some edge platforms carry batteries
that provide an autonomous limited power supply to the edge device. The
Jetson TX2 platform, however, does not have a battery and requires an external
power supply.

Finally, other components, available on the platform, e.g., video encoders
and decoders, are used to collect data and facilitate parts of a CNN-based
application other than the CNN itself.

2.4 Task- and data-level parallelism available in a CNN

As a computational model the CNN model is characterized with large amount
of available parallelism. This parallelism can be exploited to speed-up the
CNN inference and to efficiently utilize computational resources of an edge
platform, where the CNN is executed.

The most widely exploited type of parallelism available within CNNs is
the data-level parallelism, illustrated in Figure 2.5. This type of parallelism
involves the same computation, e.g., Convolution, performed by a CNN layer
over the CNN layer input data partitions. Efficient utilization of data-level
parallelism allows to speed-up the inference of a CNN by accelerating the
execution of individual CNN layers. This type of parallelism is exploited by
the majority of existing Deep Learning (DL) frameworks, such as Keras [19],
Pytorch [75], Tensorlow [1], TensorRT [72] and others [74]. The data-level
parallelism, available within layer li of a CNN can be explicitly expressed by
decomposition of the layer input data tensor Xi into a set of K sub-tensors
{Xi1, Xi2, ..., XiK}, where: 1) all sub-tensors Xik, k ∈ [1, K] can be processed in
parallel by operator opi. When layer li applies operator opi to Xik, it produces

26 Chapter 2. Background

Figure 2.5: data-level parallelism

sub-tensor Yik of output data Yi; 2) elements (pixels) within every Xik can be
processed in parallel. Figure 2.5 illustrates the data-level parallelism, available
within convolutional layer l2, shown in Figure 2.1 and explained in Section 2.1.
In Figure 2.5, input data tensor X2 of layer l2 is decomposed into K = 4
overlapping sub-tensors X2k, k ∈ [1, 4] that can be processed in parallel. When
layer l2 processes sub-tensor X2k with operator op2 = conv, it produces sub-
tensor Y2k of output data Y2, such that Y2 = ∪4

k=1Y2k. Every sub-tensor X2k
shown in Figure 2.5 is subsequently decomposed into a set of pixels, where
every pixel can be processed in parallel.

Another type of parallelism available in a CNN is known as task-level
parallelism or pipeline parallelism [67, 101] among the CNN layers. This type
of parallelism is related to the streaming nature of a CNN-based application,
where the application accepts different input frames (images) from an input
data stream. When a CNN is executed on a platform with multiple processors,
the frames from the input data stream can be processed in a pipelined fashion
by different layers of the CNN deployed on different processors.

2.4. Task- and data-level parallelism available in a CNN 27

Figure 2.6: task-level (pipeline) parallelism

Figure 2.6 shows an example where the CNN shown in Figure 2.1 and
explained in Section 2.1 is executed in a pipelined fashion on a platform with
two processors: a CPU and a GPU. The layers of the CNN, representing
computations within the CNN, are distributed over the platform processors:
layers l1 and l2 are executed on the GPU, while layers l3, l4, and l5 are executed
on the CPU. The distributed layers form two CNN sub-graphs also referred
as partitions [67, 101], annotated as Subnet1 and Subnet2. Partition Subnet1
accepts frames from the application input data stream, processes these frames
as specified by layers l1 and l2 and stores the results into a buffer associated
with edge e23. Partition Subnet2 accepts the frames processed by partition
Subnet1 from edge e23, further processes these, frames and produces the output
data of the example CNN. Partitions Subnet1 and Subnet2 are executed on
different processors in the platform and do not compete for the platform
computational resources. Thus, when applied to different data (i.e., different
frames), the partitions can be executed in parallel. In Figure 2.6, partitions
Subnet1 and Subnet2 process frames frame 2 and frame 1 in parallel. This leads
to overlapping execution of layers belonging to different partitions and enables
for faster inference of the CNN, compared to conventional layer-by-layer
(sequential) execution. However, pipelined CNN execution involves memory
overheads. As shown in Figure 2.6, edge e23 of the example CNN is duplicated
between the partitions Subnet1 and Subnet2 (see edges e(1)23 and e(2)23 and the
corresponding buffers). Such duplication, called the double-buffering [37], is
necessary for execution of the CNN as a pipeline. It prevents competition for
memory (buffers) between the partitions when accessing data associated with
edge e23. If the double buffering is not enabled the CNN partitions compete

28 Chapter 2. Background

for access to edge e23, thereby creating stalls in the pipeline and reducing the
CNN throughput.

It is worth noting that the parallelism available in a CNN is not explic-
itly specified in the CNN model, introduced in Section 2.1. The number of
parallel tasks, executed to perform the CNN model functionality, and the
exact communication and synchronization mechanisms between these tasks
are internally determined by the utilized DL framework, and can vary for
different frameworks. For example, the well-known DL frameworks [1, 75]
represent the functionality of every CNN layer li as multiple tasks, where
the total number of tasks depends on the number of CPUs available on the
target edge platform. The frameworks [94, 101] represent the functionality
of the same layer li as one task or part of a task. Therefore, the task-level
parallelism is not explicitly specified in the CNN model. Analogously, the
data-level parallelism is not explicitly defined in the CNN model because the
number of input/output data sub-tensors K, the number of elements within
sub-tensors Xik and Yik, and other decomposition parameters are determined
by every design framework individually, can vary for different frameworks,
and even within one framework. For example, the TensorRT framework [72]
is capable of representing the conv operator as: 1) the GEMM operator, so for
every Convolutional layer K = 1; 2) a direct convolution where K >= 1 is
computed from the attributes of a layer, performing the conv operator.

2.5 CSDF and SDF models of computation

The CSDF model [10] is a well-known dataflow model of computation, widely
used for model-based design in the embedded systems community. An ap-
plication modelled as a CSDF is a directed graph G(A, C) with set of nodes
A, also called actors, communicating with each other through a set of com-
munication FIFO channels C. Figure 2.7 shows an example of a CSDF model
G(A, C), where A = {a1, a2, a3, a4, a5} and C = {c12, c22, c23, c34, c45}.

Every actor ai ∈ A in the CSDF model represents a certain functionality
of the application, modelled as a CSDF graph, and performs an execution
sequence Fi = [fi(1), fi(2), · · ·, fi(Pi)] of length Pi, where p ∈ [1, Pi] is called a
phase of actor ai. At every phase actor ai executes function fi(((p− 1)modPi) +
1). An example of CSDF actor a2 is shown in Figure 2.7. Actor a2 performs
execution sequence F2 = [conv, conv], shortly written as [2 ∗ conv], meaning
actor a2 has P2 = 2 phases and performs function f2(p) = conv at each of its
phases p ∈ [1, 2].

Every FIFO communication channel cij ∈ C represents a data dependency

2.5. CSDF and SDF models of computation 29

Figure 2.7: CSDF model of computation

and transfers data in tokens between its source actor ai and its sink actor aj.
Every cij ∈ C has production sequence Uij and consumption sequence Vij.
Production sequence Uij : [uij(1), uij(2),..., uij(Pi)] of length Pi specifies the
production of data tokens into channel cij by its source actor ai. Analogously,
consumption sequence Vij : [vij(1), vij(2),..., vij(Pj)] of length Pj specifies the
consumption of data tokens from channel cij by its sink actor aj. An example
of communication channel c22 is shown in Figure 2.7. For communication
channel c22, actor a2 is a source and a sink actor. The production sequence
U22 : [24, 0], formally written as U22 : [1 ∗ 24, 1 ∗ 0] specifies, that at phase
p = 1 actor a2 produces 24 tokens to channel c22, and at phase p = 2 actor
a2 produces 0 tokens to channel c22. Analogously, the consumption sequence
V22 : [1 ∗ 0, 1 ∗ 24], specifies that during phase p = 1 actor a2 consumes 0
tokens from channel c22, and at phase p = 2 actor a2 consumes 24 tokens from
channel c22.

A special case of the CSDF model, where every actor has only one phase, is
called Synchronous Data Flow (SDF) model [57]. An example of a SDF model
is shown in Figure 2.8.

At every firing, actor ai ∈ A of the SDF model consumes vki(1) data tokens,
executes function fi(1) and produces uij(1) data tokens. For example, actor
a2 shown in Figure 2.8, at every firing consumes 48 data tokens from channel
c12, executes function f2(1) = conv and produces 8 data tokens to channel c23.
For simplicity, we omit the number of phases while annotating the execution

Figure 2.8: SDF model of computation

30 Chapter 2. Background

sequence, the production sequence, and the consumption sequence of the SDF
model. For example, the consumption sequence of actor a2 shown in Figure 2.8
is annotated simply as [48] instead of [1 ∗ 48].

2.6 Genetic Algorithm (GA)

Genetic Algorithm (GA) [83] is a well-known heuristic approach, widely used
for finding optimal solutions for complex Design Space Exploration (DSE)
problems. In a GA, a population of candidate solutions to an optimization
problem is evolved toward better solutions. A GA has two important problem-
specific attributes: a chromosome and a fitness function.

A chromosome is a genetic representation of the solution. Typically, a chro-
mosome is defined as a set of parameters (genes), joined into a string. An
example of a chromosome is shown in Figure 2.9 This chromosome shows
a distribution (mapping) of the computations within the layers of the CNN
shown in Figure 2.1 and explained in Section 2.1 onto the computational re-
sources of the Jetson TX 2 edge platform shown in Figure 2.4 and explained
in Section 2.3. The chromosome shown in Figure 2.9 is a string of 5 genes,
where every i-th gene, i ∈ [1, 5], specifies a processor of the Jetson TX 2 plat-
form which performs computations within layer li of the CNN. For example,
the chromosome specifies that computations within layer l1 of the CNN are
performed on the GPU of the Jetson TX 2 platform.

A fitness function is a special function, which evaluates the quality of GA
solutions, represented as chromosomes, and guides the GA-based search fro
(pareto) optimal solutions. During the search, the fitness function should be
minimized or maximized. For example, a fitness function can estimate the
throughput of inference of the CNN, shown in Figure 2.1 and executed on
the Jetson TX2 platform as specified in the chromosome shown in Figure 2.9.

Figure 2.9: Chromosome Figure 2.10: Single-gene mutation

Figure 2.11: Simple two-parent recombination (cross-over)

2.6. Genetic Algorithm (GA) 31

If this fitness function is maximized during a GA-based search, it will guide
the search towards finding chromosomes that ensure high CNN inference
throughput.

Once the chromosome and the fitness function are defined, a GA can
proceed to perform evolution, i.e., search for optimal solutions. The evolution
is an iterative process. It starts from a population of randomly generated
chromosomes. At each iteration, the fitness of every chromosome in the
population is evaluated using the fitness function. Then, the chromosomes
with the best score are selected from the population and are subjected to two
genetic operators, called recombination (cross-over) and mutation. During the
re-combination two selected chromosomes exchange parts (typically, halves)
to produce a new chromosome. During the mutation, one or multiple genes
of the chromosome randomly change their values. In this thesis, we use a
standard two-parent crossover and a single-gene mutation as proposed in [83]
and illustrated in Figure 2.11 and Figure 2.10, respectively. The new population
of candidate chromosomes, generated using the recombination and mutation,
is used in the next iteration of the GA-based search. The GA-based search
terminates when either a maximum number of iterations or a termination
condition (e.g., satisfactory fitness level) has been reached.

Beside the two problem-specific attributes, mentioned above, a GA also
has a number of parameters such as the maximum number of GA iterations,
the number of individuals in the initial population, the probability of mutation
in the chromosomes and others [83]. These parameters are typically user-
defined.

32 Chapter 2. Background

Chapter 3

Methodology for
high-throughput CNN inference

Svetlana Minakova, Erqian Tang, Todor Stefanov. "Combining Task- and Data-level
Parallelism for High-Throughput CNN Inference on Embedded CPUs-GPUs MPSoCs".
In Proceedings of the International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS), pp. 18-35, Pythagoreio, Samos Island, Greece, July
05-09, 2020.

IN this chapter, we present our methodology for high-throughput CNN
inference at the Edge, which corresponds to the first research contribution

of this thesis summarized in Section 1.5.1. The proposed methodology is a
part of the system-level optimization engine, introduced in Section 1.5 and is
aimed at relaxation of Limitation 1, introduced in Section 1.4.1. The reminder
of this chapter is organized as follows. Section 3.1 introduces, in more details,
the problem addressed by our novel methodology. Section 3.2 summarizes the
novel research contributions, presented in this chapter. An overview of the
related work is given in Section 3.3. Section 3.4 presents the platform model,
used in this Chapter to represent a target edge platform, where the high-
throughput CNN inference is executed. Section 3.5 presents our proposed
methodology. Section 3.6 presents the experimental study performed by using
the proposed methodology. Section 3.7 ends the chapter with conclusions.

34 Chapter 3. Methodology for high-throughput CNN inference

3.1 Problem statement

As mentioned in Chapter 1 (see Section 1.2), many CNN-based applications re-
quire CNNs to process their input data streams fast, i.e., to have high through-
put. These applications are often executed on edge platforms based on CPUs-
GPUs multi-processor systems-on-chip (MPSoCs) [63]. Due to their specific
design, CPUs-GPUs MPSoCs offer energy-efficient and high-performance so-
lutions, which makes them very suitable for running high-throughput CNN
inference at the Edge [14]. However, achieving high-throughput execution
of the computationally-intensive CNN inference phase on embedded CPUs-
GPUs MPSoCs is a complex task.

On the one hand, it requires effective utilization of parallelism, available
in a CNN. When the CNN inference is executed on an embedded CPUs-
GPUs MPSoC, the CNN computational workload is distributed among the
heterogeneous MPSoC processors: embedded CPUs and GPUs. Due to their
specific structure, the CPUs are more suitable for handling task-level paral-
lelism, compared to GPUs, whereas GPUs are more suitable for handling
data-level parallelism, compared to CPUs [88]. Thus, for efficient execution
of the CNN inference on an embedded MPSoC, the task-level parallelism
should be handled by the CPUs, available in an embedded MPSoC, i.e., dif-
ferent CNN layers should, if possible, be executed on different CPUs, and
the overall CNN computational workload should be balanced among the
CPUs [6]. Additionally, the data-level parallelism, available within CNN lay-
ers, should be handled by embedded GPUs, i.e., the embedded CPUs should
offload data-parallel computations within the CNN layers onto the embedded
GPUs, thereby accelerating the computations within CNN layers for further
improvement of the CNN inference throughput, already achieved by efficient
task-level parallelism exploitation. Thus, efficient execution of the CNN infer-
ence on an embedded CPUs-GPUs MPSoC involves efficient exploitation of
both task-level parallelism and data-level parallelism, available in the CNN.

On the other hand, effective utilization of task- and data-level parallelism
requires proper communication and synchronization between tasks, executed
on different processors of an embedded MPSoC. In this respect, attempting to
utilize an unnecessary large amount of CNN parallelism on limited embedded
MPSoC resources, results in unnecessary communication and synchronization
overheads, that reduce the CNN inference throughput. Thus, to achieve high
CNN inference throughput, the CNN inference, executed on an embedded
MPSoC, should utilize the right amount of parallelism, which matches the
computational capacity of the MPSoC.

Based on the discussion above, we argue, that efficient execution of the

3.2. Contributions 35

CNN inference on a CPUs-GPUs embedded MPSoC requires:

1. efficient handling of the task-level parallelism, available in a CNN, by
CPUs;

2. CPU workload balancing;

3. efficient handling of the data-level parallelism, available in a CNN, by
GPUs;

4. efficient exploitation of task- and data-level parallelism, which matches
the computational capacity of an embedded MPSoC.

However, the existing Deep Learning (DL) frameworks [1, 42, 43, 49, 72, 74,
75,90,94,101], that enable execution of the CNN inference on embedded CPUs-
GPUs MPSoCs, only partially satisfy requirements 1) to 4), mentioned above.
These frameworks can be divided into two main groups. The first group
includes frameworks [101] and [94], that exploit only task-level parallelism,
available in a CNN, and efficiently utilize only embedded CPUs. Thus, these
frameworks satisfy requirements 1) and 2), mentioned above, and do not
satisfy requirement 3). The second group includes frameworks [1, 42, 43, 49,
72, 74, 75, 90], that exploit only data-level parallelism, available in a CNN,
and efficiently utilize only embedded GPUs. Thus, these frameworks satisfy
requirement 3), mentioned above, but do not satisfy requirements 1) and 2).
Moreover, all frameworks [1, 42, 43, 49, 72, 74, 75, 90, 94, 101] directly utilize the
CNN computational model to execute the CNN inference on embedded CPUs-
GPUs MPSoCs. The large amount of parallelism, available in a CNN model,
typically does not match the limited computational capacity of embedded
CPUs-GPUs MPSoC. Thus, frameworks [1, 42, 43, 49, 72, 74, 75, 90, 94, 101] do
not satisfy requirement 4), mentioned above.

Therefore, in this chapter, we propose a novel methodology for efficient
execution of the CNN inference on embedded CPUs-GPUs MPSoCs.

3.2 Contributions

In this chapter, we propose a novel methodology for execution of the CNN
inference on embedded CPUs-GPUs MPSoCs (Section 3.5). Our methodology
exploits task-level (pipeline) and data-level parallelism, available in a CNN
and explained in Section 2.4, to efficiently distribute (map) the computations
within the CNN to the computational resources of an edge platform. Thus, our
methodology takes full advantage of all CPU and GPU resources, available

36 Chapter 3. Methodology for high-throughput CNN inference

in an MPSoC, and ensures high-throughput CNN inference execution on the
MPSoC. Exploitation of task-level (pipeline) parallelism together with data-
level parallelism for high-throughput CNN inference at the edge is our main
novel contribution. Other important novel contributions are:

1. the automated conversion of a CNN model into a functionally equivalent
SDF model (Section 3.5.1). Unlike the CNN model, presented in Sec-
tion 2.1 and typically used to represent CNNs, the SDF model, presented
in Section 2.5, can explicitly specify task- and data-level parallelism,
available in a CNN. Moreover, unlike the CNN model, the SDF model
has the tasks communication and synchronization mechanisms, suitable
for efficient mapping and execution of a CNN on an embedded MPSoC.
Thus, a conversion of a CNN model into a SDF model enables for effi-
cient mapping and execution of a CNN on an embedded CPUs-GPUs
MPSoC.

2. the automated conversion of a CNN model into a functionally equivalent
platform-aware executable CSDF model (see Section 2.5 for the CSDF
model definition), which efficiently utilizes CPUs-GPUs embedded MP-
SoC computational resources (Section 3.5.3);

3. taking state-of-the-art CNNs from the ONNX models zoo [7] and map-
ping them on a Nvidia Jetson MPSoC [71], we achieve a 1.36% to
42% higher throughput, when the CNN inference is executed with our
methodology, compared to the throughput of the CNN inference, exe-
cuted by the best-known and state-of-the-art Tensorrt DL framework [72]
for Nvidia Jetson MPSoCs (Section 3.6).

3.3 Related work

The well-known Deep Learning (DL) frameworks, such as TensorFlow [1],
Pytorch [75] and others [74] and some of the Deep Learning frameworks for
embedded devices such as [42, 43, 49, 50, 72, 90] efficiently exploit data-level
parallelism, available in a CNN, for efficient utilization of embedded GPUs.
However, these frameworks do not exploit task-level parallelism, available in
a CNN. They execute the CNN inference layer-by-layer, i.e., at every compu-
tational step only one CNN layer is executed. Such layer-by-layer execution
of CNN layers is performed either on a single CPU, which utilizes GPU de-
vices for acceleration, or on all available embedded CPUs. Thus, at every
computational step, either some of the embedded CPUs are not utilized, or

3.4. Edge platform model 37

embedded GPUs are not utilized. Therefore, these frameworks cannot take
full advantage of all CPU and GPU resources and cannot achieve high CNN
inference throughput, typically required for the CNN inference, executed on
embedded MPSoCs [23, 24, 87]. Unlike these frameworks, our methodology
exploits together both task-level parallelism and data-level parallelism, avail-
able in the CNN. In our methodology, the CNN layers are distributed on
embedded CPUs, such that the CNN workload is balanced among the CPUs,
and at every computational step several CNN layers are executed in parallel
(pipeline) fashion. At the same time, some of the computations within CNN
layers are performed on efficiently-shared embedded GPU devices. Thus, in
our methodology, at every computational step all available CPU and GPU re-
sources are efficiently utilized. Therefore, our methodology allows to achieve
higher CNN inference throughput, compared to the frameworks, presented
in [1, 42, 43, 49, 72, 74, 75, 90].

The frameworks, presented in [101] and [94], exploit task-level parallelism,
available among CNN layers, for efficient execution of the CNN inference on
an embedded MPSoC. In these frameworks, CNN layers are distributed on the
embedded CPUs and executed in parallel (pipeline) fashion, which provides
higher CNN throughput than sequential (layer-by-layer) execution of CNN
layers. However, these frameworks do not utilize embedded GPUs, available
in an MPSoC. As a consequence, these frameworks cannot increase further the
CNN inference throughput. In contrast, in our methodology, the throughput,
achieved by efficient task-level parallelism exploitation, is further increased by
exploitation of data-level parallelism, i.e., by exploitation of embedded GPU
devices to accelerate the computations within CNN layers. In our method-
ology, some computations within CNN layers are offloaded onto embedded
GPUs and performed in parallel. Parallel execution of computations within
CNN layers allows to reduce the execution time of individual CNN layers
and to increase the CNN inference throughput. Therefore, our methodology
ensures higher CNN inference throughput, compared to frameworks [101]
and [94].

3.4 Edge platform model

In this Chapter, we represent an edge platform as a platform model. The plat-
form model provides a simplified, yet accurate description of computational
resources, available on the platform. As mentioned above, in this Chapter
we concentrate on edge platforms based on embedded CPUs-GPUs MPSoCs,
which computational resources are composed of CPUs and embedded GPUs.

38 Chapter 3. Methodology for high-throughput CNN inference

Formally, we define a platform model as a set plat f orm = {cpu, gpu}, where
cpu = {cpu1, cpu2, ..., cpun} is a set of CPU cores, available on the platform
and used for CNN inference; gpu = {gpu1, gpu2, ..., gpum} is a set of all GPU
devices, available in the platform, and typically m ≤ n. For example, we model
the Jetson TX2 edge platform shown in Figure 2.4 and explained in Section 2.3,
as platform model Jetson = {cpu, gpu}, where cpu = {cpu1, cpu2, ..., cpu5} is
a set of 5 out of 6 CPU cores, available on the platform and used for CNN
inference. The sixth core available on the platform is not included in the model
because it is allocated to other parts of a CNN-based application and is not
used for CNN inference; gpu = {gpu1} is a set of GPUs, available on the
platform and used for CNN inference.

3.5 Methodology

In this section, we present our methodology for high-throughput CNN infer-
ence at the Edge. Our methodology, shown in Figure 3.1, consists of three
main steps. In Step 1 (Section 3.5.1), we convert a CNN, represented as a
CNN model (see Section 2.1 for the CNN model definition) into a functionally
equivalent SDF model (see Section 2.5 for the SDF model definition). Un-
like the CNN model, the SDF model explicitly specifies task- and data-level
parallelism, available in a CNN, as well as it explicitly specifies the tasks com-
munication and synchronization mechanisms, suitable for efficient mapping
and execution of a CNN on an embedded MPSoC. Thus, a conversion of a
CNN model into a SDF model enables for efficient mapping and execution of
a CNN on an embedded CPUs-GPUs MPSoC.

In Step 2 (Section 3.5.2), we find an efficient mapping of the SDF model,
obtained in Step 1, on an embedded CPUs-GPUs MPSoC represented as the
edge platform model, proposed in Section 3.4. The mapping describes the

Figure 3.1: Methodology for high-throughput CNN inference

3.5. Methodology 39

Figure 3.2: CNN (input) model Figure 3.3: SDF (analysis) model

40 Chapter 3. Methodology for high-throughput CNN inference

Figure 3.4: CSDF (executable CNN inference) model

distribution of the CNN inference computational workload on an embedded
MPSoC. The mapping is considered efficient when it ensures high-throughput
CNN inference. To find such a mapping, we propose to utilize a simple Genetic
Algorithm (GA), which basic concepts and standard parameters are presented
in Section 2.6.

Finally, in Step 3 (Section 3.5.3), we use the mapping, obtained in Step 2,
to convert a CNN model into a final platform-aware executable application
model. The final application model is represented as a Cyclo-Static Dataflow
(CSDF) model (see Section 2.5 for the CSDF model definition). The CSDF
model, obtained in Step 3, describes the CNN inference as an application, effi-
ciently distributed over embedded MPSoC processors and exploiting the right
amount of task- and data-level parallelism, which matches the computational
capacity of an embedded MPSoC.

To illustrate the Steps performed by our methodology, we use an example,
where we apply our methodology to 1) the CNN model shown in Figure 3.2; 2)
the Jetson platform model introduced in Section 3.4; 3) a set of GA parameters

3.5. Methodology 41

where the initial population size = 1000, number of epochs = 500, mutation
probability = 5%. The SDF model and the CSDF model, automatically obtained
in Step 1 and Step 3 of our methodology from the aforementioned inputs 1), 2)
and 3), are shown in Figure 3.3 and Figure 3.4, respectively.

3.5.1 CNN-to-SDF conversion

In this section, we show how we automatically convert a CNN model, intro-
duced in Section 2.1, into a functionally equivalent SDF model, introduced in
Section 2.5. The conversion procedure is given in Algorithm 1. An example of
the CNN-to-SDF conversion, performed by Algorithm 1, is given in Section 3.5,
where the CNN model, shown in Figure 3.2, is automatically converted into
the SDF model, shown in Figure 3.3.

Algorithm 1 accepts as an input a CNN model CNN(L, E) and generates
as an output a functionally equivalent SDF model G(A, C). In Line 1, it creates
an empty SDF model. In Lines 2 to 6, Algorithm 1 converts every CNN layer li
into a functionally equivalent actor ai. According to the definition of the SDF
model, given in Section 2.5, the sequence Fi, executed by actor ai, has a single
phase. At its single phase, actor ai executes operator opi of layer li, thereby
reproducing the functionality of layer li. In Lines 7 to 12, Algorithm 1 converts
every CNN edge eij into FIFO channel cij. In Lines 9 to 11, Algorithm 1 defines
the production sequence Uij and the consumption sequence Vij of channel
cij. Both sequences have a single element, computed as the number of data

Algorithm 1: CNN-to-SDF conversion
Input: CNN(L, E)
Result: G(A, C)

1 A, C ← ∅; G(A, C)← SDF model (A, C);
2 for li ∈ L do
3 Fi = ∅;
4 Fi ← Fi + opi;
5 ai ← actor (Fi);
6 A← A + ai;
7 for eij ∈ E do
8 cij ← FIFO channel (ai, aj);
9 Uij ← ∅; Vij ← ∅;

10 Uij ← Uij + |eij.data|;
11 Vij ← Vij + |eij.data|;
12 C ← C + cij;

13 return G(A, C)

42 Chapter 3. Methodology for high-throughput CNN inference

elements |eij.data|, exchanged through edge eij of the CNN model.
Unlike the CNN model CNN(L, E), accepted as an input by Algorithm 1,

the functionally equivalent SDF model G(A, C), generated by Algorithm 1,
explicitly specifies both task-level and data-level parallelism, which could
be exploited during the CNN inference phase, as well as this SDF explicitly
specifies the communication and synchronization mechanism between the
actors/tasks, needed to execute the CNN inference properly. The task-level
parallelism, available among CNN layers, is explicitly specified in the SDF
model topology, where every actor ai ∈ A is a task, performing the functional-
ity of CNN layer li ∈ L, and the total number of tasks, needed to perform the
CNN model functionality, is equal to the number of actors in the SDF model.
The communication and synchronization between the tasks, are explicitly
specified by the SDF FIFO channels, where every channel cij ∈ C specifies,
that actor ai ∈ A communicates with actor aj ∈ A through a FIFO buffer,
and the production-consumption rates of the channels cij ∈ C determine the
frequency and the order of the actors firings - for more details see [57]. The
data-level parallelism is explicitly specified in the channels production rates.
For example, production rate U36 = [112640] of FIFO channel c36, shown in
Figure 3.3, explicitly specifies that, when actor a3 fires, it produces 112640 data
tokens, and each token can be obtained in parallel by executing 112640 parallel
ReLU operations within each firing of a3.

The SDF explicit specification of the tasks, that can be potentially per-
formed during the CNN inference, and the SDF explicit specification of the
communication and synchronization between the tasks, allow to perform a
search for efficient mappings of the CNN onto an embedded CPUs-GPUs
MPSoC.

3.5.2 GA-based mapping

In this section, we show how we obtain an efficient mapping of a SDF model
G(A, C), generated by Algorithm 1, onto an embedded CPUs-GPUs MPSoC
Jetson = {{cpu1, cpu2, ..., cpu5}, {gpu1}} introduced in Section 3.4. In our
methodology, the CNN inference tasks, explicitly specified as SDF actors, are
executed on embedded CPU cores, that are able to efficiently handle the task-
level parallelism. To efficiently utilize the data-level parallelism, available
within the tasks, some of the CPU cores offload computations on the embedded
GPUs. Since the number of embedded GPU devices is limited, it may occur,
that the efficient exploitation of task-level parallelism, by embedded CPUs, is
disrupted due to CPUs competition for the limited embedded GPU devices.
To avoid such disruption, for every embedded GPU gpuj ∈ gpu, we allocate a

3.5. Methodology 43

Table 3.1: Mapping example

cpu1/gpu1 cpu2 cpu3 cpu4 cpu5
a1, a2, a3, a4,
a5, a6, a7

a8, a9,
a10, a13

a11, a12 a14, a15, a16, a17, a18,
a21, a22, a23

a19, a20

Figure 3.5: Mapping chromosome example

single CPU core cpui ∈ cpu, which offloads computations on gpuj.
Based on the discussion above, we define a mapping of SDF model G(A, C)

onto Jetson, as a partition of actors set A into n subsets, where n = |cpu| is
the number of CPU cores, available in the MPSoC. We denote such map-
ping as n A = {n A1, n A2, ..., n An}, where each n Ai ∈ n A is a subset of ac-
tors, mapped on cpui, such that ∩n

i=1
n Ai = ∅, and ∪n

i=1
n Ai = A. The first

m = |gpu| number of CPU cores in mapping n A offload computations on the
corresponding embedded GPUs, i.e., the computations within every actor
ak ∈ n Aj, j ∈ [1, m] are performed on gpuj, and the computations within every
actor ak ∈ n Ai, i ∈ [m + 1, n] are performed on cpui. An example of mapping
5 A = {5 A1, 5A2, 5A3, 5A4, 5A5} of the SDF model G(A, C), shown in Figure 3.3
on the Jetson CPUs-GPUs MPSoC, is given in Table 3.1. Every Column in
Table 3.1 corresponds to a subset 5Ai, i ∈ [1, 5]. For example, Column 1 in
Table 3.1 corresponds to subset 5A1 = {a1, a2, a3, a4, a5, a6, a7}. The actors
within subset 5A1 are mapped on cpu1, which offloads computations on gpu1.
Column 2 in Table 3.1 describes subset 5A2 = {a8, a9, a10, a13}. Every actor
ai ∈ 5 A2 is mapped on cpu2. Since the example Jetson MPSoC does not have
gpu2, all computations within actors in 5A2 are performed only on cpu2.

We consider that a mapping is efficient, if it ensures that the workload is
balanced [6] among all embedded CPU cores, including those, that offload
computations on embedded GPUs. We note, that obtaining such an efficient
mapping of an SDF graph onto a CPUs-GPUs MPSoC is a complex Design
Space Exploration (DSE) problem. In our methodology, to solve this problem,
we propose to use a simple Genetic Algorithm (GA) with a standard two-
parent crossover and a single-gene mutation, as introduced in Section 2.6.
To utilize such a GA for searching of an efficient mapping n A, we represent
mapping n A, as a mapping chromosome: a string of length |A|, where every
gene is a CPU core cpui ∈ cpu. An example of the chromosome, corresponding
to mapping 5A, shown in Table 3.1, is given in Figure 3.5.

44 Chapter 3. Methodology for high-throughput CNN inference

In our methodology, we search for a mapping, in which the workload is
balanced among all CPU cores, available in the MPSoC, i.e., the difference in
execution time between every pair of CPU cores (cpui ∈ cpu, cpuj ∈ cpu), i ̸=
j, is minimized. Thus, we define a specific fitness-function f itness to be
minimized during the GA-based search as:

f itness = ∑
∀(cpui ,cpuj)∈cpu2

|τcpui − τcpuj | (3.1)

where τcpui and τcpuj are the total execution time of cpui and cpuj, respec-
tively. For every cpui ∈ cpu, τcpui is computed as:

τcpui = τt
cpui

+ τcom
cpui

(3.2)

where τt
cpui

is the time, required by cpui to execute all tasks, mapped on
cpui; τcom

cpui
is the time, required for communication of cpui with other embed-

ded processors. The time τt
cpui

is computed as:

τt
cpui

= ∑
ak∈n Ai

τ(fk(1),cpui) (3.3)

where n Ai is the set of all actors, mapped on cpui; fk(1) is the function,
performed by actor ak ∈ n Ai at every firing; τ(fk(1),cpui) is the time, taken by
cpui to execute fk(1), measured on the MPSoC. The time τcom

cpui
is computed as:

τcom
cpui

= ∑
ak∈n Ai

(τw ∗ ∑
ckj∈C

ukj(1) + τr ∗ ∑
cqk∈C

vqk(1)) (3.4)

where n Ai is the set of all actors, mapped on cpui; ckj ∈ C is an output
channel of actor ak ∈ n Ai, to where, at each firing, actor ak produces ukj(1)
tokens; cqk ∈ C is an input channel of actor ak, from where, at each firing, actor
ak consumes vqk(1) tokens; τr and τw specify the time, needed by a CPU core,
to read and write one data token, respectively. τr and τw are measured on the
MPSoC.

3.5.3 CNN-to-CSDF model conversion

In this section, we show how we automatically convert a CNN model, in-
troduced in Section 2.1, into a final executable platform-aware application,
represented as a CSDF model, introduced in Section 2.5. The conversion
procedure is given in Algorithm 2.

3.5. Methodology 45

Algorithm 2: CNN-to-CSDF conversion
Input: CNN(L, E), n A
Result: G(A, C)

1 A, C ← ∅; G(A, C)← CSDF model (A, C);
2 Eout = ∅;
3 for n Ai ∈ n A do
4 Fi = ∅; p = 1;
5 Q = ∅; visited = ∅;
6 for lk : ak ∈ n Ai ∧ lk /∈ visited do
7 Lp

i , Ep
i ← ∅;

8 Q = Q + lk;
9 while Q ̸= ∅ do

10 lj = Q.pop();
11 Lp

i = Lp
i + lj;

12 visited = visited + lj;
13 if ∃ejs ∈ E : as /∈ n Ai then
14 for ejs ∈ E do
15 Eout = Eout + ejs;

16 break;
17 else
18 for ejs ∈ E, ls /∈ visited do
19 Q = Q + ls;
20 Ep

i = Ep
i + ejs;

21 Subnetp
i = new Subnet (Lp

i , Ep
i);

22 Fi = Fi + Subnetp
i ;

23 p = p + 1;
24 ai ← actor (Fi);
25 A = A + ai;
26 for eij ∈ Eout do
27 ak ∈ A : li ∈ Lg

k ; ar ∈ A : lj ∈ Lz
r ;

28 ckr ← FIFO channel (ak, ar);

29 ukr(p) =
{
|eij.data|, if p = g
0, otherwise

30 vkr(p) =
{
|eij.data|, if p = z
0, otherwise

31 return G(A, C)

Algorithm 2 accepts as inputs a CNN model CNN(L, E) and an efficient
mapping n A, obtained in Section 3.5.2, and generates a CSDF model G(A, C),
which performs the functionality of the CNN model CNN(L, E), efficiently
mapped on an embedded MPSoC, as specified by mapping n A. An example of
the CSDF model G(A, C), generated by Algorithm 2, using as inputs the CNN

46 Chapter 3. Methodology for high-throughput CNN inference

model CNN(L, E), shown in Figure 3.2, and mapping 5A, shown in Table 3.1
and explained in Section 3.5.2, is given in Figure 3.4.

In Line 1, Algorithm 2 creates an empty CSDF model. In Lines 3-25, Algo-
rithm 2 generates the set of actors A, such that every actor ai ∈ A represents
the functionality of all CNN layers, mapped on CPU core cpui, as specified in
mapping n A, where for ∀lk ∈ L, executed on cpui, ∃ak ∈ n Ai. At every phase
p ∈ [1, Pi] actor ai executes function Subnetp

i , implemented by means of an
existing DL framework. Every Subnetp

i performs layer-by-layer execution of
layers Lp

i ⊆ L, mapped on cpui, and connected via edges Ep
i . For example,

actor a3, shown in Figure 3.4, represents the functionality of all CNN layers,
mapped on cpu3. It executes F3 = {Subnet1

3}, where Subnet1
3 performs layer-

by-layer execution of layers L1
3 = {l11, l12}, connected via edges E1

3 = {e1112},
on cpu3.

Every edge ejs ∈ E between layers lj and ls, sequentially executed on
the same CPU core, is implemented by means of an existing DL framework,
e.g. as device memory, shared by layers lj and ls [72]. If layers lj and ls,
connected via edge ejs ∈ E, are executed on different CPU cores, the task-level
parallelism is exploited between these layers, and edge ejs is converted into a
FIFO channel, which explicitly specifies and implements the communication
and synchronization between actors, executing layers lj and ls. For example,
edge e811, shown in Figure 3.2, connects layer l8, executed by actor a2 on
cpu2, and layer l11, executed by actor a3 on cpu3. Thus, edge e811 is converted
into a FIFO channel c23, shown in Figure 3.4, where c23 explicitly specifies
and implements the communication and synchronization between actor a2,
executing layer l8 and actor a3, executing layer l11.

Between some actors, cyclic dependencies occur, that may lead to dead-
locks in the CSDF model. To avoid the deadlocks, Algorithm 2 specifies the
execution of every actor ai in one or more phases, such that at every phase
p ∈ [1, Pi], actor ai has no cyclic dependencies. For the example, shown in
Figure 3.4, a cyclic dependency occurs between actors a2 and a3. If actor a2
would execute layers l8 and l13 in one phase, according to the semantics of
the CSDF model [10], it would expect 187200 data tokens to be present in
channel c12 and 22500 data tokens to be present in channel c32, before it can
fire. However, data in channel c32, should be produced by actor a3, which,
before it can fire, expects actor a2 to produce 187200 data tokens in channel
c23. Thus, such execution would lead to a deadlock in the CNN inference.
To avoid the deadlock, Algorithm 2 specifies the execution of actor a2 in 2
phases. At phase p = 1, actor a2 executes only layer l8. It consumes data only
from channel c12, and produces data to channel c23, such that actor a3 can fire.

3.6. Experimental results 47

At phase p = 2, actor a2 consumes data only from channel c32, and executes
layers l9, l10 and l13. Thus, at every phase p = [1, 2], actor a2 has no cyclic
dependencies, and no deadlock occurs in the CSDF model execution.

In Lines 5-23, Algorithm 2 performs a mapping-aware Breadth-First Search
(BFS) [26] over the CNN model graph and determines functions Subnetp

i , p ∈
[1, Pi], executed by actor ai. In Line 7, for every not-visited layer lk, mapped
on cpui, Algorithm 2 creates an empty set of layers Lp

i and an empty set of
edges Ep

i . In Line 8, it adds layer lk to the BFS queue [26] Q, and starts BFS.
In Lines 10-12, Algorithm 2 extracts layer lj from Q and adds lj to Lp

i . In
Line 13, Algorithm 2 checks, if layer lj, mapped on cpui, has at least one child
layer ls, which is not mapped on cpui. If the condition in Line 13 is met, to
avoid the deadlocks, which can occur in a CSDF model, as discussed above,
Algorithm 2 stops adding layers to Lp

i and goes to Lines 14-15, where it adds
every output edge of layer lj to the list of outer edges Eout, utilized in Lines
26-30 of Algorithm 2 for CSDF channels generation. If every child layer ls of
layer lj is mapped on cpui (condition in Line 13 of Algorithm 2 is not met), in
Lines 18-20, Algorithm 2 adds every connection ejs to the set Ep

i , and every
layer ls to Q and continues BFS.

In Line 21, Algorithm 2 creates function Subnetp
i , which performs layer-by-

layer execution of layers Lp
i , connected via edges Ep

i . In Line 22, Algorithm 2
adds function Subnetp

i to execution sequence Fi of actor ai. When all layers,
mapped on cpui, are visited, Algorithm 2 adds actor ai, which executes Fi, to
the CSDF model actors set (see Lines 24-25).

In Lines 26-30, Algorithm 2 converts every outer edge eij ∈ Eout into
a CSDF channel ckr, specifying and implementing the communication and
synchronization between actor ak ∈ A executing layer li, and actor ar ∈ A
executing layer lj . For example, for edge e78, shown in Figure 3.2, Algorithm 2
creates FIFO channel c12, shown in Figure 3.4, where actor a1 executes layer l7,
and actor a2 executes layer l8.

3.6 Experimental results

In this section, we present our results from an experiment, where real-world
CNNs from the ONNX models zoo [7] are mapped and executed on the
NVIDIA Jetson TX2 embedded CPUs-GPUs MPSoC [71]. We compare the
CNN inference throughput, which we measure, when the CNN is mapped on
the NVIDIA Jetson TX2 by: 1) the popular ARM CL framework [8], which on
the NVIDIA Jetson MPSoC can exploit only task-level parallelism, available
in the CNN; 2) the best-known and state-of-the-art for the NVIDIA Jetson

48 Chapter 3. Methodology for high-throughput CNN inference

Table 3.2: Experimental results, average over 100 runs

CNN Throughput (fps) Thr. increase, compared
to TensorRT (%)ARM CL TensorRT Our

bvlc alexnet 8.7 104 140 35
VGG 19 1.84 15 21.3 42

bvlc googlenet 3.9 118 154 31
tiny yolo v2 3.2 131 133 1.36
inception v1 4.25 122 166 36

resnet18 8.7 137 143 4.37
densenet121 3 62 69 12
Emotion FER 21.2 325 416 28

TX2 MPSoC, TensorRT DL framework [72], which exploits only data-level
parallelism, available in the CNN; 3) our methodology, explained in Section 3.5,
which exploits both task- and data-level parallelism and uses the ARM CL
framework to implement CNN layers on embedded CPUs together with the
TensorRT framework to implement CNN layers on embedded GPUs. For
every CNN in the experimental results: 1) The throughput is measured on
the platform as an average value over 100 CNN inference executions; 2)
the original (float32) data precision is utilized, such that the baseline CNN
accuracy is preserved; 3) The dataset parameters, such as size and precision
of input data samples as well as the batch size are obtained from the ONNX
model representation; 4) The GA, utilized for efficient mapping search (see
Section 3.5.2) is executed with initial population size = 1000, number of epochs
= 500, mutation probability = 5%. If for 50 epochs no improvements are
achieved by the GA, the GA stops.

The experimental results are given in Table 3.2. Column 1 lists the CNNs.
Columns 2-4 show the CNN inference throughput in frames per second (fps)
for ARM CL, TensorRT, and our methodology, respectively. Columns 2 and 4
in Table 3.2 show that the throughput achieved by the ARM CL framework
is much lower than the throughput, achieved by our methodology. This dif-
ference occurs because our methodology exploits both task- and data-level
parallelism, available in the CNN, whereas the ARM CL framework, executing
the CNN inference on the NVIDIA Jetson MPSoC, does not offload compu-
tations on the embedded GPU, available in the MPSoC. Therefore, ARM CL
does not efficiently exploit the data-level parallelism, available in the CNN.
Columns 3 and 4 in Table 3.2 show that our methodology achieves higher infer-
ence throughput than the TensorRT framework. This difference occurs because
our methodology exploits both task- and data-level parallelism, whereas Ten-
sorRT executes the CNN inference layer-by-layer and exploits only data-level
parallelism, available in the CNN. Column 5 shows the throughput increase

3.7. Conclusion 49

achieved by our methodology in comparison with the TensorRT framework,
which achieves highest throughput for every CNN among the TensorRT and
ARM CL frameworks. The numbers in Column 5 indicate that our method-
ology enables to achieve 1.36% to 42% throughput increase compared to the
TensorRT framework.

3.7 Conclusion

We propose a novel methodology which exploits both task- and data-level
parallelism, available in a CNN, and takes full advantage of all CPU and
GPU resources, available in a MPSoC, to achieve high-throughput CNN in-
ference execution. We evaluated our proposed methodology by mapping a
set of real-world CNNs on the NVIDIA Jetson TX2 embedded CPUs-GPUs
MPSoC. The evaluation results show that taking real-world CNNs from the
ONNX models zoo and mapping them on the Jetson MPSoC, a 1.36% to 42%
higher throughput is achieved when the CNN inference is executed with our
methodology compared to the throughput of the CNN inference, executed by
the best-known and state-of-the-art TensorRT DL framework for the Jetson
MPSoC.

50 Chapter 3. Methodology for high-throughput CNN inference

Chapter 4

Methodology for low-memory
CNN inference

Svetlana Minakova and Todor Stefanov. "Buffer Sizes Reduction for Memory-efficient
CNN Inference on Mobile and Embedded Devices". In Proceedings of 23rd Euromicro
Conference on Digital System Design (DSD’20), pp. 133-140, Portoroz, Slovenia, August
26-28, 2020.

In this chapter, we present our methodology for low-memory CNN infer-
ence at the Edge, which corresponds to the second research contribution of
this thesis summarized in Section 1.5.2. The proposed methodology is a part of
the system-level optimization engine, introduced in Section 1.5, and is aimed
at relaxation of Limitation 1, introduced in Section 1.4.1. The reminder of this
chapter is organized as follows. Section 4.1 introduces, in more details, the
problem addressed by our novel methodology. Section 4.2 gives a summary of
the contributions, presented in the chapter. An overview of the related work is
given in Section 4.3. Section 4.4 provides a motivational example. Section 4.5
presents the proposed methodology. Section 4.6 presents the experimental
study performed by using the proposed methodology. Finally, Section 4.7
ends the chapter with conclusions.

4.1 Problem statement

As mentioned in Chapter 1 in Section 1.2, in order to be deployed and executed
on an edge platform, a CNN is required to have low memory footprint. This is
because modern edge platforms have limited memory resources. For example,

52 Chapter 4. Methodology for low-memory CNN inference

the basic version of the Raspberry Pi 4 [30] embedded platform has 1 GB of
memory. For comparison, deployment and inference of the state-of-the-art
VGG-19 CNN [4], requires about 700 MB of memory. If deployed on the
Raspberry Pi 4, VGG-19 CNN would occupy almost all memory available on
the platform and leave insufficient memory space for the operating system
running on the platform, libraries required to execute the CNN inference,
storage of the CNN input and output data, etc.

To enable inference of a state-of-the-art CNN such as VGG-19 on an edge
platform such as Raspberry Pi 4, the CNN memory footprint should be re-
duced. To this aim, the CNN memory reduction methodologies [5, 11, 17, 31,
73, 76, 98] have been proposed. The most common of these methodologies,
namely pruning and quantization [11, 17, 31, 98], reduce the memory footprint
of a CNN by reducing the number or size of CNN parameters (weights and
biases). However, at high memory reduction rates, these methodologies may
decrease the CNN accuracy, while, as mentioned in Section 1.2, high accuracy
is very important for most CNN-based applications. Moreover, for many
state-of-the-art CNNs [4], the intermediate computational results, exchanged
between CNN layers and stored in the platform memory during the CNN
inference, take even more space than the CNN parameters. For example,
for the MobileNet V2 [81] and DenseNet [40] CNNs, the intermediate com-
putational results comprise up to 63% and 80% of the total CNN memory
requirement, respectively1. For these CNNs, the memory reduction achieved
only by methodologies such as pruning and quantization (i.e., only by reduc-
ing the amount of memory needed to store CNN parameters) may not be
sufficient to fit the CNN into the memory of the target edge platform. In other
words, CNN inference at the edge requires a methodology, which reduces the
amount of memory required to store the intermediate computational results of
a CNN, that is complimentary to the pruning and quantization methodologies.
In this chapter, we propose such a methodology.

4.2 Contributions

We propose a novel methodology, which reduces the amount of memory re-
quired to store intermediate computational results of a CNN, thereby reducing
the CNN memory footprint. Our proposed methodology is based on the
ability of CNN operators to process data by parts, illustrated in Figure 2.2 and
explained in Section 2.1. In our methodology, the execution of every CNN
layer is performed in several phases, such that: 1) at each phase, the layer

1The percentage is given for the CNNs deployed and executed with no memory reduction

4.2. Contributions 53

processes only a part of its input data; 2) phases are executed in a specific
order; 3) the platform memory, allocated to store intermediate computational
results of a CNN is reused between the data parts. As the data processing
by parts may cause CNN execution time overheads (e.g. CNN layers may
require time to switch among the data parts), our methodology may reduce
the CNN throughput. However, unlike the most common pruning and quan-
tization methodologies [11, 17, 31, 98], our methodology does not change the
number and precision of CNN parameters and therefore does not decrease
the CNN accuracy. Thus, our methodology is orthogonal to the pruning and
quantization methodologies, and can be combined with these methodologies
for further CNN memory footprint reduction. Our proposed methodology,
presented in Section 4.5, is our main novel contribution. Other important
novel contributions are:

1. the phases derivation algorithm (see Section 4.5.1). This algorithm au-
tomatically derives the number of phases, performed by every CNN
layer. The number of phases is computed such that at each phase, every
layer of a CNN processes a minimum part of the layer input data and
produces a minimum part of the layer output data. Thus, the phases
derivation algorithm ensures that every layer requires minimum amount
of memory to store its intermediate computational results at every phase;

2. the CNN-to-CSDF conversion algorithm (see Section 4.5.2). This algo-
rithm automatically converts a CNN, represented as the CNN model
(see Section 2.1) into a functionally equivalent CSDF model (see Sec-
tion 2.5). Unlike the CNN model, the CSDF model has means for explicit
specification of the CNN inference with phases. Thus, the CNN-to-
CSDF conversion algorithm enables for CNN inference with phases,
underlying our proposed methodology;

3. 2.8% to 38% CNN memory reduction, compared to the most relevant
buffers reuse methodology, exploited by the well-known and widely
used TensorRT [72] DL framework for CNN deployment and inference
at the Edge (see Section 4.6).

Scope of work: in this chapter, we assume that every input CNN is exe-
cuted with the smallest possible batch size (i.e., batch = 1) typical for CNN
execution at the Edge. This restriction comes from the fact that data batching
(i.e., using batch > 1) [35] is the opposite to the data processing by parts, used
by our proposed methodology. The data processing by parts involves splitting
of the intermediate CNN computational results into parts, which enables for

54 Chapter 4. Methodology for low-memory CNN inference

reduction of the CNN memory footprint at the cost of possible CNN through-
put decrease. The data batching, on the other hand, involves aggregating
the intermediate CNN computational results in the platform memory, which
leads to increase of the CNN throughput at the cost of CNN memory footprint
increase.

4.3 Related Work

The most common CNN memory reduction methodologies, namely pruning
and quantization, reviewed in surveys [11, 17, 31, 98], reduce the memory cost
of a CNN by reducing the number or size of CNN parameters (weights and
biases) [4]. However, at high memory reduction rates these methodologies
decrease the CNN accuracy, whereas high accuracy is very important for many
CNN-based applications [4]. In contrast, our memory reduction methodology
does not change the CNN model parameters and therefore does not decrease
the CNN accuracy. Moreover, our methodology reduces the platform memory
occupied by the CNN intermediate computational results, while the pruning
and quantization methodologies reduce the platform memory occupied by the
CNN parameters (weights and biases). Therefore our methodology is orthog-
onal to the pruning and quantization methodologies, and can be combined
with these methodologies for further CNN memory footprint reduction.

The Knowledge Distillation (KD) methodologies try to shift knowledge
from an initial CNN into another CNN, with smaller size but with the same
accuracy. However, KD methodologies involve training from scratch and do
not guarantee that the accuracy of the initial CNN can be preserved. Moreover,
KD methodologies can only be applied to CNNs designed to perform clas-
sification [17], while many CNNs are designed to perform other tasks, such
as object detection or segmentation [4]. In contrast, our memory reduction
methodology is a general systematic methodology, which always guarantees
preservation of the CNN accuracy, and is not limited to CNNs designed to
perform classification tasks.

The CNN layers fusion methodologies, such as the methodologies [5, 73]
and the methodologies adopted by DL frameworks, such as TensorRT [72]
or PyTorch [75], enable to reduce the CNN memory cost by transforming the
network into a simpler form but preserving the same overall behavior. Being
a part of the CNN model definition, the CNN layer fusion methodologies
are orthogonal to our proposed methodology and can be combined with our
methodology for further CNN memory optimizations. In our experimental
study (Section 4.6), we implicitly use the CNN layers fusion by implementing

4.4. Motivational Example 55

the CNNs inference with the TensorRT DL framework [72], which has built-in
CNN layers fusion.

The buffers reuse methodologies, such as the methodology proposed in [76]
and the methodology, employed by the TensorRT framework for efficient CNN
inference at the edge [72], reduce the CNN memory footprint by sharing mem-
ory between CNN layers, executed at different computational steps. However,
these methodologies do not reuse memory within CNN layers. As a result,
these methodologies are not very efficient for: 1) CNNs with residual connec-
tions, such as ResNets [36] and DenseNets [40], because in these CNNs the
data associated with different layers has to be stored for many computational
steps; 2) CNNs that process high-resolution input data, because in these CNNs
one layer can occupy significant amount of platform memory to store its in-
put and output data. In contrast, our methodology reuses memory within
layers of a CNN, which makes our methodology more efficient at reducing
the memory of CNNs that have residual connections or/and process high-
resolution data. We note that the CNN buffers reuse methodologies are the
only methodologies among the related work that can be directly compared to
other proposed methodology. Other related works, discussed above, are either
orthogonal to our proposed methodology (e.g., pruning and quantization
methodologies [11, 17, 31, 98]) or cannot be directly compared to our proposed
methodology (e.g., the KD methodologies [17]). Therefore, in our experimen-
tal results (see Section 4.6), we compare our methodology only to the buffers
reuse methodologies. More precisely, we compare our methodology to the
buffers reuse methodology, exploited by the TensorRT [72] DL framework.

4.4 Motivational Example

Layers of a CNN do not process their input data at once. As shown in Figure 2.2
and explained in Section 2.1, to process its input data, a layer of a CNN moves
along the input data with a sliding window, applying an operator to the parts
of the input data. In this section, we show how this feature can be used to
reduce the memory cost of a CNN. We define the processing of an input data
part by a layer as a phase. If a layer has one phase, it processes its input data as
one part. If a layer has two phases, it processes its input data in two parts, etc.

In Table 4.1, we give four examples (Ex1, Ex2, Ex3, Ex4) of inference of the
CNN, shown in Figure 4.1 and represented as the CNN model, introduced
in Section 2.1. In each of these examples the CNN inference is executed on
the Jetson TX2 platform introduced in Section 2.3 and shown in Figure 2.4.
Every layer of the CNN is executed in one or multiple phases. For every

56 Chapter 4. Methodology for low-memory CNN inference

Table
4.1:Execution

ofC
N

N
inference

w
ith

phases

Ex.
Layer

phases
Phases

execution
order

Buffer
sizes

(Bytes)
Thr.
(fps)

l1
l2

l3
l4

l5
B

1
B

2
B

4
B

5
Total

Ex1
X

1k
=

∅
,

Y
[1,32,32,1]
1kΦ

1 =1

X
[1,32,32,1]
2k

,

Y
[1,16,16,4]
2kΦ

2 =1

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l11 ,l21 ,l31 ,l41 ,l51
1024

1024
48

2
2098

334

Ex2
X

1k
=

∅
,

Y
[1,24,32,1]
1kΦ

1 =2

X
[1,24,32,1]
2k

,

Y
[1,8,16,4]
2kΦ

2 =2

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l11 ,l21 ,l12 ,l22 ,l31 ,
l41 ,l51

768
1024

48
2

1842
333

Ex3
X

1k
=

∅
,

Y
[1,1,32,1]
1k
Φ

1 =32

X
[1,17,32,1]
2k

,

Y
[1,1,16,4]
2k
Φ

2 =16

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l1(1−
17) ,l21 ,

[l1(18−
32) ,l2(2−

16)],
l31 ,l41 ,l51

544
1024

48
2

1618
310

Ex4
X

1k
=

∅
,

Y
[1,1,32,1]
1k
Φ

1 =32

X
[1,17,32,1]
2k

,

Y
[1,1,16,4]
2k
Φ

2 =16

X
[1,6,16,4]
31

,

X
[1,5,16,4]
32

,

X
[1,5,16,4]
33

,

X
[1,6,16,4]
34

,

Y
[1,1,4,3]
3k
Φ

3 =4

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l1(1−
17) ,l21 ,

[l1(18−
22) ,l2(2−

6)],
l31 ,

[l1(23−
25) ,l2(7−

9)],
l32 ,

[l1(26−
28) ,l2(10−

12)],
l33 ,

[l1(29−
32) ,

l2(13−
16)],l34 ,

l41 ,l51

544
384

48
2

978
308

4.4. Motivational Example 57

Figure 4.1: Example CNN
layer li, i ∈ [1, 5], Columns 2 to 6 in Table 4.1 list: 1) the number of phases
Φi; 2) part Xik of the input data Xi, processed by layer li at its k-th phase,
k ∈ [1, Φi]; 3) part Yik of the output data Yi, produced by layer li at its k-th
phase, k ∈ [1, Φi]. The data parts are annotated with the shape, introduced
for CNN data tensors in Section 2.1. Recall that in this thesis, every data
tensor is represented as a 4-dimensional tensor of shape [batch, h, w, ch], where
batch, h, w, ch are the tensor batch size, the height, the width, and the number
of channels, respectively. All phases are executed in a specific order, given
in Column 7, where lik denotes the execution of the k-th phase of layer li.
The execution order ensures functional equivalence of all examples, given
in Table 4.1, and allows to reduce the CNN buffer sizes as explained below.
Columns 8 to 12 in Table 4.1 show the sizes of the CNN buffers, introduced in
Section 2.2, i.e., segments of platform memory, allocated to store intermediate
computational results, produced by the CNN layers. Every CNN edge eij
is allocated its own buffer Bk. The size of each buffer is computed using
Equation 2.8 explained in Section 2.2 with the assumption that one element in
any CNN data tensor requires 1 byte of memory for its storage. Column 13 in
Table 4.1 shows the CNN throughput in frames per second (fps). As shown in
Column 13, the CNN inference throughput differs for examples Ex1, Ex2, Ex3,
Ex4. This is because data processing by parts may cause CNN execution time
overheads (e.g. CNN layers may require time to switch among the data parts),
leading to CNN throughput decrease. The more phases are performed by a
CNN (i.e., the more data parts are accepted and produced by the CNN layers),
the larger the throughput overhead is. For example, the throughput of Ex4,
where the CNN layers processes data in 32, 16, 4, 1 and 1 phases respectively, is
26 fps smaller than the throughput of Ex1, where every CNN layer processes
data in one phase.

Example Ex1, given in Row 3 of Table 4.1, describes the CNN inference
typically performed by state-of-the-art DL frameworks, such as TensorFlow,
Keras, Caffe2, and other [74]. In Ex1, every layer has one phase. The CNN
inference is performed in 5 computational steps. At every i-th computational
step, i ∈ [1, 5], the single phase of layer li is executed. During its single

58 Chapter 4. Methodology for low-memory CNN inference

(a) Ex1 (b) Ex2 (c) Ex3, Ex4

Figure 4.2: Input data processing by layer l2
phase, layer li processes its whole input data. Figure 4.2(a) shows how layer l2
processes its input data in Ex1. Layer l2 processes its whole input data X2 as
a single data part X21 = X2. Data X21 is provided to layer l2 by layer l1 and
stored in buffer B1. To store data X[1,32,32,1]

21 buffer B1 occupies 1 * 32 * 32 *1 =
1024 bytes of memory.

Example Ex2, given in Row 4 of Table 4.1, shows how processing data by
parts, combined with specific execution order of the phases, allows to reduce
the CNN buffer sizes at the cost of decreasing the CNN throughput. In Ex2,
CNN layer l2 processes its input data X2 in two overlapping parts, X21 and X22,
as shown in Figure 4.2(b). Data parts X21 and X22 are provided to layer l2 by
layer l1 and stored in buffer B1 during the CNN inference. The CNN inference
is performed in 7 computational steps. At step 1, phase l11 is executed and
data Y11 = X21 is produced in B1. At step 2, phase l21 is executed and data
X21 is processed by layer l2. After being processed, data X21 is not needed
anymore and is removed from B1. At step 3, phase l12 is executed and data
Y12 = X22 is produced in B1. At step 4, phase l22 is executed and data X22 is
processed by layer l2. Steps 1 to 4 in Ex2 are functionally equivalent to steps 1
to 2 in Ex1. However, in Ex2 at every computational step, buffer B1 has to store
only a part of the input data (X[1,24,32,1]

21 for steps 1 to 2 and X[1,24,32,1]
22 for steps

3 to 4, respectively). Therefore, in Ex2, B1 occupies 1* 24 * 32 * 1= 786 bytes of
memory, instead of 1024 bytes, as in Ex1. Compared to Ex1, Ex2 reduces the
total buffer sizes by 12% at the cost of only 0.3% throughput decrease due to
the increased number of CNN computational steps in Ex2, compared to Ex1.

Example Ex3, given in Row 5 of Table 4.1, demonstrates one more way of
executing layers l1 and l2 with phases, shown in Figure 4.2(c). In Ex3, layer
l1 has 32 phases and layer l2 has 16 phases. The CNN inference is performed
in 51 computational step. During the first 17 steps, phases l11, l12, ..., l117,
shortly written as l1(1−17), are executed. At every phase, layer l1 produces

4.4. Motivational Example 59

Figure 4.3: Input data processing by layer l3, Ex4

data Y[1,1,32,1]
1k ⊂ X21 in buffer B1, until sufficient data X[1,17,32,1]

21 is accumulated.

Then, at step 18, phase l21 is executed. To execute phase l22, data X[1,17,32,1]
22

should be accumulated in B1. However, some of this data is already in B1. As
explained in Section 2.1, data between subsequent execution steps of layer
l2 is overlapping. If the overlapping part is stored in buffer B1, only new
(non-overlapping) data should be produced in B1 to enable the execution of
phase l22. This new data can be produced by execution of one phase of layer l1.
Thus, phases 18-32 of layer l1 and phases 2-16 of layer l2 are executed in order
[l1(18−32), l2(2−16)], meaning, that a phase of layer l1 is followed by a phase
of layer l2, e.g., phase l118 is followed by phase l22, and this pattern repeats,
until all phases of layers l1 and l2 are executed. The maximum amount of data,
stored between layers l1 and l2 per computational step corresponds to data
part X[1,17,32,1]

2k , accumulated in B1. Thus, in Ex3, buffer B1 occupies 1 * 17 * 32 *
1 = 544 bytes of memory. Compared to Ex1, Ex3 reduces the total buffer sizes
by 23% at the cost of 7% throughput decrease.

Example Ex4, given in Row 6 of Table 4.1, demonstrates how several
Convolutional layers in one CNN can be executed with phases, and how data
padding is processed with phases. In Ex4, the CNN inference is executed in
54 computational steps. Layers l1 and l2 have 32 and 16 phases, respectively,
as in Ex3. Additionally, layer l3 has 4 phases, i.e., processes its input data in
four parts. As explained in Section 2.1, layer l3 has padding pad3, which crops
its input data. With data processing by parts, the data crop is also performed
by parts, as shown in Figure 4.3. At phases l31 and l34, layer l3 accepts data
X[1,6,16,4]

3k and crops it to data X′[1,5,14,4]
3k . At phases l32 and l33, it accepts data

60 Chapter 4. Methodology for low-memory CNN inference

X[1,5,16,4]
3k and crops it to data X′[1,5,14,4]

3k . The maximum amount of data to be

stored in B2 is X[1,6,16,4]
3k . Thus, buffer B2 occupies 1 * 6 * 16 * 4 = 384 bytes of

memory. Compared to Ex1, Ex4 reduces the total buffer sizes by 53% at the
cost of 12.7% throughput decrease. As can be seen from Column 12 of Table 4.1,
Ex4 is the most memory-efficient example among all presented examples.

The examples, provided in this section, demonstrate that there are many
possible ways to execute the CNN inference with phases. Obtaining the most
memory-efficient way is not trivial even for our small example CNN, shown in
Figure 4.1, let alone for real-world state-of-the-art CNNs that are much larger
and much more complex. Therefore, a systematic and automated methodology
for finding the CNN inference execution with phases, which ensures minimum
buffer sizes, is required. In the next section, we propose such a methodology.

4.5 Methodology

In this section, we present our three-step methodology for low-memory CNN
inference at the Edge. Our methodology is shown in Figure 4.4. In Step 1
(Section 4.5.1), we automatically derive the number of phases for every CNN
layer. The number of phases is computed such that at each phase, every
CNN layer processes a minimum part of the layer input data and produces
a minimum part of the layer output data. Thus, we ensure that every layer
requires minimum amount of memory to store its input and output data at
every phase. In Step 2 (Section 4.5.2), we model the CNN inference with
phases, obtained at Step 1. We note that the CNN model, introduced in
Section 2.1 and widely used to represent CNNs, does not have means for
explicit specification of the CNN execution with phases, while the CSDF model,
introduced in Section 2.5, has such means. Moreover, unlike the CNN model,
the CSDF model is accepted as an input by many existing embedded systems

Figure 4.4: Methodology for low-memory CNN inference

4.5. Methodology 61

design tools for automated performance/memory analysis, transformations
and optimizations. Therefore, to enable for CNN execution with phases and
utilization of existing embedded design tools, e.g., SDF3 [91], for the CNN
analysis, in Step 2, we automatically convert a CNN model into a functionally
equivalent CSDF model. In Step 3, we use the SDF3 tool to analyse the CNN
and obtain a set of buffers B, used to store the intermediate computational
results of the CNN, represented as the CSDF model at Step 2. Every buffer
Bk ∈ B is characterized with minimum size. Together with buffers B, the SDF3
tool obtains specific execution order of phases, which enables to correctly
execute the CNN inference with buffers B. Thus, in our 3-step methodology,
we use processing data by parts to ensure the CNN inference with minimum
buffer sizes.

4.5.1 Phases derivation

In this section, we present our automated phases derivation algorithm -
see Algorithm 3. Algorithm 3 accepts as an input a CNN, represented as
the CNN model, explained in Section 2.1. As an output, Algorithm 3 pro-
vides a set of phases Φ = {Φ1, Φ2, ..., Φ|L|}, where Φi ∈ Φ is the number
of phases, performed by layer li of the input CNN. For example, for the
CNN shown in Figure 4.1, Algorithm 3 automatically derives a set of phases
Φ = {32, 16, 4, 1, 1}, which specifies that layers l1, l2, l3, l4, and l5 of the CNN
process data in 32, 16, 4, 1, and 1 phases, respectively.

In Line 1, Algorithm 3 defines the set of phases Φ as an empty set. In Lines
2 to 8, Algorithm 3 computes the number of phases Φi for every layer li of the
input CNN. Φi is computed such that at each phase, layer li accepts a part of
the input data and produces the corresponding part of the output data. Each

Algorithm 3: Phases derivation
Input: CNN(L, E)
Result: Set of phases Φ

1 Φ← ∅;
2 for li ∈ L do
3 if size of Θi = size of Xi then
4 hout

min = Yi.h;
5 else
6 hout

min = 1;

7 Yik ← part of Yi of shape [Yi.batch, hout
min, Yi.w, Yi.c];

8 Φi ← Yi.h/Yik.h;
9 Φ← Φ + Φi;

10 return Φ

62 Chapter 4. Methodology for low-memory CNN inference

part of input and output data of layer li is characterized with minimum height,
determined by the attributes of layer li, shown in Table 2.1 and explained in
Section 2.1. An example of such layer execution is shown in Figure 4.2(c),
explained in Section 4.4, where layer l2 performs Φ2 = 16 phases. At each
phase k ∈ [1, 16] layer l2 accepts an input data part X2k with minimum height
of 17 pixels, and produces an output data part Y2k with height of 1 pixel.

In Lines 3 to 6, Algorithm 3 computes the minimum height hout
min of output

data part Yik, produced by layer li at each phase. hout
min is 1 pixel for every layer

li, except of layers that process their input data at once (i.e., layers for which
condition in Line 3 is met). In Line 7, Algorithm 3 defines output data part Yik,
produced by layer li at each phase. Yik has the shape [Yi.batch, hout

min, Yi.w, Yi.c],
where Yi.batch, Yi.w, and Yi.c are the batch size, the width and the number of
channels of output data Yi, produced by layer li, and hout

min is the minimum
output data height, computed in Lines 3 to 6. In Line 8, Algorithm 3 computes
the number of phases Φi performed by layer li as the number of output data
parts with minimum height, produced by layer li. In Line 9, Algorithm 3 adds
Φi to the set Φ. Finally, in Line 10, Algorithm 3 returns the set of phases Φ.

4.5.2 CNN-to-CSDF model conversion

The automated conversion of a CNN into a functionally equivalent CSDF
model, utilized in our memory reduction methodology, is given in Algo-
rithm 4. Algorithm 4 accepts as inputs a CNN, represented as the CNN model,
explained in Section 2.1 and a set of phases Φ, automatically generated for the
CNN by Algorithm 3 presented in Section 4.5.1. In Lines 1-16, explained in
the CSDF model topology generation subsection below, Algorithm 4 generates
the topology of the CSDF model G(A, C). In Lines 17-36, explained in the Pro-
duction/consumption sequences derivation subsection below, Algorithm 4 derives
the production/consumption sequences for every channel in G(A, C). Finally,
in Line 37, Algorithm 4 returns G(A, C), which is functionally equivalent to

Figure 4.5: CSDF model, derived from the CNN model shown in Figure 4.1

4.5. Methodology 63

the input CNN(L, E) model. Figure 4.5 shows the CSDF model G(A, C), au-
tomatically derived by Algorithm 4 from the CNN model CNN(L, E) shown
in Figure 4.1 and phases Φ = {32, 16, 4, 1, 1}, derived for this CNN model
by Algorithm 3. The examples, provided in this section for Algorithm 4, are
referring to this CNN-to-CSDF conversion.

Algorithm 4: CNN-to-CSDF conversion
Input: CNN(L, E), Φ = {Φ1, Φ2, ..., Φ|L|}
Result: G(A, C)

1 A, C ← ∅; G(A, C)← CSDF model (A, C) ;
2 foreach li ∈ L do
3 Fi ← ∅;
4 ai ← actor (Fi);
5 A← A + ai ;
6 {Θi , opi , si} ← attributes of li (see Table 2.1);
7 Pi = Φi ;
8 for p ∈ [1, Pi] do
9 fi(p) = opi ;

10 Fi = Fi + fi(p);
11 if si < Θi .h then
12 cii ← channel(ai , ai);
13 C ← C + cii ;

14 foreach eij ∈ E do
15 cij ← channel(ai , aj);
16 C ← C + cij;

17 foreach cij ∈ C do
18 {Xi , Yi , khi , si , padi} ← attributes of li (see Table 2.1);
19 {Xj, Yj, khj, sj, padj} ← attributes of lj (see Table 2.1);
20 if i = j then
21 for p ∈ [1, Pi] do

22 uij(p) =
{

0 i f p = Pi
Xi .batch ∗ (Θi .h− si) ∗ Xi .w ∗ Xi .ch otherwise

23 vij(p) =
{

0 i f p = 1
Xi .batch ∗ (Θi .h− si) ∗ Xi .w ∗ Xi .ch otherwise

24 else
25 for p ∈ [1, Pi] do
26 uij(p) = Yi .batch ∗ 1 ∗Yi .w ∗Yi .ch;

27 vij(1) = Xj.batch ∗ (khj − padj[1]) ∗ Xj.w ∗ Xj.ch;

28 hpadj =

{
padj[1] + padj[3] i f Pj = 1
padj[3] otherwise ;

29 if ∄cjj ∨ Pj = 1 then
30 for p ∈ [2, Pj − 1] do
31 vij(p) = Xj.batch ∗ khj ∗ Xj.w ∗ Xj.ch;

32 vij(Pj) = Xj.batch ∗ (khj − hpadj) ∗ Xj.w ∗ Xj.ch;

33 else
34 for p ∈ [2, Pj − 1] do
35 vij(p) = Xj.batch ∗ sj ∗ Xj.w ∗ Xj.ch;

36 vij(Pj) = Xj.batch ∗ (sj − hpadj) ∗ Xj.w ∗ Xj.ch;

37 return G(A, C)

64 Chapter 4. Methodology for low-memory CNN inference

CSDF model topology generation

The CSDF model topology generation is performed in Lines 1-16 of Algo-
rithm 4. In Line 1, Algorithm 4 generates a new CSDF model G(A, C) with
an empty set of actors A and an empty set of communication channels C. In
Lines 2-10 Algorithm 4 converts every layer li of the CNN model CNN(L, E)
into a functionally equivalent CSDF actor ai ∈ A. Every actor ai ∈ A performs
execution sequence Fi = { fi(p)}, p ∈ [1, Pi], where every function fi(p) ∈ Fi is
specified as fi(p) = opi (Lines 9-10 of Algorithm 4). On each phase p ∈ [1, Pi],
actor ai applies operator opi performed by layer li to the part of input data Xip
of the layer li and produces a part of output data Yip. Thus, actor ai reproduces
data processing by parts, performed by the layer li and explained in Section 4.4.
The number of phases Φi of actor ai representing layer li is specified in the
input set of phases Φ. For example, actor a3 performs execution sequence F3 =
[P3 ∗ op3] = [4 ∗ conv], where op3 = conv is the operator, performed by layer l3,
4 is the number of phases Φ3, specified for layer l3 in the input set of phases Φ.

In Lines 11-13 Algorithm 4 models overlapping data reuse, explained in
Ex3 in Section 4.4. In Line 11, Algorithm 4 checks, if the data overlapping
occurs in layer li ∈ L. If data overlapping occurs in layer li, in Lines 12-13
Algorithm 4 models data overlapping for corresponding actor ai. Since the
CSDF model does not allow internal state specification in actors, the data
overlapping/reuse is modeled as self-loop FIFO channels cii, that store and
reuse the overlapping data between subsequent firings of actor ai. For example,
the data overlapping occurs in layer l3 (s3 = 3 < Θ3.h = 5). Therefore,
in Lines 12-13, Algorithm 4 creates self-loop channel c33, which stores the
overlapping/reuse data for actor a3.

Finally, in Lines 14-16, Algorithm 4 converts every input CNN model edge
eij ∈ E, representing a data dependency between layers li ∈ L and lj ∈ L, into
communication FIFO channel cij ∈ C, representing data dependency between
actors ai ∈ A and aj ∈ A.

Production/consumption sequences derivation

The production sequence Uij = {uij(p)}, p ∈ [1, Pi] and the consumption
sequence Vij = {vij(p)}, p ∈ [1, Pj] are derived for every channel cij ∈ C
of CSDF graph G(A, C) in Lines 24 to 36 of Algorithm 4. For every data
reuse channel cij ∈ C, i = j, storing the overlapping/reuse data between
subsequent firings of actor ai, the elements of the production/consumption
sequences are computed in Lines 21 to 23 of Algorithm 4. Since at the last
phase Pi of actor ai there is no need to produce data to be reused, the last

4.5. Methodology 65

element of the production sequence uij(Pi) is set to 0 in Line 22 of Algorithm 4.
Since at the first phase actor ai has not yet produced data in the data reuse
channel cij, the first element of the consumption sequence vij(1) is set to
0 in Line 23 of Algorithm 4. For all other phases of actor ai the elements
of the production/consumption sequences are computed as the number of
tokens in a tensor of shape [Xi.batch, (Θi − si), Xi.w, Xi.ch], reused between
the subsequent firings of actor ai. For example, data reuse channel c33 has
production sequence U33 : [3 ∗ 128, 1 ∗ 0] and consumption sequence V33 :
[1 ∗ 0, 3 ∗ 128].

For CSDF channels cij, that are not data reuse channels, i.e. i ̸= j, the
elements of the production/consumption sequences are computed in Lines
25 to 36 of Algorithm 4. The elements of the production sequence Uij are
computed as the number of elements in the output data part Yip, produced
by actor ai at phase p. For example, actor a3 at its every phase p ∈ [1, 4]
produces data Y[1,1,4,3]

3p , p ∈ [1, 4], to channel c34. Therefore, the elements of
production rate of channel c34 are computed in Lines 25 to 26 of Algorithm 4
as u34(p) = 1 ∗ 1 ∗ 4 ∗ 3 = 12.

Every element of the consumption sequences vij(p), p ∈ [1, Pj] is computed
in Lines 27 to 36 of Algorithm 4 as the number of elements in data tensor,
consumed by actor aj from non-overlapping channel cij on the actors phase
p ∈ [1, Pj] in order to produce data Yjp. The first element of the consumption
sequences vij(1) is computed in Line 27 of Algorithm 4. If no padding occurs
at the first phase of actor aj (pad[1] = 0 in Line 27 of Algorithm 4), actor aj
consumes from cij data Xjp with shape [Xj.batch, Xj.ch, khj, Xj.w]. If actor aj
crops data at the first phase (padj[1] < 0 in Line 27 of Algorithm 4), actor aj
consumes from cij data Xjp and data to be cropped. If actor aj extends data at
the first phase (pad[1] > 0 in Line 27 of Algorithm 4), actor aj consumes from
cij part of data Xjp, which is not provided by padding.

The computation of consumption sequence elements vij(p), p ∈ [2, Pj] is
divided in two different cases, determined by the presence of data overlapping
in the channel sink actor aj, corresponding to layer lj. If data overlapping is not
presented in actor aj (Lines 29-32 of Algorithm 4), actor aj consumes all input
data from its non-overlapping input channel cij. If data overlapping/reuse
is presented in actor aj (Lines 34-36 of Algorithm 4), actor aj consumes from
channel cij only non-overlapping data. The overlapping/reuse data is con-
sumed by actor aj from its self-loop channel cjj. In total, actor aj consumes data
Xjp at phases p ∈ [2, Pj − 1] (Lines 30-31, 34-35 of Algorithm 4), and all the
remaining data at phase p = Pj (Lines 32, 36 of Algorithm 4). Consumption of
all the remaining data from CSDF channels allows to empty the FIFO buffers

66 Chapter 4. Methodology for low-memory CNN inference

and ensure the CSDF model consistency [10].
For example, communication channel c23 has consumption sequence V23 :

[1 ∗ 384, 2 ∗ 192, 1 ∗ 256]. The first element of the consumption sequence is
computed in Line 27 of Algorithm 4 as v23(1) = (5− (−1)) ∗ 16 ∗ 4 = 384,
where 5 ∗ 16 ∗ 4 = 320 elements are elements of input data tensor X31 of
shape [1, 5, 16, 4], used by actor a3 to produce data Y31, and 1 ∗ 16 ∗ 4 = 64
elements are cropped by actor a3 according to the padding pad3. As data
overlapping/reuse is presented for a3 (∃c33), v23(p), p ∈ [2, 4] are computed
in Lines 34-36 of Algorithm 4. At phases p ∈ [2, 3] actor a3 consumes non-
overlapping data 3 ∗ 16 ∗ 4 = 192 from channel c23, i.e., v23(p) = 192, p ∈ [2, 3].
At the last phase actor a3 consumes the remaining data (3− (−1)) ∗ 16 ∗ 4 =
256 from channel c23, i.e. v23(4) = 256.

4.6 Experimental Results

In this section, we evaluate our memory reduction methodology in terms
of achieved memory footprint reduction as well as we show the cost of this
memory footprint reduction in terms of decreased CNN inference throughput.
To this end, we take real-world CNNs from the ONNX models Zoo [7] and
obtain their memory footprint and inference throughput, when the memory
footprint of the CNNs is reduced using: 1) the most relevant CNN buffers
reuse methodology, briefly introduced in Section 4.3, and employed by the
TensorRT framework for efficient CNN execution at the Edge [72]; 2) our
memory reduction methodology, presented in Section 4.5. The results of the
experiment are given in Table 4.2.

We perform our experiment in two steps. In Step 1, for every CNN from
the ONNX models Zoo, we derive: 1) a TensorRT C++ executable applica-
tion, which represents the CNN inference with the TensorRT buffers reuse

Table 4.2: Evaluation of our memory reduction methodology

CNN
Memory Memory Throughput Throughput

footprint (MB) reduction (fps) reduction
TensorRT ours (%) TensorRT ours (%)

resnet18 51.6 49 5 137 121 12
googlenet 38.7 31 19.8 118 103 13

tiny yolo v2 77.3 64.3 16.8 131 105 20
inception v1 38.3 31 19 122 106 13

VGG 19 594 577 2.8 15 14.7 2
densenet121 43 40 7.5 62 49 21
squeezenet 10.4 6.4 38 342 262 23

4.6. Experimental Results 67

methodology. This application is automatically generated by the TensorRT DL
framework from the input CNN description in .onnx format; 2) a C++ CNN
inference with phases application, which implements the CNN inference with
phases, derived from the same input CNN by our methodology presented in
Section 4.5. To implement this application, we use the TensorRT DL frame-
work as well as a custom code generation component, which offers support of
the CNN inference with phases (CSDF) model, unsupported by the TensorRT
DL framework. The TensorRT DL framework is used to define CNN operators,
while our custom code is used to define the CSDF model.

In Step 2, we execute the applications, obtained in Step 1. We measure and
compare the memory footprint as well as the throughput of the CNNs, when
the memory footprint of the CNNs is reduced using: 1) the TensorRT buffers
reuse methodology; 2) our memory reduction methodology. Columns 2 and 3
in Table 4.2 show the memory footprint (in MegaBytes) of every CNN, i.e., the
total amount of memory required to store the CNN parameters (weights and
biases) together with the CNN intermediate computational results. Column
4 in Table 4.2 shows the memory reduction (in %), achieved by our method-
ology in comparison with the TensorRT DL framework. It shows that our
methodology achieves 2.8% to 38% memory reduction, compared to the Ten-
sorRT buffers reuse methodology. The difference in memory reduction can
be explained using the CNN characteristics shown in Table 4.3. First of all, as
explained in Section 4.5, our methodology only reduces the amount of memory
required to store the intermediate computational results of a CNN. There-
fore, our methodology is most efficient for CNNs for which the intermediate
computational results (stored in the CNN buffers as explained in Section 2.2)
constitute the largest part of the total CNN memory requirement. Columns 2
to 4 in Table 4.3 show the amount of memory (in MegaBytes) required to store
intermediate computational results (see Columns 2 and 3) and parameters
(see Column 4) of the CNNs from the ONNX models Zoo. For example, the
Table 4.3: CNN characteristics affecting CNN memory reduction and throughput decrease

CNN Buffer sizes (MB) parameters Total phases
TensorRT ours (MB) TensorRT ours

resnet18 4.8 2.2 46.8 68 1962
googlenet 10.7 3 28 143 2630

tiny yolo v2 14.2 0.8 63.5 33 3796
inception v1 10.3 3 28 143 2494

VGG 19 19.3 2.3 574.7 46 2354
densenet121 10.9 7.9 32.1 428 8935
squeezenet 5.1 1.4 5 66 1870

68 Chapter 4. Methodology for low-memory CNN inference

squeezenet CNN (see Row 9 in Table 4.3) requires 1.4 to 5.1 MegaBytes of
memory to store its intermediate computational results and and 5 MegaBytes
of memory to store its parameters. Analogously, the VGG 19 CNN (see Row 7
in Table 4.3) requires 2.3 to 19.3 MegaBytes of memory to store its intermediate
computational results and 574.5 MegaBytes of memory to store its parameters.
In other words, the squeezenet CNN requires similar amount of memory to
store its intermediate computational results and its parameters, while the
VGG 19 CNN requires much more memory to store its parameters than to
store its intermediate computational results. Consequently, our methodology
achieves a significant, 38%, memory reduction for the squeezenet CNN and
small, 2.8%, memory reduction for the VGG 19 CNN (see Row 7 and Row
9, Column 4 in Table 4.2). Secondly, as explained in Section 4.3, unlike the
TensorRT buffers reuse methodology, our methodology reuses data within
CNN layers. As shown in Section 4.4, the more phases are performed by layers
of a CNN, the more memory is reused within the CNN layers and the more
memory reduction can our methodology achieve. Thus, the number of phases
performed by the CNN layers affects the memory reduction, achieved by our
methodology. The number of phases performed by the CNN layers, when
the CNNs are executed with the TensoRT buffers reduction methodology and
with our methodology, is shown in Columns 5 and 6 in Table 4.3, respectively.
When a CNN is executed with the TensoRT buffers reduction methodology,
every layer of the CNN performs one phase. Therefore, the total number
of phases performed by the layers of a CNN corresponds to the number of
layers in the CNN. When a CNN is executed with our methodology, the total
number of phases performed by the CNN layers is computed as ∑Φi∈Φ Φi,
where Φ is a set of phases, derived for the CNN using Algorithm 3 introduced
in Section 4.5.1. For example, Row 5, Columns 5 and 6 in Table 4.3 shows
that the tiny yolo v2 CNN performs 33 phases when is executed with the Ten-
soRT buffers reduction methodology and 3796 phases when executed with our
methodology. We believe that the high, 16.8%, memory reduction, achieved by
our methodology for the tiny yolo v2 CNN (see Column 4, Row 5 in Table 4.2)
is due to the large amount of memory reuse within the CNN layers that our
methodology introduced into the tiny yolo v2 CNN by increasing the total
number of CNN phases 3796/33 ≈ 115 times.

Columns 5 and 6 in Table 4.2 show the throughput (in frames per second),
demonstrated by the CNNs executed with the TensorRT buffers reuse method-
ology and our methodology, respectively. Column 7 shows the throughput
decrease (in %), introduced into the CNNs inference by our methodology. It
shows that our methodology decreases the CNN throughput by 2% to 23%,

4.7. Conclusion 69

depending on the CNN. As mentioned in Section 4.4, the throughput decrease,
possibly introduced in a CNN by our proposed methodology, depends on
the amount of phases performed by the CNN layers. The more phases are
performed by the CNN layers, the larger is the possible throughput decrease.
For example, our methodology introduces more throughput decrease into
the tiny yolo v2 CNN than into the resnet18 CNN (see Row 3 and Row 5 in
Table 4.2), because it introduces more phases in the tiny yolo v2 CNN than in
the resnet18 CNN (see Row 3 and Row 5, Column 6 in Table 4.3). However,
being a relative value, the amount of throughput decrease also depends on
the overall CNN throughput. For example, the throughput reduction is larger
for the squeezenet CNN than for the VGG 19 CNN (see Row 7 and Row 9 in
Table 4.2), because the squeezenet CNN has much higher throughput than
the VGG 19 CNN, and thus is more sensitive to the throughput decrease,
introduced by our methodology.

4.7 Conclusion

We propose a novel CNN memory footprint reduction methodology. Our
proposed methodology is based on the ability of CNN operators to process
data by parts. By splitting input and output data of CNN layers into parts, and
efficiently reusing the platform memory among these parts, our methodology
allows to reduce the CNN memory footprint at the cost of decreasing the CNN
throughput. The key feature of our methodology is the exploitation of CNNs
ability to process data by parts for the CNN memory footprint reduction. The
evaluation results show that, compared to the memory reduction, achieved by
the most relevant CNN buffers reuse methodology, employed by the TensorRT
DL framework for efficient CNN execution at the Edge, our memory reduction
methodology allows to reduce the CNN memory footprint by 2.8% to 38% at
the cost of 2% to 23% decrease of the CNN throughput.

70 Chapter 4. Methodology for low-memory CNN inference

Chapter 5

Methodology for run-time
adaptive inference of
CNN-based applications

Svetlana Minakova, Dolly Sapra, Todor Stefanov, Andy Pimentel. "Scenario Based
Run-time Switching for Adaptive CNN-based Applications at the Edge". In ACM
Transactions on Embedded Computing Systems (TECS), vol. 21, Iss. 2, Article 14, March 2022.

IN this chapter, we present our methodology for run-time adaptive inference
of CNN-based applications, which corresponds to the third research contri-

bution of this thesis summarized in Section 1.5.3. The proposed methodology
is a part of the post-selection optimization component, introduced in Sec-
tion 1.5, and is aimed at relaxation of Limitation 2, introduced in Section 1.4.2.
The reminder of this chapter is organized as follows. Section 5.1 introduces, in
more details, the problem addressed by our novel methodology. Section 5.2
summarizes the novel research contributions, presented in this chapter. An
overview of the related work is given in Section 5.3. Section 5.4 provides a
motivational example. Sections 5.5 to 5.9 present the proposed methodology
and its steps. Section 5.10 presents the experimental study performed by using
the proposed methodology. Section 5.11 ends the chapter with conclusions.

5.1 Problem statement

As mentioned in Section 1.4.2, a CNN-based application designed using the
state-of-the-art design flow shown in Figure 1.3 and explained in Section 1.3,

72 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

uses a single CNN to perform its task. This CNN is characterized with certain
accuracy and platform-aware characteristics (see Section 1.1) corresponding to
requirements posed on the CNN by the application and target edge platform
(see Section 1.2). The CNN characteristics remain unchanged during the
application run-time. However, the needs of a CNN-based application, and
hence the requirements posed on the CNN, may change under the influence
of the application environment during the application run-time. For example,
a CNN-based road traffic monitoring application, executed on a drone [53],
can have different needs, dependent on the situation on the roads and the
level of the device’s battery. If the traffic is heavy, the application should
provide high throughput and high accuracy to process its input data, which
typically means high energy cost. However, during a traffic jam, when the high
throughput is not required, or in case the battery of the drone is running low,
the application would function optimally by prioritizing energy efficiency over
the high throughput. This example shows that CNN-based applications need a
mechanism that can adapt their characteristics to the changes in the application
environment (such as a change of the situation on the roads or a change of
the device’s battery level) at the application run-time. Moreover, such a
mechanism should provide a high level of responsiveness, e.g., if a drone
battery is running low, the CNN-based application, executed on the drone,
should switch to an energy-efficient mode as soon as possible. However, to the
best of our knowledge, neither existing Deep Learning (DL) methodologies [3,
16, 38, 41, 46, 77, 92, 99, 100, 105, 106] for resource-efficient CNN execution at
the Edge, nor existing embedded systems design methodologies [13, 68, 108]
for execution of run-time adaptive applications at the edge, provide such
a mechanism. Therefore, in this chapter, we propose a novel methodology,
which enables to adapt a CNN-based application to changes in the application
environment during run-time.

5.2 Contributions

In this chapter, we propose a novel methodology which provides run-time
adaptation of a CNN-based application, executed at the Edge, to changes in
the application environment. Our methodology, shortly referred as scenario-
based run-time switching (SBRS) methodology, is based on the concept of
scenarios [15], widely used in embedded systems design. According to this
concept, an application can have different internal operation modes, called sce-
narios, each with its own typical characteristics or/and functionality. During
run-time, the application can switch among the scenarios, thereby adapting its

5.3. Related Work 73

characteristics or functionality to changes in the application environment. In
our SBRS methodology a scenario is a CNN designed to conform to a specific
set of requirements in terms of accuracy and platform-aware characteristics.
During the application execution, the application environment can trigger the
application to switch between the scenarios, thereby adapting the application
characteristics to changes in the application environment. The SBRS methodol-
ogy, proposed in Section 5.5, is our main novel contribution. Other important
novel contributions within the methodology, are:

• A novel SBRS Model of Computation (MoC) (see Section 5.7). The
SBRS MoC captures the functionality of a CNN-based application with
multiple scenarios and allows for run-time switching between these
scenarios.

• An algorithm for automated derivation of the SBRS MoC from a set of
application scenarios (see Section 5.8);

• A transition protocol for efficient switching between the CNN-based
application scenarios (see Section 5.9).

5.3 Related Work

The platform-aware neural architecture search (NAS) methodologies, pro-
posed in [3,38,46,92,100,105] and reviewed in survey [16], allow for automated
generation of CNNs that solve the same problem, and are characterized with
different accuracy and platform-aware characteristic. However, these method-
ologies do not propose a mechanism for run-time switching between these
CNNs, while such mechanism is necessary to ensure that application needs
are best served at every moment in time. In contrast to the NAS methodologies
from [3, 16, 38, 46, 92, 100, 105], our methodology proposes such a mechanism,
and ensures that application needs are best served at every moment in time.

The methodologies presented in [12, 39, 61, 96, 102, 107] propose resource-
efficient runtime-adaptive CNN execution at the Edge. These methodologies
represent a CNN as a dynamic computational graph, where for every CNN
input sample only a subset of the graph nodes is utilized to compute the
corresponding CNN output. The subset of graph nodes is selected during
the application run-time by special control mechanisms (e.g., control nodes,
augmenting the CNN graph topology). The utilization of only a subset of
graph nodes at every CNN computational step can increase the CNN through-
put and accuracy, and typically reduces the CNN energy cost. However, the

74 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

methodologies in [12, 39, 61, 96, 102, 107] cannot adapt a CNN to changes in
the application environment, like changes of the device’s battery level, which
affect the CNN needs during the run-time. The adaptation in these methodolo-
gies is driven either by the complexity of the CNN input data [12,39,61,96,102]
or by the number of floating-point operations (FLOPs), required to perform
the CNN functionality [39, 107], while the changes in the application envi-
ronment often cannot be captured in the CNN input data or estimated using
FLOPs. In contrast to these methodologies, our SBRS methodology adapts a
CNN-based application to the changes in the application environment, and
therefore, allows to best serve the application needs, affected by such changes.

A number of embedded systems design methodologies, proposed in [13,
68,108], allow for efficient execution of runtime-adaptive scenario-based appli-
cations at the Edge. These methodologies represent an application, executed
at the Edge, in a specific model of computation (MoC), able to capture the
functionality of a runtime-adaptive application associated with several scenar-
ios, and ensure efficient run-time switching between the application scenarios.
However, the methodologies in [13, 68, 108] cannot be (directly) applied to
CNN-based applications due to a significant semantic difference between the
MoCs, utilized in these methodologies and the CNN model [2], typically uti-
lized by CNN-based applications. First of all, the MoCs utilized in [13, 68, 108]
lack means for explicit definition of various CNN-specific features, such as
CNN parameters and hyperparameters, while, as we show in Section 5.7,
explicit definition of these features is required for the application analysis.
Secondly, the MoCs utilized in methodologies [13, 68, 108] are not accepted
as input by existing Deep Learning (DL) frameworks, such as Keras [19] or
TensorRT [72], widely used for efficient design, deployment and execution
of CNN-based applications at the Edge. In our methodology, we propose
a novel application model, inspired by the methodologies [13, 68, 108], to
represent a run-time adaptive CNN-based application and ensure efficient
switching between the CNN-based application scenarios. However, unlike the
methodologies [13, 68, 108], our methodology 1) explicitly defines and utilizes
CNN-specific features for efficient execution of CNN-based applications at
the Edge, and 2) allows for utilization of existing DL frameworks for design,
deployment, and execution of the CNN-based application at the Edge.

5.4 Motivational Example

In this section, we show the necessity of devising a new methodology for
execution of adaptive CNN-based applications at the Edge. To do so, we

5.4. Motivational Example 75

present a simple example of a CNN-based application where the requirements
change at run-time due to the changes in its environment. The application is
discussed in the context of the existing methodologies reviewed in Section 5.3,
and the scenario-based run-time switching (SBRS), our proposed methodology.

The example application performs CNN-based image recognition on a
battery powered unmanned aerial vehicle (UAV). The UAV battery capacity
defines a power budget, which is available for both the flight and the CNN-
based application execution. The distribution of the power budget between the
flight and the application is irregular, and depends on the weather conditions,
which can change during the run-time (the UAV flight). In a calm weather,
the UAV requires less power to fly and can thus spend more power on the
CNN-based application. Conversely, when the weather is windy, the UAV
requires a large amount of power to fly, and therefore has less power available
for the CNN-based application. The weather prediction at the application
design time is an impossible task. Nevertheless, the CNN-based application
should be designed such that it: 1) meets the power constraint, imposed on
the application by the UAV battery and affected by weather conditions; 2)
demonstrates high image recognition accuracy (the higher the better).

Figure 5.1 illustrates an example of how the execution of such CNN-based
application will transpire, when designed using the existing methodologies
and our SBRS. Subplots (a), (b), (c) juxtapose the power available for the appli-
cation execution (dashed line), against the power used by the application (solid
line) during the UAV flight, which lasts 2 hours. The power available for the
application execution is dependant on the UAV battery capacity and weather
conditions. In this example, we assume that the CNN-based application is
allowed to use up to 12 Watts of power in turbulent weather (0 to 0.1 hours
and 1.0 to 1.5 hours) and up to 32 Watts of power in calm weather (0.1 to 1.0
hours and 1.5 to 2.0 hours). However, the actual power used by the application
is ultimately determined by the application design methodology. Further, the
subplots (d), (e), (f) show the image recognition accuracy demonstrated by
the application. Subplots (g), (h), (i) show the current charge state (solid line)
and minimum charge level (dashed line) of the UAV battery. If the current
battery charge reaches the minimum allowed battery level, it may lead to an
emergency landing of the UAV.

As a first case, we discuss the multi-objective NAS methodologies [3, 38,
46, 92, 100, 105] for the execution of the example application, that are typically
designed and utilized without considering a run-time changing environment.
In these methodologies, a CNN is obtained via an automated multi-objective
search and characterized with constant accuracy and power consumption. To

76 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

(a) (b) (c)

(d) (e) (f)

(g)

Emergency

 landing

(h) (i)

Figure 5.1: Execution of a CNN-based application, affected by the application environment
and designed using different methodologies
guarantee that the application meets a power constraint, such a CNN has to
account for the worst-case scenario, i.e., when the weather is always windy
and therefore only 12 Watts are available for the application execution at
any moment. In our illustrative example, such a CNN is characterized with
11.2 Watts of power and 82% accuracy (see Figure 5.1(a) and Figure 5.1(d),
respectively). As shown in Figure 5.1(g), when the UAV reaches its destination
after 2 hours of flight, it still has ≈50% battery charge left. On the one hand, it
means that the application always meets the power constraint. On the other
hand, the application could have spent ≈40% remaining UAV battery charge
by utilizing a more accurate CNN, though demanding additional power . In
other words, the methodologies in [3, 38, 46, 92, 100, 105] can guarantee that the
application meets the given platform-aware constraint, but cannot guarantee efficient
use of available platform resources.

As a second case, when the application is designed using data-driven

5.4. Motivational Example 77

adaptive methodologies, such as [12, 39, 61, 96, 102], the CNN execution is
sensitive to the input data complexity. To process "easy" images, they may use
a lower resolution or fewer layers, whereas processing "hard" images requires
more computation. In this manner, an adaptive CNN-based application is
able to adapt its power consumption depending on the input data complexity,
while demonstrating similar accuracy for all the inputs. However, such a CNN
cannot adapt to the changing environmental conditions, which can not be
explicitly captured in the input images. The application power consumption
can change during the application run-time, based on the input images, al-
though these changes may conflict with the application’s requirements, driven
by the weather conditions. For example, in Figure 5.1(b), between 1.0 and 1.25
hours, the CNN consumes significant amount of power despite the necessity
to switch to the low power mode. This may lead to increased UAV power
consumption over the flight duration and, eventually, to the violation of the
application power constraint, causing an emergency landing as illustrated
in Figure 5.1(h). Thus, the methodologies in [12, 39, 61, 96, 102] are not suitable
for CNN-based applications executed at the Edge in changing environment, because
these can neither properly adapt the application to the environment variations, nor
guarantee that the application constantly meets platform-aware constraints.

Another case of adaptive CNN-based application methodologies, is where
the application can adaptively change the number of floating-point operations
(FLOPs) spent on the image recognition, such as those in [39, 107]. However,
as shown in numerous works [54, 103, 105] FLOPs is an inaccurate indicator
for real-world platform-aware characteristics such as power consumption or
throughput. These characteristics depend on many other factors, for instance,
the ability of the platform to perform parallel computations, time and energy
overheads caused by the data transfers, internal hardware limitations, etc.
Consequently, the number of FLOPs spent during the application run-time,
neither guarantee that the application meets power constraint nor estimate the
application efficiency in terms of real-world platform-aware characteristics.
In other words, even though, the methodologies in [39, 107] enable run-time CNN
adaptivity, these cannot be directly deployed for applications with real-world platform-
aware requirements and constraints.

To summarize, the existing works lack a methodology to design an adap-
tive CNN-based application, for real-world platform-aware requirements and
constraints, specifically affected by the environment variations at run-time.
The motivation behind our current proposal, SBRS, is to enable such run-time
adaptivity. To design an application using our SBRS, we perform multi-
objective NAS, similar to those in [3,38,46,92,100,105]. However, unlike these

78 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

methodologies, we derive multiple CNNs for each scenario. For example,
the first scenario for our example application for windy weather, can have
an associated CNN with 11.2 Watts power consumption and 82% accuracy.
The second scenario, for calm weather, is represented by a CNN with 31.0
Watts power consumption and 89% accuracy. At run-time, the application
switches between these scenarios, based on the weather conditions. Addi-
tionally, our methodology explicitly defines the switching mechanism based
on triggers generated due to an environment change at run-time. The execu-
tion of the CNN-based application with SBRS is shown in Figure 5.1 (c), (f),
(i). Particularly, Figure 5.1(i) highlights that the application meets the given
power constraint, i.e. the UAV battery charge does not go below the minimum
level before 2 hours, and SBRS uses all available power to achieve higher
application accuracy in comparison with Figure 5.1(d). Thus, by switching
among the scenarios, SBRS guarantees that a CNN-based application, affected by
the environment, meets platform-aware constraints while efficiently exploiting the
available platform resources to improve its accuracy.

5.5 SBRS methodology

In this section, we present our novel scenario-based run-time switching (SBRS)
methodology, which allows for run-time adaptation of a CNN-based appli-
cation, executed at the Edge, to changes in the application environment. The
general structure of our methodology is given in Figure 5.2. Our methodology
accepts as an input a baseline CNN and one or more requirements sets, associ-
ated with the CNN-based application. A baseline CNN is an existing CNN
(e.g., AlexNet [4], ResNet [36], or another), proven to achieve good results at
solving a CNN-based application task (e.g., classification). The requirements
sets describe a scope of needs, associated with the devised application. Every
application requirements set r = (ra, rt, rm, re) specifies the application priority
for high accuracy (ra), high throughput (rt), low memory cost (rm), and low
energy cost (re), respectively. One application can have one or several sets of
requirements, characterising the application needs at different times of the
application execution. The requirements sets are defined by the application de-
signer at the application design time. As an output, our methodology provides
a CNN-based application with SBRS capabilities, able to adapt its character-
istics to the changes in the application environment during the application
run-time.

Our methodology consists of three main steps. In Step 1 (see Section 5.6),
for every set of application requirements r, accepted as an input by our method-

5.6. Automated scenarios derivation 79

Figure 5.2: SBRS methodology
ology, we derive an application scenario, i.e., a CNN which conforms to the
given set r of application requirements.

In Step 2, we use the scenarios generated by Step 1, and the algorithm
proposed in Section 5.8, to automatically derive a SBRS MoC of a CNN-based
application with scenarios. The SBRS MoC, proposed in Section 5.7, captures
the scenarios associated with the CNN-based application, and allows for run-
time switching among these scenarios. Moreover, the SBRS MoC features
efficient reuse of the components (layers and edges) among and within appli-
cation scenarios, thereby ensuring efficient utilization of the platform memory
by the CNN-based application with SBRS.

Finally, in Step 3, we use the SBRS MoC derived at Step 2 to design a final
implementation of the CNN-based application with SBRS. The final implemen-
tation of the CNN-based application performs the application functionality
with run-time adaptive switching among the application scenarios, illustrated
in Section 5.4, and following the switching protocol presented in Section 5.9.

5.6 Automated scenarios derivation

In this section, we discuss the automated derivation of application scenarios,
i.e., CNNs characterized with different accuracy and platform-aware charac-

80 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

(a) CNN1, r1 = (1.0, 0, 0, 0)

(b) CNN2, r2 = (0.2, 0.4, 0, 0.4)

Figure 5.3: Application scenarios
teristics. An example set of S = 2 scenarios, derived using our methodology,
is shown in Figure 5.3. As mentioned in Section 5.5, every intended sce-
nario CNNi, i ∈ [1, S] is first depicted by a user-defined set of requirements
ri = (ra, rt, rm, re), where ra, rt, rm, re refer to the importance of high CNN ac-
curacy, high CNN throughput, low CNN memory footprint and low CNN
energy cost, respectively. Together, these variables constitute the influence
factor of each requirement in the scenario by assigning a weight value to the
requirements such that ra + rt + rm + re = 1.0. For example, in scenario CNN1

shown in Figure 5.3(a) only high accuracy is pivotal, i.e. ra = 1.0, the require-
ments set is r1 = (1.0, 0, 0, 0). For scenario CNN2 shown in Figure 5.3(b), the
throughput and energy are critical factors while accuracy is still moderately
significant, and the requirements set is defined as r2 = (0.2, 0.4, 0, 0.4).

To derive a set of scenarios, depicted by their respective sets of require-
ments, we use a part of the extended CNN design flow shown in Figure 1.5
and explained in Section 1.5. First, the sets of requirements are passed to the
CNN optimization engine, introduced in Section 1.3. The CNN optimization
engine performs automated search for optimal CNN architecture and weights
using techniques such as platform-aware NAS [9, 25, 34, 38, 46, 92, 105] and
CNN compression [41, 99, 106]. The search results into a set of CNNs, char-
acterized with different architecture, weights, accuracy, and platform-aware
characteristics. The platform-aware characteristics of the CNNs may be fur-
ther improved by the use of the system-level optimization engine, introduced in
Section 1.5. Recall, that the system-level optimization engine explores and

5.7. SBRS application model 81

exploits alternative manners of CNN execution to improve the CNNs char-
acteristics, and produces as an output a set of augmented design points, i.e.,
CNNs, annotated with a specific manner of execution. Finally, the extended
selection component, introduced in Section 1.5, selects scenarios from the
(augmented) design points, produced using the CNN optimization engine
and (possibly) the system-level optimization engine. The selection of every
scenario is based on existing multi-objective ranking algorithms [29], able to
score a CNN, based on the CNN accuracy and platform-aware characteristics,
and a set of requirements, posed on a CNN.

To estimate the accuracy and platform-aware characteristics, the CNN
optimization engine and the system-level optimization engine use the CNN
characteristics estimation component, briefly introduced in Section 1.3. In our
methodology, the CNN characteristics estimation component provides means
to evaluate the CNN accuracy, throughput, memory cost, and energy cost.

To evaluate the accuracy of a CNN, we use means of existing DL frame-
works, such as Keras [19], Pytorch [75], Tensorlow [1], TensorRT [72] and
others [74]. These frameworks offer a wide range of a state-of-the-art tech-
niques for evaluating CNN accuracy. Mainly, we use the widely known
cross-validation technique [78]. In this technique, a CNN efficiency metric
is measured by application of a CNN to a special set of data, called valida-
tion dataset [78]. The CNN accuracy is computed as the number of correctly
processed input frames to the total number of the CNN input frames. It is im-
portant to note that even though we refer to estimation of a CNN as accuracy,
it is possible to use alternative estimation metrics suitable to the application,
and offered by the DL frameworks. For instance, F-1 score, precision, recall,
PR-AUC (Area under curve for precision recall) [89] are some of the metrics
that can be used for CNNs estimation as well.

To estimate the platform-aware characteristics of a CNN, we use analytical
formulas as well as measurements on the platform. The memory cost of a
CNN is estimated analytically, using Equation 2.5 explained in Section 2.2.
To estimate the CNN throughput and energy cost that are notoriously hard to
evaluate analytically [54, 60, 103, 105], we use direct measurements on the
platform.

5.7 SBRS application model

In this section, we propose our SBRS MoC, which models a CNN-based appli-
cation with scenarios. The SBRS MoC captures multiple scenarios associated
with a CNN-based application, and allows for run-time switching among

82 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

Figure 5.4: SBRS MoC
these scenarios. Every scenario in the SBRS MoC is a CNN. Figure 5.4 shows
an example of the SBRS MoC, which models a CNN-based application as-
sociated with scenarios CNN1 and CNN2 shown Figure 5.3 and explained in
Section 5.6. In this section, we use the example in Figure 5.4 to explain the
SBRS MoC in detail. Formally, the SBRS MoC is defined as a scenarios super-
graph, augmented with a control node c and a set of control edges Ec. The
scenarios supergraph (see Section 5.7.1), captures all components (layers and
edges) in every scenario of a CNN-based application. Therefore, it captures
the functionality of every scenario, used by the application. To represent the
functionality of a specific scenario, the SBRS MoC uses a sub-graph of the
scenarios supergraph. The execution of a specific scenario (i.e., the use of a
specific sub-graph of the scenarios supergraph) as well as run-time adaptive
switching among the scenarios is determined by the control node c of the SBRS
MoC (see Section 5.7.2). Finally, control edges Ec (see Section 5.7.3) specify the
communication between the control node c and the scenarios supergraph. The
details of the SBRS MoC deployment and inference at the Edge are provided
in Section 5.7.4.

5.7.1 Scenarios supergraph

The scenarios supergraph of an SBRS MoC is a graph SBRS(L, E) with a set
of layers L which captures the functionality of every layer in every scenario
of a CNN-based application, and a set of edges E which captures every data
dependency in every scenario of the CNN-based application. Every layer
ls
i of every scenario CNNs is captured by the functionally equivalent layer

ln ∈ L of the scenarios supergraph, and every edge es
ij of every scenario

5.7. SBRS application model 83

Ta
bl

e
5.

1:
C

ap
tu

ri
ng

of
sc

en
ar

io
s’

co
m

po
ne

nt
s

(la
ye

rs
an

d
ed

ge
s)

in
th

e
sc

en
ar

io
s

su
pe

rg
ra

ph

la
ye

rs
ed

ge
s

SB
R

S
co

m
po

ne
nt

l 1
l 2

l 3
l 4

l 5
l 6

e 1
2

e 2
3

e 2
4

e 3
4

e 4
5

e 5
6

C
N

N
1

co
m

po
ne

nt
l1 1

l1 2

-

l1 3
l1 4

l1 5
e1 12

-
e1 23

-
e1 34

e1 45

co
nt

ro
lp

ar
.

-
O

2=
p 1

pa
r 4

=
p 2

=
-

-
-

-
-

-
-

-
=
{e

24
}

{W
1 3
,B

1 3
};

I 4
=

p 3
=
{e

24
}

C
N

N
2

co
m

po
ne

nt
l2 1

l2 2
l2 3

l2 4
l2 5

l2 6
e2 12

e2 23
-

e2 34
e2 45

e2 56

co
nt

ro
lp

ar
.

-
O

2=
p 1

-
pa

r 4
=

p 2
=

-
-

-
-

-
-

-
-

=
{e

23
}

{W
2 4
,B

2 4
};

I 4
=

p 3
=
{e

34
}

re
us

e

al
l

op
2,

s 2
,

-

op
4,

s 4
,

al
l

al
l

e 1
2

-
-

-
e 4

5
e 5

6
at

tr
i-

kw
2,

kh
2,

kw
4,

kh
4,

at
tr

i-
at

tr
i-

bu
te

s
pa

r 2
,

O
4

bu
te

s
bu

te
s

of
l 1

I 2
of

l 5
of

l 6

84 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

CNNs is captured by the functionally equivalent edge enk ∈ E of the scenarios
supergraph. Table 5.1 shows how layers and edges of scenarios CNN1 and
CNN2, shown in Figure 5.3 are captured in the scenarios supergraph of the
SBRS MoC shown in Figure 5.4. For example, Column 9 in Table 5.1 shows that
edge e1

12 of scenario CNN1 and edge e2
12 of scenario CNN2 are captured by edge

e12 of the scenarios supergraph. We note that edge e12 is used by scenario CNN1

and scenario CNN2, i.e., edge e1
12 is reused among the application scenarios.

The reuse of components (layers and edges) of the scenarios supergraph
is shown in Row 7 in Table 5.1. The reuse is introduced in the SBRS MoC
because it allows for reduction of the CNN-based application memory cost
and efficient utilization of the target edge platform memory by the CNN-based
application. For example capturing of edge e1

12 of scenario CNN1 and edge
e2

12 of scenario CNN2 by edge e12 of the SBRS MoC enables to reuse target
edge platform memory allocated to data tensors e1

12.data and e2
12.data, thereby

reducing the application memory cost. Analogously, reuse of weights among
and within application scenarios, enables to reuse the edge platform memory
allocated to store these weights, thereby reducing the application memory
cost. The reuse of a scenarios supergraph component can be full or partial.
When a component is fully reused, all attributes of the component are reused.
For example, layer l1 of the scenarios supergraph shown in Column 3 is fully
reused between scenarios CNN1 and CNN2, because all attributes of layer
l1 are reused between the scenarios1. When a component is partially reused,
only some of its attributes are reused. For example, layer l4 of the scenarios
supergraph shown in Column 6 is partially reused between scenarios CNN1

and CNN2 because only attributes op4, s4, kw4, kh4, and O4 of layer l4 are
reused among the scenarios.

The attributes that are not reused between the scenarios, are specified via
run-time adaptive control parameters, introduced into the scenarios super-
graph by the SBRS MoC to support partial components reuse. For example, as
shown in Row 4 and Row 6, Column 6 in Table 5.1, attributes par4 and I4 of
supergraph layer l4 are specified by control parameters p2 and p3, respectively.
During the application run-time, control parameter p2 takes values from the
set {{W1

3 , B1
3}, {W2

4 , B2
4}} and control parameter p3 takes values from the set

{{e24}, {e34}}. When p2 = {W1
3 , B1

3} and p3 = {e24}, supergraph layer l4 is
functionally equivalent to layer l1

3 of scenario CNN1. When p2 = {W2
4 , B2

4}
and p3 = {e34}, supergraph layer l4 is functionally equivalent to layer l2

4 of
scenario CNN2.

The capturing of scenarios’ components (layers and edges) in the scenarios

1Attributes of a layer are defined in Table 2.1 in Section 2.1

5.7. SBRS application model 85

supergraph (example of capturing is shown in Table 5.1 explained above) is
determined at the application design time, and is stored in the control node c
of the SBRS MoC during the application run-time.

5.7.2 Control node

The control node c of the SBRS MoC communicates with the application
environment, and determines the execution of scenarios in the application
supergraph as well as the switching between these scenarios.

Execution of scenario CNNs(Ls, Es), s ∈ [1, S] captured by the SBRS MoC
is defined as an execution sequence ϕs. The execution sequence is com-
posed of computational steps, performed in a specific order, determined
by the CNN topology and manner of execution as explained in Section 2.2.
Every computational step ϕs

i ∈ ϕs, i ∈ [1, |Ls|] involves execution of sce-
narios supergraph layer ln, capturing layer ls

i of scenario CNNs. If layer
ln is associated with control parameters, step ϕs

i specifies values for these
parameters such that layer ln becomes functionally equivalent to layer ls

i .
For example, the execution sequence of scenario CNN1 is specified as ϕ1 =
{(l1, ∅), (l2, {(p1, {e24})}), (l4, {(p2, {W1

3 , B1
3}), (p3, {e24})}), (l5, ∅), (l6, ∅)}. At

step ϕ1
1 = (l1, ∅) of sequence ϕ1 layer l1 of the scenarios supergraph, captur-

ing layer l1
1 of scenario CNN1, is executed. The ∅ in step ϕ1

1 specifies that
there are no control parameter values set during the execution of ϕ1

1; at step
ϕ1

2 = (l2, {(p1, {e24})} layer l2 of the scenarios supergraph is executed with
control parameter p1={e24}, etc.

The switching between the application scenarios is triggered by the ap-
plication environment, communicating with the control node c. During the
application run-time, control node c can receive a scenario switch request
(SSR) from the application environment. Upon receiving the SSR, control node
c changes old scenario CNNo, executed by the node, to a new scenario CNNn,
more suitable for the application needs according to SSR. The switching
from scenario CNNo to scenario CNNn is performed under the SBRS transition
protocol, which will be explained in Section 5.9.

5.7.3 Control edges

The set of control edges Ec specifies control dependencies between the control
node c and the supergraph layers L. Every control edge ecn ∈ Ec transfers
control data, such as the aforementioned control parameters needed for the
layer execution, from control node c to supergraph layer ln.

86 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

5.7.4 Deployment and inference

When a CNN-based application represented as the SBRS MoC is deployed on
an edge platform, all the MoC SBRS scenarios supergraph components (layers
and edges) as well as all associated parameters (weights and biases) are placed
in the platform memory. During the application run-time, the control node c
of the SBRS MoC uses part of these components and parameters to execute one
of the application scenarios, captured by the SBRS MoC. The current scenario,
also referred as an old scenario, is executed until the control node c receives
a scenario switching request (SSR) from the application environment. Upon
receiving the SSR, the control node c switches to a new scenario, more suitable
for the application needs according to SSR. After the switching is finished, the
scenarios supergraph continues to execute the new scenario, until a new SSR
is received. If a new SSR is received during an ongoing scenarios switching, it
is ignored.

5.8 SBRS MoC automated derivation

In this section, we propose an algorithm - see Algorithm 5 that automatically
derives the SBRS MoC, explained in Section 5.7, from a set of S application
scenarios {CNNs}, s ∈ [1, S], provided by the automated scenarios derivation
component explained in Section 5.6. Algorithm 5 accepts as inputs: 1) the set
of scenarios {CNNs}, s ∈ [1, S], where every scenario is a CNN, annotated
with a specific manner of execution; 2) a set of adaptive layer attributes A.

The set A controls the amount of components reuse exploited by the SBRS
MoC by explicitly specifying which attributes of the SBRS MoC layers are
run-time adaptive. The more layers’ attributes are specified in the set A, the
more components reuse is exploited by the SBRS MoC. For example, A = ∅
specifies that the layers of the SBRS MoC have no runtime-adaptive attributes,
i.e., only fully equivalent layers (and their input/output edges) are reused
among the scenarios. If A = {par}, in addition to reuse of fully equivalent
layers, the SBRS MoC reuses layers that have different parameters (weights
and biases) but matching operator, hyperparameters, and sets of input/output
edges.

As an output, Algorithm 5 provides an SBRS MoC, which captures ap-
plication scenarios {CNNs}, s ∈ [1, S], and exploits the components reuse
specified by set A. Figure 5.4 provides an example of the SBRS MoC, derived
using Algorithm 5 for scenarios {CNN1, CNN2} shown in Figure 5.3, and set
A = {par, I, O} of adaptive layer attributes.

5.8. SBRS MoC automated derivation 87

Algorithm 5: SBRS MoC automated derivation
Input: {CNNs}, s ∈ [1, S]; A
Result: SBRS(L, E, c, Ec)

1 L← ∅; E← ∅; Π← ∅; Lcapt ← ∅; Ecapt ← ∅ ;
2 for CNNs(Ls, Es), s ∈ [1, S] do
3 for ls

i ∈ Ls do
4 find ln ∈ L : eq(ls

i , ln, A)//Equation 5.1 ∧∄(ln, lq
j) ∈ Lcapt : lq

j and ls
i are executed in

parallel;
5 if ln does not exist then
6 n = |L|;
7 ln ← new layer (types

i , ops
i , −,−,−,−, Θs

i , khs
i , kws

i , ss
i , pads

i , pars
i);

8 L← L + ln;

9 Lcapt ← Lcapt + (ln, ls
i);

10 for es
ij ∈ Es do

11 find lk ∈ L : (lk , ls
i) ∈ Lcapt and ln ∈ L : (ln, ls

j) ∈ Lcapt;
12 if ∄ekn ∈ E : eq(ekn, es

ij, A) //Equation 5.2 then
13 ekn ← new edge (lk , ln);
14 E← E + ekn;

15 Ecapt ← Ecapt + (ekn, es
ij);

16 for ln ∈ L do
17 if ∃ls

i ̸= lq
j : (ln, ls

i) ∈ Lcapt ∧ (ln, lq
j) ∈ Lcapt then

18 for attr ∈ ln do
19 for ls

i ∈ Ls : eq(ls
i , ln, A), s ∈ [1, S] do

20 sattr = attrs
i ∈ ls

i : attrs
i .name = attr.name;

21 if sattr.value ̸= attr.value ∧ attr.value /∈ Π then
22 attr = new control parameter p;
23 Π← Π + p;

24 for CNNs(Ls, Es), s ∈ [1, S] do
25 ϕs = ∅;
26 for i ∈ [1, |Ls|] do
27 find ln ∈ L : (ln, ls

i) ∈ Lcapt;
28 P← ∅;
29 for attr ∈ ln : attr.value = pq ∈ Π do
30 sattr = attrs

i ∈ ls
i : attrs

i .name = attr.name;
31 if attr.name = I ∨ attr.name = O then
32 value← ∅;
33 for es

ij ∈ sattr.value do
34 e = enk ∈ E : (enk , es

ij) ∈ Ecapt;
35 value← value + e;

36 else
37 value = sattr.value;

38 P← P + (pq, value);

39 ϕs ← ϕs + (ln, P);

40 c← new control node ({ϕ1, ϕ2, ..., ϕS}, Lcapt, Ecapt);
41 Ec ← ∅;
42 for ln ∈ L do
43 ecn ← new control edge (c, ln);
44 Ec ← Ec + ecn;

45 return SBRS(L, E, c, Ec)

88 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

In Lines 1 to 23, Algorithm 5 generates the scenarios supergraph of the
SBRS MoC. In Line 1, it defines an empty set of scenarios supergraph layers
L, an empty set of scenarios supergraph edges E, an empty set of control
parameters Π, an empty set of captured layers Lcapt, and an empty set of
captured edges Ecapt. The latter two sets represent capturing of scenarios’
components (layers and edges, respectively) in the scenarios supergraph.

In Lines 3 to 9, Algorithm 5 adds layers to the supergraph layers set L. For
every layer ls

i of every scenario CNNs, Algorithm 5 first checks if set L contains
a layer ln that can be reused to capture layer ls

i . The check is performed in Line
4 and consists of two parts. First, Algorithm 5 checks functional equivalence
of layer ln and layer ls

i . This check is performed using Equation 5.1, which
compares attributes of layers ls

i and ln that are not run-time adaptive (i.e., they
are not specified in the set of adaptive attributes A). Then, Algorithm 5 ensures
than layer ln does not capture layer lq

j , executed in parallel with layer ls
i . This

check is performed using annotation of CNNs which specifies a manner of
execution of CNNs. If condition in Line 4 is met, layer ln is used to capture
the functionality of layer ls

i (Line 9 in Algorithm 5). Otherwise, a new layer ln,
capturing the functionality of layer ls

i , is added to the scenarios supergraph
(Lines 5 to 9 in Algorithm 5). To define a new layer, Algorithm 5 specifies a
value for each attribute given in Table 2.1 and explained in Section 2.1. The
values are listed in the order in which they appear in Table 2.1. If Algorithm 5
specifies a value as symbol "−", it means that the respective attribute takes the
default value.

eq(ls
i , ln, A) =

{
true if attrn = attrs

i , ∀attr /∈ A
f alse otherwise

(5.1)

In Lines 10 to 15, Algorithm 5 adds edges to the supergraph edges set E
such that 1) every edge es

ij of every scenario CNNs is captured in a supergraph
edge ekn, and 2) functionally equivalent edges are reused among the scenarios.
To check the functional equivalence of a supergraph edge ekn and edge es

ij of
scenario CNNs, Algorithm 5 uses Equation 5.2.

eq(es
ij, enk, A) =

{
true if eq(ls

i , ln, A) ∧ eq(ls
j , lk, A)

f alse otherwise
(5.2)

In Lines 16 to 23, Algorithm 5 introduces control parameters into the
partially reused layers of the scenarios supergraph to capture those attributes
that cannot be reused among the scenarios. For example, to capture attribute I4

5.9. Transition protocol 89

of scenarios supergraph layer l4, shown in Figure 5.4, Algorithm 5 introduces
control parameter p3 into layer l4 (as explained in Section 5.7).

In Lines 24 to 44, Algorithm 5 augments the scenarios supergraph, derived
in Lines 2 to 23, with a control node c and a set of control edges Ec. In Lines 24
to 39, it generates execution sequence ϕs for every scenario CNNs, captured
by the scenarios supergraph. Every computational step ϕs

i , i ∈ [1, |Ls|] of the
sequence ϕs is derived in Lines 26 to 38. In Line 27, Algorithm 5 determines
layer ln of scenarios supergraph, capturing functionality of layer ls

i of scenario
CNNs. In Lines 28 to 38, Algorithm 5 derives set P of parameter-value pairs
that specifies the values for every control parameter pq associated with layer
ln. In Lines 29 to 38, Algorithm 5 visits every attribute attr of layer l, specified
as control parameter pq, and determines the value taken by the parameter
pq (and, therefore, by attribute attr) at the execution step ϕs

i . In Line 30,
Algorithm 5 finds attribute sattr of layer ls

i , corresponding to the attribute
attr of layer ln. For example, if attribute attr ∈ ln is a set of parameters par
of layer ln, Algorithm 5 finds attribute sattr ∈ ls

i , which is a set parameters
pars

i of layer ls
i . If attribute attr, specified by the control parameter pq, is

a list of input or output edges of layer l (the condition in Line 31 is met),
the value for parameter pq is specified in Lines 32 to 35 of Algorithm 5, as
a subset of supergraph edges, functionally equivalent to the corresponding
subset of edges in scenario CNNs. Otherwise, the value of parameter pq is
specified in Line 37 of Algorithm 5 as the value of attribute sattr of layer
ls
i . In Line 40, Algorithm 5 creates a new control node c, which stores the

execution sequence ϕs of every scenario as well as sets Lcapt and Ecapt that
specify capturing of the components (layers and edges) of every scenario by
the scenario supergraph. In Lines 41 to 44, Algorithm 5 creates a set of control
edges Ec, such that for every scenarios supergraph layer ln, set Ec contains
a control edge ecn, representing control dependency between layer ln and
the control node c. Finally, in Line 45, Algorithm 5 returns the SBRS MoC,
capturing the functionality of every scenario CNNs, s ∈ [1, S], associated with
the CNN-based application.

5.9 Transition protocol

In this section, we present our novel transition protocol, called SBRS-TP, that
ensures efficient switching between scenarios of a CNN-based application,
represented using the SBRS MoC. As explained in Section 5.7, the control node
c of the SBRS MoC can perform switching from an old application scenario
CNNo to a new application scenario CNNn, upon receiving a scenario switch

90 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

(a) naive

(b) SBRS-TP

Figure 5.5: Switching from scenario CNN1 to scenario CNN2

request (SSR) from the application environment. In the SBRS MoC, where
the execution of scenarios CNNo and CNNn is represented using execution
sequences ϕo and ϕn, respectively, switching between scenarios CNNo and
CNNn means switching between the sequences ϕo and ϕn. We evaluate the
efficiency of such switching by the response delay ∆, defined as the time
between a SSR arrival during the execution of the current scenario CNNo,
and the production of the first output data by the new scenario CNNn. The
larger the delay ∆ is, the less responsive the application is during a scenarios
transition, thus the less efficient the switching is.

The most intuitive way of switching between scenarios CNNo and CNNn,
hereinafter referred to as naive switching, is to start the execution of the new
scenario CNNn after all computational steps of the old scenario CNNo are
executed. An example of the naive switching is shown in Figure 5.5(a), where
the CNN-based application represented by the SBRS MoC from Figure 5.4
switches from scenario CNN1 to scenario CNN2 upon receiving a SSR at the
first execution step of scenario CNN1. The layers of scenario CNN1 and sce-
nario CNN2 are executed in a sequential manner, explained at the end of
Section 2.2. The upper axis in Figure 5.5(a) shows steps ϕi, i ∈ [1, 11], per-
formed by the control node c during the scenarios switching. For example,
Figure 5.5(a) shows that at step ϕ1 (upon SSR arrival), control node c sched-
ules step ϕ1

1 of scenario CNN1 for execution. The lower axis in Figure 5.5(a)

5.9. Transition protocol 91

indicates the start and end time of every step ϕi performed by the control
node c. Every rectangle, annotated with layer ln in Figure 5.5(a), shows the
time needed to execute layer ln. The response delay ∆ of the naive switching,
shown in Figure 5.5(a), is computed as 18− 0.5 = 17.5, where 0.5 is the time of
SSR arrival and 18 is the time when scenario CNN2 produces its first output,
i.e., finishes its last step ϕ2

6.

We note that this response delay can be reduced. Figure 5.5(b) shows an
example of an alternative switching mechanism, referred to as the SBRS-TP
transition protocol. Unlike in the naive switching, in SBRS-TP, every step
ϕ2

i , i ∈ [1, 6] of the new scenario CNN2 is executed as soon as possible. For
example, step ϕ2

1 of the new scenario CNN2 is executed at step ϕ2, where ϕ2 is
the earliest step after the SSR arrival, at which step ϕ2

1 can be executed. Step
ϕ2

1 cannot be executed earlier, i.e., at step ϕ1, due to the components reuse.
As explained in Section 5.7, layer l1 and the platform resources allocated for
execution of this layer are reused between scenarios CNN1 and CNN2, and
thus cannot be used by scenarios CNN1 and CNN2 simultaneously. At step
ϕ1, layer l1 is used by scenario CNN1, executing step ϕ1

1, and therefore, cannot
be used for execution of step ϕ2

1 of scenario CNN2. However, step ϕ2
1 of the

new scenario CNN2 can be executed at step ϕ2, in parallel with step ϕ1
2 of the

old scenario CNN1, because no components reuse occurs between these steps:
step ϕ1

2 uses layer l2 for its execution, while step ϕ2
1 uses layer l1 (where l1 ̸= l2)

for its execution. Analogously, step ϕ2
2 of the new scenario CNN2 is executed

at step ϕ3, where ϕ3 is the earliest step after the SSR arrival, at which step ϕ2
2

can be executed. As explained in Section 5.7, according to the execution order
adopted by scenario CNN2, step ϕ2

2 should be executed after step ϕ2
1. Thus, in

the example shown in Figure 5.5(b), step ϕ2
2 should start after step ϕ2, at which

step ϕ2
1 is executed. Moreover, step ϕ2

2 of the new scenario CNN2 cannot be
executed at step ϕ2, because at step ϕ2 reused layer l2, required for execution
of step ϕ2

2, is occupied by step ϕ1
2 of scenario CNN1. However, step ϕ2

2 can be
executed at step ϕ3, when layer l2 that is required for execution of step ϕ2

2 is
not occupied by scenario CNN1, and step ϕ2

1 is already executed. The response
delay ∆ of the switching mechanism shown in Figure 5.5(b) is 13− 0.5 = 12.5,
and is much smaller than the response delay ∆ = 17.5 of the naive switching
shown in Figure 5.5(a). Thus, the switching mechanism shown in Figure 5.5(b)
is more efficient compared to the naive switching.

Our methodology performs efficient switching between scenarios of a
CNN-based application using the SBRS-TP transition protocol, as illustrated
in Figure 5.5(b). The SBRS-TP is carried out in two phases: the analysis
phase, and the scheduling phase. The analysis phase is performed during

92 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

Algorithm 6: SBRS-TP analysis phase
Input: ϕo, ϕn

Result: Xo→n

1 Xo→n ← ∅; x = 0;
2 for i ∈ [1, |Ln|] do
3 (lk, Pn)← ϕn

i ;
4 for ϕo

j ∈ ϕo do
5 (lz, Po)← ϕo

j ;
6 if k = z then
7 if j ≥ x then
8 x = j;

9 Xo→n ← Xo→n + x;
10 x = x + 1;
11 return Xo→n

the application design time, for every pair (CNNo, CNNn), with o ̸= n, of the
CNN-based application scenarios. During this phase, for every step ϕn

i of
the new scenario CNNn, SBRS-TP derives a minimum delay in steps xo→n

1→i
between step ϕn

i and the first step ϕo
1 of the old scenario CNNo. The delay xo→n

1→i
is computed with respect to the data dependencies within scenarios CNNo and
CNNn, and the components reuse between these scenarios, as discussed above.
An example of delay xo→n

1→i is delay x1→2
1→3 = 3 of step ϕ2

3, shown in Figure 5.5(b).
Delay x1→2

1→3 = 3 specifies that step ϕ2
3 of the new scenario CNN2 cannot start

earlier than 3 steps after the first step ϕ1
1 of the old scenario CNN1 has started,

i.e., earlier than step ϕ4.

The analysis phase of the SBRS-TP is presented in Algorithm 6. Algorithm 6
accepts as inputs execution sequences ϕo and ϕn, representing the old scenario
CNNo and the new scenario CNNn, respectively. As an output, Algorithm 6
provides a set Xo→n, where every element xo→n

1→i ∈ Xo→n, with i ∈ [1, |Ln|], is
the minimum delay in steps between step ϕn

i of the new scenario CNNn and
the first step ϕo

1 of the old scenario CNNo. An example of set Xo→n generated
by Algorithm 6 for the scenario switching, shown in Figure 5.5(b), is the set
X1→2 = {1, 2, 3, 4, 5, 6}. In Line 1, Algorithm 6 defines an empty set Xo→n

and a variable x, equal to 0. Variable x is a temporary variable used to store
delay xo→n

1→i of every execution step ϕn
i in Lines 2 to 10 of Algorithm 6. In

Lines 2 to 10, Algorithm 6 visits every step ϕn
i of the new scenario CNNn and

computes delay xo→n
1→i associated with this step. In Lines 4 to 8, Algorithm 6

increases delay xo→n
1→i , stored in variable x, with respect to the components

reuse, as discussed above. It visits every step ϕo
j of the old scenario CNNo,

and if step ϕo
j and step ϕn

i share a reused layer (the condition in Line 6 is

5.9. Transition protocol 93

Algorithm 7: SBRS-TP scheduling phase
Input: ϕo, ϕn, Xo→n

1 q = 1; i = 1; j = stepo
SSR;

2 wait until step ϕo
j is finished; j = j + 1; q = q + 1;

3 while j ≤ |Lo| do
4 start ϕo

j ; j = j + 1;
5 if q ≥ xo→n

1→i − stepo
SSR + 2 then

6 start ϕn
i ; i = ((i + 1) mod |Ln|);

7 wait until started scenarios’ steps are finished; q = q + 1;
8 while i ≤ |Ln| do
9 start ϕn

i ;
10 wait until ϕn

i finishes; i = i + 1; q = q + 1;

met), it delays the execution of step ϕn
i until step ϕo

j is finished. In Line 9,
Algorithm 6 adds the delay of step ϕn

i , stored in variable x, to the set Xo→n.
In Line 10, Algorithm 6 increases the delay by one step, thereby defining an
initial delay for the next step ϕn

i+1 of the new scenario CNNn. Finally, in Line
11, Algorithm 6 returns the set Xo→n. The set Xo→n derived using Algorithm 6
for every pair of scenarios (CNNo, CNNn) is stored in the control node c of the
scenarios supergraph, and used by the scheduling phase of the SBRS-TP at
the application run-time.

The scheduling phase of the SBRS-TP is performed by the control node c
during the application run-time, upon arrival of an SSR. During this phase,
control node c performs switching from the old scenario CNNo to the new
scenario CNNn, such that the steps of the new scenario CNNn are executed as
soon as possible with respect to the data dependencies within scenario CNNn

and the components reuse between scenarios CNNo and CNNn (as discussed
above). The scheduling phase of the SBRS-TP is given in Algorithm 7. It
accepts as inputs execution sequences ϕo and ϕn of the old scenario CNNo

and the new scenario CNNn, respectively, and the set Xo→n derived by Al-
gorithm 6 for scenarios CNNo and CNNn at the SBRS-TP analysis phase. In
Line 1, Algorithm 7 defines variables i, j, and q, representing indexes of the
current step ϕn

i of the new scenario CNNn, current step ϕo
j in the old scenario

CNNo, and current step ϕq performed by the control node c, respectively. Upon
SSR arrival, i = 1, q = 1, and j = stepo

SSR where stepo
SSR ≥ 1 is the step in

the old scenario CNNo at which the SSR arrived. For the example shown in
Figure 5.5(b), stepo

SSR = 1 because SSR arrives at step ϕ1
1 of the old scenario

CNN1. In Line 2, Algorithm 7 performs the first step ϕ1 of the scenarios switch-
ing. During this step, Algorithm 7 waits until step ϕo

j , during which the SSR

94 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

arrived, finishes. In Lines 3 to 7, Algorithm 7 schedules the remaining steps of
the old scenario CNNo, until scenario CNNo is finished (the condition in Line 3
is false) and, if possible, schedules steps of the new scenario CNNn in parallel
with the steps of the old scenario CNNo. Step ϕn

i of the new scenario CNNn

can start in parallel with step ϕo
j of the old scenario CNNo if the minimum

distance xo→n
1→i between steps ϕo

1 and ϕn
i is observed (the condition in Line 5

is met). In Line 7, Algorithm 7 waits until the steps of scenarios CNNo and
CNNn, started in Lines 4 to 6, finish. In Lines 8 to 10, Algorithm 7 schedules the
remaining steps of scenario CNNn, until scenario CNNn produces an output
data (the condition in Line 8 is false). After Algorithm 7 finishes, scenario
CNNn becomes the current scenario and will be executed for every input given
to the CNN-based application until the next SSR.

5.10 Experimental Study

To evaluate our novel SBRS methodology, we perform an experiment, where
we apply our methodology to real-world CNN-based applications with sce-
narios. We conduct our experiment in four steps. The first three steps perform
in-depth per-step analysis of our methodology and demonstrate the merits
of our methodology through three real-world CNN-based applications from
different domains. The fourth step compares our methodology to the most
relevant existing work.

In Step 1 (Section 5.10.1), we derive scenarios for three real-world CNN-
based applications with scenarios. We illustrate the diversity among the
selected scenarios and compare the use of multiple scenarios (CNNs), enabled
by our methodology, to use of a single CNN, adopted by the state-of-the-art
design flow, introduced in Section 1.3 and shown in Figure 1.3. By performing
this experiment, we evaluate the effectiveness of run-time adaptivity, offered
by our methodology.

In Step 2 (Section 5.10.2), we use Algorithm 5, proposed in Section 5.7.1, to
automatically generate SBRS MoCs for the CNN-based applications, derived at
Step 1. For every application, we generate two SBRS MoCs with different sets
of adaptive layer attributes A: A = {I, O, par} and A = {I, O}, respectively.
We measure and compare the memory cost of every CNN-based application,
when the application is represented as 1) the SBRS MoCs with A = {I, O, par};
2) an SBRS MoC with A = {I, O}; 3) a set of scenarios, where every scenario
is represented as a CNN model, explained in Section 2.1. By performing this
experiment, we evaluate the efficiency of the memory reuse, exploited by the
SBRS MoC, proposed in Section 5.7.

5.10. Experimental Study 95

In Step 3 (Section 5.10.3), we measure and compare the responsiveness
of the CNN-based applications, represented as SBRS MoCs, derived in Step
2, during the scenarios switching, when switching is performed: 1) under
our SBRS-TP transition protocol; 2) using the naive switching mechanism.
By performing this experiment, we evaluate the efficiency of the SBRS-TP
transition protocol, proposed in Section 5.9.

Finally, in Step 4 (Section 5.10.4), we compare our SBRS methodology with
the most relevant existing work. As explained in Section 5.3 and demonstrated
in Section 5.4, none of the currently existing works can design an adaptive
CNN-based application, which considers platform-aware requirements and
constraints that are specifically affected by the environment changes at run-
time. Within this context, none of the existing works is completely comparable
to our methodology. Nonetheless, we perform a partial comparison between
our methodology and the most relevant existing work. Among the exist-
ing works, reviewed in Section 5.3 and Section 5.4, the MSDNet adaptive
CNN work [39] is the most relevant to our methodology. Similarly to our
methodology and unlike other reviewed existing work, the methodology
in [39] associates a CNN-based application with multiple alternative CNNs
that are characterized with different trade-offs between accuracy and resources
utilization, and can be used to process application inputs of any complexity.
Additionally, both the work in [39] and our methodology provide means to
reduce the memory cost of a CNN-based application by reusing the memory
among the alternative CNNs. In this sense, the methodology in [39] and
our SBRS methodology can be compared via 1) run-time adaptive trade-offs
between application accuracy and resources utilization; 2) memory efficiency.
In Section 5.10.4, we perform such comparison, using the image recognition
CIFAR-10 dataset [51].

To perform the measurements, required for Step 1 to Step 4, we implement
the executable CNN-based applications, using the TensorRT Deep Learning
framework and operators library [72], providing state-of-the-art performance
of deep learning inference on the NVIDIA Jetson TX2 embedded device [71],
and custom C++ code. The TensorRT library is used to implement the func-
tionality of CNN layers and edges. The custom C++ code implements the
run-time adaptive functionality of the applications.

5.10.1 Automated scenarios derivation

In this section, we derive scenarios for three CNN-based applications from two
different domains, namely Human Activity Recognition (HAR) and image clas-
sification. We used the PAMAP2 [79] dataset for HAR and the Pascal VOC [27]

96 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

Table 5.2: CNN-based applications

App task baseline dataset app. requirements
CNN sets

Pascal Image ResNet Pascal r1 = (1.0, 0.0, 0.0, 0.0)
VOC recongition [36] VOC [27] r2 = (0.7, 0.0, 0.3, 0.0)

r3 = (0.6, 0.1, 0.0, 0.3)
r4 = (0.5, 0.5, 0.0, 0.0)
r5 = (0.1, 0.1, 0.4, 0.4)

PAMAP2 Human PAMAP PAMAP2 r1 = (1.0, 0.0, 0.0, 0.0)
activity (CNN-2) [79] r2 = (0.2, 0.4, 0.0, 0.4)

monitoring [69] r3 = (0.5, 0.0, 0.0, 0.5)
r4 = (0.5, 0.5, 0.0, 0.0)

CIFAR-10 Image ResNet CIFAR-10 r1 = (1.0, 0.0, 0.0, 0.0)
recognition [36] [51] r2 = (0.25, 0.25, 0.25, 0.25)

r3 = (0.5, 0.25, 0.0, 0.25)
r4 = (0.5, 0.0, 0.0, 0.5)

and CIFAR-10 [51] datasets for image classification. PAMAP2 has data from
body-worn sensors and predicts the activity performed by the wearer, while
Pascal VOC and CIFAR-10 are multi-label image classification datasets with
20 classes and 10 classes, respectively. The sensor data in PAMAP2 is down-
sampled to 30 Hz and a sliding window approach with a window size of 3s
(100 samples) and a step size of 660ms (22 samples) is used to segment the
sequences.

The main features and requirements for each CNN-based application are
listed in Table 5.2. Column 1 lists the applications names, corresponding to
the names of the datasets, the applications are using. Hereinafter, we refer to
the applications by their names; Column 2 shows the task performed by the
applications; Column 3 lists the baseline CNN that was deployed to perform
the application tasks; Column 4 lists the real-world datasets, which were used
to train and validate the applications’ baseline CNNs; Column 5 shows sets
of application requirements ri, i ∈ [1, S], where every set ri characterizes a
scenario, associated with the CNN-based application, S is the total number of
CNN-based application scenarios. The applications use extremely different
baseline CNNs (from the deep and complex ResNet based topology [36] to
the small and shallow PAMAP topology) and diverse datasets (from the large
Pascal VOC [27] dataset to the small PAMAP2 [79] and CIFAR-10 [51] datasets).
The ResNet based baseline topologies for VOC and CIFAR-10 application are
custom Resnets, both of which are smaller than the popular ResNet-18. This
leads to diversity in scenarios and SBRS MoCs, derived for these applications
and, thereby providing a sufficient basis for evaluation of the effectiveness of

5.10. Experimental Study 97

Table 5.3: Algorithm parameters for platform-aware NAS [82]

Parameter VOC PAMAP2 CIFAR10
Mutation change rate ϱm 0.10 0.12 0.12
Mutation probability Pm 0.3 0.3 0.3
Initial Crossover probability Pr(0) 0.3 0.4 0.3
Population size Np 60 50 100
No of iterations Ng 30 60 120
Population replacement rate Ω 0.02 0.03 0.02
Training Parameters τparams
Training size per iteration 1 epoch 1/5 epoch 1/8 epoch
Optimizer Adam Adam Adam
Learning rate 1e−3 1e−4 1e−3

Batch size 10 50 64

our methodology.
To derive the scenarios for each application, described in Table 5.2, we used

the multi-objective platform-aware NAS methodology proposed in [82] and
the scenarios selection based on the ranking dominance concept introduced
in [52]. In addition to the baseline CNN and the dataset, specified in Table 5.2,
the platform-aware NAS methodology in [82] accepts as input a set of NAS
hyper-parameters. The NAS hyper-parameters used in our experiments are
summarized in Table 5.3. For the explanation of the NAS hyper-parameters,
we respectfully refer the reader to work [82].

The methodology in [82] performs automated search for optimal CNNs,
which arrives at a set of CNNs pareto-optimal in terms of accuracy, memory,
throughput and energy characteristic. Every CNN in the set is executed in a
sequential manner, explained in Section 2.2. The pareto-fronts obtained for
Pascal VOC, PAMAP2 and CIFAR-10 applications listed in Table 5.2, are shown
in Figure 5.6(a), Figure 5.6(b) and Figure 5.6(c), respectively. The pareto-fronts
are shown in three-dimensional (accuracy, throughput and energy cost) space
to allow for a comprehensible visualization, while the actual design points
exist in four-dimensional (accuracy, throughput, energy cost, and memory
cost) space.

The scenarios selected from the pareto-fronts shown in Figure 5.6 for the
three multi-scenario applications given in Table 5.2, are presented in Table 5.4,
where Column 1 shows the CNN-based applications; Column 2 shows the
requirements sets, depicting scenarios, associated with every application; Col-
umn 3 shows the scenarios, derived for the requirements sets given in Column
2; Columns 4 to 7 show the accuracy and platform-aware characteristics of
every scenario given in Column 3. For the PAMAP2 and CIFAR-10 applica-

98 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

(a) Pascal VOC pareto front (b) PAMAP2 Pareto front

(c) CIFAR-10 Pareto front

Figure 5.6: Pareto-fronts based on 3 evaluation parameters, namely, accuracy (F1-score for
Pascal VOC), throughput and energy

Table 5.4: Scenarios derived from pareto-fronts shown in Figure 5.6 for three applications
shown in Table 5.2

App. app. scenario Accuracy Throughput Memory Energy
req. set (PR-AUC or %) (fps) (MB) (J)

Pascal r1 CNN1 77.78 15.41 292.61 0.384
VOC r2 CNN2 76.28 21.78 210.69 0.281

r3 CNN3 77.69 20.26 242.72 0.291
r4 CNN4 73.99 59.27 155.48 0.101
r5 CNN5 72.85 75.07 130.21 0.078

PAMAP2 r1 CNN1 94.17 510.20 10.02 0.0083
r2 CNN2 91.34 1333.33 4.30 0.0033
r3 CNN3 92.56 970.87 4.86 0.0037
r4 CNN4 92.93 1052.63 4.11 0.0039

CIFAR-10 r1 CNN1 94.86 231.80 52.87 0.0242
r2 CNN2 92.84 754.15 13.07 0.0055
r3 CNN3 93.46 538.79 18.30 0.0081
r4 CNN4 94.46 403.71 28.07 0.0121

5.10. Experimental Study 99

tions, the accuracy is estimated using the cross-validation technique [78] and
measured in percent. For Pascal-VOC, accuracy was estimated as the PR-AUC
(Area under precision-recall curve) [89]. Columns 5 to 7 show the scenario
throughput (in frames per second), memory (in MegaBytes) and Energy (in
Joules), respectively.

Columns in 4 to 7 in Table 5.4 clearly demonstrate that scenarios (CNNs)
obtained for different application requirements have vastly different charac-
teristics. If Pascal VOC, PAMAP2, and CIFAR-10 CNN-based applications
would use only one of the selected scenarios, as proposed in the state-of-the-art
design flow, shown in Figure 1.3 and explained in Section 1.3, the applications’
needs would not be optimally served.

For example, let us assume that the Pascal VOC application, shown in
Row 2 in Table 5.2 and associated with scenarios CNN1, CNN2, CNN3, and
CNN4, shown in Row 2 in Table 5.4: 1) only uses scenario CNN1 when
is designed using the state-of-the-art design flow; 2) adaptively switches
between scenarios CNN1, CNN2, CNN3 and CNN4, when designed using
our proposed methodology. Under requirements set r4, specifying that high
CNN throughput is as important as high CNN accuracy, the application
would use CNN1 when is designed using the state-of-the-art design flow,
and CNN4 when is designed using our proposed methodology. Compared to
CNN1, CNN4 demonstrates 3.8 times higher throughput and only 4% lower
accuracy. Thus, the Pascal VOC application would better serve the application
needs, specified in the requirements set r4.

The example above shows that our methodology ensures more efficient
serving of CNN-based applications affected by the environment at run-time
when compared to the the state-of-the-art design flow shown in Figure 1.3 and
explained in Section 1.3.

5.10.2 SBRS MoC memory reuse efficiency

In this experiment, we measure and compare the memory cost of every CNN-
based application, presented in Table 5.2 in Section 5.10.1, when the application
is represented as: 1) an SBRS MoC with a set of adaptive layer attributes
A = {I, O, par}; 2) an SBRS MoC with a set of adaptive layer attributes
A = {I, O}; 3) a set of scenarios, where every scenario is represented as a
CNN and no memory is reused within or among the CNNs. The results of
this experiment are given in Table 5.5.

In Table 5.5, Column 1 lists the CNN-based applications with scenarios, ex-
plained in Section 5.10.1. Column 2 shows the sets of adaptive layer attributes
A, used by Algorithm 5 to generate the SBRS MoCs for the CNN-based appli-

100 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

Table 5.5: SBRS MoC memory reuse efficiency evaluation

Application A Memory use (MB) memory reduction (%)
MSBRS Mnaive

Pascal VOC {I, O, par} 230 1032 78
{I, O} 547 47

PAMAP 2 {I, O, par} 22.43 23.28 3.64
{I, O} 23.21 0.31

CIFAR-10 {I, O, par} 83.3 112.31 25.9
{I, O} 107.17 4.57

cations. Column 3 shows the memory use MSBRS (in MB) of the CNN-based
applications, represented as the SBRS MoCs. As shown in Columns 2 and 3
of Table 5.5, the more attributes are specified in the set A, the more memory
is reused by the application, and the application memory cost is less. For ex-
ample, as shown in Rows 3-4, Columns 2-3 in Table 5.5, Pascal VOC uses 230
MB of platform memory, when generated with A = {I, O, par} and 547 MB of
platform memory, when generated with A = {I, O}. Column 4 in Table 5.5
shows the memory use Mnaive (in MB) of the CNN-based applications, when
every application is represented as a set of scenarios and no memory reuse is
exploited by the application. Column 5 in Table 5.5 shows the memory reduc-
tion (in %), enabled by the memory reuse, exploited by our proposed SBRS
MoC. The memory reduction is computed as (Mnaive−MSBRS)/Mnaive ∗ 100%,
where MSBRS and Mnaive are listed in Columns 3 and 4, respectively. As shown
in Column 5, the memory reuse, exploited by the SBRS MoC, varies for dif-
ferent applications: Pascal VOC (Row 3 to Row 4) demonstrates high (47%
- 78%) memory reduction; PAMAP2 (Row 5 to Row 6) demonstrates low
(0.31% - 3.64%) memory reduction; CIFAR-10 (Row 7 to Row 8) demonstrates
(4.57% - 25.9%) memory reduction, which is higher, compared to PAMAP2 but
lower than Pascal VOC. The difference occurs due to the different amounts
of components reuse exploited by the Pascal VOC, PAMAP2 , and CIFAR-10
applications . Pascal VOC has 5 scenarios, where every scenario is a deep
CNN with a larger number of similar layers. In other words, Pascal VOC
is characterised by a large amount of repetitive CNN components, reused
by the SBRS MoC (see Section 5.7.1), which leads to a significant memory
reduction. PAMAP2 has 4 scenarios, compared to 5 scenarios of Pascal VOC,
and every scenario in PAMAP2 has less layers and edges than the scenarios of
Pascal VOC. Thus, in PAMAP2, the SBRS MoC can reuse only a small number
of components, which leads to a small memory reduction. CIFAR-10 has 4
scenarios, and every scenario in CIFAR-10 has less layers and edges than the
scenarios of Pascal VOC, but more layers and edges than the scenarios of

5.10. Experimental Study 101

PAMAP2. Thus, in CIFAR-10, the SBRS MoC can reuse less components than
in Pascal VOC, but more components than in PAMAP2.

5.10.3 SBRS-TP efficiency

In this experiment, for every CNN-based application, explained in Section 5.10.1,
and represented as two functionally equivalent SBRS MoCs with sets of adap-
tive attributes A = {I, O} and A = {I, O, par}, respectively, we measure and
compare the application responsiveness during the scenarios switching, when
the switching is performed using: 1) the naive switching mechanism; 2) the
SBRS-TP transition protocol. The results of this experiment for Pascal VOC,
PAMAP2 and CIFAR-10 are shown as bar charts in Figure 5.7, subplots (a), (b),
and (c), respectively. Every pair (o, n), shown along the horizontal axis in the
subplots denotes switching between a pair (CNNo, CNNn), o ̸= n of the appli-
cation scenarios, performed upon arrival of a Scenarios Switch Request (SSR)
at the first step of the old scenario (stepo

SSR=1). For example, pair (2, 1) shown
in Figure 5.7(b), denotes switching between scenarios CNN2 and CNN1 of
PAMAP2, performed at the fist step of scenario CNN2. Every such switching
is associated with 3 bars, showing the switching delay ∆ (in milliseconds),
when switching is performed: 1) using the naive switching mechanism 2;
2) using the SBRS-TP for an SBRS MoC with A = {I, O, par}; 3) using the
SBRS-TP for an SBRS MoC with A = {I, O}. The higher the corresponding
bar is (i.e., the larger response delay ∆ is), the less efficient the switching is.
For example, switching (2, 1), shown in Figure 5.7(b), is associated with 1)
a bar of height 0.8; 2) a bar of height 0.7; 3) a bar of height 0.4. The bar of
height 0.8, showing delay ∆ of the naive switching, is the highest among the
bars. Thus, the switching between scenarios CNN2 and CNN1 of PAMAP2
is the least efficient, when performed using the naive switching mechanism.
The difference in height of bars, corresponding to one switching, shows the
relative efficiency of different switching methods expressed via these bars. For
example, the switching (2, 1), shown in Figure 5.7(b), is 0.8 - 0.4 = 0.4 ms less
efficient when performed using naive switching (bar of height 0.8) than when
performed using SBRS-TP for an SBRS with A = {I, O} (bar of height 0.4).

As shown in Figure 5.7: 1) the switching delay ∆ is typically lower when
the switching is performed using the SBRS-TP, compared to the switching per-
formed using the naive switching mechanism. Thus, the SBRS-TP is, in general,
more efficient than the naive switching mechanism; 2) When the switching

2One bar is sufficient to show the delay of the naive switching for SBRS MoCs with
A = {I, O} and A = {I, O, par}, respectively, because, as explained in Section 5.9, the naive
switching is not affected by the application components reuse, determined by the set A

102 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

(5
,1

)

(2
,1

)
(3

,1
)

(4
,1

)

(5
,2

)

(1
,2

)
(3

,2
)

(4
,2

)

(5
,3

)

(1
,3

)
(2

,3
)

(4
,3

)

(5
,4

)

(1
,4

)
(2

,4
)

(3
,4

)

(4
,5

)

(1
,5

)
(2

,5
)

(3
,5

)

switching (i,j) between scenarios CNNi, CNNj

(a) Pascal VOC

(2
,1

)
(3

,1
)

(4
,1

)

(2
,3

)

(3
,2

)

(1
,2

)

(4
,2

)
(1

,3
)

(3
,4

)

(4
,3

)
(1

,4
)

(2
,4

)

switching (i,j) between scenarios CNNi, CNNj

(b) PAMAP2

(2
,1

)
(3

,1
)

(4
,1

)

(2
,3

)

(3
,2

)

(1
,2

)

(4
,2

)
(1

,3
)

(3
,4

)

(4
,3

)
(1

,4
)

(2
,4

)

switching (i,j) between scenarios CNNi, CNNj

4.0

3.0

2.0

1.0

0.5

0

4.5

3.5

2.5

1.5

(c) CIFAR-10

Figure 5.7: SBRS-TP efficiency evaluation

is performed under the SBRS-TP, the switching delay ∆ is typically lower for
an SBRS MoC with A = {I, O} than for a functionally equivalent SBRS MoC
with A = {I, O, par}. The difference occurs because among these SBRS MoCs,
the one with A = {I, O, par} typically reuses more CNN components than the
one with A = {I, O} (see Section 5.7). As explained in Section 5.9, reuse of the
application components can cause an increase in switching delays, when the
switching is performed under the SBRS-TP. Thus, the switching performed
under the SBRS-TP is more efficient when performed in an SBRS MoC with
A = {I, O} than in a functionally equivalent SBRS MoC with A = {I, O, par}.
Analogously, the relative efficiency of the SBRS-TP compared to the naive

5.10. Experimental Study 103

switching is lower for Pascal VOC than for PAMAP2 or CIFAR-10 because, as
explained in Section 5.10.2, Pascal VOC exploits more components reuse than
PAMAP2 or CIFAR-10.

5.10.4 Comparative study

In this section, we compare our SBRS methodology to the most relevant related
work called the MSDNet adaptive CNN methodology [39]. As explained in
Section 5.10, the MSDNet methodology and our SBRS methodology can be
compared via: 1) the run-time adaptive trade-offs between the application
accuracy and resources utilization; 2) the memory efficiency.

In this section, we perform such a comparison for an example CNN-based
application. The example application performs classification on the CIFAR-
10 dataset, and is affected by the application environment at run-time. The
comparison is performed in three steps. In Step 1, we construct the MSDNet
CNN and the SBRS MoC for the example application. In Step 2, we compare
the accuracy-throughput trade-off offered by the MSDNet methodology and
our SBRS methodology, using the applications obtained at Step 1. Finally, in
Step 3, we compare the memory efficiency of the MSDNet methodology and
our SBRS methodology, using the applications obtained at Step 1.

The MSDNet CNN is constructed according to the design and training pa-
rameters specified for the CIFAR-10 dataset in the original MSDNet work [39].
It has six exits, characterized with different accuracy and throughput. During
the application run-time, the MSDNet CNN can yield data from different
exits, thereby offering various trade-offs between the application accuracy
and throughput. We evaluate these trade-offs by executing the MSDNet CNN
with an anytime prediction setting [39]. This setting allows the MSDNet CNN
to switch among its subgraphs (exits), thereby adapting the MSDNet CNN to
changes in the application environment. We note that in the original work [39]
the switching among the MSDNet CNN exits is driven by a resource budget
given in FLOPs, not by a throughput requirement. However, conceptually, it
is possible to extend the MSDNet CNN with a throughput-driven adaptive
mechanism. In this experiment, we emulate execution of the MSDNet CNN
with such a mechanism in order to enable direct comparison of the MSDNet
CNN with our SBRS MoC.

The SBRS MoC is obtained by using our methodology, presented in Sec-
tion 5.5. As input, our methodology accepts a ResNet-18 [36] baseline CNN
and three sets of application requirements. In the first set r1 = {0.1, 0.9, 0, 0},
the application prioritizes high throughput over high accuracy. In the second
set r2 = {0.5, 0.5, 0, 0}, high throughput and high accuracy are equally impor-

104 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

Figure 5.8: Comparison between SBRS MoC and MSDNet CNN [39], performing classifica-
tion on the CIFAR-10 dataset with throughput-driven adaptive mechanism

tant for the application. In the third set r3 = {0.9, 0.1, 0, 0}, the application
prioritizes high accuracy over high throughput. The obtained SBRS MoC has
three scenarios corresponding to the three sets of requirements r1, r2, and
r3. During the application run-time the SBRS MoC can switch among its sce-
narios, thereby offering various trade-offs between the application accuracy
and throughput, and adapting the application to changes in the application
environment at run-time.

The comparison, in terms of accuracy and throughput characteristics of the
aforementioned MSDNet CNN and the SBRS MoC, is visualized in Figure 5.8.
The horizontal axis shows the throughput (in fps). The vertical axis shows
the accuracy (in %). The two step-wise curves in Figure 5.8 represent the
relationships between the accuracy and the throughput, exhibited by the
MSDNet CNN and SBRS MoC. Each flat segment of the step-wise curves
represents a scenario in the SBRS MoC or an exit in MSDNet CNN. For
example, the flat segment of the MSDNet curve, characterized with throughput
between 231 and 392 fps and accuracy of 0.918%, represents exit 2 of the
MSDNet CNN. Each cross marker or triangle marker represents a switching
point between SBRS MoC scenarios or MSDNet CNN exits, respectively. As
explained above, run-time switching among the scenarios or exits occurs when
the application is affected by changes in its environment at run time. Figure 5.8
illustrates such changes in the application environment as the two vertical
dashed lines, representing demands of minimum throughput, imposed on the
application by the environment at run time. For example, at the start of the
application execution, the environment demands that the application must

5.11. Conclusion 105

have throughput of no less than 200 fps with as high as possible accuracy. In
this case, the MSDNet CNN yields data from exit 3, demonstrating 0.931%
accuracy, and the SBRS MoC executes in scenario 3, demonstrating 0.949%
accuracy. Later, the application environment changes and demands that the
application must have throughput of no less than 394 fps. Thus, the MSDNet
CNN starts to yield data from exit 1, demonstrating 0.902% accuracy, and the
SBRS MoC switches to scenario 2, demonstrating 0.946% accuracy.

As shown in Figure 5.8, our SBRS MoC exhibits higher accuracy than the
MSDNet CNN for any throughput requirement, except when the application
has to exhibit throughput lower or equal to 61 fps. In the latter case, the
accuracy of our SBRS MoC is comparable (0.05% lower) to the accuracy of the
MSDNet CNN. We believe that the difference in accuracy between our SBRS
MoC and the the MSDNet CNN occurs because the scenarios in the SBRS MoC
are optimized for both high accuracy and high throughput, whereas the exits
of MSDNet are only optimized for high CNN accuracy. Optimization for the
platform-aware requirements performed during the SBRS MoC design enables
for more efficient utilization of the platform resources, and therefore for more
efficient execution of the application when high throughput is required.

Finally, we compare the memory efficiency between our SBRS method-
ology and the MSDNet methodology. To do so, we compare the memory
cost of the MSDNet CNN and the SBRS MoC, designed to perform classifi-
cation on the CIFAR-10 dataset. The memory cost of our final application
equals 77.68 MB when the application is designed with adaptive parameters
A = {I, O, PAR}, and 97.6 MB when the application is designed with adaptive
parameters A = {I, O}. The memory cost of the MSDNet CNN, designed for
the CIFAR-10 dataset, is equal to 103.76 MB. Thus, for the CIFAR-10 dataset,
the memory efficiency of our methodology is higher than the one of MSDNet.
The difference occurs because unlike the MSDNet methodology, our method-
ology reuses memory allocated to store intermediate computational results
within every CNN as well as among different CNNs. It is fair to note that,
since our methodology does not enable for reuse of CNN parameters, it may
prove less efficient than MSDNet for applications that use CNNs characterized
with large sizes of weights. However, such applications are not typical for
execution at the Edge.

5.11 Conclusion

We have proposed a novel methodology, which provides run-time adaptation
for CNN-based applications executed at the Edge to changes in the application

106 Chapter 5. Methodology for run-time adaptive inference of CNN-based applications

environment. We evaluated our proposed methodology by designing three
real-world run-time adaptive applications in the domains of Human Activity
Recognition (HAR) and image classification, and executing these applications
on the NVIDIA Jetson TX2 edge device. The experimental results show that for
real-world applications our methodology: 1) Enables to adapt a CNN-based
application to changes in the application environment during run-time and
therefore ensures that the application needs are served at every moment in
time; 2) Achieves a high (up to 78%) degree of platform memory reuse for
CNN-based applications that execute CNNs with large amounts of similar
components; 3) Enables for efficient switching between the application scenar-
ios, using the novel SBRS-TP transition protocol proposed in our methodology.
Additionally, we compared our methodology to the run-time adaptive MS-
DNet CNN methodology, which is the most relevant to our methodology
among the related work. The comparison is performed by CNNs designed
for the CIFAR-10 dataset and executed on the Jetson TX2 edge device. The
comparison illustrates that the application designed using our methodology
outperforms the MSDNet CNN when executed under tight platform-aware
requirements, and demonstrates comparable accuracy against the MSDNet
CNN when the platform-aware requirements are relaxed. The difference can
be attributed to the fact that unlike the MSDNet CNN, our methodology op-
timizes the application in terms of both high accuracy and platform-aware
characteristics.

Chapter 6

Methodology for joint memory
optimization of multiple CNNs

Svetlana Minakova and Todor Stefanov. "Memory-Throughput Trade-off for
CNN-based Applications at the Edge". Accepted for publication in ACM Transactions on
Design Automation of Electronic Systems (TODAES), March 2022.

IN this chapter, we present our methodology for joint memory optimization
of multiple CNNs, which corresponds to the fourth research contribution

of this thesis summarized in Section 1.5.4. The proposed methodology is a
part of the post-selection optimization component, introduced in Section 1.5,
and is an extension of our methodology for low-memory CNN inference at
the Edge, presented in Chapter 4. The reminder of this chapter is organized
as follows. Section 6.1 introduces, in more details, the problem addressed by
our novel methodology. Section 6.2 summarizes the novel research contribu-
tions, presented in this chapter. An overview of the related work is given in
Section 6.3. Section 6.4 presents a formal definition of a CNN-based appli-
cation, used in this chapter. Section 6.5 presents our proposed methodology.
Section 6.6 presents the experimental study performed by using the proposed
methodology. Finally, Section 6.7 ends the chapter with conclusions.

6.1 Problem statement

As mentioned in Chapter 4 (see Section 4.1), the memory footprint of an appli-
cation using a single CNN, let alone multiple CNNs, often has to be reduced
to fit the application into the limited memory of an edge device. Typically,

108 Chapter 6. Methodology for joint memory optimization of multiple CNNs

the memory footprint of a CNN-based application is reduced using method-
ologies such as pruning and quantization [11, 17, 31, 98], briefly introduced in
Section 1.3 as a part of the CNN optimization engine. These methodologies
reduce the number or/and precision of parameters (weights and biases) of a
CNN, thereby reducing the memory footprint of a CNN-based application.
However, at high memory reduction rates, these methodologies may decrease
the CNN accuracy, while as mentioned in Section 1.2, high CNN accuracy is
very important for many CNN-based applications.

To achieve high CNN memory reduction and avoid substantial decrease of
the CNN accuracy, the CNN pruning and quantization methodologies can be
combined with CNN memory reuse methodologies such as the methodologies
in [28, 47, 65, 76]. Orthogonal to the pruning and quantization methodologies,
the CNN memory reuse methodologies reuse the platform memory allocated
to store intermediate computational results, exchanged between the layers of
a CNN. Thus, these methodologies further reduce the application memory
cost without decreasing the CNN accuracy. However, the methodologies
in [28,47,65,76] reuse platform memory within a CNN, but not among multiple
CNNs, thereby missing opportunities for inter-CNN memory reuse. As a
result, these methodologies are inefficient for multi-CNN applications (i.e.,
applications that use multiple CNNs to perform their functionality) such as
the applications demonstrated in [70, 84, 97, 104]. Moreover, due to Limitation
1, explained in Section 1.4.1, the methodologies in [28,47,65,76] do not account
for non-sequential manners of CNN execution, introduced in Section 2.4.
Consequently, these methodologies are also unfit for CNN-based applications
that execute CNNs in a non-sequential manner, such as the applications in [65,
67, 101]. To address the two issues, mentioned above, we propose our novel
methodology for joint memory optimization of multiple CNNs.

6.2 Contributions

In this chapter, we propose a methodology for joint memory optimization of
multiple CNNs. Our methodology offers memory reduction for CNN-based
applications that use multiple CNNs or/and execute CNNs in a non-sequential
manner. To this aim, our methodology significantly extends and combines
two existing CNN memory reduction methodologies: the CNN buffers reuse
methodology proposed in [76] and our methodology for low-memory CNN
inference, presented in Chapter 4 and based on our publication [65]. Our
methodology presented in Section 6.5 is the main novel contribution of this
chapter. Other important novel contributions are:

6.3. Related Work 109

• A schedule-aware CNN buffers reuse algorithm (see Section 6.5.1). This
algorithm extends the CNN buffers reuse methodology proposed in [76]
with consideration of various manners of CNN execution, including
the most common sequential execution manner briefly introduced in
Section 2.2, and alternative manners of CNN execution, explored by
the system-level optimization engine, introduced in Section 1.5. Fur-
thermore, unlike the methodology in [76], our novel CNN buffers reuse
algorithm reuses memory among different CNNs as well as within a
CNN. Therefore, our schedule-aware CNN buffers reuse algorithm
offers memory reduction for applications that use multiple CNNs to
perform their tasks or/and execute CNNs in a non-sequential manner.

• A CNN buffers size reduction algorithm (see Section 6.5.2). This algo-
rithm combines the buffers reuse, offered by the schedule-aware CNN
buffer reuse algorithm proposed in Section 6.5.1, with data processing
by parts proposed in our methodology for low-memory CNN inference
in Chapter 4. Additionally, our CNN buffers size reduction algorithm ex-
tends the methodology presented in Chapter 4 with memory-throughput
trade-off balancing, thus avoiding unnecessarily reducing the through-
put of the CNN. Therefore, our CNN buffers size reduction algorithm
offers further reduction of the memory of a CNN-based application at
the cost of possible CNN throughput decrease.

• up to 5.9 times memory reduction compared to deployment of CNN-
based applications with no memory reduction and 7% to 30% memory
reduction compared to other CNN memory reuse methodologies (see
Section 6.6.1);

Additionally, in Section 6.6.2 we demonstrate that our methodology can
be efficiently combined with orthogonal memory reduction methodologies
such as CNN quantization.

6.3 Related Work

The most common CNN memory reduction methodologies, namely pruning
and quantization, reviewed in surveys [11, 17, 31, 98], reduce the memory cost
of CNN-based applications by reducing the number or size of CNN parameters
(weights and biases) [4]. However, at high CNN memory reduction rates these
methodologies decrease the CNN accuracy, whereas high accuracy is very
important for many CNN-based applications [4]. In contrast, our memory

110 Chapter 6. Methodology for joint memory optimization of multiple CNNs

reduction methodology does not change the CNN model parameters and
therefore does not decrease the CNN accuracy.

The knowledge distillation methodologies, reviewed in surveys [17,98], try
to replace an initial CNN in a CNN-based application by an alternative CNN
with the same functionality but smaller size. However, these methodologies
involve CNN training from scratch and do not guarantee that the accuracy
of the initial CNN can be preserved. In contrast, our memory reduction
methodology is a general systematic methodology which always guarantees
preservation of the CNN accuracy.

The CNN buffers reuse methodologies, such as the methodology proposed
in [76], and the methodologies reviewed in [47], reduce the required CNN
memory by reusing platform memory, allocated for storage of intermediate
CNN computational results. These methodologies can significantly reduce
the CNN memory cost without decreasing the CNN throughput or accuracy.
However, these methodologies do not support reuse of the platform mem-
ory among multiple CNNs. Reusing the memory among CNNs as well as
within every CNN is vital for deployment of multi-CNN applications, such
as [84, 86, 95]. Thus, the methodologies in [47, 76] are not suitable for multi-
CNN applications. Moreover, these methodologies do not account for parallel
execution of CNN layers. Therefore, they are not applicable to CNN-based
applications, exploiting task-level (pipeline) parallelism [67, 101], available
within the CNNs. In contrast to these methodologies, our methodology is
applicable to the CNN-based applications, exploiting pipeline parallelism,
and multi-CNN applications.

The CNN buffers reduction methodology proposed in [65] and presented
in Chapter 4 of this thesis allows to significantly reduce the CNN-based
application memory cost at the expense of CNN throughput decrease. In this
methodology, CNN layers process their input data by parts and the device
memory is reused to store different parts of the layers input data. However,
this methodology always tries to achieve a very low CNN memory cost at
the expense of large CNN throughput decrease. In practice, partial reduction
of the CNN memory cost is often sufficient to fit a CNN-based application
into a device with a given memory constraint. In contrast to the methodology
proposed in [65], our proposed methodology involves a balanced memory-
throughput trade-off in a CNN-based application, and therefore does not
involve unnecessary decrease of the CNN throughput.

The CNN layers fusion methodologies, such as the methodologies in [5,73]
and the methodologies adopted by Deep Learning (DL) frameworks, such as
the TensorRT DL framework [72] or the PyTorch DL framework [75], enable

6.4. CNN-based application 111

to reduce the CNN memory cost by transforming the network into a simpler
form but preserving the same overall behavior. Being a part of the CNN
model definition, the CNN layer fusion methodologies are orthogonal to
our proposed methodology and can be combined with our methodology for
further CNN memory optimizations. In our experimental study (Section 6.6)
we implicitly use the CNN layers fusion by implementing the CNNs with the
TensorRT DL framework [72], which has built-in CNN layers fusion.

6.4 CNN-based application

A CNN-based application is an application which requires execution of one
or multiple CNNs to perform its functionality. In this section, we give an
example and a formal definition of a CNN-based application. Our example
application APP is shown in Figure 6.1 and is inspired by the real-world
CNN-based application for adaptive images classification proposed in [95].
For simplicity, in our application APP we use small made-up CNNs instead
of the real-world state-of-the-art CNNs used in [95]. Also, unlike the original
application in [95], our application APP utilizes alternative (non-sequential)

Figure 6.1: Example CNN-based application APP

112 Chapter 6. Methodology for joint memory optimization of multiple CNNs

manners of CNN execution.
To perform its functionality, application APP uses two CNNs, CNN1

and CNN2, designed to perform image classification on the same dataset,
but characterized with different accuracy and platform-aware characteristics.
CNN1 is a large and complex CNN, characterized with high accuracy, i.e.,
CNN1 performs the images classification very well. CNN2 is a small and
simple CNN. It is characterized with smaller accuracy than CNN2, but has
higher throughput, i.e., it is able to process images very fast. During its
execution, application APP accepts a stream of images, also called frames,
analyses these images, and adaptively selects one of its CNNs (CNN1 or
CNN2) to perform the image classification of the input frame. The complex
images are sent for processing to CNN1, while the simple images are sent for
processing to CNN2. By using CNN1 and CNN2 interchangeably, application
APP achieves higher classification accuracy and higher throughput, than by
using only CNN1 or only CNN2 [95].

As mentioned in Section 2.2, when deployed on a target edge platform,
a CNN-based application utilizes the platform memory and computational
resources to execute the CNNs. The memory of the edge device is used to
store parameters (weights and biases) and intermediate computational results
of the CNNs. The intermediate computational results are typically stored
in CNN buffers, briefly introduced in Section 2.2. Recall that a CNN buffer
is an area of platform memory, which stores intermediate computational
results (data) associated with one or multiple CNN edges and is characterized
with size, specifying the maximum number of data elements, that can be
stored in the buffer. To store data associated with every edge en

ij of CNN1

and CNN2, our example application APP uses a set of buffers Bnaive , where
every edge en

ij has its own buffer Bk of size |en
ij.data|. Hereinafter, we refer to

such buffers allocation as naive buffers allocation. In total, application APP
uses |Bnaive| = 9 CNN buffers. These buffers are shown in Table 6.1, where
Row 1 lists the buffers; Row 2 lists the edges using the CNN buffers to store
associated data; Row 3 lists the sizes of the CNN buffers expressed in number
of data elements.

The computational resources of the edge device are utilized to perform the
functionality of the CNNs. Typically the CNNs are executed layer-by-layer,

Table 6.1: Naive CNN buffers allocation

B B1 B2 B3 B4 B5 B6 B7 B8 B9

edges e1
12 e1

23 e1
24 e1

34 e1
45 e2

12 e2(1)
23 e2(2)

23 e2
34

size 3072 8192 8192 8192 8192 3072 6272 6272 10

6.5. Methodology 113

i.e. at every moment in time only one CNN layer is executed on the edge
platform. However, as explained in Section 2.4, a CNN-based application
executed on a multi-processor platform may split CNNs into partitions (sub-
networks) executed in a parallel pipelined fashion on different processors
of the platform. Our example application APP shown in Figure 6.1 exploits
pipeline parallelism available in CNN2 by splitting CNN2 into two partitions
(P2 and P3) and executing these partitions in parallel pipelined fashion.

To enable for representation of pipeline parallelism in a CNN-based ap-
plication, we: 1) represent CNNs used by the application as a set of CNN
partitions P. For application APP, P = {P1, P2, P3}, where P1 is a single parti-
tion of CNN1 (i.e., P1 = CNN1), P2 and P3 are partitions of CNN2; 2) use set J,
which explicitly defines the exploitation of pipeline parallelism among CNN
partitions P. Every element Ji ∈ J contains one or several CNN partitions.
If two CNN partitions Pm and Px, m ̸= x belong to the element Ji ∈ J, the
CNN-based application exploits task-level (pipeline) parallelism among these
partitions. For application APP, set J = {{P2, P3}} specifies that partitions P2
and P3 of the application are executed in parallel pipelined fashion.

The execution order of CNN layers within every CNN partition Pi, i ∈
[1, |P|] used by a CNN-based application is specified using sequence schedulei
of computational steps. At every step, represented as an element of schedulei,
a layer of partition Pi is executed. For example, schedule1 = {{l1

1}, {l1
2}, {l1

3},
{l1

4}, {l1
5}} specifies that the layers within partition P1 of application APP are

executed in 5 steps, and at j-th step, j ∈ [1, 5], layer l1
j is executed.

Based on the discussion above , we formally define a CNN-based ap-
plication as a tuple ({CNN1, ..., CNNN}, B, P, J, {schedule1, ..., schedule|P|}),
where {CNN1, ..., CNNN} are the CNNs utilized by the application; B is the
set of CNN buffers, utilized by the application; P is the set of CNN parti-
tions; J is the set which explicitly defines exploitation of task-level (pipeline)
parallelism by the application; schedulei, i ∈ [1, |P|] is a schedule of parti-
tion Pi which determines the execution order of the layers within partition
Pi. The example application shown in Figure 6.1 and explained above is for-
mally defined as a tuple APP = ({CNN1, CNN2}, Bnaive, {P1, P2, P3}, {{P2,
P3}}, {{{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, {{l2
1}, {l2

2}}, {{l2
3}, {l2

4}}}), where buffers
Bnaive = {B1, ..., B9} are given in Table 6.1.

6.5 Methodology

In this section, we present our methodology for joint memory optimization of
multiple CNNs. The design flow of our methodology is shown in Figure 6.2.

114 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Figure 6.2: Our methodology design flow

Our methodology accepts as inputs a CNN-based application, as formally
defined in Section 6.4, a memory constraint (in Megabytes) and an optional
throughput constraint (in frames per second) posed on the CNN-based applica-
tion. As an output, our methodology produces a final CNN-based application
that is functionally equivalent to the input CNN-based application, but char-
acterized with reduced memory cost and possibly decreased throughput. Our
methodology consists of three main steps.

At Step 1, we introduce CNN buffer reuse into the CNN-based application,
thereby reducing the application memory cost. This step is performed auto-
matically using our buffers reuse algorithm proposed in Section 6.5.1. As an
output, this step provides a set of CNN buffers to be reused among the CNNs
and within the CNNs of the CNN-based application.

If the memory reduction introduced by Step 1 is insufficient to fit a CNN-
based application within the given memory constraint, at Step 2, we try to
further reduce the the memory cost of the CNN-based application at the
expense of application throughput decrease. To do so, we introduce data
processing by parts (as proposed in Chapter 4) and the buffers reuse (as
proposed in Section 6.5.1) to the CNN-based application. We note that unlike
the methodology in [65], where the data processing by parts has been originally
proposed, Step 2 of our methodology does not introduce data processing by
parts into every layer of every CNN used by the application. Instead, Step 2
searches for a subset of layers such that data processing by parts in these layers
combined with buffers reuse introduces a balanced memory-throughput trade-
off to the CNN-based application. This step is performed automatically using
our buffers reduction algorithm proposed in Section 6.5.2. As explained in
Section 4.4 in Chapter 4 , the introduction of data processing by parts in a CNN
requires the layers of the CNN to be executed in a specific order. Therefore,
our buffers reduction algorithm also finds and enforces in the CNNs used by

6.5. Methodology 115

the application a specific schedule, which explicitly specifies the execution
order of layers and phases in the CNNs. As an output, Step 2 provides a
CNN-based application with buffers reuse and data processing by parts.

At Step 3, we use the CNN-based application, obtained at Step 2, to derive
the final CNN-based application provided as the output by our methodology.
This step is described in Section 6.5.3.

6.5.1 Buffers Reuse Algorithm

In this section, we present our buffers reuse algorithm, Algorithm 8, which is
a greedy algorithm. It visits, one-by-one, every edge in every CNN of a CNN-
based application and allocates a CNN buffer to this edge. When possible,
Algorithm 8 reuses CNN buffers among the visited edges, thereby introducing
memory reuse into the CNN-based application and reducing the application
memory cost. Algorithm 8 accepts as an input a CNN-based application with
naive buffers allocation, explained in Section 6.4. As an output Algorithm 8
produces a set of buffers B, reused among all the CNNs of the CNN-based
application. An example of buffers B generated by Algorithm 8 for the example
CNN-based application APP, explained in Section 6.4, is given in Table 6.2.

Unlike the naive CNN buffers allocation given in Table 6.1, the buffers in
Table 6.2 are reused among CNNs and within the CNNs of application APP.
For example, as shown in Column 2 in Table 6.2, CNN buffer B1, generated
by Algorithm 8, is reused among edges e1

12 and e1
34 of CNN1 and edge e2

12 of
CNN2. We note that according to Equation 2.7, explained in Section 2.2, the
reused buffers B, produced by Algorithm 8, occupy 24586* token_size bytes of
memory, while the initial, non-reuse buffers, given in Table 6.1 in Section 6.4,
occupy 51446* token_size bytes of memory.

In Line 1, Algorithm 8 sets the CNN buffers B to an empty set. In Lines
4 to 35, Algorithm 8 visits every edge en

ij of every partition Pm ∈ P of the
CNN-based application. In Line 4, Algorithm 8 creates an empty list Breuse
of existing CNN buffers that can be assigned to edge en

ij. In Lines 5 to 18,
Algorithm 8 checks every buffer Bk ∈ B, and determines if buffer Bk can be
assigned to edge en

ij. Buffer Bk cannot be assigned to edge en
ij if it is already

assigned to another edge er
zq used by the CNN-based application simultane-

Table 6.2: Reused CNN buffers

B B1 B2 B3 B4

edges e1
12, e1

34, e2
12 e1

23, e1
45, e2(1)

23 e1
24, e2(2)

23 e2
34

size 8192 8192 8192 10

116 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Algorithm 8: Buffers reuse
Input: APPin = ({CNN1, ..., CNNN , Bnaive, P, J, {schedule1, ..., schedule|P|}})
Result: B

1 B← ∅;
2 for Pm ∈ P do
3 for en

ij ∈ Pm.E do
4 Breuse ← ∅;
5 for Bk ∈ B do
6 suits = true;
7 for er

zq ∈ Bk.edges do
8 find Px : er

zq ∈ Px;
9 if m ̸= x then

10 if ∃Jr ∈ J : {Pm, Px} ∈ Jr then
11 suits = f alse;

12 else
13 startz ← find in schedulem first step of lr

z;
14 endq ← find in schedulem last step of lr

q;
15 starti ← find in schedulem first step of ln

i ;
16 endj ← find in schedulem last step of ln

j ;
17 if [starti, endj] ∩ [startz, endq] ̸= ∅ then
18 suits = f alse;

19 if suits = true then
20 Breuse ← Breuse + Bk;

21 if Breuse = ∅ then
22 edges← ∅; edges← edges + en

ij;

23 find Bz in Bnaive such that en
ij ∈ Bz.edges;

24 Bbest = new shared buffer (edges, Bz.size);
25 B← B + Bbest;
26 else
27 costmin = in f ;
28 for Bk ∈ Breuse do
29 find Bz in Bnaive such that en

ij ∈ Bz.edges;
30 cost = max(Bz.size−Bk.size, 0);
31 if cost < costmin then
32 Bbest = Bk;
33 costmin = cost;

34 Bbest.edges← Bbest.edges + en
ij;

35 Bbest.size = Bbest.size + costmin;

36 return B

ously with edge en
ij, i.e., if: 1) edges er

zq and en
ij belong to different partitions

6.5. Methodology 117

and the CNN-based application exploits parallelism between these partitions
(conditions in Line 9 and Line 10 are met). For example, buffer B1 of appli-
cation APP, assigned to edge e2

12 of partition P2 cannot be also assigned to
edge e2

34 of partition P3 because the application APP exploits pipeline paral-
lelism between partitions P2 and P3; 2) edges er

zq and en
ij, belong to one and

the same partition (condition in Line 9 is not met) and simultaneously use the
platform memory. To determine whether edges er

zq and en
ij use the platform

memory simultaneously, in Lines 13 to 16 Algorithm 8 takes the schedule of
partition Pm, i.e, schedulem, and finds in this schedule intervals (in steps) when
the platform memory is used by edges er

zq and en
ij. Edge er

zq starts to use the
platform memory when layer lr

z is first executed, i.e., when layer lr
z first writes

data associated with edge er
zq to the platform memory. Edge er

zq stops using
the platform memory when layer lr

q is last executed, i.e., when layer lr
q reads

the (last part of) data associated with edge er
zq from the platform memory.

Analogously, edge en
ij starts to use the platform memory when layer ln

i is first
executed and stops using the platform memory when layer ln

j is last executed.
Thus, edges er

zq and en
ij use the platform memory simultaneously if the steps

interval of memory usage of er
zq overlaps with the interval of en

ij, i.e., if the
condition in Line 17 is met. For example, buffer B2 of the example application
APP, assigned to edge e1

23 of partition P1 cannot be also assigned to edge
e1

24 of partition P1. The layers within partition P1 are executed according to
schedule1 = {{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, explained in Section 6.4. According
to schedule1, edge e1

23 uses the platform memory in steps interval [2,3], and
edge e1

24 uses the platform memory in steps interval [2,4]. Intervals [2,3] and
[2,4] overlap, which means that edges e1

23 and e1
24 use the platform memory

simultaneously and cannot be assigned to one buffer. If neither of conditions
1) and 2) mentioned above is met, buffer Bk can be reused for storage of data
associated with edge en

ij and is added to the list Breuse in Line 20.

In Lines 21 to 35 Algorithm 8 finds a reuse buffer Bbest, which is best suited
to store the data associated with edge en

ij. If list Breuse, created in Lines 4 to
20, is empty (the condition in Line 21 is met), in Lines 21 to 25, Algorithm 8
defines Bbest as a new buffer and allocates this buffer to edge en

ij. The size of
buffer Bbest is computed as the size of buffer Bz ∈ Bnaive allocated to edge en

ij in
the naive buffers allocation.

Otherwise, in Lines 27 to 35, Algorithm 8 selects Bbest from the list Breuse.
Buffer Bbest is selected such that the increase in memory cost, computed in
Line 30, and introduced by reusing of buffer Bbest to store data associated with
edge en

ij is minimal. In Lines 34 to 35, Algorithm 8 assigns buffer Bbest to edge

118 Chapter 6. Methodology for joint memory optimization of multiple CNNs

en
ij and increases the size of buffer Bbest by the memory cost costmin, introduced

into the CNN-based application by reuse of buffer Bbest for storage of data
associated with edge en

ij. Finally, in Line 36, Algorithm 8 returns the CNN
buffers B.

6.5.2 Buffers Reduction Algorithm

In this section, we present our buffers sizes reduction algorithm, Algorithm 9.
This algorithm introduces data processing by parts (as proposed in Chapter 4)
and buffers reuse (as proposed in Section 6.5.1) to a CNN-based application.
To enable a balanced memory-throughput trade-off in the application, data
processing by parts is introduced only in a subset of layers used by the ap-
plication. To find this subset, Algorithm 9 uses a multi-objective Genetic
Algorithm (GA) [83]: a well-known heuristic approach, which basic concepts
and parameters are introduced in Section 2.6.

Algorithm 9 accepts as inputs: 1) a CNN-based application with naive
buffers allocation, explained in Section 6.4; 2) a list of reused buffers B ob-
tained using Algorithm 8, presented in Section 6.5.1; 3) Constraints Mc and Tc

posed on the application. The memory constraint Mc specifies the maximum
amount of memory (in MegaBytes) that can be occupied by the CNN-based ap-
plication. The throughput constraint Tc is defined as a set {Tc

1 , ..., Tc
N}, where

Tc
n, n ∈ [1, N] specifies the minimum throughput (in fps) which has to be

demonstrated by CNNn used by the application; 4) A set GA_par of standard
user-defined GA parameters, briefly introduced in Section 2.6. As outputs, Al-
gorithm 9 provides: 1) a CNN-based application functionally equivalent to the
input application but utilizing data processing by parts and buffers reuse as
explained above. Compared to the input application, the output application is
characterized with reduced memory cost and possibly decreased throughput.
Also, due to the utilization of data processing by parts, the output application
may execute CNN layers in a different order than the input application; 2) a
set of phases Φ which specifies the number of phases in every layer of every
CNN used by the application. These two outputs are required to generate the
final application as proposed in Section 6.5.3.

As an example, taking CNN-based application APP = ({CNN1, CNN2},
Bnaive, {P1, P2, P3}, {{P2, P3}}, {{{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, {{l2
1}, {l2

2}},
{{l2

3}, {l2
4}}}) introduced in Section 6.4, reused buffers B shown in Table 6.2,

constraints Mc = 0.02 MegaBytes (20000 bytes), Tc = {0, 0}, and standard
GA parameters GA_par proposed in work [83], Algorithm 9 produces as
an output application APP′ = ({CNN1, CNN2}, Breduced, {P1, P2, P3}, {{P2,
P3}}, {{l1

1}, {l1
2}, [{l1

3}, {l1
4}, {l1

5}] x 32}, {{l2
1}, {l2

2}}, {{l2
3}, {l2

4}}}) and a set

6.5. Methodology 119

Algorithm 9: Buffers reduction
Input: APPin=({CNN1, ..., CNNN}, Bnaive, P, J, {schedule1, ..., schedule|P|}),

B, Constraints = (Mc, Tc), GA_par
Result: APPout=({CNN1, ..., CNNN}, Breduced, P, J, {schedule′1, ..., schedule′|P|}), Φ

1 APPout ← ({CNN1, ..., CNNN}, B, P, J, {schedule1, ..., schedule|P|});
2 M = compute memory cost of APPout, using Equation 2.5;
3 if M ≤ Mc then
4 Φ← {(ln

i , 1)}, n ∈ [1, N], i ∈ [1, |Ln|];
5 return (APPout, Φ);

6 X ← binary string of length ∑N
n=1 |Ln|;

7 f itness = minimize(EvalMemory(APPin, X),
−EvalThroughput(APPin, X, 1), ..., −EvalThroughput(APPin, X, N));

8 pareto ← GA(X, GA_par, f itness);
9 S← ∅;

10 for X ∈ pareto do
11 if M = EvalMemory(APPin, X) ≤ Mc ∧ Tn =

EvalThroughput(APPin, X, n) ≥ Tc
n ∈ Tc, n ∈ [1, N] then

12 S← S ∪ X;

13 if S ̸= ∅ then
14 Xbest = select from S chromosome X with minimal memory footprint

M = EvalMemory(APPin, X);
15 else
16 Xbest = select from pareto chromosome X with minimal memory footprint

M = EvalMemory(APPin, X);

17 (APPout, Φ)← Algorithm 10(APPin, Xbest);
18 return (APPout, Φ);

19 Function EvalMemory(APPin, X):
20 (APPX , Φ)← Algorithm 10(APPin, X);
21 M = compute memory cost of APPX , using Equation 2.5;
22 return M;

23 Function EvalThroughput(APPin, X, n):
24 (APPX , Φ)← Algorithm 10(APPin, X);
25 Tn = evaluate throughput of CNNn used by APPX and executed with

phases Φ;
26 return Tn;

of phases Φ = {1, 1, 32, 32, 32, 1, 1, 1, 1}. Elements of set Φ specify the number
of phases performed by layers l1

1 , l1
2 , l1

3 , l1
4 , l1

5 , l2
1 , l2

2 , l2
3 , and l2

4 , respectively.
Application APP′ uses buffers Breduced, produced by Algorithm 9 and shown

120 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Table 6.3: reduced CNN buffers

B B1 B2 B3 B4

edges e1
12, e1

34,e2
12 e1

23, e2(1)
23 e1

24, e2(2)
23 e1

45, e2
34

size 3072 8192 8192 256

in Table 6.3. We note that according to Equation 2.7, the reduced CNN buffers
produced by Algorithm 9 occupy 19712* token_size bytes of memory (see
Table 6.3), while the CNN buffers obtained by only using buffers reuse oc-
cupy 24586* token_size bytes of memory (see Table 6.2). The difference occurs
because, besides buffers reuse, Algorithm 9 introduces data processing by
parts to layers l1

3 , l1
4 , and l1

5 of CNN1. To enable for buffers reduction with
data processing by parts, Algorithm 9 enforces a specific execution order
for the layers of CNN1 which processes data by parts. This is expressed in
APP′ through schedule′1 = {{l1

1}, {l1
2}, [{l1

3}, {l1
4}, {l1

5}]x32}. In schedule′1, the
square brackets enclose a repetitive sub-sequence of steps. At every step, a
phase of a CNN layer is executed. During the first 2 steps, layers l1

1 and l1
2 ,

respectively, execute their single phase. Then, phases 1-32 of layers l1
3 , l1

4 , and
l1
5 are executed in an alternating manner, where a phase of layer l1

3 is followed
by a phase of layer l1

4 , and a phase of layer l1
5 . The set Φ specifies that each

of layers l1
3 , l1

4 , and l1
5 in CNN1 performs 32 phases (processes its input data

by 32 parts), while layers l1
1 , l1

2 of CNN1 and all layers of CNN2 perform one
phase (do not process data by parts).

In Lines 1 to 3, Algorithm 9 checks if utilization of only buffers reuse is
sufficient to meet the memory constraint. To perform the check, in Line 1,
Algorithm 9 generates an application that employs only buffers reuse (uses
buffers B, obtained using Algorithm 8). In Lines 2 and 3, Algorithm 9 checks
whether this application meets the memory constraint. If so (the condition
in Line 3 is met), in Line 5, Algorithm 9 performs an early exit. It returns
as an output the application, generated in Line 1. It also returns the set of
phases Φ generated in Line 4 specifying that every layer in every CNN in the
application performs one phase, i.e., does not process data by parts.

Otherwise, Algorithm 9 performs a GA-based search to find a set of layers
that have to process data by parts. To this end, Algorithm 9 uses a standard
GA with two-parent crossover and a single-gene mutation as presented in
Section 2.6, and two problem-specific GA attributes: a chromosome and a
fitness function. Recall that the chromosome is a genetic representation of
a GA solution. In Algorithm 9, a chromosome X specifies data processing
by parts in a CNN-based application. It is defined in Line 6 as a string of
length ∑N

n=1 |Ln|, where N is number of CNNs used by the application, |Ln|

6.5. Methodology 121

Table 6.4: Chromosome

l1
1 l1

2 l1
3 l1

4 l1
5 l2

1 l2
2 l2

3 l2
4

0 0 1 1 1 0 0 0 0

is the total number of layers in the n-th CNN used by the application. Every
gene of the chromosome takes value 0 or 1 and specifies whether a layer
processes data by parts (gene=1) or not (gene=0). Table 6.4 gives an example
of a chromosome, which specifies data processing by parts as in the example
application APP′, mentioned above.

The fitness-function, briefly introduced in Section 2.6, evaluates the quality
of GA solutions, represented as chromosomes, and guides the GA-based
search. The fitness function used by Algorithm 9 is defined in Line 7. It
specifies that during the GA-based search Algorithm 9 tries to: 1) minimize the
application memory cost M; 2) maximize (minimize the negative) throughput
Tn of every CNN used by the application. To evaluate a chromosome in terms
of memory and throughput, Algorithm 9 uses function EvalMemory and
function EvalThroughput, explained in the Memory and throughput evaluation
section below.

In Line 8, Algorithm 9 performs the GA-based search, which delivers a set
of pareto-optimal solutions (chromosomes) called a pareto-front [83]. From
this pareto-front, in Lines 9 to 16, Algorithm 9 selects the best chromosome, i.e.,
a chromosome which ensures that the CNN-based application has minimum
memory footprint, while, if possible, meets the memory and throughput
constraints posed on the application. In Lines 9 to 12, Algorithm 9 defines
subset S of the pareto-front. All chromosomes in subset S enable the CNN-
based application to meet the memory and throughput constraints. If such a
subset exists (the condition in Line 13 is met), in Line 14, Algorithm 9 selects
the best chromosome from this subset. Otherwise, in Line 16, Algorithm 9
selects the best chromosome from the pareto-front.

In Line 17, Algorithm 9 uses the input application APPin and the best
chromosome Xbest selected in Lines 9 to 16, to generate the output application
APPout and a set of phases Φ performed by layers of application APPout. The
output application uses both data processing by parts and buffers reuse, and is
characterized with reduced memory cost and possibly decreased throughput
compared to the input application. The generation of application APPout

and set Φ from the input application APPin and the best chromosome Xbest

is performed using Algorithm 10, explained in the Derivation of a CNN-based
application with data processing by parts and buffers reuse section below. Finally,
in Line 18, Algorithm 9 returns application APPout and set Φ.

122 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Derivation of a CNN-based application with data processing by parts and
buffers reuse

To generate an application, functionally equivalent to the input application
APPin but using the data processing by parts as specified in chromosome X
and buffers reuse as proposed in Section 6.5.1, Algorithm 9 uses the derivation
of a CNN-based application with data processing by parts and buffers reuse
- see Algorithm 10. In Line 1, Algorithm 10 defines an empty set Bmin of
buffers with minimum size and no reuse, and an empty set of phases Φ. In
Lines 2 to 7, Algorithm 10 visits every partition Pp in the input application
APPin. In Line 3, Algorithm 10 uses chromosome X and Equation 6.1 to
compute the number of phases Φ1

n performed by every layer ln
i in partition Pp.

If gene X.ln
i of chromosome X specifies that layer ln

i processes data by parts
(i.e., X.ln

i = 1), the number of phases Φn
i for this layer is determined using

Algorithm 3, explained in Section 4.5.1 in Chapter 4. Otherwise, the number
of phases Φn

i for layer ln
i is set to 1, which means that layer ln

i does not process
data by parts.

Φn
i (x) =

{
determine using Algorithm 3 if x = 1
1 otherwise

(6.1)

In Line 4 to 5, Algorithm 10 obtains a set of buffers Bmin
p for partition Pp,

Algorithm 10: Derivation of a CNN-based application with data
processing by parts and buffers reuse

Input: APPin=({CNN1, ..., CNNN}, Bnaive, P, J, {schedule1, ..., schedule|P|}), X
Result: APPreduced, Φ

1 Bmin ← ∅; Φ← ∅;
2 for Pp ∈ APPin do
3 Φp ← {(ln

i , Equation 6.1 (X.ln
i))}, ln

i ∈ Pp.L;
4 Gp(Ap, Cp)← CNN-to-CSDF (Pp, Φp) // Algorithm 4 in Section 4.5.2;
5 Bmin

p , schedule′p ← use SDF3 [91] to derive minimum-sized buffers and a
schedule that enables execution of partition Pp represented as CSDF
model Gp with these buffers;

6 Bmin ← Bmin ∪ Bmin
p ;

7 Φ← Φ ∪Φp;

8 APPparts ← ({CNN1, ..., CNNN}, Bmin, P, J, {schedule′1, ..., schedule′|P|});
9 Breduced ← Algorithm 8 (APPparts);

10 APPreduced = ({CNN1, ..., CNNN}, Breduced, P, J, {schedule′1, ..., schedule′|P|})
11 return (APPreduced, Φ);

6.5. Methodology 123

where every buffer Bk ∈ Bmin
p is allocated to an edge in partition Pp, and is

characterized with minimum size. Together with buffers Bmin
p , Algorithm 9 ob-

tains specific schedule schedule′p, which enables to correctly execute partition
Pp with buffers Bmin

p . To do so, Algorithm 10 converts every CNN partition
into a functionally equivalent CSDF model (Line 4) using the CNN-to-CSDF
conversion procedure - see Algorithm 4 in Section 4.5.2, and feeds the obtained
CSDF models to the SDF3 embedded systems design and analysis tool [91].
In Lines 6 and 7, Algorithm 10 accumulates the minimum sized buffers and
phases obtained in Lines 3 to 5 in sets Bmin and Φ, respectively. In Line 8,
Algorithm 10 generates application APPparts which processes data by parts
as specified in chromosome X without buffers reuse. In Lines 9 to 10, Algo-
rithm 10 introduces buffers reuse into application APPparts, thereby obtaining
application APPreduced. Finally, in Line 11, Algorithm 10 returns application
APPreduced together with phases Φ.

Memory and throughput evaluation

The memory and throughput of a GA solution, i.e., a chromosome, are evalu-
ated using function EvalMemory defined in Lines 19 to 22 of Algorithm 9 and
function EvalThroughput defined in Lines 23 to 24 of Algorithm 9. Both func-
tions accept as inputs the CNN-based application APPin and chromosome X.
From the application APPin and chromosome X, functions EvalMemory and
EvalThroughput generate application APPX as explained in the Derivation of
a CNN-based application with data processing by parts and buffers reuse section
above. Function EvalMemory computes the memory cost of application APPX

using Equation 2.5. Function EvalThroughput evaluates the throughput of
CNNn used by application APPX. The throughout of CNNn is estimated
using measurements on the platform or a third-party throughput evaluation
tool.

6.5.3 Final application derivation

In this section, we show how we perform the last step of our methodology,
where we derive the final CNN-based application with reduced memory cost
and possibly decreased throughput from the CNN-based application with data
processing by parts and buffers reuse obtained using Algorithm 9, explained
in Section 6.5.2. To derive the final CNN-based application, we use a DL
framework, such as TensorRT [72], and custom extensions. The DL framework
is used to implement and execute the CNNs and the CNN buffers within the
application. The custom extensions are used to enable alternative (different

124 Chapter 6. Methodology for joint memory optimization of multiple CNNs

from layer-by-layer) execution order within every CNN partition and among
CNN partitions. The alternative execution order is required for processing data
by parts and exploiting pipeline parallelism in the CNN-based application.

6.6 Experimental Results

In this section, we evaluate the efficiency of our methodology. The experiments
are performed in two steps. First, in Section 6.6.1, we compare our proposed
methodology to the existing memory reuse methodologies proposed in [76]
and [65]. Then, in Section 6.6.2, we further study the impact of our proposed
methodology on real-world applications and demonstrate how our method-
ology can be used jointly with orthogonal memory reduction methodologies
such as CNN quantization. The applications considered in our experiments be-
long to three categories: 1) applications utilizing one CNN which is executed
in a commonly adopted sequential fashion (layer-by-layer); 2) applications
utilizing one CNN and exploiting pipeline parallelism available among layers
of the CNN as explained in Section 2.4; 3) multi-CNN applications. By per-
forming the experiments on the applications from these common categories,
we study the efficiency of our methodology for a wide range of CNN-based
applications.

6.6.1 Comparison to existing memory reuse methodologies

In this section, we evaluate the efficiency of our methodology in comparison
with the existing memory reuse methodologies proposed in [76] and [65]. The
comparison between our methodology and the methodologies in [76] and [65]
in terms of memory reduction principles is summarized in Table 6.5.

To evaluate the efficiency of our methodology and study the impact of
the memory reuse principles and features summarized in Table 6.5 on CNN-
based applications, we apply our methodology and the methodologies in [76]
and [65] to six real-world CNN-based applications from the three common
categories, introduced in Section 6.6. The applications are listed in Column
1 in Table 6.6. To perform their functionality, the CNN-based applications
utilize the state-of-the-art CNNs listed in Column 2.

We measure and compare the applications memory cost, when it is: 1)
reduced using our methodology; 2) not reduced, i.e. every CNN edge has its
own CNN buffer allocated, similar to the example CNN-based application,
explained in Section 6.4; 3) reduced using the methodology in [76]; 4) reduced
using the methodology in [65].

6.6. Experimental Results 125

Table 6.5: Comparison of the memory reduction principles and features associated with the
memory reuse methodologies in [76], [65], and our proposed methodology

memory reuse principle or feature [65] [76] our method-
ology

buffers reuse, i.e. reuse of platform
memory, allocated to store output data
of different CNN layers

no yes yes

data processing by parts, i.e. reuse of
platform memory, allocated to store
partitions of input data of CNN layers

yes no yes

pipeline parallelism awareness no no yes
reuse of platform memory among
multiple CNNs

no no yes

memory-throughput trade-off yes,
unbalanced

no yes,
balanced

Taking into account that both the related work in [65] and our methodology
can decrease the throughput of CNNs, we also measure and compare the
throughput of every CNN utilized by the CNN-based applications. To measure
the applications memory cost and the CNNs throughput, we execute the
CNNs on the NVIDIA Jetson TX2 embedded platform [71]. Every CNN is
implemented using the Tensorrt DL framework [72], the best-known and state-
of-the-art for CNNs execution on the Jetson TX2, and is executed with batch
size = 1, typical for CNNs execution at the Edge and native floating-point 32
data precision.

The results of our experiments are given in Columns 3 to 11 of Table 6.6,
where Column 3 lists memory constraints (in MegaBytes) posed on the CNN-
based applications; Columns 4 to 7 show the applications memory cost;
Columns 8 to 11 show the throughput (in frames per second) of the CNNs
utilized by the applications.

As shown in Columns 4 to 7, when compared to the applications deployed
without memory reduction, our methodology demonstrates 2.3 to 5.9 times
memory reduction, with the minimum of (380/162) ≈ 2.3 times memory re-
duction achieved for application 5 and the maximum of (161.33/27.30) ≈ 5.9
times memory reduction achieved for application 2. Analogously, when com-
pared to the most relevant related work (the methodologies in [76] and [65]),
our methodology achieves 7% to 30% memory reduction with minimum and
maximum memory reduction achieved for application 5 and application 2,
respectively. As shown in Columns 4 to 7, for every CNN-based application
our methodology enables for more memory reduction than the methodolo-
gies in [76] and [65]. For example, the memory cost of application 1 can be

126 Chapter 6. Methodology for joint memory optimization of multiple CNNs
Table

6.6:Experim
entalR

esults

A
pplication

M
em

ory
(M

B)
Throughput(fps)

N
o

C
N

N
(s)

M
em

ory
constraint

(M
B)

no
reduc-
tion

[76]
[65]

ours
no

reduc-
tion

[76]
[65]

ours

C
N

N
-based

applications
w

ith
one

C
N

N
and

no
exploitation

oftask-level(pipeline)parallelism

1
M

obileN
etV

2
1.0

25
58.63

20.32
16.2

20.32
46

46
40

46
15

14.98
41

m
in

14.90
40.5

2
EfficientN

etB0
150

161.33
39.14

42.97
39.14

168.35
168.35

98
168.35

40
39.14

168.35
m

in
27.30

128.5
C

N
N

-based
applications,exploiting

pipeline
parallelism

,as
proposed

in
[67]

3
M

obileN
etV

2
1.0

30
61.69

20.32
17.38

30
49

46
43

49
15

15.92
43.65

m
in

15.92
43.65

4
EfficientN

etB0
150

163.65
39.14

44.18
45

170.3
168.35

98.8
170.3

50
45

170.3
m

in
31.34

124.24
M

ulti-C
N

N
applications

5

Inception
V

2

380
175

226

175
94

94
67

94
M

obilenetV
1

0.25
200

432
432

183
432

R
esN

etV
1

50
55

55
46

55
Inception

V
2

162
94

94
67

75
M

obilenetV
1

0.25
m

in
432

432
183

244
R

esN
et50

55
55

46
47

6

D
enseN

et121

625
291

184

161
52

52
37

52
M

obilenetV
1

1.0
500

59
59

50
59

R
esnetv1

50
55

55
46

55
D

enseN
et121

155
52

52
37

41
M

obilenetV
1

1.0
m

in
59

59
50

54
R

esnetv1
50

55
55

46
49

6.6. Experimental Results 127

reduced to 14.90 MB by our methodology and to 20.32 MB and 16.2 MB by the
methodologies in [76] and [65], respectively. The difference occurs because
our methodology combines the strength of both methodologies and extends
the memory reuse among multiple CNNs.

Columns 8, 10 and 11 show that the reduction of the applications memory
cost by the methodology in [65] and our methodology may decrease the
throughput of CNNs utilized by a CNN-based application. For example, as
shown in Row 4, the throughput of Mobilenet V2 CNN is: 1) decreased to
40 fps by the methodology in [65]; 2) may be decreased to 41 or 40.5 fps
by our methodology. However, our methodology: 1) does not decrease the
CNN throughput when the memory constraint is 25 MB; 2) decreases the
CNN throughput by 46 − 41 = 5 fps when the memory constraint is 15
MB; 3) decreases the CNN throughput by 46 − 40.5 = 5.5 fps when the
memory constraint is 0, whereas the methodology in [65] always decreases the
throughput of Mobilenet V2 CNN by 46− 40 = 6 fps. The difference occurs
because, unlike the methodology in [65], our methodology searches for an
optimal (balanced) memory-throughput trade-off (see Algorithm 9).

Columns 8 to 9 show that the methodology in [76] does not introduce
throughput decrease into the CNN-based applications exploiting no task-level
parallelism and multi-CNN applications. However, [76] can decrease the
throughput of CNNs in the CNN-based applications that exploit pipeline
parallelism. For example, it decreases the throughput of EfficientNet B0 CNN,
shown in Row 8. The throughput decrease occurs because the methodology
in [76] reuses CNN buffers which may be simultaneously accessed by different
partitions of a CNN-based application, and thus prevents exploitation of
pipeline parallelism in the CNN-based application. Unlike the methodology
in [76], our proposed methodology does not reuse such buffers and thus
enables for exploitation of pipeline parallelism.

Columns 4 to 7, Rows 10 to 13 show that for multi-CNN applications
our methodology enables more memory reduction than the methodology
in [76] and the methodology in [65]. For example, our methodology is able
to reduce the memory of multi-CNN application 6, shown in Rows 12 to
13 in Table 6.6 to 155 MB. This is ≈ 2 times more memory reduction than
offered by the methodology in [76] and ≈ 15% more memory reduction than
offered by the methodology in [65]. The difference occurs because: 1) our
methodology combines memory reuse principles offered by the methodologies
in [76] and [65]; 2) Unlike the methodologies in [76] and [65], our methodology
reuses memory among different CNNs as well as within the CNNs.

As demonstrated in this section, our methodology enables for up to 5.9

128 Chapter 6. Methodology for joint memory optimization of multiple CNNs

times memory reduction compared to deployment of CNN-based applications
without memory reduction and 7% to 30% memory reduction compared to
other memory reduction methodologies that reduce the CNN memory cost
without CNN accuracy decrease.

6.6.2 Joint use of quantization and our proposed methodology

In this section, we further study the impact of our proposed methodology on
real-world applications and demonstrate how our methodology can be used
jointly with orthogonal memory reduction methodologies such as CNN quanti-
zation. We apply the quantization methodology offered by the TensorFlow DL
framework [1] together with our proposed methodology to four CNN-based
applications, executed on the NVIDIA Jetson TX2 edge platform [71]. The
applications are summarized in Table 6.7 and explained in details in the Experi-
mental setup section below. To study the impact of joint use of our methodology
and the quantization methodology, we measure and compare the accuracy,
memory cost, and throughput of the CNNs used by the applications after the
applications’ memory cost is decreased using: 1) quantization and no memory
reuse; 2) our methodology combined with quantization. The measurements
are presented in the Experimental results section below. The comparison of
the measurements along with analysis and conclusions are presented in the
Analysis and conclusions section below.

Experimental setup

The applications that we use to study the effectiveness of our methodology
when used jointly with CNN quantization, are summarized in Table 6.7. Col-
umn 1 lists the applications’ names. Column 2 lists the CNNs used by the
applications. All the CNNs perform image classification on the ImageNet
dataset [21], composed of RGB images with 224 pixels height and width. The
baseline topology and weights of every CNN are taken from the applications

Table 6.7: Applications

application CNN(s) requirements
T (fps) M (MB)

Mobilenet-sequential Mobilenet V2 75 8
Resnet-sequential Resnet-50 75 26

Mobilenet-pipelined Mobilenet V2 80 30

multi-CNN Mobilenet V2 32 30Resnet-50 32

6.6. Experimental Results 129

Table 6.8: Quantization in the TensorFlow DL framework [1]

name No (baseline) Half Mixed Int
data precision fp32 fp16 fp16 int

parameters precision fp32 fp16 int int

library of the TensorFlow DL framework [1], which is well-known and widely
used for CNNs design and training. For execution at the Edge, the CNNs are
implemented using the Tensorrt DL framework [72], which is the best-known
DL framework for CNNs execution on the NVIDIA Jetson TX2 edge platform.
Columns 3 and 4 specify requirements, posed on the CNNs by the applications,
and passed as inputs to our proposed methodology. Column 3 specifies the
minimum throughput (in frames per second) which the CNNs are expected
to demonstrate during their inference on the NVIDIA Jetson TX2 platform.
Column 4 specifies the maximum amount of memory (in MegaBytes) which
the CNNs can occupy.

To every application listed in Table 6.7, we apply our methodology and the
quantization methodology offered by the TensorFlow DL framework [1]. The
quantization methodology in [1] offers several types of quantization, summa-
rized in Table 6.8. Each type of quantization suggests a specific target precision
used to store CNN parameters and weights. The available precision includes
32-bit floating-point (fp32) precision, 16-bit floating-point (fp16) precision and
a 8-bit integer (int) precision. For example, the half-quantization, shown in
Column 3 in Table 6.8, suggests that the CNN parameters and data are stored
in fp16 precision.

Experimental results

The experimental results for the four CNN-based applications, summarized in
Table 6.7, are shown in Figure 6.3. They are shown as bar plots that compare
the characteristics of the CNNs used by the applications when the applications’
memory cost is reduced using: 1) quantization with no memory reuse (the
light-grey bars); our methodology combined with quantization (the dark-grey
bars). Every plot shows a comparison for the CNNs with a certain type of
quantization offered by the TensorFlow DL framework (see Table 6.8 explained
in the Experimental setup section above), as well as for the baseline CNNs
with no quantization and the original 32-bit floating-point weights and data
precision.

The bar plots in Figure 6.3 are organized in a matrix. Every row corre-
sponds to a CNN-based application. Every column corresponds to a character-
istic of the CNNs used by the application: the CNN accuracy (the first column),

130 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Accuracy (top-1, %)

Mobilenet-sequential

(a) (b) (c)

Mobilenet-pipelined

(g) (h) (i)

Resnet-sequential

(d) (e) (f)

Throughput (fps) Memory (MB)

(j) (k) (l)

Multi-CNN (Mobilenet V2 and Resnet-50)

Figure 6.3: Experimental results

6.6. Experimental Results 131

the CNN throughput (the second column)1, and the CNN memory cost (the
third column). For example, the bar plot in Figure 6.3(b), located in the first
row and second column, shows the throughput of the Mobilenet V2 CNN,
used by the Mobilenet-sequential application. Every bar is annotated with the
value of the respective characteristic. For example, Figure 6.3(b) shows that the
Mobilenet V2 CNN with half-quantization demonstrates 79 fps throughput
after the quantization and no memory reuse. The difference in height between
the light-grey bars and the dark-grey bars demonstrates the reduction (de-
crease) of the respective characteristics. For example, Figure 6.3(b) shows that
our methodology decreases the throughput of the Mobilenet V2 CNN with
half-quantization by 79− 71 = 8 fps.

Analysis and conclusions

In this section, we compare and analyse the experimental results, presented in
the the Experimental results section above.

First, we compare the CNNs accuracy. To do that, we analyse the plots
shown in the first column in Figure 6.3. We note that the accuracy of the CNNs
after quantization with no memory reuse matches the CNNs accuracy after
quantization combined with our methodology. In other words, our method-
ology does not reduce the CNNs accuracy. This is because our methodology
does not change the number and precision of CNN weights.

Second, we compare the throughput of the CNNs. To do that, we anal-
yse the plots shown in the second column in Figure 6.3. So, we see that our
methodology may decrease the CNNs throughput. For example, Figure 6.3(b)
shows that our methodology decreases the throughput of the Mobilenet V2
CNN with half-quantization by 79− 71 = 8 fps. As explained in Section 6.5,
the throughput decrease occurs due to the processing data by parts, utilized
by our methodology. However, the throughput decrease introduced by our
methodology is small and is compensated by the throughput increase, in-
troduced by the quantization. For example, Figure 6.3(b) shows that the
throughput of the Mobilenet V2 CNN with half-quantization combined with
our methodology is increased by 71− 46 = 25 fps, compared to the CNN with
no quantization and no memory reuse (the latter CNN is represented as the
light-grey ’baseline’ bar).

Finally, we compare the memory cost of the CNNs. To do that, we analyse
the plots shown in the third column in Figure 6.3. The plots show that our

1The CNN throughput is not shown for the CNNs with int- and mixed-quantization because
the Jetson TX2 platform does not support integer computations.

132 Chapter 6. Methodology for joint memory optimization of multiple CNNs

methodology enables to further reduce the memory cost of the quantized
CNNs. For example, Figure 6.3(c) shows that our methodology reduces 3.7
times the memory cost of Mobilenet V2 CNN with half-quantization. Analo-
gously, Figure 6.3(i) shows that our methodology reduces 2.1 times the memory
cost of Mobilenet V2 CNN with half-quantization and pipelined execution.
This means, that our methodology can be efficiently combined with the or-
thogonal quantization methodology to achieve high rates of CNN memory
reduction. The effectiveness of the methodologies joint use is explained by the
orthogonality of the methodologies. The quantization methodology changes
the precision of the CNN data and weights, thereby reducing the CNN mem-
ory cost, i.e., the amount of platform memory required to deploy and execute
the CNN. Our methodology, orthogonal to the quantization, efficiently reuses
the platform memory allocated for the CNN deployment, thereby further
reducing the CNN memory cost.

Based on the analysis presented above, we conclude that our methodology
can be efficiently combined with the orthogonal methodologies such as quantization.
The joint use of our methodology and quantization enables to achieve high rates
of CNN memory reduction. Moreover, when our methodology is combined with
quantization, the decrease of the CNN throughput, introduced by our methodology is
easily compensated by the CNN throughput increase, introduced by the quantization.

6.7 Conclusions

We propose a methodology for joint memory optimization of multiple CNNs.
Our proposed methodology significantly extends and combines two existing
memory reuse methodologies. In addition to the reuse of platform memory
offered by the existing methodologies, our methodology offers support of alter-
native (non-sequential) manners of CNN execution, reuse of memory among
different CNNs, and a memory-throughput trade-off balancing mechanism.
Thus, our methodology offers efficient memory reduction for CNN-based ap-
plications that use multiple CNNs or/and execute CNNs in a non-sequential
manner. The evaluation results show that our methodology: 1) enables for
up to 5.9 times memory reduction compared to deployment of CNN-based
applications with no memory reduction, and 7% to 30% memory reduction
compared to other memory reduction methodologies that reduce the CNN
memory cost without CNN accuracy decrease; 2) can be efficiently combined
with orthogonal memory reduction methodologies such as quantization to
achieve high rates of CNN memory reduction.

Chapter 7

Summary and concluding
remarks

CONVOLUTIONAL Neural Networks (CNNs) are biologically inspired
computational models that are extremely effective at processing multi-

dimensional data and solving tasks such as images classification, objects de-
tection and others [4]. Nowadays, to ensure high responsiveness, low energy
cost and data privacy, many CNN-based applications execute CNNs on edge
(mobile and embedded) platforms. However, while execution of CNNs at
the Edge is desirable and beneficial, it is also challenging due to numerous
requirements, posed on the CNNs by the application and the target edge plat-
form. Among these requirements, the most common are high CNN accuracy,
high CNN throughput, low CNN latency, low CNN memory cost, and low
CNN energy cost. The aforementioned requirements make the design of a
CNN executed at the Edge a complex task. Typically, this task is performed
by means of the state-of-the-art (SOTA) design flow, shown in Figure 1.3. The
heart of the SOTA design flow are platform-aware NAS and the CNN opti-
mization methodologies. These methodologies explore CNNs with different
architectures and parameters (weights and biases) and try to find a CNN
which adheres to all the requirements posed on it. This CNN is then imple-
mented by means of existing DL frameworks such as Keras [19], Tensorflow [1],
TensorRT [72] and others [74], and deployed on an edge platform.

The SOTA design flow, however, has limitations that negatively affect
the design of CNN-based applications executed at the Edge. First of all, it
restricts the execution of a CNN to a so called sequential (layer-by-layer)
manner. The sequential manner of CNN execution is widespread due to
its simplicity but it cannot always guarantee efficient CNN execution (i.e.,

134 Chapter 7. Summary and concluding remarks

efficient utilization of resources, available on the target edge platform by a
CNN). As a dataflow kind of model, characterized with large amount of
parallelism available within and among its layers, a CNN can be executed in
alternative (non-sequential) manners, that ensure efficient utilization of the
target edge platform resources, and thus significantly improve the platform-
aware characteristics of the CNN [14,101]. However, this is not explored in the
SOTA design flow. Secondly, the SOTA design flow assumes that a CNN-based
application only uses one CNN to perform its task. As a result, the SOTA
design flow lacks means for inter-CNN optimizations and run-time adaptivity,
important to some CNN-based applications. In this thesis, we try to relax
the two limitations, mentioned above, and reduce their negative impact on
the design of CNN-based applications executed at the Edge. To this end, we
have extended the SOTA design flow as shown in Figure 1.5 and explained
in Section 1.5. To implement the extended design flow shown in Figure 1.5,
we have proposed four novel methodologies, presented in Chapters 4 to 6 in
this thesis. Below, we summarize the proposed methodologies and give some
concluding remarks.

To relax the first limitation, mentioned above, we have proposed the
methodologies, presented in Chapter 3 and Chapter 4. These methodologies
explore and exploit alternative (non-sequential) manners of CNN execution,
thereby improving platform-aware characteristics of a CNN.

The methodology presented in Chapter 3 ensures high CNN inference
throughput, required by many CNN-based applications executed at the Edge
[14]. To ensure high CNN inference throughput, our methodology efficiently
distributes (maps) the computations within a CNN to the computational re-
sources of a target edge platform. The mapping, found by our methodology,
features combined exploitation of two types of parallelism, namely task-level
parallelism and data-level parallelism, available within a CNN. This feature
distinguishes our methodology from other existing methodologies because
these methodologies utilize only task-level or only data-level parallelism,
when mapping a CNN onto an edge platform. Based on the experimental
results, we conclude that for CNNs executed on the Jetson TX2 edge plat-
form [71], our methodology offers a 1.36% to 42% higher inference throughput,
compared to the mapping methodology employed by the best-known and
state-of-the-art TensorRT DL framework for the Jetson TX2 edge platform.

The methodology presented in Chapter 4 ensures low-memory CNN in-
ference at the Edge, required for CNN-based applications executed on edge
platforms with extremely small memory resources, such as embedded Internet-
of-Things (IoT) devices [17]. To ensure low CNN memory footprint, our

135

methodology splits the data exchanged between layers of a CNN into parts,
processed in a specific order, and efficiently reuses the platform memory
among the data parts. However, as the data processing by parts may cause
CNN execution time overheads (e.g., CNN layers may require time to switch
among the data parts), our methodology may decrease the CNN through-
put. The evaluation results show that, compared to the memory reduction,
achieved by the most relevant CNN buffers reuse methodology, employed
by the TensorRT DL framework for efficient CNN execution at the Edge, our
memory reduction methodology allows to reduce the CNN memory footprint
by 2.8% to 38% at the cost of 2% to 23% decrease of the CNN throughput.

The methodologies proposed in Chapter 5 and Chapter 6 of this thesis, are
aimed at relaxation of the second limitation, mentioned above.

The scenario-based run-time switching (SBRS) methodology in Chapter 5
introduces the use of multiple CNNs and run-time adaptive switching between
these CNNs to a CNN-based application. Every CNN in the application corre-
sponds to a scenario and is designed to adhere to a specific set of requirements,
posed on the CNN. During the application execution, the application envi-
ronment can trigger the application to switch between the scenarios, thereby
adapting the characteristics of a CNN-based application to changes in the
application environment (such as a change in device battery level or a change
of the throughput of the input data stream). Thus, our methodology ensures
efficient execution of an application which needs are affected by the applica-
tion environment at run-time. To the best of our knowledge, our proposed
methodology is the first methodology, able to design an adaptive CNN-based
application, which considers platform-aware requirements and constraints
that are specifically affected by environment changes at run-time. The most
relevant to our methodology, the MSDNet methodology, does not consider
real-world platform-aware requirements and constraints and does not offer
means for automated switching among the application scenarios, based on the
changes in the application environment. Based on the experimental results,
we conclude that: 1) by introducing run-time adaptivity into CNN-based
applications, affected by changes in the application environment at run-time,
our methodology significantly improves the applications’ characteristics; 2)
our methodology outperforms the most relevant MSDNet methodology.

The methodology proposed in Chapter 6 extends our low-memory CNN
inference methodology, proposed in Chapter 4, with support for pipeline
parallelism and inter-CNN memory reuse. Thus, our methodology offers
efficient memory reduction to a wide spectrum of applications, designed
using both the SOTA design flow and our extended design flow. Based on the

136 Chapter 7. Summary and concluding remarks

evaluation results, we conclude that our methodology: 1) enables for up to 5.9
times memory reduction compared to deployment of CNN-based applications
with no memory reduction, and 7% to 30% memory reduction compared
to other memory reduction methodologies that reduce the CNN memory
cost without CNN accuracy decrease; 2) can be efficiently combined with
well-known pruning and quantization methodologies (that are orthogonal to
our methodology) in order to offer high rates of CNN memory compression
without significant decrease of the application accuracy and throughput.

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfel-
low, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorflow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/, 2015.

[2] M. Abadi, M. Isard, and D. G. Murray. A computational model for ten-
sorflow: An introduction. In 1st ACM SIGPLAN International Workshop
on Machine Learning and Programming (MAPL), MAPL 2017, page 1–7,
New York, NY, USA, 2017. Association for Computing Machinery.

[3] M. S. Abdelfattah, L. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane. Best of both worlds: Automl codesign of a cnn and its hardware
accelerator. In Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[4] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
B. C. V. Essen, A. A. S. Awwal, and V. K. Asari. The history began from
alexnet: A comprehensive survey on deep learning approaches. CoRR,
abs/1803.01164, 2018.

[5] M. Alwani, H. Chen, M. Ferdman, and P. Milder. Fused-layer cnn
accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, 2016.

[6] Y. Ando, S. Seiya, S. Honda, H. Tomiyama, and H. Takada. Auto-
mated identification of performance bottleneck on embedded systems

138 Bibliography

for design space exploration. Embedded Systems: Design, Analysis and
Verification, pages 171–180, 2013.

[7] J. Bai, F. Lu, and K. Zhang. Open neural network exchange format
(onnx) models zoo. https://github.com/onnx/models.

[8] A. Barbier and others at https://github.com/ARM soft-
ware/ComputeLibrary/graphs/contributors. Arm compute library.
https://github.com/ARM-software/ComputeLibrary.

[9] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang. A comprehensive survey on hardware-aware neural
architecture search. CoRR, abs/2101.09336, 2021.

[10] G. Bilsen, M. Engels, and R. Lauwereins. Cyclo-static dataflow. IEEE
Transactions on Signal Processing, 44(2):397–408, 1996.

[11] D. Blalock, J. Ortiz, J. Frankle, and J. Guttag. What is the state of
neural network pruning? In Proceedings of Machine Learning and Systems
(MLSys), 2020.

[12] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural
networks for efficient inference. In International Conference on Machine
Learning (ICML), page 527–536, 2017.

[13] R. Bonna, D. S. Loubach, G. Ungureanu, and I. Sander. Modeling
and simulation of dynamic applications using scenario-aware dataflow.
ACM Transactions on Design Automation of Electronic Systems, 24(5), 2019.

[14] S. Branco, A. G. Ferreira, and J. Cabral. Machine learning in resource-
scarce embedded systems, fpgas, and end-devices: A survey. Electronics,
8(11), 2019.

[15] J. M. Carroll. Scenario-based design: envisioning work and technology in
system development. John Wiley and Sons Inc, 1995.

[16] A. Cheng, J. Dong, C. Hsu, S. Chang, M. Sun, S. Chang, J. Pan, Y. Chen,
W. Wei, and D. Juan. Searching toward pareto-optimal device-aware
neural architectures. In International Conference On Computer-Aided
Design (ICCAD). Association for Computing Machinery, 2018.

[17] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compres-
sion and acceleration for deep neural networks. IEEE Signal Processing
Magazine, 2018.

Bibliography 139

[18] A. Chinchuluun et al. Pareto Optimality, Game Theory And Equilibria,
volume 17. Springer, 01 2008.

[19] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.

[20] B. Dayma, S. Patil, P. Cuenca, K. Saifullah, T. Abra-
ham, P. Le Khac, L. Melas, and R. Ghosh. Dall·e mini.
https://github.com/borisdayma/dalle-mini, 2021.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, pages 248–255. IEEE,
2009.

[22] M. Dhouibi, A. K. B. Salem, A. Saidi, and S. B. Saoud. Accelerating
deep neural networks implementation: A survey. IET Computers and
Digital Techniques, 2021.

[23] A. Diamant, A. Chatterjee, M. Vallieres, G. Shenouda, and J. Seuntjens.
Deep learning in head and neck cancer outcome prediction. Scientific
Reports, 9:27–64, 2019.

[24] T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le. Real-time self-
driving car navigation using deep neural network. In 2018 4th Interna-
tional Conference on Green Technology and Sustainable Development (GTSD),
pages 7–12, 2018.

[25] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A
survey. Journal of Machine Learning Research, 20:1–21, 2019.

[26] S. Even. Graph Algorithms. Cambridge University Press, 2 edition, 2011.

[27] M. Everingham, L. van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html,
2012.

[28] J. Farley and A. Gerstlauer. Memory-aware fusing and tiling of neural
networks for accelerated edge inference. CoRR, abs/2107.06960, 2021.

[29] M. Garza-Fabre, G. T. Pulido, and C. A. Coello. Ranking methods
for many-objective optimization. In MICAI 2009: Advances in Artificial
Intelligence, pages 633–645, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

140 Bibliography

[30] W. Gay. Raspberry Pi Hardware Reference. Apress, USA, 1st edition, 2014.

[31] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer.
A survey of quantization methods for efficient neural network inference.
ArXiv, abs/2103.13630, 2021.

[32] D. Gizopoulos, G. Papadimitriou, A. Chatzidimitriou, V. J. Reddi,
B. Salami, O. S. Unsal, A. C. Kestelman, and J. Leng. Modern hardware
margins: Cpus, gpus, fpgas recent system-level studies. In 2019 IEEE
25th International Symposium on On-Line Testing and Robust System Design
(IOLTS), pages 129–134, 2019.

[33] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
Cambridge MA USA, 2016.

[34] A. Gordon, E. Eban, O. Nachum, B. Chen, T. Yang, and E. Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep
networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1586–1595. IEEE Computer Society, 2018.

[35] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski. Latency and throughput characterization of convolutional
neural networks for mobile computer vision. MMSys ’18, page 204–215,
New York, NY, USA, 2018. Association for Computing Machinery.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-
age recognition. Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[37] S. Heath. Embedded Systems Design 2nd Edition. Newnes, 2002.

[38] C. Hsu, S. Chang, D. Juan, J. Pan, Y. Chen, W. Wei, and S. Chang.
MONAS: multi-objective neural architecture search using reinforcement
learning. CoRR, abs/1806.10332, 2018.

[39] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Wein-
berger. Multi-scale dense networks for resource efficient image classifi-
cation. International Conference on Learning Representations (ICLR),
2018.

[40] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolu-
tional networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Bibliography 141

[41] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Quantized neural networks: Training neural networks with low pre-
cision weights and activations. Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[42] L. N. Huynh, R. Balan, and Y. Lee. Deepsense: A gpu-based deep
convolutional neural network framework on commodity mobile devices.
In Workshop on Wearable Systems and ApplicationsJune (WearSys’16), pages
25–30, 2016.

[43] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based deep
learning framework for continuous vision applications. In ACM Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys),
2017.

[44] E. Jeong, J. Kim, and S. Ha. Tensorrt-based framework and optimization
methodology for deep learning inference on jetson boards. ACM Trans.
Embed. Comput. Syst., dec 2022. Just Accepted.

[45] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha. Deep learning inference paral-
lelization on heterogeneous processors with tensorrt. IEEE Embedded
Systems Letters, 14(1):15–18, 2022.

[46] W. Jiang, X. Zhang, E. H. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu.
Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search. In Design Automation Conference (DAC),
pages 1–6, 2019.

[47] H. Jin, B. Liu, W. Jiang, Y. Ma, X. Shi, B. He, and S. Zhao. Layer-centric
memory reuse and data migration for extreme-scale deep learning on
many-core architectures. ACM Transactions on Architecture and Code
Optimization, 15(3), 2018.

[48] D. Kang, D. Kang, J. Kang, S. Yoo, and S. Ha. Joint optimization of
speed, accuracy, and energy for embedded image recognition systems.
In 2018 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 715–720, 2018.

[49] D. Kang, E. Kim, I. Bae, B. Egger, and S. Ha. C-good: C-code generation
framework for optimized on-device deep learning. In International
Conference On Computer-Aided Design (ICCAD), 2018.

142 Bibliography

[50] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha. Scheduling of deep learning
applications onto heterogeneous processors in an embedded device.
IEEE Access, 8:43980–43991, 2020.

[51] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for
advanced research). http://www.cs.toronto.edu/ kriz/cifar.html, 2013.

[52] S. Kukkonen and J. Lampinen. Ranking-dominance and many-objective
optimization. In 2007 IEEE Congress on Evolutionary Computation, pages
3983–3990, 2007.

[53] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C.-S. Bouga-
nis. Dronet: Efficient convolutional neural network detector for real-
time uav applications. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 967–972, 2018.

[54] L. Lai, N. Suda, and V. Chandra. Not all ops are created equal! In
SysML, 2018.

[55] M. N. U. Laskar, L. G. S. Giraldo, and O. Schwartz. Correspon-
dence of deep neural networks and the brain for visual textures. ArXiv,
abs/1806.02888, 2018.

[56] Y. Lecun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1(4):541–551, 1989.

[57] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[58] T. Lee, S. Mckeever, and J. Courtney. Flying free: A research overview
of deep learning in drone navigation autonomy. Drones, 5(2), 2021.

[59] S. Lipschutz and M. Lipson. Linear Algebra (Schaum’s Outlines). McGraw
Hill, 4 edition, 2009.

[60] D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam. Bringing AI To
Edge: From deep learning’s perspective. Neurocomputing, 485:297–320,
2022.

[61] L. Liu and J. Deng. Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution. In AAAI, pages
3675–3682. AAAI Press, 2018.

Bibliography 143

[62] L. Lu, Y. Zheng, G. Carneiro, and L. Yang. Deep Learning and Convolu-
tional Neural Networks for Medical Image Computing. Springer, 2017.

[63] G. Martin. Overview of the mpsoc design challenge. In Design Au-
tomation Conference (DAC), DAC ’06, page 274–279, New York, NY, USA,
2006. Association for Computing Machinery.

[64] S. Minakova, D. Sapra, T. Stefanov, and A. D. Pimentel. Scenario based
run-time switching for adaptive cnn-based applications at the edge.
ACM Transactions on Embedded Computing Systems (TECS), 21(2), 2022.

[65] S. Minakova and T. Stefanov. Buffer sizes reduction for memory-efficient
cnn inference on mobile and embedded devices. In Euromicro Conference
on Digital System Design (DSD), pages 133–140. IEEE Xplore, 2020.

[66] S. Minakova and T. Stefanov. Memory-throughput trade-off for cnn-
based applications at the edge. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 1(1), 2022.

[67] S. Minakova, E. Tang, and T. Stefanov. Combining task- and data-
level parallelism for high-throughput cnn inference on embedded cpus-
gpus mpsocs. In International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), pages 18–35, Cham,
2020. Springer International Publishing.

[68] O. Moreira. Temporal analysis and scheduling of hard real-time radios running
on a multi-processor. PhD thesis, Technical University Eindhoven, 2012.

[69] F. Moya Rueda, R. Grzeszick, G. A. Fink, S. Feldhorst, and M. Ten Hom-
pel. Convolutional neural networks for human activity recognition
using body-worn sensors. Informatics, 5(2), 2018.

[70] L. Nanni, S. Ghidoni, and S. Brahnam. Ensemble of convolutional neural
networks for bioimage classification. Applied Computing and Informatics,
17, 2021.

[71] NVIDIA. Jetson embedded platform. //https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-tx2.

[72] NVIDIA. Tensorrt framework. https://developer.nvidia.com/tensorrt,
2016.

144 Bibliography

[73] M. Olyaiy, C. Ng, and M. Lis. Accelerating dnns inference with pre-
dictive layer fusion. In ICS, page 291–303. Association for Computing
Machinery, 2021.

[74] A. Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak. A survey of deep-
learning frameworks. In International Conference on Inventive Systems and
Control (ICISC), pages 1–7, 2017.

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[76] Y. Pisarchyk and J. Lee. Efficient memory management for deep neural
net inference. In MLSys 2020 Workshop on Resource-Constrained Machine
Learning (ReCoML 2020), 2020.

[77] B. Reagen, U. Gupta, R. Adolf, M. M. Mitzenmacher, A. M. Rush, G.-
Y. Wei, and D. Brooks. Weightless: Lossy weight encoding for deep
neural network compression. In International Conference on Learning
Representations (ICLR), 2018.

[78] P. Refaeilzadeh, L. Tang, and H. Liu. Encyclopedia of Database Systems,
chapter Cross-Validation, pages 532–538. Springer US, 2009.

[79] A. Reiss. https://archive.ics.uci.edu/ml/datasets/PAMAP2 Physical
Activity Monitoring, 2012.

[80] M. Richards and N. Ford. Fundamentals of Software Architecture: An
Engineering Approach. O’Reilly Media, Incorporated, 2019.

[81] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4510–4520, 2018.

[82] D. Sapra and A. D. Pimentel. Constrained evolutionary piecemeal train-
ing to design convolutional neural networks. In International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Sys-
tems. Springer, 2020.

Bibliography 145

[83] K. Sastry, D. Goldberg, and G. Kendall. Genetic Algorithms, pages 97–125.
Springer US, Boston, MA, 2005.

[84] B. Savelli, A. Bria, M. Molinara, C. Marrocco, and F. Tortorella. A multi-
context cnn ensemble for small lesion detection. Artificial Intelligence in
Medicine, 103:101749, 2020.

[85] L. M. Schmitt. Theory of genetic algorithms. Theoretical Computer
Science, 259(1):1–61, 2001.

[86] M. Seeland and P. Mader. Multi-view classification with convolutional
neural networks. PLoS ONE, 2021.

[87] A. Shvets, A. Rakhlin, A. A. Kalinin, and V. Iglovikov. Automatic
instrument segmentation in robot-assisted surgery using deep learning.
In IEEE International Conference on Machine Learning and Applications
(IEEE ICMLA), pages 624–628, 2018.

[88] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. Al-
Hashimi. Energy-efficient run-time mapping and thread partitioning of
concurrent opencl applications on cpu-gpu mpsocs. ACM Trans. Embed.
Comput. Syst., 16(5s), 2017.

[89] H. Sofaer, J. Hoeting, and C. Jarnevich. The area under the precision-
recall curve as a performance metric for rare binary events. Methods in
Ecology and Evolution, 10, 12 2018.

[90] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen. Hypar: Towards
hybrid parallelism for deep learning accelerator array. In 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA),
pages 56–68, 2019.

[91] S. Stuijk, T. Basten, and M. Geilen. Sdf3: Sdf for free. In Sixth International
Conference on Application of Concurrency to System Design, pages 276–278,
Los Alamitos, CA, USA, jun 2006. IEEE Computer Society.

[92] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR), 2019.

[93] E. Tang, S. Minakova, and T. Stefanov. Energy-efficient and high-
throughput cnn inference on embedded cpus-gpus mpsocs. In Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS). Springer, 2021.

146 Bibliography

[94] L. Tang, Y. Wang, T. L. Willke, and K. Li. Scheduling computation graphs
of deep learning models on manycore cpus. CoRR, abs/1807.09667, 2018.

[95] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang. Adaptive
selection of deep learning models on embedded systems. In ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), page 31–43. Association for Computing
Machinery, 2018.

[96] I. Theodorakopoulos, V. K. Pothos, D. Kastaniotis, and N. Fragoulis.
Parsimonious inference on convolutional neural networks: Learning
and applying on-line kernel activation rules. CoRR, abs/1701.05221,
2017.

[97] J. Venugopalan, L. Tong, H. R. Hassanzadeh, and M. Wang. Multimodal
deep learning models for early detection of alzheimer’s disease stage.
Scientific Reports, 11, 2021.

[98] M. P. Vestias. A survey of convolutional neural networks on edge with
reconfigurable computing. Algorithms, 12(8), 2019.

[99] J. Vinu et al. A programmable approach to neural network compression.
IEEE Micro, 40(5):17–25, 2020.

[100] C.-C. Wang, Y.-C. Liao, M.-C. Kao, W.-Y. Liang, and S.-H. Hung.
Perfnet: Platform-aware performance modeling for deep neural net-
works. RACS ’20, page 90–95, New York, NY, USA, 2020. Association
for Computing Machinery.

[101] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra. High-throughput cnn inference on embedded arm big.little
multicore processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(10):2254–2267, 2020.

[102] Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang,
and Y. Lin. Dual dynamic inference: Enabling more efficient, adaptive
and controllable deep inference. IEEE Journal of Selected Topics in Signal
Processing, 14:623–633, 2020.

[103] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer. FBNet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10734–10742. Computer
Vision Foundation / IEEE, 2019.

[104] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. López. Multi-
modal end-to-end autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, PP:1–11, 2020.

[105] Y. Xu, L. Xie, X. Zhang, X. Chen, B. Shi, Q. Tian, and H. Xiong.
Latency-aware differentiable neural architecture search. arXiv preprint
arXiv:2001.06392, 2020.

[106] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convo-
lutional neural networks using energy-aware pruning. Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6071–6079, 2017.

[107] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks.
In International Conference on Learning Representations (ICLR), 2019.

[108] J. T. Zhai, S. Niknam, and T. Stefanov. Modeling, analysis, and hard real-
time scheduling of adaptive streaming applications. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2636–
2648, 2018.

[109] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and J. Zhang.
Edge computing and networking: A survey on infrastructures and
applications. IEEE Access, pages 1–1, 07 2019.

[110] Z. Zhao, K. M. Barijough, and A. Gerstlauer. Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2348–2359, 2018.

Summary

Convolutional Neural Networks (CNNs) are biologically inspired computa-
tional models, characterized with the ability to handle large, unstructured
data. Due to this ability, CNNs excel at tasks such as image classification,
image segmentation, natural language processing, and are widely used to per-
form these tasks in applications such as navigation, facial recognition, medical
images analysis, and others. Nowadays, many CNN-based applications are
executed on edge platforms: mobile phones, tablets, cameras, etc. This stands
in contrast to the more common practice in which CNN-based applications
are executed on data centers (in the cloud). Unlike execution in the cloud,
execution at the Edge does not require transmission of the collected data (e.g.,
images from a CCTV camera) over the Internet, and thus guarantees higher
responsiveness and security.

However, execution of CNN-based applications at the Edge is challenging
due to requirements posed on the CNNs by the application and the target edge
platform. Among these requirements, the most common are high accuracy,
high throughput, low latency, low memory cost, and low energy cost. These
requirements make the design of a CNN executed at the Edge a complex
task. Typically, this task is performed using the state-of-the-art (SOTA) design
flow. The SOTA design flow explores CNNs with different architectures and
parameters and tries to find a CNN which adheres to all the requirements
posed on it.

While taking a good care of what is executed at the Edge (i.e., which
architecture and which parameters does a CNN have), the SOTA design flow
does not explore how a CNN or CNN-based application is executed (i.e., how
it utilizes computational, memory, and energy resources available on the edge
platform). Instead, the SOTA design flow adopts limitations that negatively
affect the design of CNNs and CNN-based applications executed at the Edge.
The first limitation is that a CNN is always executed layer-by-layer. This
sequential manner of CNN execution is widespread due to its simplicity, but
cannot guarantee efficient utilization of the resources available on the edge

platform. Consequently, a CNN designed using the SOTA design flow may
utilize the limited resources of an edge platform inefficiently. The second
limitation is that a CNN-based application only uses one CNN to perform
its task. Due to this limitation, the SOTA design flow lacks the means for
inter-CNN optimizations and run-time adaptivity, which are important to
some CNN-based applications.

In this thesis, we aim to relax the two aforementioned limitations and re-
duce their negative impact on the design of CNN-based applications executed
at the Edge. To this end, we extend the SOTA design flow and propose four
novel methodologies within the extended design flow.

The first two methodologies focus on relaxing the first limitation. These
methodologies find and enforce a non-sequential manner of CNN execution
to ensure efficient utilization of the platform resources by a CNN. The first
methodology efficiently distributes (maps) the computations within a CNN to
the computational resources of a target edge platform and thereby increases
the CNN throughput. The second methodology splits the data exchanged
between CNN layers into parts and reuses the platform memory among the
data parts, thus reducing the memory footprint of the CNN.

The last two methodologies focus on relaxing the second limitation. These
methodologies optimize CNN-based application beyond optimizing the indi-
vidual CNNs. The third methodology introduces run-time adaptivity into a
CNN-based application. This enables for the design and efficient execution of
an application which needs can change at run-time. The fourth methodology
performs joint memory optimization of multi-CNN applications (applications
that use multiple CNNs to perform their task). Thus, the methodology offers
high rates of memory compression to fit multi-CNN applications into the
limited memory resources of an edge platform.

Samenvatting

Convolutionele Neurale Netwerken (CNN’s) zijn biologisch geïnspireerde
modellen die in staat zijn grote hoeveelheden ongestructureerde data te verw-
erken. Door dit vermogen blinken CNN’s uit in taken zoals beeldclassificatie,
beeldsegmentatie en natuurlijke taalverwerking, en worden ze veel gebruikt
om dergelijke taken uit te voeren in toepassingen zoals navigatie, gezicht-
sherkenning, medische beeldanalyse en meer. Tegenwoordig worden veel
op CNN’s gebaseerde applicaties uitgevoerd op zogeheten edge-platformen:
mobiele telefoons, tablets, camera’s, enz. Dit staat in contrast met de meer
gebruikelijke aanpak waarbij de applicaties worden uitgevoerd op datacenters
(in de cloud). In tegenstelling tot uitvoering in de cloud, vereist uitvoering op
edge-platformen geen overdracht van de verzamelde gegevens (bv. beelden
van een beveiligingscamera) via het internet, en garandeert zo een betere
reactiesnelheid en veiligheid.

De uitvoering van op CNN’s gebaseerde applicaties op edge-platformen
is echter uitdagend vanwege de vereisten die aan de netwerken worden
gesteld door de applicatie en het beoogde edge-platform. Van deze vereisten
zijn de meest voorkomende: hoge nauwkeurigheid, hoge doorvoer, lage
latentie, lage geheugenkosten en lage energiekosten. Deze vereisten maken
het ontwerp van een CNN uitgevoerd op een edge-platform een complexe
taak. Meestal wordt deze taak uitgevoerd met behulp van het state-of-the-
art (SOTA) ontwerpprocess. Het SOTA-ontwerpprocess verkent CNN’s met
verschillende architecturen en parameters en probeert een CNN te vinden dat
voldoet aan alle eisen die eraan worden gesteld.

Hoewel het SOTA-ontwerpprocess goed uitzoekt wat moet worden uitgevo-
erd op het edge-platform (d.w.z. welke architectuur en welke parameters een
CNN moet hebben), onderzoekt het niet hoe CNN’s of applicaties gebaseerd op
CNN’s moeten worden uitgevoerd (d.w.z. hoe het de rekenkracht, geheugen
en energie gebruikt die beschikbaar zijn op een edge-platform). In plaats
daarvan past het SOTA-ontwerpprocess principes toe die een negatief effect
hebben op het ontwerp van CNN’s en op CNN’s gebaseerde applicaties uit-

gevoerd op edge-platformen. De eerste beperking is dat een CNN altijd laag-
voor-laag wordt uitgevoerd. Deze sequentiële manier van CNN-uitvoering
is wijdverbreid vanwege zijn eenvoud, maar kan het efficiënt gebruik van
de beschikbare middelen op het edge-platform niet garanderen. Daardoor
kan een CNN dat is ontworpen met behulp van het SOTA-ontwerpprocess de
beperkte middelen van een edge-platform inefficiënt gebruiken. De tweede
beperking is dat een CNN-gebaseerde applicatie slechts één CNN gebruikt om
zijn taak uit te voeren. Hierdoor mist het SOTA-ontwerpprocess de middelen
voor inter-CNN-optimalisaties en aanpassingsvermogen tijdens operatie (run-
time adaptivity), welke belangrijk zijn voor bepaalde op CNN’s gebaseerde
applicaties.

In dit proefschrift richten we ons op het versoepelen van de twee bovenge-
noemde beperkingen, en het verminderen van de negatieve impact daarvan
op het ontwerp van op CNN’s gebaseerde applicaties uitgevoerd op edge-
platformen. Hiervoor breiden we het SOTA-ontwerpprocess uit en stellen we
vier nieuwe methodologieën voor binnen het uitgebreide ontwerpprocess.

De eerste twee methodieken richten zich op het versoepelen van de eerste
beperking. Deze methodologieën vinden en handhaven een niet-sequentiële
manier van CNN-uitvoering om efficiënt gebruik van middelen op een beoogd
platform te garanderen. De eerste methodologie verdeelt de berekeningen
van een CNN efficiënt onder de rekenkernen van een beoogd edge-plaform en
verhoogt daardoor de doorvoer. De tweede methode splitst de gegevens die
tussen CNN-lagen worden uitgewisseld in delen en hergebruikt het platfor-
mgeheugen tussen deze delen, waardoor het benodigde geheugen voor een
CNN wordt verminderd.

De laatste twee methodieken richten zich op het versoepelen van de tweede
beperking. Deze methodologieën optimaliseren applicaties gebaseerd op
CNN’s, buiten het optimaliseren van individuele CNN’s om. De derde meth-
ode introduceert aanpassingsvermogen tijdens operatie in een CNN appli-
catie. Dit maakt het mogelijk een applicatie te ontwerpen en efficiënte uit te
voeren, dat zich kan aanpassen aan de noden van het moment. De vierde
methodologie voert gezamenlijke geheugenoptimalisatie uit over een multi-
CNN-applicatie (een applicatie die meerdere CNN’s gebruikt om een taak
uit te voeren). De methodologie maakt hoge geheugencompressie mogelijk
om zo de multi-CNN-applicatie in de beperkte geheugencapaciteiten van een
edge-platform te passen.

List of Publications

Journal Articles

• Svetlana Minakova and Todor Stefanov. "Memory-Throughput Trade-
off for CNN-based Applications at the Edge". Accepted for publication in
ACM Transactions on Design Automation of Electronic Systems (TODAES),
March 2022.

• Svetlana Minakova, Dolly Sapra, Todor Stefanov, Andy Pimentel. "Sce-
nario Based Run-time Switching for Adaptive CNN-based Applications
at the Edge". In ACM Transactions on Embedded Computing Systems (TECS),
vol. 21, Iss. 2, Article 14, March 2022.

• Paola Busia, Svetlana Minakova, Todor Stefanov, Luigi Raffo, Paolo
Meloni. "ALOHA: A Unified Platform-Aware Evaluation Method for
CNNs Execution on Heterogeneous Systems at the Edge". In IEEE Access,
vol. 9, September 2021.

Peer-Reviewed Conference Proceedings

• Erqian Tang, Svetlana Minakova, Todor Stefanov. "Energy-efficient and
High-throughput CNN Inference on Embedded CPUs-GPUs MPSoCs",
In Proceedings of the 21th International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS’21), Virtual Con-
ference, July 04-08, 2021.

• Svetlana Minakova, Erqian Tang, Todor Stefanov. "Combining Task-
and Data-level Parallelism for High-Throughput CNN Inference on Em-
bedded CPUs-GPUs MPSoCs". In Proceedings of the 20th International
Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation (SAMOS), pp. 18-35, Pythagoreio, Samos Island, Greece, July
05-09, 2020.

• Svetlana Minakova and Todor Stefanov. "Buffer Sizes Reduction for
Memory-efficient CNN Inference on Mobile and Embedded Devices". In
Proceedings of 23rd Euromicro Conference on Digital System Design (DSD’20),
pp. 133-140, Portoroz, Slovenia, August 26-28, 2020.

• Paolo Meloni, Daniela Loi, Paola Busia, Gianfranco Deriu, Andy D. Pi-
mentel, Dolly Sapra, Todor Stefanov, Svetlana Minakova, Francesco
Conti, Luca Benini, Maura Pintor, Battista Biggio, Bernhard Moser,
Natalia Shepeleva, Nikos Fragoulis, Ilias Theodorakopoulos, Michael
Masin, and Francesca Palumbo. "Optimization and deployment of CNNs
at the edge: the ALOHA experience ". In Proceedings of the ACM Inter-
national Conference on Computing Frontiers 2019 (CF’19), pp. 326-332,
Alghero, Italy, Apr. 30 - May 2, 2019.

• Paolo Meloni, Daniela Loi, Gianfranco Deriu, Andy D. Pimentel, Dolly
Sapra, Bernhard Moser, Natalia Shepeleva, Francesco Conti, Luca Benini,
Francesca Palumbo, Michael Masin, Oscar Ripolles, David Solans, Maura
Pintor, Battista Biggio, Todor Stefanov, Svetlana Minakova, Nikos
Fragoulis, and Ilias Theodorakopoulos. "Architecture-aware design
and implementation of CNN algorithms for embedded inference: the
ALOHA project". In Proceedings of the 30th International Conference on
Microelectronics (ICM’18), pp. 52-55, Sousse, Tunisia, Dec. 16-19, 2018.

• Paolo Meloni, Daniela Loi, Gianfranco Deriu, Andy D. Pimentel, Dolly
Sapra, Bernhard Moser, Natalia Shepeleva, Francesco Conti, Luca Benini,
Francesca Palumbo, Michael Masin, Oscar Ripolles, David Solans, Maura
Pintor, Battista Biggio, Todor Stefanov, Svetlana Minakova, Nikos
Fragoulis, and Ilias Theodorakopoulos. "ALOHA: an architectural-
aware framework for deep learning at the edge". In Proceedings of INTelli-
gent Embedded Systems Architectures and Applications (INTESA’18), Turin,
Italy, Oct. 4, 2018.

Curriculum Vitae

Svetlana Minakova was born on January 31, 1993 in Ryazan, Russian Federa-
tion. She obtained her B.Sc. degree in informatics and computer engineering
from Bauman Moscow State Technical University, Moscow, Russian Federa-
tion, in 2015 and the M.Sc. degree in informatics and computer engineering
from Bauman Moscow State Technical University, Moscow, Russian Federa-
tion, in 2017. In January 2018 she joined the Leiden Embedded Research Center
(LERC), part of the Leiden Institute of Advanced Computer Science (LIACS)
at Leiden University, as a Ph.D. candidate. Her research work, which resulted
in this thesis, has received funding from the European Unions Horizon 2020
Research and Innovation project under grant agreement No. 780788. Besides
her work as a researcher, she has been teaching assistant for courses such as
Digital Systems Design and Embedded Systems and Software. Since Septem-
ber 2022 she has been working as an Applied AI/ML Scientist at Signify, The
Netherlands.

Acknowledgments

My PhD study comes to an end, and what a journey it’s been! I have learned
much, visited many places I’ve never been before and met many amazing
people. In this section, I would like to express my gratitude to everyone who
was beside me throughout my PhD journey.

First of all, I would like to thank my supervisor, Todor Stefanov, who
gave me an opportunity to join LERC group at Leiden University as a PhD
student. Thank you, Todor for this opportunity as well as for you guidance
and patience and all nice and fruitful discussions we had.

I was fortunate to perform my PhD studies as a part of the large ALOHA
consortium. While I am grateful to every member of the consortium, I would
like to express my special thanks to my colleagues from University of Amster-
dam, Andy and Dolly (or should I say professor Pimentel and doctor Sapra),
as well as to my colleagues from the University of Cagliari, Paolo Meloni and
Paola Busia. I enjoyed the time we spent together discussing research ideas,
travelling and just chatting.

I am also grateful that I got to spend time with my colleagues from Leiden
University Sobhan, Erqian, Peng, Xiaotian, and Faezeh. Sobhan, special
thanks to you for your tips and help in my job search following my formal
graduation.

To my friends from Russia, Alexander Maltsev, Vladimir Vysochansky,
Ivan Chernenky, Valeria Zharova, and Alexey Leontiev: thank you for keep-
ing my spirits up. I am happy we stay in touch even while being scattered all
over the globe. To my new friends here in The Netherlands, Remco, Daila,
Milan, Ilse-Marie, Erik, Jonas, Oskar, Bas, Jorke, Arthur, Niek, Bart, Wouter
and Elea: thank you for the fun and board games we’ve had together.

I would like to thank my family. To my parents, Anna and Yuri: thanks you
for supporting me in my move to Europe, and for sending me care packages
(with delicious mushrooms, chocolates and teas) and love over such long
distances. And to the parents of my partner as well, Chris and Wim: thank you
for supporting me during the difficult times, and also for the most wonderful

meals and wines I have ever had.
To my cousin Radmir Gaynutdinov. Thank you Radmir, for believing in

me and for sharing your expertise in working in a scientific environment.
A special place in my acknowledgements goes to my grandmother, Ku-

lumbetova Liya Nigmatovna. A physicist, a bright person with a curious
never-resting mind. She was a great inspiration to me. Not only was she an
example to me, but she also taught me how to approach complex problems.
Furthermore, she greatly supported me in my decision to pursue my studies
and later a career in the field of computer science, where I found my happiness
and purpose.

The final and biggest thanks goes to my dear Siebren. I cannot quite
express all my gratitude for all the love, support and kindness you have
surrounded me with during my PhD journey. For all the feedback you have
provided me after reading the first drafts of my papers, and for all extra
commas you have removed from the last drafts. For your willingness to share
every moment of my journey, no matter whether it was a happy or a sad
moment.

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Accuracy and platform-aware characteristics of a CNN
	Requirements posed on a CNN executed at the Edge
	Current trends in the design of CNNs executed at the Edge
	Limitations of the state-of-the-art design flow for CNNs executed at the Edge
	Limitation 1
	Limitation 2

	Research contributions
	RC1: Methodology for high-throughput CNN inference
	RC2: Methodology for low-memory CNN inference
	Methodology for run-time adaptive inference of CNN-based applications
	Methodology for joint memory optimization of multiple CNNs

	Thesis organization

	Background
	CNN model
	Layer in the CNN model
	Edge in the CNN model

	CNN deployment and inference at the Edge
	Edge platform used for CNN inference
	Task- and data-level parallelism available in a CNN
	CSDF and SDF models of computation
	Genetic Algorithm (GA)

	Methodology for high-throughput CNN inference
	Problem statement
	Contributions
	Related work
	Edge platform model
	Methodology
	CNN-to-SDF conversion
	GA-based mapping
	CNN-to-CSDF model conversion

	Experimental results
	Conclusion

	Methodology for low-memory CNN inference
	Problem statement
	Contributions
	Related Work
	Motivational Example
	Methodology
	Phases derivation
	CNN-to-CSDF model conversion

	Experimental Results
	Conclusion

	Methodology for run-time adaptive inference of CNN-based applications
	Problem statement
	Contributions
	Related Work
	Motivational Example
	SBRS methodology
	Automated scenarios derivation
	SBRS application model
	Scenarios supergraph
	Control node
	Control edges
	Deployment and inference

	SBRS MoC automated derivation
	Transition protocol
	Experimental Study
	Automated scenarios derivation
	SBRS MoC memory reuse efficiency
	SBRS-TP efficiency
	Comparative study

	Conclusion

	Methodology for joint memory optimization of multiple CNNs
	Problem statement
	Contributions
	Related Work
	CNN-based application
	Methodology
	Buffers Reuse Algorithm
	Buffers Reduction Algorithm
	Final application derivation

	Experimental Results
	Comparison to existing memory reuse methodologies
	Joint use of quantization and our proposed methodology

	Conclusions

	Summary and concluding remarks
	Bibliography
	Summary
	Samenvatting
	List of Publications
	Curriculum Vitae
	Acknowledgments

