
Microprocessors and Microsystems 42 (2016) 200–214

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Reconfigurable cache for real-time MPSoCs: Scheduling and

implementation

Gang Chen

a , Biao Hu

a , Kai Huang

a , b , ∗, Alois Knoll a , Kai Huang

c , Di Liu

d , Todor Stefanov

d ,
Feng Li b

a Institute of Robotics and Embedded Systems, Technical University Munich, Germany
b School of Mobile Information Engineering, Sun Yat-sen University, China
c Department of Information Science and Electronic Engineering, Zhejiang University, China
d Leiden Institute of Advanced Computer Science, Leiden University, Netherlands

a r t i c l e i n f o

Article history:

Received 30 April 2015

Revised 30 August 2015

Accepted 30 November 2015

Available online 21 December 2015

Keywords:

Cache interference

Dynamic cache partitioning

Scheduling

Real-time multi-core systems

a b s t r a c t

Shared cache in modern multi-core systems has been considered as one of the major factors that degrade

system predictability and performance. How to manage the shared cache for real-time multi-core systems

in order to optimize the system performance while guaranteeing the system predictability is an open is-

sue. In this paper, we present a reconfigurable cache architecture which supports dynamic cache parti-

tioning at hardware level and a framework that can exploit cache management for real-time MPSoCs. The

proposed reconfigurable cache allows cores to dynamically allocate cache resource with minimal timing

overhead while guaranteeing strict cache isolation among the real-time tasks. The cache management

framework automatically determines time-triggered schedule and cache configuration for each task to

minimize cache misses while guarantee the real-time constraints. We evaluate the proposed framework

with respect to different numbers of cores and cache modules and prototype the constructed MPSoCs on

FPGA. Our experiments show that, our automatic framework brings significant benefits over the state-of-

the-art cache management strategies when testing 27 benchmark programs on the constructed MPSoCs.

© 2015 Elsevier B.V. All rights reserved.

a

a

m

e

C

c

a

s

a

t

b

c

l

o

e

c

c
1. Introduction

Over the past few decades, both the speed and the number of

transistors in a dense integrated circuit of processors doubled ap-

proximately every two years. This trend is commonly known as

Moore’s Law. However, the access speed of the off-chip memory

did not follow the same trend. To bridge the performance gap be-

tween the off-chip memory and processor speed, the cache com-

ponent is included in nearly all processors to transparently store

frequently accessed instructions and data. Since the access speed

of the cache component is much faster than the off-chip memory,

the cache component can effectively alleviate the performance gap

between the processor and off-chip memory by exploiting the tem-

poral and spatial locality properties of programs.

Nowadays, the computing systems are increasingly moving to-

wards multi-core platforms for the next computing performance

leap. Increasing the number of cores increases the demanded

memory access speed. The performance gap between memory
∗ Corresponding author. Tel. +498928918111; fax: +86 756 3668567.

E-mail address: huangk36@mail.sysu.edu.cn (K. Huang).

c

o

r

r

http://dx.doi.org/10.1016/j.micpro.2015.11.020

0141-9331/© 2015 Elsevier B.V. All rights reserved.
nd processor is further increased in multi-core platforms. To

lleviate the increasing high latency of the off-chip memory,

ulti-processor system-on-chip (MPSoC) architectures are typically

quipped with hierarchical cache subsystems. For instance, ARM

ortex-A15 series [1] and openSPARC series [2] all use small L1

aches for individual cores and a relatively large L2 cache shared

mong different cores. In such hierarchical cache subsystems, the

hared cache can be accessed by all cores so that several important

dvantages can be achieved, such as increased cache space utiliza-

ion and data-sharing opportunities.

At the same time, the shared caches also bring several draw-

acks. The main disadvantage of shared caches is that uncontrolled

ache interference can occur among cores, because all cores are al-

owed to freely access the entire shared caches. A graphic example

f uncontrolled cache interference is illustrated in Fig. 1 . In this

xample, the data element b 0 is loaded into shared cache when

ore 1 needs to access the data element b 0 . One cache line is oc-

upied by core 1 for future usage. Later, when core 2 needs to ac-

ess another data element b 1 which is mapped in the same place

f b 0 , the cache line occupied by b 0 is replaced by b 1 . This will

esult in a cache miss for the later access of b 0 on core 1. As a

esult, scenarios may occur where one core may constantly evict

http://dx.doi.org/10.1016/j.micpro.2015.11.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.11.020&domain=pdf
mailto:huangk36@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.micpro.2015.11.020

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 201

Fig. 1. A graphic example of cache interference.

u

e

c

l

t

a

p

e

p

f

v

H

b

s

l

s

b

p

i

t

t

c

r

c

s

e

p

a

e

a

t

c

fi

p

d

m

s

i

c

t

s

p

m

i

d

c

s

c

s

a

c

v

a

d

f

t

i

i

t

n

i

f

m

t

t

i

t

a

t

p

(

t

c

a

s

m

c

i

c

t

W

h

p

r

t

a

m

m

p

l

c

p

t

f

o

n

I

t

p

t

c

i

p

a

i

t

s

f

p

c

s

e

t

m

c

f

m

s

o

seful cache lines belonging to another core, while such cache

victions cannot bring a significant improvement for itself. Such

ache interferences will cause the increase in the miss rate [3] ,

eading to a corresponding decrease in the performance. In addi-

ion, uncontrolled cache interferences also result in unfairness [4]

nd the lack of Quality-of-Service (QoS) [5] . For example, a low

riority application running on one core may rapidly occupy the

ntire shared cache and evict most of the cache lines of higher

riority applications co-executed on another core. Multi-core plat-

orms have been used to realize a wealth of new products and ser-

ices across many domains due to the average high performance.

owever, safety-critical real-time embedded systems are failed to

e benefited by this trend. In safety-critical real-time embedded

ystems including avionic and automotive systems, failures may

ead to disastrous consequences, such as loss of lifes. Therefore, the

afety-critical systems must be certified to ensure their reliability

efore being applied. System predictability is one of the most im-

ortant principles for the development of the certifiable comput-

ng platforms [6] . In addition, system predictability is also one of

he fundamental requirements for the real-time correctness. The

iming correctness of real-time systems usually depends on worst-

ase execution time (WCET) analysis of programs. In the modern

eal-time computing theory, WCETs of individual tasks can be cal-

ulated as a prior to compute the schedulability of the complete

ystem. Unfortunately, this assumption is not even true in a mod-

rn multi-core platform equipped with a shared cache. The main

roblem is that the behavior of shared cache is hard to predict

nd analyze statically [7,8] in multi-core systems. Cache interfer-

nces as shown in Fig. 1 are extremely difficult to accurately an-

lyze [8] , thus resulting in difficulties of estimating the WCETs of

he application program. How to tackle the shared cache in the

ontext of real-time systems is still an open issue [7] and the dif-

culty actually prohibits an efficient use of multi-core computing

latforms for real-time systems. For instance, to resolve the pre-

ictability problem for multi-core computing platforms, avionics

anufacturers usually turn off all cores but one for their highly

afety-critical subsystems [6,9] . The work in [10] also reports that

nter-core cache interferences on a state-of-the-art quad-core pro-

essor increased the task completion time by up to 40%, compared

o when it runs alone in the system. Therefore, it is crucial to de-

ign an interference-free shared cache memory component to im-

rove the performance and predictability of multi-core systems.

Cache partitioning is a promising technique to tackle the afore-

entioned problem [3,11,12] , which partitions the shared L2 cache

nto separate regions and designates one or a few regions to in-

ividual cores. Cache partitioning also has the advantage that it

an provide spatial isolation of the cache, which is required by

afety standards such as ARINC 653 in the avionic domain. Ac-

ording to [3] , cache partitioning technique can be classified as

oftware-based and hardware-based approach. The software-based

pproach, which is also known as page coloring , assigns different

ache sets to different partitions by exploiting the translation from

irtual to physical memory addresses. Although the software-based

pproach has been extensively studied in the community and can

erive some promising results to improve the system performance

or general purpose computing systems [13–17] and guarantee sys-

em prediction for safety real-time computing systems [6,10,18,19] ,

t has three important limitations: first, it requires significant mod-

fications of the virtual memory system, a complex component of
he OS. Second, one main problem for page-coloring based tech-

iques is the significantly large timing overhead when perform-

ng recoloring. This timing overhead on the one hand prohibits a

requent change of the colors of pages [13,20] , on the other hand

akes color changes of tasks whose execution time is less than

he page-change overhead not worthy. Thus, software cache parti-

ioning approach can only work well when recoloring is performed

nfrequently [3] . Third, the page-coloring techniques [6,10,19] parti-

ion the cache by sets at OS-level, cooperating OS timing overhead

lso needs to be carefully considered in real-time systems. Besides,

he state-of-the-art studies [6,10,18,19] implement and evaluate the

roposed approaches in a general-purpose operating system Linux

OS) patched with real-time extensions. Due to the complexity of

he Linux kernel, the impacts of kernel activities, which have a

onsiderable effect on real-time tasks, are hard to be predicted

nd evaluated. In contrast, hardware-based approach usually as-

igns cache ways within each cache set to different partitions with

inimal timing overhead. However, most of the hardware-based

ache partitioning approaches in the literature can only be used

n uni-processor systems [21–23] or cannot strictly guarantee the

ache space isolation among real-time applications [24] .

Combining real-time task scheduling and task-level cache par-

itioning allocation is however more involved. On one hand, the

CET of a task depends on the allocated cache size. On the other

and, the maximal cache budget that can be assigned to a task de-

ends on the cache sizes occupied by other tasks that are currently

unning on the other cores, i.e., depending on the scheduler. Fur-

hermore, the performance (e.g., cache miss, energy consumption,

nd execution time) of running tasks may have different require-

ents and may be sensitive to the amount of used cache because

emory access patterns of tasks varies greatly from task to task. In

rinciple, the task scheduling and the cache size allocation interre-

ate to each other with respect to the system performance, such as

ache misses [20] and energy consumption [25] . Therefore, a so-

histicated framework is needed to find the best trade-off between

hem in order to improve the system performance [25] .

In this paper, we present a dynamic partitioned cache memory

or multi-core systems and implement dynamic cache partitioning

n top of our customized reconfigurable cache hardware compo-

ent. This paper summarizes and extends the results built in [26] .

n this cache architecture, the cache resources are strictly isolated

o prevent the cache interference among cores. Therefore, the pro-

osed cache can provide predictable cache performance for real-

ime applications. To efficiently use cache resources, the proposed

ache allows cores to dynamically allocate cache resource accord-

ng to the demand of applications. Based on the proposed dynamic

artitioned cache memory, we tackle schedule-aware cache man-

gement scheme for real-time multi-core system. We present an

ntegrated framework to study and verify the interactions between

he task scheduling and the shared cache interference. For a given

et of tasks and a mapping of the tasks on a multi-core system, our

ramework can generate a fully deterministic time-triggered non-

reemptive schedule and a set of cache configurations during the

ompilation time. During runtime, the cache is reconfigured by the

cheduler according to offline computed configurations. The gen-

rated schedule and the cache configurations together minimize

he cache miss of the cache subsystem while preventing deadline

isses and cache overflow. With the customized reconfigurable

ache component and share-clock multi-port timer component, our

ramework can generate multi-core system with different cache

odules (different cache configurations with respect to cache lines,

ize, associativity) and prototype on Altera FPGA. The contributions

f our work are as follows:

• A parameterized dynamic patitioned cache memory is devel-

oped for the real-time multicore systems. The cache size, line

202 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

Fig. 2. Illustration of four-way set-associative reconfigurable cache architecture in

[24] .

w

d

i

t

w

w

p

r

e

c

o

c

m

a

n

u

p

i

A

c

l

r

t

s

r

p

s

[

c

c

t

F

c

s

o

t

s

w

a

t

c

w

t

s

u

p

r

d

s
size, and associativity of the cache memory can be parameter-

ized during compile time while the partition of the cache can

be reconfigured in a flexible manner during runtime. We also

design a complete set of APIs with atomic operation, such that

the application tasks can reconfigure their cache sizes during

runtime. In contrast to most existing work [25,27–31] in the lit-

erature, which is devoted to analyze theoretical proposals and

the simulation of reconfigurable caches, the proposed cache is

physically implemented and prototyped on FPGA.

• We conduct the front-end chip design for the proposed recon-

figurable cache by using Synopsys design compilers [32] with

the SMIC 130 nm standard technology library [33] , and find the

implementation of the proposed cache is practical in terms of

chip area and power consumption.

• We proposed an integrated cache management framework that

improves the execution predictability for real-time MPSoCs. The

proposed framework can automatically generate fully determin-

istic time-triggered non-preemptive schedule and cache config-

urations to optimize system performance under real-time con-

straints. We developed a share-clock multi-port timer compo-

nent that enables the time-triggered schedule to be imple-

mented on the MPSoCs generated from our framework.

• We prototyped and evaluated the generated MPSoCs on Altera

Statrix V FPGA using 27 real-time benchmarks. We also analyze

and discuss the experiment results under different hardware

environment with respect to the number of cores and cache

settings.

The rest of the paper is organized as follows: Section 2 re-

views related work in the literature. Section 3 presents some back-

ground principles. Section 4 overviews the proposed framework

and Section 5 describes the proposed synthesis approach. Section 6

illustrates the proposed hardware infrastructures and Section 7 ex-

plains how the proposed framework works. Experimental evalua-

tion is presented in Section 8 and Section 10 concludes the paper.

2. Related work

Real-time cache partitioning : Shared cache interference in a

multi-core system has been recognized as one of major factors that

degrade the average performance [13] , as well as predictability of

a system [6,8] . Many works have been done in general-purpose

computing to optimize different performance objectives by clev-

erly partitioning shared cache, including cache performance [34,35]

and energy consumption [24] . In the context of real-time systems,

cache partitioning technique have been explored mostly by us-

ing software-based solution [6,10,19,36,37] . In [36,37] , the off-chip

memory mapping of the tasks is altered to guarantee the spatial

isolation in the cache by using compiler technology. However, al-

tering tasks’s mapping in the off-chip memory is far from triv-

ial, which requires significant modifications of the compilation tool

chain. In addition, the partitioning of the task can only be statically

suppressed in fixed cache set regions due to the pre-decided mem-

ory mapping, which also prevents the efficient usage of the lim-

ited cache resource. Recently, the techniques [6,10,19] on the multi-

core cache management in the context of real-time systems have

been proposed by using page-coloring, which partitions the cache

by sets at OS-level. However, page-coloring based techniques usu-

ally suffer from a significant timing overhead inherent to chang-

ing the color of a page, which results in that making decision of

changing the color of a page cannot be frequent. The authors in

[13] report that the observed overhead of page-coloring based dy-

namic cache partitioning reaches 7% of the total execution time

even after conducting the optimization to reduce the recoloring

times. Distinct to above set-based cache partitioning techniques,

we present a reconfigurable cache architecture to execute dynamic
ay-based cache partitioning in hardware level. Our approach can

ynamically change the cache size with minimal overhead (scal-

ng to cycles). Besides, compared to set-based cache partitioning

echniques, our way-based reconfigurable cache can turn off the

hole unused ways to save static energy [24,27] . Therefore, our

ay-based reconfigurable cache can also bring benefits for low-

ower design.

Reconfigurable cache : Numbers of general or application specific

econfigurable cache architectures have been proposed in the lit-

rature. Albonesi et al. [27] proposed a selective ways cache ar-

hitecture for uni-processor system, which can disable a subset

f the ways in a set associative cache during periods of modest

ache activity and enable the full cache to remain operational for

ore cache-intensive periods. By collecting cache performance of

pplications on runtime, Suh et al. [28] proposed a general dy-

amic partitioning scheme for the set associative cache. The sim-

lation based evaluation shows the potentials for performance im-

rovement. Benitez et al. [29] proposed amorphous cache aimed at

mproving performance as well as reducing energy consumption.

s opposed to the traditional cache architectures, the proposed

ache architecture uses homogenous sub-caches which can be se-

ectively turn-off according to the workload of the application and

educe both its access latency and power consumption. Based on

he cache architecture in [24] , Sundararajan et al. [30] presented a

et and way management cache architecture for efficient run-time

econfiguration.

Most of above work [27–30] is devoted to analyze theoretical

roposals and the simulation of reconfigurable caches. Thus, their

ystems are only tailored at simulation. Only few research work

21–24] is devoted to the physical implementation of the proposed

ache models. Zhang et al. [24] proposed a reconfigurable cache ar-

hitecture where the cache ways configuration could be tuned via

he combination of configuration register and physical address bits.

ig. 2 illustrates a four-way set-associative reconfigurable cache ar-

hitecture proposed in [24] . In this architecture, the cache ways

election during the reconfiguration is related to the address bits

f the application, which cannot guarantee the strict cache isola-

ion among real-time applications. As shown in Fig. 2 , one way is

elected when Reg0 = 0 and Reg1 = 0 . However, which exact one

ay is selected is also determined by two physical address bits A 18

nd A 19. The overlapped address mapping of the real-time applica-

ions on these two physical address bits A 18 and A 19 will result in

ache interference. In addition, the number of the allocated cache

ays can only be configured to be a power of two, which prevents

he efficient usage of the limited cache ways. Gil et al. [21,22] pre-

ented one general-purpose reconfigurable cache design only for

ni-processor systems to be implemented on FPGA. Besides, the

roposed reconfigurable cache design [21,22] can only work as di-

ect mapped cache or 2-way set associative cache. Thus, this cache

esign is quite limited for usage. Motorola M ∗CORE processor [23]

upports a configurable unified set-associative cache whose four

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 203

w

d

[

c

d

r

t

a

m

w

t

c

p

m

a

i

t

l

m

c

b

p

(

c

u

o

t

s

a

a

s

w

fi

t

F

t

G

f

p

i

p

p

p

S

o

A

t

f

a

o

d

3

3

b

c

t

3

w

fi

t

Fig. 3. Way-based cache partitioning.

Fig. 4. System design framework.

3

s

o

(

{

t

t

t

i

s

w

c

a

h

i

t

m

a

r

p

s

i

s

4

f

i

t

s

c

p

ays could be individually shutdown to reduce dynamic power

uring cache accesses. Besides, the cache in M ∗CORE processor

23] can be configured as different functional cache (instruction

ache, data cache, or unified cache). However, M ∗CORE processor is

eveloped for uni-processor systems. It is not easy to extend such

econfigurable cache into multi-core systems due to synchroniza-

ion and atomic operation issues as stated in Section 6.1 .

In this paper, we propose a parameterized reconfigurable cache

rchitecture for real-time multi-core system and physically imple-

ent it on FPGA. In this architecture, cache ways can be tuned

ithout constraints and can be efficiently and dynamically parti-

ioned and allocated to applications, which can guarantee that the

ache resource is strictly isolated among real-time applications to

revent the cache interference. Besides, our reconfigurable cache

emory supports parameterized design. The cache size, line size,

nd associativity of the cache memory can be parameterized dur-

ng compile time. The reconfigurable cache memory can be au-

omatically generated by setting the parameters, e.g., cache size,

ine size, and associativity. Thus, the proposed reconfigurable cache

emory supports hardware generation. The dynamic partitioned

ache memory can be interfaced and executed with CPUs for em-

edded systems such as Altera NIOS II processor. We provide one

hysical prototype on FPGA and this prototype will serve us a real

not simulation) reconfigurable cache for studying and validating

ache management strategies on the real-time multi-core system

nder different cache configurations.

Time-triggered scheduling : Time-triggered execution models can

ffer a fully deterministic real-time behavior for safety-critical sys-

ems. Current practice in many safety-critical system domains,

uch as electric vehicles [38] and avionics systems [39] , favors

 time-triggered approach [40] . Sagstetter et al. [41] presented

 schedule integration framework for time-triggered distributed

ystems tailored to the automotive domain. The proposed frame-

ork uses two-step approach, where a local schedule is computed

rst for each cluster and the local schedules are then merged

o the global schedule, to compute the schedule for the entire

lexRay network and task schedule on ECUs. To optimize the con-

rol performance of distributed time-triggered automotive systems,

oswami et al. [42] presented an automatic schedule synthesis

ramework, which generates time-triggered scheduling for tasks on

rocessor and messages on bus. Nghiem et al. [43,44] presented an

mplementation of PID controller using time-triggered scheduling

aradigm and showed the effectiveness of such time-triggered im-

lementation. Based on time-triggered scheduling, Jia et al. in [45]

resented an approach to compute message scheduling based on

atisfiability Modulo Theories (SMT) for Time-Triggered Network-

n-Chip. All above techniques are evaluated by simulation. In [46] ,

yman et al. describe a two-stage search technique which is in-

ended to support the configuration of time-triggered schedulers

or single-processor embedded systems. However, none of them

pply time-triggered scheduling and cache management jointly

n real-time multi-core platform in order to achieve timing pre-

ictability and system performance.

. Background

.1. Way-based cache partitioning

Our cache management scheme implements dynamic way-

ased cache partitioning on FPGA. As shown in Fig. 3 , the shared

ache is partitioned in the ways. Each core can dynamically tune

he number of selective-ways. For example, core 2 can select the

rd and 6th way by calling the cache reconfiguration APIs. In this

ork, we implement cache partitioning on our customized recon-

gurable cache component and dynamically assign cache ways to

asks.
.2. Task model

We consider the functionality of the entire system as a task

et τ = { T 1 , · · · , T n } , which consists of a set of independent peri-

dic tasks. We use w ij to denote the worst case execution time

WCET) of task T i ∈ τ with j ways shared cache allocated and W i =
 w i 1 , w i 2 , · · · , w iu } to denote the WCET profile of task T i , where u is

he total number of ways in the shared cache (cache capacity). In

his paper, a measurement-based WCET estimate technique is used

o determine the worst case execution time. Timing predictabil-

ty is highly desirable for safety-related applications. We con-

ider a periodic time-triggered non-preemptive scheduling policy,

hich can offer a fully deterministic real-time behavior for safety-

ritical systems. Note that we consider non-preemptive scheduling

s it is widely used in industry practice, especially in the case of

ard real-time system [47] . Furthermore, non-preemptive schedul-

ng eliminates the cache-related preemption delays (CPRDs), and

hus alleviates the need for complex and pessimistic CRPD esti-

ation methods. We use R to denote the set of the profiles for

ll tasks in task set τ . A task profile r i ∈ R is defined as a tuple

 i = 〈 W i , s i , h i , d i 〉 , where s i , h i , d i are respectively the start time,

eriod, and deadline of the task T i . We consider implicit-deadline

ystems [4 8,4 9] where the deadline of real-time task is equal to

ts period. This classic system settings has been widely used and

tudied in the real-time community [49–51] .

. Framework overview

In this section, we give an overview of our system design

ramework depicted in Fig. 4 , which takes both real-time schedul-

ng and cache partitioning into consideration to study and verify

he interactions between the multi-core real-time scheduling and

hared cache management. As shown in Fig. 4 , the input specifi-

ations of the proposed framework consist of the following three

arts.

1. Platform specification describes the settings of a multiprocessor

platform, such as the number of cores, the settings of L2 cache

with respect to cache size, line size and associativity.

2. Mapping specification describes the relation between all tasks in

the task specification and all cores in the platform specification .

204 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

5

w

p

r

c

c

t

L

t

f

t

w

c

t

P

i

c

o

m

∑

r

i

s

s

∑

f

C

w

o

r

6

t

s

m

a

m

w

t

i

M

w

f

r

a

The mapping specifications can be written by hand or automat-

ically generated by design space exploration tools.

3. Task specification describes task timing requirements and task

profile information (i.e., the WCETs and cache miss number

under different cache size). We describe the details about how

to profile each task in Section 7 .

As output, the synthesis approach can generate cache size allo-

cation and time-triggered scheduling for each task according to the

input specification , by which the total cache miss number is mini-

mized. Based on this optimal schedule and cache allocation, tasks

can be scheduled with insertion of cache size allocation instruc-

tions. Task code can be generated by integrating this optimal ap-

proach into real-time scheduler. At the same time, parameterized

reconfigurable cache IP and share-clock mutli-port timer IP can be

generated according to the settings in platform specification .

5. Synthesis approach for scheduling and cache management

This section presents the synthesis approach for timing sched-

ule and cache management. We reuse the approach in [11] to

model the scheduling and cache interference, and formulate the

problem as integer linear programming (ILP) to minimize the cache

miss of the system. With this formulation, the cache size allocation

and time-triggered scheduling for each task can be generated au-

tomatically, which could avoid deadline miss and cache overflow.

5.1. Time-triggered task scheduling

Time-triggered non-preemptive schedule is considered in this

paper to achieve full predictability of the system. For each task T i
with the profile < W i , s i , h i , d i > , the k th instance of task T i starts at

s i + k · h i . W i contains the WCETs of the task with different cache

configurations. We use a set of binary variables c ij to describe the

amount of cache allocated to the task T i : c i j = 1 if exactly j cache

ways are allocated to T i and c i j = 0 otherwise. In this case, the ac-

tual WCET of T i can be obtained as
∑ u

j=1 c i j w i j , where u is the total

number of ways of the shared cache. To formulate the scheduling

problem by means of ILP, we have to guarantee the following tim-

ing constraints.

For deadline constraint, task T i has to finish no later than its

deadline:

s i +

u ∑

k =1

c ik w ik ≤ d i

The non-preemptive constraint requires that any two tasks

mapped to the same core must not overlap in time. Let binary

variable denote the execution order of task T i and T j : z
i j
p ̃ p

= 1 if

the i th instance of task T p finishes before the start of j th instance

of T ˜ p , and 0 otherwise. H r and H p ̃ p denote the hyper-period of all

tasks and the hyper-period of only task T p and T ˜ p (i.e., LCM of peri-

ods of T p and T ˜ p), respectively. TS (T p) denotes the set of tasks that

are mapped to the same core as T p does. ξ denotes the overhead

of task switch. The non-preemption constraint can thereby be ex-

pressed as follows.

∀ T p , T ˜ p ∈ T S(T p) , i = 0 , · · · ,

(
H p ̃ p

h p
− 1

)
, j = 0 , · · · ,

(
H p ̃ p

h ˜ p
− 1

)
:

i · h p + s p +

u ∑

k =1

c pk w pk −
(
1 − z i j

p ̃ p

)
H r + ξ ≤ j · h ˜ p + s ˜ p (1)

j · h ˜ p + s ˜ p +

u ∑

k =1

c ˜ p k w ˜ p k − z i j
p ̃ p

H r + ξ ≤ i · h p + s p (2)

Constraints (1) and (2) ensure that either the instance of T p
runs strictly before the instance of T ˜ p , or vice versa.
.2. Cache management constraints

The next step is to add the cache management constraints,

hich guarantee the feasibility of cache management, i.e., at any

oint in time, the sum of cache ways allocated to the tasks cur-

ently being executed does not exceed the cache capacity. To avoid

ache overflow , we recall the following lemma in [11] , which indi-

ates that a finite number of time instants, i.e., at the start of any

ask, should be checked for the cache overflow .

emma 1. If the cache does not overflow at the start instant of any

ask within one hyper-period, the cache never overflows.

By using the similar approach in [11] , periodical square wave

unction (PSWF) is used to model the resource demand of task in

he time domain. According to [11] , we can use periodical square

ave function (PSWF) to indicate if the task is running at the spe-

ific time instance. For task T p with start time s p and execution

ime e p , the cache demand at the instant t can be defined as:

 SW F (t, T p) =

⌊
t − s p

h p

⌋
+ 1 −

⌈
t − s p − e p

h p

⌉
The PSWF above indicates that task T p requires the cache only

n interval [s p + i · h p , s p + e p + i · h p]. According to Lemma 1 , we

an guarantee to avoid cache overflow by checking the start instant

f any task within one hyper-period. Thus, we can formulate cache

anagement constraints as follows.

∀ T p , i = 0 , · · · ,

(
H r
h p

− 1

)
:

u

k =1

c pk · k +

∑

T ˜ p / ∈ T S(T p)

P SW F (s p + i · h p , T ˜ p)
u ∑

k =1

c ˜ p k · k ≤ u

The term of P SW F (s p + i · h p , T ˜ p)
∑ u

k =1 c ˜ p k · k represents cache

equirements of the task T ˜ p at the start time of T p . One may notice

t is non-linear term. We can transform this non-linear term into a

et of linear constraints using the approach presented in [11] . Be-

ides, each task must have exactly one cache configuration.

u

k =1

c ik = 1

To minimize the cache miss number in one hyper-period, the

ollowing objective function is used:

 M =

∑

∀ T i

H r

h i

u ∑

j=1

c i j C M

i j

here u and CM

i j

cache
represent the cache capacity (in the number

f ways) and the cache miss of task T i under j -way cache configu-

ation, respectively.

. Proposed hardware infrastructure

In this section, we present one FPGA-based multi-core sys-

em which supports dynamic cache partitioning and time-triggered

cheduling. A major benefit of choosing FPGA for prototyping our

ulti-core system is the high configurability of the processor. This

llows us to evaluate the proposed integrated scheduling and cache

anagement framework under various hardware configurations

ith different cache sizes and varied arithmetic units. Fig. 5 illus-

rates the proposed multi-core system on FPGA, where the cache

s shared among cores. We adopt the NIOS II core in the system.

odules highlighted with white color in Fig. 5 indicate the hard-

are components specifically designed and implemented for our

ramework. The system consists of several NIOS II cores along with

econfigurable cache IP which supports dynamic cache partitioning

nd share-tick timer IP for time-triggered scheduling.

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 205

Nios II

Shared Cache
(Way-based cache par��on)

SDRAM Controller

Share-�ck Timer & Interrupt

Nios II

FPGA

......

Fig. 5. System architecture.

Fig. 6. Atomic operations.

6

t

A

a

c

r

t

a

p

s

t

a

f

f

s

P

i

e

a

e

t

a

t

a

o

(

w

t

a

p

c

t

f

c

Fig. 7. Reconfigurable cache architecture.

i

b

m

g

t

m

w

b

u

l

c

c

3

p

b

c

6

u

c

o

fi

(

c

m

c

r

m

t

c

r

t

a

6

.1. Design consideration and challenge

Cache coherency problem is one of critical design considera-

ions for the dynamic way-based cache partition infrastructure.

ccording to the Altera NIOS II datasheet [52] , the current NIOS

rchitecture does not provide hardware cache coherency. When

reating multiprocessor systems, software for each processor is

equired to locate in its own unique region of off-chip memory

o avoid to implement cache coherency [52] . NIOS II SBT provides

 simple scheme of memory partitioning that allows multiple

rocessors to run their software from different regions of the

ame off-chip memory [52] . Besides, according to the state-of-

he-art research work in [53] , current cache coherence strategies

re not suitable for real-time systems. In this paper, we mainly

ocus on studying the cache interference among the cores, and

ollow this official design from Altera to create our multi-core

ystem. Actually, this kind of memory architecture known as

artitioned Global Address Space (PGAS) has been widely accepted

n the embedded community for efficiency reasons and real-life

xamples come from Adapteva Parallella multi-core chip E16G301

nd E64G401 [54] . Note that inter-core cache interference still

xists although software on each core runs in different regions of

he same off-chip memory. 1 Besides, the proposed shared cache

rchitecture is multi-port cache, which allows NIOS cores to access

he cache concurrently.

Another important part that should be carefully considered is

tomic operations. In general, to adaptively change the cache size,

ne core needs a two-phase operation, i.e., inquiry and allocation

as shown in Fig. 6). In the inquiry phase, the core needs to check

hich ways are available at the current moment. Then, based on

he inquiry results, the core can acquire cache resource in the

llocation phase. Normally, this procedure works well in a uni-

rocessor system due to no core interference. However, in multi-

ore systems, when one core is checking the cache resource state,

he cache management logic might be conducting cache allocation

or other cores. This may lead to the fallacious cache resource state
1 Unique region of each processor on off-chip memory is larger than the total

ache size.

c

r

C

a
nquiry, because the results of the on-going cache allocation fail to

e synchronized to the current cache resource state. Therefore, in a

ulti-core system, the APIs for adjusting the cache size should be

uaranteed to be atomic for implementing synchronization primi-

ives. Hence, we develop a component, called cache ways manage-

ent unit (CWMU) to execute cache ways allocation and release,

hich guarantees the offered APIs atomicity.

The implementation of the replacement policy for the way-

ased partitioning cache is another design challenge. To efficiently

se the limited cache resource, the proposed cache architecture al-

ows each core to dynamically tune its cache ways without any

onstraints. This will result in that the cache ways occupied by one

ore might not be adjacent to each other. As shown in Fig. 3 , the

rd and 6th ways are occupied by core 2. Therefore, standard re-

lacement policies cannot be applied. In this paper, we develop

lock reference field logic (BRFL) to maintain this discontinuous

ache ways distribution.

.2. Reconfigurable cache architecture

This section presents an overview of the proposed reconfig-

rable shared cache architecture. The reconfigurable shared cache

omponent allows cores to dynamically change the number of

wned cache ways. As depicted in Fig. 7 , the proposed recon-

gurable shared cache consists of cache ways management unit

CWMU), cache control unit (CCU), core to cache switch (CCS) , and

ache ways block (CWB) . In the proposed architecture, cache ways

anagement unit (CWMU) controls the cache ways allocation ac-

ording to the reconfiguration request of the cores. The reconfigu-

ation port of CWMU is shared by all cores. Cache control unit (CCU)

anages the cache memory accesses by instantiating N cache con-

rollers for N-core system. Core to cache switch (CCS) can dynami-

ally connect cores to cache ways blocks according to ways mask

egister of each core, which is maintained by CWMU according to

he private cache ways pool of the cores. Cache ways blocks (CWB)

re memory blocks used for tag and data storage.

.3. Cache ways management unit (CWMU)

The cache ways management unit (CWMU) is used to manage

ache ways in a centralized manner, by which each core can send

econfiguration command to dynamically regulate its cache ways.

WMU is connected to N NIOS cores by avalon slave interface (ASI)

nd a round-robin arbiter is automatically created between N NIOS

206 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

CMD
Decoder

A
SI

Alloca�on Ways

Global Ways Pool

Release Ways

Core0 Ways Pool

CoreN Ways Pool

…

input

output

Fig. 8. Cache ways management unit (CWMU).

Table 1

APIs supported by reconfigurable cache.

allo_ways(way_num) Allocate cache ways to cores

rel_ways(way_num) Release cache ways from cores

clc_perf_cnt() Clear the performance counter

get_hit_cnt() Get the value of cache hit counter

get_miss_cnt() Get the value of cache miss counter

get_state() Return ways state, error state

Mux

De - Mux

A
SI

Control Logic

BRFL

A
M

I

Ca
ch

e
Po

rt

CCS

Ways Pool

O
ff

-c
hi

p
M

em
or

y

Fig. 9. Cache controller (CC).

M
U

X

1

1

1

W
CL

Wr

Data

Clk

Wr

Ref

R
eference Field

Ways Pool

Ini�al Reference

Controlled by CWMU

Clk
Wr

Address Selec�on
Ref Vic�m

V
B

M

Clk

Addr
Data
Wr

Rd

q

rst

SR
M

Clk

Addr
Data
Wr

Rd

q

Fig. 10. Block reference field logic (BRFL).

i

m

6

c

m

i

p

a

w

d

s

p

r

c

t

i

T

v

v

(

b

c

r

r

A

c

n

i

s

i

t

w

a

f

t
cores and CWMU by Altera SOPC builder. As shown in Fig. 8 , when

CWMU receives one command from one NIOS core, the CMD de-

coder component can distinguish the core ID (i.e., identity which

core sends this command) and its command type (i.e., identity

command types in Table 1). If it is allocation ways command, ways

IDs will be fetched from the global ways pool . Then, the fetched

ways IDs are put into the cache ways pool of the distinguished

core. Then, core to cache switch (CCS) is controlled to connect cache

ways to the distinguished core according to the cache ways pool.

Before fetching ways IDs from global ways pool , the logic will check

whether there are enough ways in the pool. If no enough ways ex-

ist in the pool, cache overflow error will be returned to the dis-

tinguished core. Note that the approach in [11] can be applied to

calculate one safe cache configuration for real-time applications,

which can guarantee that cache overflow error will never occur.

In contrast to the procedure of allocation ways command, release

ways command will fetch ways IDs from the cache ways pool

of the distinguished core to the global ways pool . Ways occupied

by the distinguished core and replacement information are corre-

spondingly updated at this point. Note that due to this centralized

management scheme, cores do not need to inquiry the cache state

any more before the allocation operation. Therefore, the APIs for

cache reconfigurations are atomic.

6.4. Cache control unit (CCU)

Cache control unit (CCU) instantiates N cache controllers for an

N-core system, where each core owns one cache controller. Cache

controller is used to maintain the access for its corresponding NIOS

core. Thus, this shared cache allows NIOS cores to access the cache

concurrently. For cache controller , we employ the write-through

policy for each write operation. Cache write-through policy is in-

herently tolerant to soft errors due to its immediate update fea-

ture [55] . The cache architecture with write-through policy has

been adopted in many real-life high-performance processors such

as Niagara processor [56] , IBM POWER5 processor [57] , and Ita-

nium processor [58] .

Fig. 9 depicts the block diagram of cache controller . Transactions

from NIOS cores are injected through the cache ports, which is in-

stantiated as avalon slave interface (ASI) . Evictions, refills and write-

through are asserted from off-chip memory port, which is instan-

tiated as avalon master interface (AMI) . The data-width of both ASI

and AMI in our case is 32 bit. The supported maximum burst of

both ports depends on the cache line size. Thus, muxs and demuxs

in ASI and AMI are used to packet and de-packet bytes in the corre-

sponding cache line size. The control logic performs hit/miss check,

returns the read data, and asserts evictions and refills. The victim

cache line is selected by the block reference field logic (BRFL) dur-
ng the refill phase. The implementation of the partitioned replace-

ent policy is presented in Section 6.5 .

.5. Implementation of partitioned FIFO replacement policy

When a new data must be stored in a cache memory and all

ache ways have been occupied, one of the existing cache line

ust be selected for replacement. Standard replacement policies

nclude LRU, FIFO, etc. As the cache with the FIFO replacement

olicy could support accurate quantitative WCET estimations [59]

nd prevent timing anomalies [60] for the real-time applications,

e consider FIFO cache replacement policy in our design. In ad-

ition, the FIFO replacement policy has been widely used in the

tate-of-the-art processors such as ARM 11 processor and Intel X86

rocessor [59] .

As mentioned in Section 6.1 , dynamic cache partitioning may

esult in that cache ways occupied by one core might not be adja-

ent to each other. To maintain the discontinuous cache ways dis-

ribution, the block reference field logic (BRFL), as shown in Fig. 10 ,

s proposed to perform victim selection for cache write operations.

he reference field contains selection reference memory (SRM) and

alid bits memory (VBM). The references of the next selection of

ictim cache lines are stored in the selection reference memory

SRM). SRM can be instantiated by one FPGA dual port memory

lock with the depth Q and width log 2 (u) , where Q and u denote

ache depth and cache associativity, respectively. When the core

elease ways, all the contents of SRM should be cleared to initial

eference. In general, we can clean the content of SRM one by one.

ssuming each clean operation will cost one clock, cleaning all the

ontent of SRM will cost Q clocks. Therefore, this solution will sig-

ificantly increase the timing overhead of reconfiguration. To min-

mize timing overhead of cache reconfiguration, we propose one

olution in this paper to reset SRM by using VBM, which can be

nstantiated as Q -bit register and be cleared in one clock. By using

his similar approach, the cache ways can be flushed in one clock

hen the core release the ways. We use one bit valid register to

ssociate with each reference in SRM. When we read a reference

rom one location of SRM, the valid bit register acts as a toggle

o determine the output. Based on the current reference, the write

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 207

Per Core
Decrementer

ASI
ASI

…

Core0
Register

CoreN
Register

Global
Register

Global
Timer

Per Core IRQ
Genera�on

Core0
Register

CoreN
Register

…

Fig. 11. Share-clock timer IP.

c

e

e

r

6

t

c

i

i

w

a

t

t

s

t

s

e

m

t

d

a

c

t

t

w

i

a

7

m

c

c

r

a

t

p

m

b

u

s

t

s

a

c

e

Table 2

Benchmark sets for two-core system.

Core 1 Core 2

Set 1 Sobel, Fir Histogram, Lms

Set 2 Fir2dim, Pbmsrch Blackscholes, Fir

Set 3 Lms, FFT Nsichneu, Sobel

Set 4 Lms, Histogram, FFT Fir, Aes, Sobel

Set 5 Lms, Histogram FFT, Sobel

Corner_turn, Pbmsrch Nsichneu, Fir

c

H

8

p

m

C

s

c

w

c

I

5

p

s

p

s

t

s

T

p

1

t

w

M

p

F

h

[

[

s

s

s

p

c

s

t

8

s

l

t

a

n

s

s

s

F

1

f

ontrol logic (WCL) updates the write data for reference field on

ach cache write operation and write the next selection to refer-

nce field of SRM and VBM, making that ways are selected in FIFO

eplacement manner.

.6. Share-clock multi-port timer IP

To support the dynamic timekeeping functionality in the time-

riggered scheduling, a free-running counter and timers per pro-

essor are required. For the single processor system, this role

s adequately served by the NIOS timer peripheral. While this

s sufficient for a single core system, it does not work well

ith multiple processors due to a synchronization problem. In

 multi-core system, we should guarantee that all the cores in

he system are triggered in one global timer. Only in that way,

he tasks on different cores can be precisely triggered and well

ynchronized.

Fig. 11 shows the block diagram of the share-clock multi-port

imer, in which each port is connected to one NIOS core by avalon

lave interface (ASI). The share-clock multi-port timer provides

ach core with a dedicated 32-bit decrementer, which decre-

ents based on the shared global timer. Here, the shared global

imer expires every constant time (e.g., 1ms), which triggers each

ecrementer to decrement once. When one decrementer expires,

n interrupt is generated to the corresponding core. Each core

an dynamically control the period by setting its register, which

riggers the task in different point. The global register is used

o synchronize the cores to be launched at the same point. Only

hen all cores call the APIs to start timer, the global register

s set to 1. Each core keeps waiting until this global register is

ctive.

. Task profiling and software implementation

The aim of the task profiling is to identify the WCET and cache

iss number with different cache size for a given task set. Ac-

ording to the system architecture shown in Fig. 5 , the bus for ac-

essing the off-chip memory is shared by all cores via the round-

obin arbiter. This shared bus interference under the round-robin

rbiter can be efficiently analyzed by techniques in [61] to estimate

he WCET of a task. In this paper, we use measurement-based ap-

roach in [10] to estimate the WCET of a task. Regarding cache

iss, we can obtain it from the customized performance counter

y calling the related APIs in Table 1 .

Table 1 lists all the atomic APIs currently supported by reconfig-

rable cache IP. We refer to the implementation of time-triggered

cheduler in [46] and implement the time-triggered scheduler with

he share-clock multi-port timer on the NIOS-based multi-core

ystem. To minimize the cache miss of the system, the synthesis

pproach in Section 5 can generate the task-level cache size

onfigurations and time-triggered scheduler. According to the gen-

rated configurations, tasks can be scheduled with inserting cache
onfiguration instructions (see Table 1) in each task invocation.

igh performance code can be generated by this approach.

. Experimental evaluations

In this section, we present the results obtained with an im-

lementation of the proposed framework, as well as the perfor-

ance of the proposed hardware platform. In our framework, the

PLEX [62] solver is used to solve the ILP problems for our synthe-

is approach. We implement the proposed time-triggered cache re-

onfigurable multi-core system on the Altera DE5 board equipped

ith Statrix V FPGA, which is based on the NIOS II multi-core ar-

hitecture. In the multi-core architecture, we adopt the fast NIOS

I core equipped with 512 bytes private L1 instruction cache and

12 bytes private L1 data cache. The private L1 cache module is

rovided by Altera and integrated in NIOS processor. All cores are

hared with the unified L2 cache, which is an instance of the pro-

osed reconfigurable cache IP. By cooperating with the proposed

hare-clock mutli-port timer, we implement the partitioned time-

riggered scheduling on each core according to [46] . Time-triggered

cheduling on each core is implemented in a bare-metal manner.

he global tick of the shared clock timer is 1ms. To guarantee the

redictability of the implementation of the scheduler, we reserve

 fixed way for each core for the scheduler implementation (e.g.,

ask switch).

To evaluate the effectiveness of our framework and hard-

are platform, we use 27 benchmark programs selected from

iBench [63] (Qsort, Dijkstra, Pbmsrch, FFT), CHStone [64] (Ad-

cm, Aes, Gsm, Sha, Mpeg2), DSPstone [65] (Dot_product, Fir2dim,

ir, Biquad, Lms, Matrix, N_complex_update), PARSEC [66] (Blacksc-

oles), UTDSP [67] (Histogram, Spectral, Lpc, Decode), Verabench

68] (Beamformer, Corner _ turn), and some other research works

69,70] (Sobel,Nsichneu,Qurt,Fdct). To avoid the selected task to

aturate fast, we made some adaptations to the input scales of

ome benchmarks, such that they comply with the specified cache

ize. Tables 2 and 3 respectively list the task sets used in our ex-

eriments for two-cores system and four-core system, which are

ombinations of the selected benchmarks. According to [25] , we

pecify the task mappings based on the rule that the total execu-

ion time of each core is comparable.

.1. Speed and area measurements

First of all, we compare the different types of caches with re-

pect to their maximum operating frequency and area in terms of

ogic and memory usage. Different types of caches are synthesized

o Altera Stratix V FPGA with Quartus II (version 13.0) to obtain

rea and critical path delay (maximum operating frequency F max)

umbers. The effect of increased cache depth, associativity, line

ize, and port number will be examined for all cache types. Table 4

ummarizes the results for different types of caches. The ‘cache

ettings’ column is organized as form of associativity/depth/line size .

or example, 4/128/256 indicates 4-ways cache architecture with

28 cache depth and 256-bit line size. F max indicates the maximum

requency that the constructed multi-core system can run on.

208 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

Table 3

Benchmark sets for four-core system.

Core 1 Core 2 Core 3 Core 4

Set 1 Lms,FFT Fir2dim,Pbmsrch Matrix1,N_complex Fir,Biquad

Set 2 Fir,Mpeg2 Biquad Lms,Gsm Fdct,Sobel

Histogram Qurt Qsort Dijkstra,Aes

Set 3 Matrix,FFT Fir2dim Biquad Beamformer

Spectral_estimation Sobel Decode Histogram

Set 4 Corner_turn Fir Histogram Nsichneu

Dotproduct Sha Nsichneu Lms

Set 5 Fdct,Lpc Histogram,Sha FFT,Adpcm Blackscholes

Fir2dim Sobel,decode Corner_turn Fir

Table 4

Speed and area measurements on Stratix V FPGA.

Port number Cache settings Combinational ALUTs Total registers F max (MHz)

Two core 4/256/256 11,510 8,899 168.41

4/512/256 14,453 11,461 159.41

8/256/256 17,619 10,506 151.10

8/512/256 21,609 14,604 152.14

Four core 8/256/256 29,809 18,683 140.29

8/512/256 36,074 24,831 134.34

16/256/256 39,821 22,014 126.90

16/512/256 49,225 31,234 125.83

Fig. 12. Chip area for dual-core caches with the varying cache way numbers.

Fig. 13. Power consumption for dual-core caches with the varying cache way

numbers.

f

a

For increase in depth address and ways number, the number

of combinational ALUTs and registers also increases. As explained

in Section 6.5 , to flush cache ways and reset the replacement refer-

ence in one cycle, we separate the valid bit of each line from mem-

ory block and implement it in customized memory block which

supports clearing contents globally. Thus, the increment of address

depth will result in the increment of the number of valid bit,

which leads to more logic resource in combinational ALUTs and

registers. Regarding the ways number, the contributing factors are

the core-cache-switch circuitry, FIFO replacement policy circuitry,

and wide logical OR, all of which grow with the increased ways

number. Regarding the maximum operating frequency F max , we no-

tice that 2-core cache is faster than 4-core cache and the cache ar-

chitecture with less associativity is faster than the one with more

associativity.

8.2. Physical chip synthesis results

In this section, we report physical chip synthesis results for

the proposed dynamic partitioned cache memory. The proposed

cache memory is implemented in synthesizable Verilog HDL code

and synthesized by using Synopsys design compilers [32] with the

SMIC 130 nm standard technology library [33] . We use ARM Ar-

tisan 130 nm memory IPs [71] to generate RAM blocks for our

cache. Considering that the proposed cache memory supports way-

based dynamic cache partitioning, we mainly focus on studying

how the cache way numbers impact chip design process in terms

of chip area and power consumption. We conduct the experi-

ments to report the chip area and power consumption

2 of the pro-

posed cache memory under different configurations. In the experi-

ment, we implemented 4 different configurations for the dual-core

caches memory, where the cache way numbers are varied from 4

to 32. The cache depths and cache lines are fixed as 1024 and 128,

respectively. For comparison, a standard shared cache without dy-

namic partitioning functionality is also developed and verified by

using the same experiment setups. Considering chip manufactur-

ing technology we used (i.e., 130 nm technology), we restrict the
2 Considering that the workload of cache subsystem is application-specific and it

is difficult to develop one specific test bench to obtain switching information of the

cache component, we assume the switch percentage of the devices in our design is

100%.

f

c

c

m
requency of all cache designs at 400MHz and report the chip area

nd power consumption under this speed level.

Figs. 12 and 13 illustrate the chip area and power consumption

or different types of caches, respectively. As shown in Fig. 12 , the

hip density is mainly contributed by the memory blocks in both

ache architectures because the cache is mainly composed by the

emory blocks. Comparing to the standard cache without dynamic

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 209

Fig. 14. The code for functionality verification.

c

m

o

w

r

s

a

c

c

s

w

i

o

s

d

m

c

1

c

b

c

f

8

t

t

c

t

b

d

W

w

t

r

m

t

a

b

l

i

c

t

2

b

m

i

m

i

s

Fig. 15. # Cache miss and execution time for memory reuse code.

c

c

w

w

c

w

t

s

t

L

8

t

w

N

t

c

c

i

n

i

i

t

p

v

b

c

c

w

d

c

n

w

m

i

ache partitioning, the total density overhead of our cache imple-

entation ranges from 7% to 13% and maily comes from mem-

ry and combinational blocks. This density overhead is introduced

ith the addition of selection reference memory (SRM) in FIFO

eplacement policy circuitry and the routing logic in core-cache-

witch circuitry. Another important observation is that the chip

rea is nearly increased linearly with the ways configurations. The

ache with 32-ways configuration occupies 7X chip area than the

ache with 4-ways configuration. Fig. 13 depicts the power con-

umption for both cache architectures under the different cache

ays configurations. The main power overhead is caused by the

ncrease of registers for cache controller. The power overhead of

ur cache design ranges from 0.3% to 10%. Thus, our cache de-

ign has a close power consumptions with respect to the stan-

ard cache design. Besides, the more cache ways we configure, the

ore power the cache memory will consume. From the results, we

an see that reducing one more cache ways can on average reduce

48 mW power consumption. This means turning off cache ways

an significantly reduce the power consumption of the system. This

rings another potential research direction about how to dynami-

ally manage the cache ways resource to achieve energy efficiency

or the cache subsystem.

.3. Functionality verification

We implemented a functional test to verify the correctness of

he reconfigurable cache prototype implementation. This verifica-

ion is based on memory reuse code, as shown in Fig. 14 , which

an mimic the behavior of cache access behavior. According to

he test presented in Fig. 14 , the program firstly access the array

[Cache _ Depth ∗ W ays _ Num][Line _ Size] , whose size equals the pre-

efined cache, in the first for loop. The parameter Cache _ Depth,

 ays _ Num, and Line _ Size are denoted as the cache depth, cache

ay number, and the word number of cache line, respectively. Af-

er the first loop, the assigned N -ways cache (N < W ays _ Num) will

emain the last visited N × Cache _ Depth × Line _ Size array data ele-

ents. For example, if we assign one cache way to this functional

est program, this one-way assigned cache will be occupied by the

rray data elements from b[Cache _ Depth ∗ (W ays _ Num − 1)][0] to

[Cache _ Depth ∗ W ays _ Num − 1][Line _ Size − 1] . In the second while

oop, the array b[Cache _ Depth ∗ W ays _ Num][Line _ Size] is revisited

n the reverse order for the sake of cache reuse. The more the

ache is assigned, the more cache reuse can be achieved which in

urn can lead to less cache miss.

This functional test is conducted on the two-core system with

MB reconfigurable shared cache (8 ways, 8192 cache depth, 256

it line size), which is implemented on the Altera DE5 develop-

ent board equipped with Statrix V FPGA. The results as shown

n Fig. 15 are obtained by real measurements on FPGA imple-

entation. By calling cache reconfiguration listed in Table 1 , we

mplement memory reuse code under different cache ways. Fig. 15

hows cache miss numbers and execution times under different
ache ways. We can see that both cache miss numbers and exe-

ution times predictably decrease linearly with reconfigured cache

ays. By increasing one way, cache miss numbers decrease linearly

ith step 8192 (i.e., cache depth). This is expected since 8192 more

ache lines are buffered for memory reuse when increasing one

ay.

Let us give a quantitative analysis to this result. According to

he test in Fig. 14 , each cache access in the first for loop always re-

ult in cache miss. Thus, there should be 8192 × 8 cache misses

o happen during the data load phase (i.e., the first for loop in

ines 4–6). According to the analysis we state above, only N ×
192 cache lines can be reused during the cache reuse phase (i.e.,

he second while loop in Lines 8–11). Thus, we will get another

(8 − N) × 8192 cache misses during the cache reuse phase. Totally,

e are expected to get (16 − N) × 8192 cache misses if we assign

 cache ways to this test program. From this analysis, we can see

he cache miss number should decrease linearly with reconfigured

ache ways.

It is worth noting that our cache works as a unified shared

ache in the experiment setup. Instruction access will also result

n additional cache miss numbers. Thus, the measured cache miss

umber is a rough number which do not take instruction access

nto account. To eliminate the impact of the cache miss caused by

nstruction access, we use the array with the large size (2MB) in

he test program and set our cache with the large size in this ex-

eriment to relieve the impact of instruction access and make our

erification more accurate. By these settings, the cache miss caused

y instruction access can be ignored comparing to the cache miss

aused by data access. From the result as shown in Fig. 15 , we

an see that cache miss numbers are expected to decrease linearly

ith reconfigured cache ways. We also calculate the cache miss

ifferences between the expectation and measurement, which is

aused by instruction access. The maximum cache miss difference

ormalized with respect to the expected cache miss is up to 0.39%,

hich is very small. This means our cache works as the expected

anner and the reconfiguration functionality of the designed cache

s correct.

210 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

Fig. 16. Cache partition and no cache partition.

a

t

s

i

m

d

s

i

s

e

N

o

c

t

c

t

t

c

a

p

8

c

m

s

t

f

s

b

a
8.4. Timing predictability

The purpose of this experiment is to verify how effective the

proposed framework is in avoiding cache interference. In this ex-

periment, we evaluate the system timing predictability on the two-

core platform with 256KB cache (8 ways with 32KB size for each

way, 256 bit line size). The specified multi-core platform is phys-

ically implemented on Altera DE5 development board equipped

with Statrix V FPGA. All the results are collected by real mea-

surements on FPGA implementation. We run 4 tasks on different

cores simultaneously (Pmbsrch and Lms are on core 1, while Sobel

and Ncomplex are on core 2). For comparison, we also developed

one single port standard shared cache without cache partitioning,

which is shared by all core. For this cache architecture, the entire

cache space is competitively used by all tasks. For our reconfig-

urable cache, the schedule and cache configuration are automati-

cally generated by our synthesis approach to optimize the cache

miss: 1 way for Pmbsrch, 7 ways for Lms, 7 ways for Sobel, 1 way

for Ncomplex.

Fig. 16 shows the observed execution time and cache miss of

each task invocations for the four tasks for two cache architectures.

From the results, we can make the following observations: (1) A ll

tasks on our proposed cache run in a stable manner and the ex-

ecution time of all task do not exceed their WCETs that are esti-

mated with cache space isolation. The execution time and cache

miss of all tasks on our proposed cache are steady. It means that

the timing of tasks on our proposed cache can be well predicted.

As one comparison, we can see the execution time and cache miss

of all tasks on standard shared cache vary significantly. Without

cache isolation, tasks compete for the shared cache and useful

cache lines for one task on one core may be evicted by one task

on another core. This cache interference will result in poor tim-

ing predictability. (2) Because only one way is assigned to Pmbsrch
 m
nd Ncomplex, we get a direct-mapped cache during the execu-

ion of Pmbsrch and Ncomplex. On standard shared cache, Pmb-

rch and Ncomplex can still use the whole cache size although

nter-core cache interferences exist, which may lead to less cache

iss compared to direct-mapped cache. Note that, the system pre-

ictability is the prerequisite in real-time systems. Only when the

ystem predictability is guaranteed, we can then consider how to

mprove performance. In this experiment, we aim to evaluate the

ystem timing predictability. One interesting observation is that,

ven with smaller cache miss, the execution time of Pmbsrch and

complex on standard shared cache is still greater than the one

n our proposed cache. This may be caused by the fact that, all

ores share standard cache via only one port, which will degrade

he performance. In contrast, our proposed cache is a multi-port

ache, which allows cores to access cache concurrently. Note that

he scope of this experiments is to verify the proposed cache archi-

ecture can avoid the cache interference. The stability of task exe-

ution as shown in Fig. 16 has presented how the proposed cache

rchitecture can avoid the cache interference to achieve the system

redictability.

.5. Runtime performance

Then, we evaluate the effectiveness of the proposed automatic

ache management framework under timing predictability require-

ent. In this experiment, we implement the cache management

cheme and scheduling on two hardware platforms: two-core sys-

em with 256KB shared unified L2 cache (8 ways with 32KB size

or each way, 256 bit line size) and four-core system with 256KB

hared unified L2 cache (16 ways with 16KB size for each way, 256

it line size). In the two hardware platforms, each NIOS core runs

t 125 MHz. Tables 2 and 3 list the task sets used in our experi-

ents and the task mapping information for the two-core system

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 211

Fig. 17. # Cachemiss reduction on different hardware platform.

a

t

s

b

o

b

i

m

c

s

a

a

r

t

t

p

g

a

n

r

w

r

8

h

t

c

a

c

h

i

t

t

t

i

e

c

w

9

a

r

n

a

d

m

m

a

t

f

s

c

p

m

a

t

c

o

r

s

o

p

w

c

w

b

r

g

m

1

w

a

S

s

t

i

c
nd the four-core system, respectively. We physically implement

wo hardware platforms on FPGA and execute benchmark code on

pecified hardware platform. We compared the cache miss num-

ers with the following technique:

• EQUAL : Equal partitioning cache on cores.

• CORE-OPT : According to the cache reservation technique in the

state-of-the-art work [10] , a portion of cache partitions are stat-

ically reserved for each core to prevent inter-core cache inter-

ference. For fairness comparison, we integrate this cache reser-

vation technique [10] into our framework to generate optimal

cache reservations for each core.

• TASK-OPT : Our synthesis approach.

Fig. 17 shows the total cache miss number in one hyper-period

f the approaches normalized w.r.t EQUAL . All results are collected

y implementing the cache management scheme and schedul-

ng obtained from the corresponding approach on the proposed

ulti-core system. From the result measured by real hardware, we

an see cache reservation technique (CORE-OPT) fails to improve

ystem performance of most benchmark sets. This is because tasks

ssigned on the same core might have different requirements

nd sensitivity to the allocated cache amount, and a designed

egion with a constant size to individual cores cannot fully meet

he features of the tasks. In contrast to the cache reservation

echnique (CORE-OPT), our synthesis approach (TASK-OPT)
artitions the cache in task level and integrates cache partitioning

lobally with scheduling. We can observe that our synthesis

pproach (TASK-OPT) outperforms the cache reservation tech-

ique (CORE-OPT). Our approach (TASK-OPT) can on average

educe 14.93% (up to 22.03%) and 12.56% (up to 18.6%) cache miss
ith respect to CORE-OPT on 2-core and 4-core architectures,

espectively.

.6. Reconfiguration overhead measurement

Finally, we conduct experiments to measure the timing over-

ead for cache reconfiguration operations. According to Section 6.3 ,

he port of cache ways management unit (CWMU) is shared by all

ores. To inject traffic on the shared bus, we implement allocation

nd release cache configuration instructions in Infinite loop con-

urrently on the interference core. To measure the timing over-

ead, allocation and release cache configuration instructions are

mplemented for 10,0 0 0 times on the target core. In each itera-

ion, we implement allocation-release cache configuration instruc-

ion pair to avoid the cache overflow. And we directly read the

ime stamp counter and report the average latency as the tim-

ng overhead of allocation-release instruction pair. According to our

xperiment, the average timing overhead of one allocation-release

ache configuration instruction pair is 16 cycles, which is ignorable

hen comparing to OS-based cache partitioning.

. Discusssion

According to the state-of-the-art survey in [3,7] , how to man-

ge the shared cache in a predictable and efficient manner under

eal-time requirements is still an open issue. As one of the unique-

ess of our approaches, we provide not only a reconfigurable cache

rchitecture, which enables us to use the shared cache in a pre-

ictable and efficient manner, but also one schedule-aware cache

anagement scheme. Besides, we also provide a physical imple-

entation on both of hardware and software to evaluate the us-

bility of our approaches. In this section, we summarizes the fea-

ures that is currently supported and also discuss the next steps

or our approaches.

We propose a parameterized reconfigurable cache architecture,

o called dynamic partitioned cache memory, for real-time multi-

ore system and physically implement it on FPGA. The dynamic

artitioned cache memory is interfaced to Altera NIOS II based

ulti-core system. In principle, our cache can be implemented at

ny level of caches (L1 or L2) in the cache hierarchy. Due to the

echnology limitations stemmed from Altera NIOS II soft-core pro-

essor, we currently do not implement cache coherency protocol

n the proposed cache. Besides, according to the state-of-the-art

esearch work in [53] , current cache coherence strategies are not

uitable for the real-time system.

Another aspect for improvement is to enable write-back policy

n the proposed dynamic partitioned cache memory. Currently, the

roposed shared cache architecture is multi-port cache with using

rite-through policy, which allows NIOS cores to access the cache

oncurrently. By using write-through policy, the data in cache is al-

ays consistent to the off-chip memory. Thus, the cache ways can

e released immediately and we can conduct the cache reconfigu-

ation with the minimal timing overhead. Therefore, how to inte-

rate write-back policy on the proposed dynamic partitioned cache

emory would be one interesting future work.

0. Conclusion

In this paper, we present a reconfigurable cache architecture

hich supports dynamic cache partitioning at hardware level and

 framework that can exploit cache management for real-time MP-

oCs. By using the proposed cache, the cache resource can be

trictly isolated to prevent the cache interference among cores. Fur-

hermore, the proposed cache supports dynamic cache partition-

ng and allows cores to dynamically allocate cache resource ac-

ording to the demand of applications, which will enable us to

212 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

[

efficiently use cache resources. In contrast to most existing work

[25,27–31] in the literature, which is devoted to analyze theoreti-

cal proposals and the simulation of reconfigurable caches, the pro-

posed cache is physically implemented and prototyped on FPGA.

This prototype will bridge the gap between simulation and real

systems, and will serve us a real (not simulation) reconfigurable

cache for studying and validating cache management strategies on

the real-time multi-core system under different cache settings. The

proposed framework optimally integrates time-triggered schedul-

ing and dynamic cache partitioning such that the shared cache can

be used in a predictable and efficient manner. Experimental results

in the FPGA using a diverse set of applications and different num-

ber of cores and cache modules demonstrate the effectiveness of

the proposed framework.

References

[1] ARM, Cortex-A15series, http://www.arm.com/products .
[2] OpenSPARC, http://www.opensparc.net/ .

[3] S. Zhuravlev , J.C. Saez , S. Blagodurov , A. Fedorova , M. Prieto , Survey of schedul-
ing techniques for addressing shared resources in multicore processors, ACM

Comput. Surv. (2012) 4:1–4:28 .

[4] S. Kim , D. Chandra , D. Solihin , Fair cache sharing and partitioning in a chip
multiprocessor architecture, in: Proceedings of the 2004 13th International

Conference on Parallel Architecture and Compilation Techniques (PACT), 2004,
pp. 111–122 .

[5] R. Iyer , CQoS: a framework for enabling QoS in shared caches of CMP plat-
forms, in: Proceedings of the 18th Annual International Conference on Super-

computing, 2004 .
[6] B. Ward , J. Herman , C. Kenna , J. Anderson , Making shared caches more pre-

dictable on multicore platforms, in: Proceedings of the 2013 25th Euromicro

Conference on Real-Time Systems (ECRTS), 2013 .
[7] A. Abel , F. Benz , J. Doerfert , B. Dörr , S. Hahn , F. Haupenthal , M. Jacobs , A. Moin ,

J. Reineke , B. Schommer , R. Wilhelm , Impact of resource sharing on perfor-
mance and performance prediction: a survey, in: Proceedingsof the 24th Con-

ference on Concurrency Theory (CONCUR), 2013 .
[8] N. Guan , M. Stigge , W. Yi , G. Yu , Cache-aware scheduling and analysis for mul-

ticores, in: Proceedings of the 2009 ACM International Conference on Embed-

ded Software (EMSOFT), 2009 .
[9] S. Fisher , Certifying Applications in a Multi-Core Environment: The World’s

First Multi-Core Certification to SIL 4, White Paper, SYSGO AG, 2014 .
[10] H. Kim , A. Kandhalu , R. Rajkumar , A coordinated approach for practical os-

level cache management in multi-core real-time systems, in: Proceedings of
the 2013 25th Euromicro Conference on Real-Time Systems (ECRTS), 2013 .

[11] G. Chen , K. Huang , J. Huang , A. Knoll , Cache partitioning and scheduling for

energy optimization of real-time MPSoCs, in: Proceedings of the 24th IEEE In-
ternational Conference on Application-specific Systems, Architectures and Pro-

cessors (ASAP), 2013 .
[12] G. Chen , B. Hu , K. Huang , A. Knoll , K. Huang , D. Liu , Shared l2 cache manage-

ment in multicore real-time system, in: Proceedings of the 22nd Annual IEEE
International Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2014 .

[13] J. Lin , Q. Lu , X. Ding , Z. Zhang , X. Zhang , P. Sadayappan , Gaining insights into
multicore cache partitioning: bridging the gap between simulation and real

systems, in: Proceedings of IEEE 14th International Symposium on High Per-
formance Computer Architecture (HPCA), 2008 .

[14] S. Cho , L. Jin , Managing distributed, shared l2 caches through OS-level page
allocation, in: Proceedings of the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), 2006 .

[15] B.N. Bershad , D. Lee , T.H. Romer , J.B. Chen , Avoiding conflict misses dynam-
ically in large direct-mapped caches, ACM SIGOPS Oper. Syst. Rev. 28 (1994)

158–170 .
[16] W. Jing , R. Fan , The research of hibernate cache technique and application of

ehcache component, in: Proceedings of the 2011 IEEE 3rd International Con-
ference on Communication Software and Networks (ICCSN), 2011, pp. 160–162 .

[17] L. Zhang , E. Speight , R. Rajamony , J. Lin , Enigma: architectural and operating

system support for reducing the impact of address translation, in: Proceedings
of the 2010 24th ACM International Conference on Supercomputing (ICS), 2010 .

[18] R. Mancuso , R. Dudko , E. Betti , M. Cesati , M. Caccamo , R. Pellizzoni , Real-time
cache management framework for multi-core architectures, in: Proceedings

of the 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 .

[19] N. Suzuki , H. Kim , D. de Niz , B. Andersson , L. Wrage , M. Klein , R. Rajkumar ,
Coordinated bank and cache coloring for temporal protection of memory ac-

cesses, in: Proceedings of the 2013 IEEE 16th International Conference on Com-

putational Science and Engineering (ICESS), 2013 .
[20] H. Cook , M. Moreto , S. Bird , K.N. Dao , D. Patterson , K. Asanovic , A hardware

evaluation of cache partitioning to improve utilization and energy-efficiency
while preserving responsiveness, in: Proceedings of the 40th ACM/IEEE Inter-

national Symposium on Computer Architecture (ISCA), 2013 .
[21] A. Gil , J. Benitez , M. Calvino , E. Gomez , Reconfigurable cache implemented on
an FPGA, in: Proceedings of the 2010 International Conference on Reconfig-

urable Computing and FPGAs (ReConFig), 2010, pp. 250–255 .
[22] A. Santana Gil , F. Quiles Latorre , M. Hernandez Calvino , E. Herruzo Gomez ,

J. Benavides Benitez , Optimizing the physical implementation of a reconfig-
urable cache, in: Proceedings of the 2012 International Conference on Recon-

figurable Computing and FPGAs (ReConFig), 2012, pp. 1–6 .
[23] A. Malik , B. Moyer , D. Cermak , A low power unified cache architecture provid-

ing power and performance flexibility, in: Proceedings of 20 0 0 International

Symposium on Low Power Electronics and Design (ISLPED), 20 0 0, pp. 241–243 .
[24] C. Zhang , F. Vahid , W. Najjar , A highly configurable cache for low energy em-

bedded systems, ACM Trans. Embed. Comput. Syst. 4 (2005) 363–387 .
[25] W. Wang , P. Mishra , S. Ranka , Dynamic cache reconfiguration and partition-

ing for energy optimization in real-time multi-core systems, in: Proceedings
of 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), 2011 .

[26] G. Chen , B. Hu , K. Huang , A. Knoll , D. Liu , T. Stefanov , Automatic cache par-

titioning and time-triggered scheduling for real-time MPSoCs, in: Proceedings
of the 2014 9th International Conference on Reconfigurable Computing and FP-

GAs (ReConfig), 2014 .
[27] D. Albonesi , Selective cache ways: on-demand cache resource allocation, in:

Proceedings of 1999 32nd Annual International Symposium on Microarchitec-
ture (MICRO), 1999, pp. 248–259 .

[28] G.E. Suh , L. Rudolph , S. Devadas , Dynamic partitioning of shared cache mem-

ory, J. Supercomput. 28 (1) (2004) 7–26 .
[29] D. Benitez , J. Moure , D. Rexachs , E. Luque , A reconfigurable cache memory with

heterogeneous banks, in: Proceedings of Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pp. 825–830 .

[30] K.T. Sundararajan , T.M. Jones , N. Topham , A reconfigurable cache architecture
for energy efficiency, in: Proceedings of the 8th ACM International Conference

on Computing Frontiers (CF), 2011 .

[31] S. Mittal , Z. Zhang , J. Vetter , FlexiWay: a cache energy saving technique using
fine-grained cache reconfiguration, in: Proceedings of 2013 IEEE 31st Interna-

tional Conference on Computer Design (ICCD), 2013 .
[32] Synopsys, Synopsys Design Compilers, http://www.synopsys.com .

[33] SMIC, Semiconductor Manufacturing International Corporation, http://www.
smics.com .

[34] M. Qureshi , et al. , Utility-based cache partitioning: a low-overhead, high-

performance, runtime mechanism to partition shared caches, in: Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2006 .
[35] D. Sanchez , et al. , Vantage: Scalable and efficient fine-grain cache partitioning,

in: Proceedings of 2011 38th Annual International Symposium on Computer
Architecture (ISCA), 2011 .

[36] A. Wolfe , Software-based cache partitioning for real-time applications, J. Com-

put. Softw. Eng. 2 (1994) 315–327 .
[37] F. Mueller , Compiler support for software-based cache partitioning, in: Pro-

ceedings of ACM SIGPLAN Workshop on Language, Compiler, and Tool Support
for Real-Time Systems, 1995 .

[38] M. Lukasiewycz , S. Steinhorst , F. Sagstetter , W. Chang , P. Waszecki , M. Kauer ,
S. Chakraborty , Cyber-physical systems design for electric vehicles, in: Pro-

ceedings of 2012 Euromicro Conference on Digital System Design (DSD), 2012 .
[39] C. Lin , H.-M. Yen , Y.-S. Lin , Development of time triggered hybrid data bus sys-

tem for small aircraft digital avionic system, in: Proceedings of IEEE/AIAA 26th

Digital Avionics Systems Conference (DASC), 2007 .
[40] S. Baruah , G. Fohler , Certification-cognizant time-triggered scheduling of

mixed-criticality systems, in: Proceedings of 2011 IEEE 32nd Real-Time Sys-
tems Symposium (RTSS), 2011 .

[41] F. Sagstetter , M. Lukasiewycz , S. Chakraborty , Schedule integration for time-
triggered systems, in: Proceedings of 2013 18th Asia and South Pacific Design

Automation Conference (ASP-DAC), 2013 .

[42] D. Goswami , M. Lukasiewycz , R. Schneider , S. Chakraborty , Time-triggered im-
plementations of mixed-criticality automotive software, in: Proceedings of the

15th Conference for Design, Automation and Test in Europe (DATE), 2012 .
[43] T. Nghiem , G.J. Pappas , R. Alur , A. Girard , Time-triggered implementations of

dynamic controllers, ACM Trans. Embed. Comput. Syst. 11 (2012) 58:1–58:24 .
44] T. Nghiem , G.J. Pappas , R. Alur , A. Girard , Time-triggered implementations of

dynamic controllers, in: Proceedings of the 6th ACM/IEEE International Con-

ference on Embedded Software (EMSOFT), 2006 .
[45] J. Huang , J. Blech , A. Raabe , C. Buckl , A. Knoll , Static scheduling of a time-

triggered network-on-chip based on SMT solving, in: Proceedings of the 15th
Design, Automation Test in Europe Conference Exhibition (DATE), 2012 .

[46] A. Gendy , M. Pont , Automatically configuring time-triggered schedulers for use
with resource-constrained, single-processor embedded systems, IEEE Trans.

Ind. Inf. 4 (2008) 37–46 .

[47] N. Guan , W. Yi , Z. Gu , Q. Deng , G. Yu , New schedulability test conditions for
non-preemptive scheduling on multiprocessor platforms, in: Proceedings of

2008 Real-Time Systems Symposium (RTSS), 2008 .
[48] C.L. Liu , J.W. Layland , Scheduling algorithms for multiprogramming in a hard-

real-time environment, J. ACM 20 (1973) 46–61 .
[49] I. Lee , J.Y.-T. Leung , S.H. Son , Handbook of Real-Time and Embedded Systems,

CRC Press, 2007 .

[50] S. Baruah , M. Bertogna , G. Buttazzo , Multiprocessor Scheduling for Real-Time
Systems, Springer, 2015 .

[51] J. Lee , K.G. Shin , I. Shin , A. Easwaran , Composition of schedulability analy-
ses for real-time multiprocessor systems, IEEE Trans. Comput. 64 (2015) 941–

954 .

http://www.arm.com/products
http://www.opensparc.net/
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0001
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0002
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0002
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0002
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0002
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0003
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0003
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0004
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0004
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0004
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0004
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0004
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0005
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0006
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0006
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0006
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0006
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0006
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0007
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0007
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0008
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0008
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0008
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0008
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0009
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0009
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0009
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0009
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0009
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0010
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0011
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0012
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0012
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0012
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0013
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0013
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0013
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0013
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0013
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0014
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0014
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0014
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0015
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0015
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0015
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0015
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0015
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0016
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0017
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0018
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0019
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0019
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0019
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0019
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0019
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0020
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0021
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0021
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0021
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0021
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0022
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0022
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0022
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0022
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0023
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0023
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0023
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0023
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0024
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0025
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0025
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0026
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0026
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0026
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0026
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0027
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0027
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0027
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0027
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0027
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0028
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0028
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0028
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0028
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0029
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0029
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0029
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0029
http://www.synopsys.com
http://www.smics.com
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0030
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0030
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0030
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0031
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0031
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0031
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0032
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0032
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0033
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0033
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0034
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0035
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0035
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0035
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0035
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0036
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0036
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0036
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0037
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0037
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0037
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0037
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0038
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0038
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0038
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0038
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0038
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0039
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0039
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0039
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0039
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0039
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0040
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0040
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0040
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0040
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0040
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0041
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0042
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0042
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0042
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0043
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0044
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0044
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0044
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0045
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0045
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0045
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0045
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0046
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0046
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0046
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0046
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0047
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0047
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0047
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0047
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0047

G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214 213

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

S

t

F

A

r

h

o

C

2

e

r

m

g

e

t

c

m

R

o

C

s

52] NIOSMul, Creating multiprocessor NIOS systems tutorial, http://www.altera.
com .

53] A. Pyka , M. Rohde , S. Uhrig , A real-time capable first-level cache for multi-
cores, in: Proceedings of 2013 1st Workshop on High-performance and Real-

time Embedded Systems (HiRES), 2013 .
54] Adapteva Parallella, http://www.adapteva.com/parallella/ .

55] J. Dai , L. Wang , An energy-efficient l2 cache architecture using way tag infor-
mation under write-through policy, IEEE Trans. Very Large Scale Integr. Syst.

21 (1) (2013) 102–112 .

56] P. Kongetira , K. Aingaran , K. Olukotun , Niagara: a 32-way multithreaded SPARC
processor, IEEE Micro 25 (2) (2005) 21–29 .

[57] D.H. Jim Mitchell , G. Ahrens , IBM POWER5 Processor-based Servers: A Highly
Available Design for Business-Critical Applications, White Paper, IBM, 2005 .

58] N. Quach , High availability and reliability in the itanium processor, IEEE Micro
20 (5) (20 0 0) 61–69 .

59] N. Guan , X. Yang , M. Lv , W. Yi , FIFO cache analysis for WCET estimation: a

quantitative approach, in: Proceedings of Design, Automation Test in Europe
Conference Exhibition (DATE), 2013 .

60] M. Paolieri , E. Quinones , F.J. Cazorla , G. Bernat , M. Valero , Hardware support
for WCET analysis of hard real-time multicore systems, in: Proceedings of 2009

36th Annual International Symposium on Computer Architecture (ISCA), 2009 .
[61] H. Shah , K. Huang , A. Knoll , Weighted Execution Time Analysis of Application-

son COTS Multi-core Architectures, Technical Report TUM-I1339, 2013 .

62] IBM ILOG CPLEX, http://www.ibm.com/software/ .
63] M.R. Guthaus , J.S. Ringenberg , D. Ernst , T.M. Austin , T. Mudge , R.B. Brown ,

MiBench: a free, commercially representative embedded benchmark suite, in:
Proceedings of 2001 IEEE International Workshop on Workload Characteriza-

tion (WWC), 2001 .
64] CHStone, http://www.ertl.jp/chstone/ .

65] DSPstone, http://www.ice.rwth-aachen.de/ .

66] C. Bienia , Benchmarking modern multiprocessors, Princeton University, 2011
(Ph.D. thesis) .

[67] UTDSP, http://www.eecg.toronto.edu/UTDSP.html/ .
68] Versabench, http://groups.csail.mit.edu/versabench .

69] H. Nikolov , et al. , Systematic and automated multiprocessor system design,
programming, and implementation, IEEE Trans. Computer-Aided Des. Integr.

Circ. Syst. 27 (2008) 542–555 .

[70] Malardalen Real-Time Research Center, http://www.es.mdh.se/ .
[71] ARM Artisan Physical IP Solutions, http://www.artisan.com .

Gang Chen received the B.E. degree in Biomedical Engi-
neering in 2008, B.S. degree in Mathematics and Applied

Mathematics in 2008, and M.S. degree in Control Science
and Engineering in 2011, from Xi’an Jiaotong University,

China. He is currently working towards to the Ph.D. de-

gree in the department of computer science, Technische
Universität München, Germany. His research interests in-

clude energy-aware real-time scheduling, certifiable cache
architecture design and high-performance computing.

Biao Hu received M.Sc. degree in control science and en-

gineering at Tsinghua University, China, in 2013 and B.Sc.
degree in control science and engineering at Harbin In-

stitute of Technology, China, in 2010. Now he is study-

ing in Technical University Munich as a Ph.D. student
in computer science. His research interests include the

scheduling analysis in mixed-criticality system, the parti-
tioned cache in hard real-time system, and methods and

tools for high performance computing in heterogeneous
system.

Kai Huang joined Sun Yat-Sen University as a professor
from 2015. He is also a senior researcher in the com-

puter science department, Technical University of Mu-

nich, Germany. He was a research group leader in the
fortiss GmbH in Munich Germany. He received his Ph.D.

degree in ETH Zurich, Switzerland in 2010. He received
B.Sc. and M.Sc. degree in computer science at Fudan Uni-

versity China 1999 and Leiden University The Nether-
lands 2005, respectively. His research interests include

techniques for the analysis, design, and optimization of

embedded systems. He was award for the Chinese Pro-
gram of Global Youth Experts 2015. He also received Chi-

nese Government Award for Outstanding Self-Financed
tudents Abroad 2010, Best Paper Awards from Int’l Symposium on Systems, Archi-

ectures, Modeling and Simulation (SAMOS), and General Chairs’ Recognition Award
or Interactive Papers in the IEEE Conf. on Decision and Control (CDC) in 2009.
Alois C. Knoll received the diploma (M.Sc.) degree in

Electrical/Communications Engineering from the Univer-
sity of Stuttgart, Germany, in 1985 and his Ph.D. (summa

cum laude) in computer science from the Technical Uni-

versity of Berlin, Germany, in 1988. He served on the fac-
ulty of the computer science department of TU Berlin un-

til 1993, when he qualified for teaching computer science
at a university (habilitation). He then joined the Technical

Faculty of the University of Bielefeld, where he was a full
professor and the director of the research group Techni-

cal Informatics until 2001. Between May 2001 and April

2004 he was a member of the board of directors of the
Fraunhofer-Institute for Autonomous Intelligent Systems.

t AIS he was head of the research group “Robotics Construction Kits”, dedicated to
esearch and development in the area of educational robotics. Since autumn 2001

e has been a professor of Computer Science at the Computer Science Department
f the Technische Universität München. He is also on the board of directors of the

entral Institute of Medical Technology at TUM (IMETUM-Garching); between April

004 and March 2006 he was Executive Director of the Institute of Computer Sci-
nce at TUM. His research interests include cognitive, medical and sensor-based

obotics, multi-agent systems, data fusion, adaptive systems and multimedia infor-
ation retrieval. In these fields he has published over 200 technical papers and

uest-edited international journals. He has participated (and has coordinated) sev-
ral large scale national collaborative research projects (funded by the EU, the DFG,

he DAAD, the state of North-Rhine-Westphalia). He initiated and was the program

hairman of the First IEEE/RAS Conference on Humanoid Robots (IEEE-RAS/RSJ Hu-
anoids 20 0 0), he was general chair of IEEE Humanoids20 03 and general chair of

obotik 2004, the largest German conference on robotics, and he served on several
ther organizing committees. Prof. Knoll is a member of the German Society for

omputer Science (Gesellschaft für Informatik (GI)) and the IEEE.

Kai Huang received the B.S.E.E. degree from Nanchang
University, Nanchang, China, in 2002, and the Ph.D. de-

gree in engineering circuit and system from Zhejiang Uni-

versity, Hangzhou, China, in 20 08. From 20 06 to 20 06,
he was a short-term Visitor with the TIMA Laboratory,

Grenoble, France. From 2009 to 2011, he was also a Post-
Doctoral Research Assistant with the Institute of VLSI De-

sign, Zhejiang University. In 2010, he also worked as a
Collaborative Expert in VERIMAG Laboratory, Grenoble,

France. Since 2012, he has been an Associate Professor

with the Department of Information Science and Elec-
tronic Engineering, Zhejiang University. His current re-

search interests include embedded processors and SoC
ystem-level design methodology and platforms.

Di Liu is currently a Ph.D. student in Leiden University.
He received his B.A. degree in 2007 and M.S. degree in

2011 both in school of electronics and information from
Northwestern Pyrotechnical University, Xi’an, China. His

research interests lie in the fields of energy-efficient mul-

ticore/manycore design, real-time system, system-level
multicore system design.

http://www.altera.com
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0048
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0048
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0048
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0048
http://www.adapteva.com/parallella/
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0049
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0049
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0049
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0050
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0050
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0050
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0050
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0051
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0051
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0051
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0052
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0052
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0053
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0053
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0053
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0053
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0053
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0054
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0055
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0055
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0055
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0055
http://www.ibm.com/software/
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0056
http://www.ertl.jp/chstone/
http://www.ice.rwth-aachen.de/
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0057
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0057
http://www.eecg.toronto.edu/UTDSP.html/
http://groups.csail.mit.edu/versabench
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0058
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0058
http://refhub.elsevier.com/S0141-9331(15)00199-4/sbref0058
http://www.es.mdh.se/
http://www.artisan.com

214 G. Chen et al. / Microprocessors and Microsystems 42 (2016) 200–214

V

(

r

u

d

Todor Stefanov received the Dipl. Ing. and M.S. degrees

in computer engineering from The Technical University of
Sofia, Bulgaria, in 1998 and the Ph.D. degree in computer

science from Leiden University, The Netherlands, in 2004.

Currently, he is an associate professor in the Leiden In-
stitute of Advanced Computer Science at Leiden Univer-

sity and the head of the Leiden Embedded Research Cen-
ter (LERC) which is a medium-size research group with

a strong track record in the area of system-level model-
ing and synthesis, programming, and implementation of

heterogeneous embedded systems. Dr. Stefanov is a recip-

ient of the prestigious 2009 IEEE TCAD Donald O. Peder-
son Best Paper Award for his journal article “Systematic

and Automated Multi-processor System Design, Programming, and Implementation”
published in the IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD). He is editorial board member of the International Journal of
Reconfigurable Computing. He has also been guest associate editor of ACM Trans-

actions on Embedded Computing Systems (2013). He is General Chair of ESTIMedia

2015 and Local Organization Co-Chair of ESWeek 2015. Moreover, he serves (has
served) on the organizational committees of several leading conferences, symposia,

and workshops, such as DATE, ACM/IEEE CODES+ISSS, RTSS, IEEE ICCD, IEEE/IFIP
LSI-SoC, ESTIMedia, SAMOS (as TPC member), and IEEE ESTIMedia, ACM SCOPES
as Program Chair). Dr. Stefanov (co-)authored more than 65 scientific papers. His

esearch interests include several aspects of embedded systems design, with partic-
lar emphasis on system-level design automation, multiprocessor systems-on-chip

esign, and hardware/software co-design.

Feng Li received the B.Tech. degree in microelectronics

from Sun Yaten University, China, in 2013. He is currently
a postgraduate student in Sun Yat Sen University. His re-

search interest is digital IC design for image processing

and EMI.

	Reconfigurable cache for real-time MPSoCs: Scheduling and implementation
	1 Introduction
	2 Related work
	3 Background
	3.1 Way-based cache partitioning
	3.2 Task model

	4 Framework overview
	5 Synthesis approach for scheduling and cache management
	5.1 Time-triggered task scheduling
	5.2 Cache management constraints

	6 Proposed hardware infrastructure
	6.1 Design consideration and challenge
	6.2 Reconfigurable cache architecture
	6.3 Cache ways management unit (CWMU)
	6.4 Cache control unit (CCU)
	6.5 Implementation of partitioned FIFO replacement policy
	6.6 Share-clock multi-port timer IP

	7 Task profiling and software implementation
	8 Experimental evaluations
	8.1 Speed and area measurements
	8.2 Physical chip synthesis results
	8.3 Functionality verification
	8.4 Timing predictability
	8.5 Runtime performance
	8.6 Reconfiguration overhead measurement

	9 Discusssion
	10 Conclusion
	 References

