
Microprocessors and Microsystems 37 (2013) 515–529
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
A system-level approach to adaptivity and fault-tolerance in NoC-based
MPSoCs: The MADNESS project
0141-9331/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.07.007

⇑ Corresponding author.
E-mail addresses: derino@alari.ch (O. Derin), cannella@liacs.nl (E. Cannella),

tuveri@diee.unica.it (G. Tuveri), paolo.meloni@diee.unica.it (P. Meloni), stefanov@
liacs.nl (T. Stefanov), fiorin@alari.ch (L. Fiorin), luigi@diee.unica.it (L. Raffo),
sami@elet.polimi.it (M. Sami).
Onur Derin a, Emanuele Cannella b, Giuseppe Tuveri c, Paolo Meloni c,⇑, Todor Stefanov b, Leandro Fiorin a,
Luigi Raffo c, Mariagiovanna Sami d

a ALaRI, Faculty of Informatics, University of Lugano, 6904 Lugano, Switzerland
b LIACS, Leiden University, 2333 CA Leiden, The Netherlands
c DIEE, University of Cagliari, 09123 Cagliari, Italy
d Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy

a r t i c l e i n f o
Article history:
Available online 2 August 2013

Keywords:
Embedded systems
MPSoCs
Network-on-Chip
Task migration
Fault-tolerance
a b s t r a c t

Modern embedded systems increasingly require adaptive run-time management of available resources.
One method for supporting adaptivity is to implement run-time application mapping. The system may
adapt the mapping of the applications in order to accommodate the current workload conditions, to bal-
ance the computing load for efficient resource utilization, to meet quality of service agreements, to avoid
thermal hot-spots, and to reduce power consumption. As the possibility of experiencing run-time faults
becomes increasingly relevant with deep-sub-micron technology nodes, in the scope of the MADNESS
project, we focused particularly on the problem of graceful degradation by dynamic remapping in pres-
ence of run-time faults.

In this paper, we summarize the major results achieved in the MADNESS project regarding the system
adaptivity and fault-tolerant processing. We report the results of the integration between platform level
and middleware level support for adaptivity and fault-tolerance. Two case studies demonstrate the sur-
vival ability of the system via a low-overhead process migration mechanism and by taking near optimal
remapping decisions at run-time.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Modern technology nodes provide huge integration capabilities.
This allows the multi-processor paradigm to be frequently and
effectively applied in the embedded systems domain. Embedded
system designers can compose computing platforms featuring an
ever-increasing number of processing elements and functional
blocks, placed on a single silicon die. Within the MADNESS project,
an integrated framework for the application-driven design of
MPSoCs was studied and implemented, aimed at supporting the
designer during such a complex process. The framework is com-
posed of several tools and IPs, interacting to achieve the identifica-
tion and the implementation of the optimal system configuration
within the context of streaming applications. One main point of
novelty in MADNESS is the emphasis on runtime system adaptivity
and fault-tolerance as two main factors to be considered when
designing the system. In this paper we focus on the description
of the mechanisms and methodologies that were defined within
MADNESS for achieving run-time migration of processes among
tiles, and for exploiting the proposed reconfiguration strategies in
the case of faults involving processing elements. Their implemen-
tation required the integration of newly developed IPs and
techniques at both platform level and middleware level, that will
be introduced more in detail in the next section and described in
those following. A more detailed description of the MADNESS
framework as a whole can be found in [1].
2. The MADNESS project approach to fault-tolerance and
adaptivity

Modern embedded systems increasingly require adaptive run-
time management. The workload that a system has to deal with
cannot be completely predicted at design-time. For example, new
applications can be loaded at run-time or, to comply with limited
power and energy budget, power-aware application management
techniques are often needed, such as the dynamic balancing of
the workload between the processing cores. Moreover, with

http://dx.doi.org/10.1016/j.micpro.2013.07.007
mailto:derino@alari.ch
mailto:cannella@liacs.nl
mailto:tuveri@diee.unica.it
mailto:paolo.meloni@diee.unica.it
mailto:stefanov@ liacs.nl
mailto:stefanov@ liacs.nl
mailto:fiorin@alari.ch
mailto:luigi@diee.unica.it
mailto:sami@elet.polimi.it
http://dx.doi.org/10.1016/j.micpro.2013.07.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


516 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
deep-sub-micron technology, the possibility of experiencing faults
in the circuitry is significant, requiring the system to feature
support for graceful degradation of the performance in the case
of malfunctioning.

Within MADNESS, to cope with these issues, we have devised
techniques that allow to change the mapping of the application
processes onto the processing cores at run-time. The development
of these techniques required the introduction of dedicated support
at several levels.

At the architectural level, the MADNESS approach considers a
distributed-memory tile-based template, where tiles are intercon-
nected through an NoC, to support the high flexibility and scalabil-
ity demands. The architectural template is customizable in terms
of the number of processors and network topology. It has been
extended with newly developed hardware IPs that facilitate the
run-time management and that expose to the applications the
needed communication and synchronization primitives, referring
to a message-passing model of computation. Extensions will be
described more in detail in Section 4.

At the software level, a specific layered infrastructure has been
devised, that enables the execution of applications described by
using the Polyhedral Process Network (PPN) model of computation
[2]. PPNs are composed of concurrent and autonomous processes
that communicate between each other by using bounded FIFO
channels. PPNs were chosen for several reasons. First, the simple
operational semantics of PPNs allows for an easy adoption of sys-
tem adaptivity and fault tolerance policies. For instance, the pro-
cess state that has to be transferred upon process migration does
not have to be specified by hand by the designer and can be smaller
compared to other solutions. Second, in PPNs the control is com-
pletely distributed, as well as the memories. This represents a good
match with the emerging MPSoC architectures, in which process-
ing elements and memories are usually distributed. Third, our ap-
proach exploits the pn compiler [3] to automatically convert static
affine nested-loop programs (SANLPs) to parallel PPN specifica-
tions and to determine the buffer sizes that guarantee deadlock-
free execution.

A middleware layer allows the implementation of the PPN
semantics onto the lower-level APIs provided by the architecture.
In addition, it is actually in charge of managing the mapping of
the PPN tasks, the communication between them and the migra-
tion process. The software/middleware infrastructure will be de-
scribed in Section 5.

Moreover, fault-tolerance support has been introduced at both
software and hardware levels. The idea is to improve dependability
of the system by exploiting the migration method in the case of
run-time faults in the processing cores. The tasks mapped on faulty
cores have to be migrated to fault-free ones at run-time, so that the
application can continue its execution without disruption. The rea-
sons behind this choice derive from the constraints presented by
MPSoCs. While in other architectural domains fault-tolerance sup-
port could be overcome by massive redundancy, this solution is
surely not applicable in our case, due to unaffordable hardware
overhead. On the other hand, considering a multi-core chip in
which multiple instances are present for each type of processing
element, the proposed technique requires moderate structural
redundancy. To this aim, several extensions to the migration mech-
anism are needed. Firstly, fault detection must be enabled so that
the migration can be triggered. Secondly, fault recovery must en-
abled by a fault-aware run-time environment. Thirdly, given that
a faulty processor cannot participate in the remapping process,
dedicated hardware is needed to ensure the migration functional-
ity to survive in the case of malfunctioning. Finally, a remapping
decision must be taken in such a way to incur the least perfor-
mance degradation. The details of the proposed solutions are de-
scribed in Section 6.
3. Related work

A survey regarding the state-of-the-art in run-time manage-
ment is provided in [4], where system adaptivity and fault-
tolerance are envisioned as important research challenges. The
infrastructure developed in our work addresses system adaptivity
and fault-tolerance by allowing process remapping at run-time.
In addition, our work includes a set of heuristics that can make
remapping decisions in the case of faults.

In [5], Almeida et al. describe a framework oriented to system
adaptivity which is close to our approach. In their work, the goals
of scalability and system adaptivity are achieved by using a
completely distributed task migration policy over a purely distrib-
uted-memory multiprocessor. Similarly to our approach, their
platform is programmed by using a process network model of com-
putation. However, our work is fundamentally different because it
enables the possibility to perform migration at any time within the
main body of the processes. This is a basic requirement in order to
allow fault-tolerance, because faults can happen at any time. By
contrast, in [5] the process migration is enabled only at fixed points
during the execution of processes.

Dynamic task remapping is also performed in [6,7] by means of
a task migration mechanism implemented at user-level or middle-
ware/OS level respectively. Both these approaches require the user
to specify checkpoints in the code at which migration can take
place. In our approach this is not needed because the state that
has to be migrated is automatically determined, thanks to the
properties of the adopted model of computation (Polyhedral Pro-
cess Networks [2]). Another difference concerns the inter-proces-
sor communication implementation. The systems considered in
[6,7] use a shared memory paradigm to implement inter-processor
communication. We argue that our approach, which uses a pure
distributed memory, intrinsically provides better scalability.

Task remapping for reliability purposes has been investigated in
[2] with the goal of throughput minimization on multi-core
embedded systems. The fundamental difference from our approach
is the use of design-time analysis for all possible scenarios and the
storage of all remapping information in the memory. We argue
that this technique incurs a large memory requirement to store
all fault scenarios.

In [9], a system-level fault-tolerance technique for application
mapping aiming at optimizing the entire system performance
and communication energy consumption is proposed. In particular,
the authors address the problem of spare core placement and its
impact on system fault-tolerance properties, and propose a run-
time fault-aware technique for allocating the application tasks to
the available, reachable, and fault-free cores of embedded NoC
platforms. In [9], application components running on a faulty core
are migrated altogether to available non-employed spare cores,
whereas, in our approach, tasks on the faulty core can possibly
be remapped to different fault-free cores, by exploiting in this
way the unused computing resources available in the other
processing elements of the system.
4. Architectural support

As previously mentioned, in the proposed approach the system
architecture can be seen as a network of tiles, interconnected by
means of an NoC communication infrastructure, as depicted in
Fig. 1.

The communication network is built by using an extended ver-
sion of the � pipes-lite library of synthesizable components [10].
The topology can be completely arbitrary, since it includes a fabric
of routers and links that can be almost entirely customized.
Network access points are Network Interfaces (NIs), that are in



Fig. 1. A general overview of an example template instance.

O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 517
charge of constructing the packets on the basis of the communica-
tion transactions requested by the cores. NIs, placed at the inter-
face between processing elements and the communication
network, have been extended with support for message-passing
communication model. A programmable message manager with
DMA capabilities is integrated with the NI inside a module called
Network Adapter (NA), described more in detail in Section 4.2.
The grey part in Fig. 1 highlights the modules devoted to fault-tol-
erance support. The self-testing module (STM) is a hardware mod-
ule in charge of cooperating with the processing element by
supporting the execution of software testing routines for detecting
permanent faults in the processor. In the case of the detection of a
fault, the task migration hardware (TMH) is responsible for
extracting the critical data from the tile and for supporting the
migration of the tasks running on the faulty processor to a fault-
free one. The details of the fault-tolerance support are described
in Section 6.

The processing element architecture is not fixed. Any kind of
RISC or ASIP processor with standard bus-based signal interface
can be easily integrated. No instruction set extensions are needed,
since communication and synchronization mechanisms are man-
aged accessing memory-mapped registers at the network inter-
faces. The template obviously allows the connection of peripheral
controllers that can be connected as network nodes and receive
transactions initiated by processing elements.
4.1. Programming model

Reference primitives implementing message-passing communi-
cation are built, according to the general definition of such model,
upon two base functions: send () and receive (). These two
primitives are implemented in C, and interact with the hardware
structures described in Section 4.2. According to the usual
message-passing signatures, to send a message with a send (),
the programmer has to specify the address (SendAddress hereafter)
inside the private memory that contains the information to be sent
(message data), a tag assigned to the message (SendTag), the size of
the transfer (SendDim), and the ID of the destination processor (or
process, in the case of multi-context execution in the processing
elements – SendID). The receive () parameters are the tag of the ex-
pected message (ReceiveTag), the sender ID (ReceiveID) and the ad-
dress where the received message data has to be stored
(ReceiveAddress). Two implementations of the receive () are pro-
vided, with blocking and non-blocking behaviour.

4.2. Message passing support

The Network Adapter architecture is depicted in Fig. 1 (left side).
To achieve higher performances, both the instruction and data pri-
vate memories of the processor have two access ports (this feature
is natively available in FPGA devices), in order to allow the proces-
sor to keep on accessing code and data from one instruction and
one data port, while, at the same time, the other ports can be used
to directly load/store data from/to the memory in the case of mes-
sage send/receive. In this way, communication and computation
can overlap, potentially leading to a significant speed-up. The NA
integrates a local bus, that, according to the address requested by
the processor interface, enables access to:

� the private memory,
� a module called DMA message-passing handler (MPH),
� a set of performance counters to obtain statistics about the

application execution.

The local bus is also in charge of managing the bus arbitration,
when using single-port memories. The MPH embeds a set of mem-
ory-mapped registers that are programmed by the processor, to
control send and receive operations, setting the previously de-
scribed parameters.

It also includes an address generator in charge of generating the
addresses when the private memories must be accessed from the
port reserved for message passing.

When the processor wants to call a send (), the code that imple-
ments the primitive stores the required values into the
send-related memory-mapped registers. As soon as the registers
are programmed, the address generator starts to load SendDim
words from the memory, starting from address SendAddr, and
propagates them to the NI. The destination address requested for
the network transaction is obtained by the address generator
according to the content of SendID, translating the destination pro-
cess ID into the network address of the destination processor pri-
vate memory.

At the other end of the communication, the processor needs to
execute a receive () to complete the transaction. It may happen that
the receive () has not been called at the moment the packets



518 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
composing the message actually arrive to the destination network
node. In this case the message data is stored in the memory, inside
a (configurable) memory buffer reserved for such a purpose. The
identification fields related to the incoming message (sender, tag,
buffer address) are stored inside an event file, in order to enable
the receive () primitive to retrieve the message from the memory
when it will eventually be executed. The receive () code, as a first
step, stores the parameters inside three memory-mapped registers.
Once such registers are programmed, the processor must keep
accessing the DMA, scanning the event file locations, to check if
the message under reception is already inside the buffer. In the
case of a match, the processor copies the message data from the
buffer to the ReceiveAddress. If the message is not found in the
event file, the processor keeps polling the DMA handler, where a
dedicated circuitry is in charge of comparing the incoming mes-
sages with the contents of the three registers. In the case of a
match, the message data is stored in memory, directly at the loca-
tion identified by ReceiveAddress. In order to allow partial buffer
de-fragmentation, the buffer is treated as a list.

4.3. Interrupt generation support

A tag decoder has been instantiated inside the Network Adap-
ter. It is in charge of detecting a set of pre-determined tag config-
urations, that are reserved for the purpose of remote interrupt
generation. In the case of match, the tag decoder triggers an inter-
rupt signal that is connected to the processor interrupt controller.
This feature can be used to allow a processor in the system to
generate an asynchronous event on another processor, such as
the initiation of the migration process.

5. Software/middleware infrastructure

Each tile of the system described in Section 4 is endowed with
the software/middleware stack depicted in Fig. 2. The application
level resides at the top of the software stack. In MADNESS, applica-
tions are specified by using the Polyhedral Process Networks
(PPNs) model of computation. PPNs represent a special class of
Kahn Process Networks, and are composed of concurrent processes
that communicate by using bounded FIFO channels. The PPN
semantics forces a process to block on read, when trying to read a
data token from an empty FIFO, and block on write, when trying
to write data to a full FIFO.

At the bottom of the software stack, the local operating system
provides basic functionalities such as process management (pro-
cess creation/deletion, setting process priorities) and multitasking
capabilities.

The middleware level of the software stack, highlighted in the
left part of Fig. 2, comprises the three main components described
in the following Section 5.1, 5.2 and 5.3.

5.1. PPN communication API

Based on the programming model described in Section 4.1, the
PPN communication API provides a set of primitives which allow
Fig. 2. Proposed software stack in MADNESS.
the execution of applications modeled as PPNs on NoC-based
MPSoC platforms. In particular, this API must enforce the seman-
tics of the PPN model of computation over NoC implementations
with no direct remote memory access, as the one considered in
MADNESS.

Several methods to implement the PPN communication over
NoC-based MPSoCs are described in [11], namely Virtual Connector,
Virtual Connector with Variable Rate, and Request-driven. However,
in MADNESS we adopt the Request-driven communication ap-
proach as it leads to an easier implementation of the migration
mechanism, thanks to the reduced number of synchronization
points between processes of this approach.

An example of a PPN producer–consumer processes communi-
cating over an NoC is shown in Fig. 3. In the Request-driven
approach, each FIFO buffer of the original PPN graph is split into
two buffers, one at the producer tile and one at the consumer tile.
For instance, B1 in the top part of Fig. 3 is split in BP

1 on tile1 and BC
1

on tile2. The size of these buffers is set such that, for all channels Bi

in the original graph, BP
i ¼ BC

i ¼ Bi. Moreover, the transfer of tokens
from the producer tile to the consumer tile is initiated by the con-
sumer. This means that every time the consumer is blocked on a
read at a given FIFO channel, it sends a request to the producer to
send new tokens for that channel. The producer, after receiving this
request, sends as many tokens as it has in its software FIFO imple-
menting that channel.
5.1.1. Interrupt-based request messages
In [11] we implemented the Request-driven approach by using a

passive middleware. This means that the synchronization protocol
was implemented by polling the Network Adapter buffer on each
tile to fetch incoming requests and then react consequently. Com-
pared to [11], we have extended the architectural support for the
Request-driven approach. With the mentioned extension, request
messages generate an interrupt at the producer tile. In this case,
the interrupt handler can serve the incoming request immediately.

This interrupt-based implementation of the handshake has sev-
eral advantages. For instance, it relieves the processor from the
burden of periodically performing non-blocking receives to check
for requests incoming from the successor processes. Moreover,
the asynchronous trigger can improve the predictability of the
communication scheduling. Request messages can be served at
any time, as soon as they arrive at the producer tile, improving
the communication and computation overlapping. However, in
the passive middleware, sending data only at fixed points during
the execution allows easier control of the state of the handshake
in the case of task migration. A preliminary assessment of the
effectiveness of the interrupt-based request mechanism is
presented in Section 7.2.

Note that although the interrupt-based approach improves the
predictability of the communication compared to the passive
Fig. 3. Producer–consumer inter-tile communication implementation.



O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 519
request-driven approach, they both introduce a latency in the com-
munication between two processes running on different tiles. A di-
rect point-to-point connection between the two considered tiles
would result in faster inter-tile communications. However, this
communication efficiency would come at the price of a much re-
duced system adaptivity.
5.2. Process migration mechanism

In the MADNESS project we have developed and evaluated a
predictable and reliable process migration mechanism which is
briefly described in the following. The process migration mecha-
nism is based on mainly two starting assumptions:

1. Process migration is based on process replication, which means
that the code of the migratable tasks is copied in each tile of
the system. Upon migration, only the state of the migrating pro-
cess has to be transferred.

2. To take into account the run-time remapping of processes over
the system, each tile stores in its local memory a middleware
table, which is used to refine the generic communication prim-
itives to mapping-dependent function calls.

Beside custom-made functions implemented in the middleware
layer, the process migration mechanism relies on system calls of
the underlying operating system (OS), which in our case is Xilker-
nel, provided by Xilinx. For instance, when the system is started,
all the task replicas on all the tiles are created. However, only
the replicas which are included in the initial mapping are acti-
vated. Process replicas which are not included in the initial map-
ping are created anyway at startup in order to shorten in this
way the time required to activate the replica in the case of
migration.

A simple example of a process migration scenario is depicted in
Fig. 4. The figure shows the tiles directly involved in the process
migration procedure, which are:

– the source tile, namely the tile which runs the process before the
migration;

– the destination tile, which is the tile that will execute the process
after the migration;

– the predecessor tile(s), which runs the predecessor process (es);
– the successor tile(s), which executes the successor process(es).
Fig. 4. Migratio
The structure of the PPN process has been modified to allow
migration at any point within the process main body. For further
details refer to [11].

The migration mechanism requires actions from all the tiles de-
picted in Fig. 4. The migration decision, namely which process has
to be migrated and where, is taken by the resource manager by
using the policies described in Section 6.2.5. Then, the resource
manager sends a specific control message to the source tile. The
source tile broadcasts this control message to the destination, pre-
decessor and successor tiles to complete the migration procedure.

For each of the tiles involved in the migration procedure, the
detailed list of required actions are explained below.
5.2.1. Actions on the source tile
On the source tile, the process has to be stopped, and its state

saved and forwarded to the destination tile. For a given PPN pro-
cess, the state is composed only of its input and output FIFO buffers
and its iterator set. The iterator set is a set of variables which de-
fines the current iteration of the PPN process. The source tile takes
also care of propagating the migration decision to the other tiles
involved in the migration procedure. This propagation is depicted
by the dashed arrows in Fig. 4. The mentioned actions can be car-
ried out by the processing element of the considered tile, in case of
migration for system adaptivity purposes. However, in case of a
migration triggered by a fault in the processing element of the
source tile, similar actions (with minimal modifications) have to
be performed by the TMH of the faulty tile.
5.2.2. Actions on the destination tile
The destination tile receives a specific message for process acti-

vation. The migration procedure is handled by creating the re-
quired software FIFOs and by activating the replica of the
migrated by using the corresponding OS call. Before the process
replica is started, the state of the migrated process is resumed. This
implies that the input and output FIFOs of the migrated process are
copied, and the execution starts from the beginning of the iteration
that has been interrupted on the source tile. Note that the copy of
input/output FIFOs and the fact that the execution is started from
the beginning of the interrupted iteration introduce a latency in
the execution of the migrated process. However, the primary goal
of our work is to guarantee the survival of the system in the case of
faults, with minimal hardware overhead. We assume that the sys-
tem can tolerate a certain latency in the case of a fault. Moreover,
n scenario.



520 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
the experimental results in Section 7.3 show that this latency over-
head can be minimal in real-life applications.
5.2.3. Actions on predecessor and successor tile(s)
On these tiles, the only required step is the update of the

middleware tables where the current mapping of the processes
in the system is stored. This way, new tokens or new requests
meant for the migrated PPN process will be sent to the destina-
tion tile.
5.3. Run-time manager

The run-time manager is the entity which makes decisions
concerning the adaptation of the system to changing resource
availability and/or changing user requirements. In the MADNESS
project, the developed run-time manager focuses on fault-toler-
ance and uses the techniques described in Section 6.2.5. In this
context, the main responsibility of the run-time manager is to de-
cide to which resources migrating the processes running on a tile
which experiences a permanent fault. However, the tasks of the
run-time manager may be different, according to the desired
goals.
6. Fault-tolerance support

The MADNESS project focuses on the development of fault-tol-
erance solutions which are not dependent on a technology-related
low-level fault model, but rather on technology-abstracting func-
tional-level error models. The implemented fault-tolerance ap-
proaches focus on the detection of run-time faults and on the use
of reconfiguration strategies at different levels. In the MADNESS
framework, three main types of components are considered, i.e.,
processing cores, storage elements, and NoC modules. In this paper,
we describe the work done to enable continuity of service in the
presence of permanent faults in processing elements when run-
ning PPN applications on NoC multiprocessors. As a basic assump-
tion, online software-based self-testing is adopted for detecting
permanent faults in processors. The fault model comprises
stuck-at faults which may represent various types of errors at
the processor level such as halting of the processor (crash), wrong
computation and execution of arbitrary code in the program
memory, etc. The NoC components and memories are assumed to
be designed so as to grant continuity of service even in the pres-
ence of (a predetermined set of) faults such that they exhibit a
much smaller IP-level failure rate. We assume that one CPU at a
time can fail and that remapping has been completed before possi-
bly a new fault appears in another CPU.

The proposed solution encompasses support for fault detection
and fault recovery via online task remapping. It involves hardware
and software modifications on top of the MTOS, message-passing
support, and the NORMA-based NoC platform. The proposed fault
recovery technique is based on rolling back the execution at the
granularity of a single iteration of a PPN process. Fault detection re-
lies on executing the self-testing routine at the end of each itera-
tion of a process. If the test is successful, the results of the
current iteration, which are to be written to the output FIFO chan-
nels of the process, are guaranteed to be correct. If the test fails, the
recovery mechanism is started with the help of TMH, which is
responsible for notifying the run-time manager and for transfer-
ring the state of the tasks, i.e., the iterators of the tasks and the to-
kens in the input and output FIFO channels. In the remainder of
this section, the fault detection and recovery mechanisms are ex-
plained in detail by describing the implemented hardware and
software support.
6.1. Fault detection

Depending on the criticality of the application, two different
approaches can be applied for the detection of faults in the
processing cores, i.e., periodic online self-testing routines, and
self-checking patterns at task level [1].

6.1.1. Self-testing module
If the application is not critical and a limited amount of error

propagation is acceptable, a self-testing routine is executed period-
ically by the processing element to detect its permanent faults
[12–14]. The Self-testing module (shown in grey in Fig. 1) supports
the execution of testing routines in each tile of the Network-
on-Chip (NoC) which includes a processing element. Hardware
modules are needed whenever it is not possible to implement tech-
niques such as distributed testing [15], which relies on the avail-
ability in the same platform of several instances of the same type
of general purpose processors. The STM checks the results of the
software testing routines and activates the procedures for task
remapping and migration, as described in Section 6.1.1. The STM
is in charge of collecting the outputs of the processor when execut-
ing the software routine, of calculating the signature of the outputs
of the processor, and of checking it against the expected signature,
in order to verify the correctness of the routine execution. The sig-
nature is calculated applying a cyclic redundancy check (CRC) algo-
rithm to the expected and obtained outputs of the processor [16].
The testing routine, as well as the signature of the expected results,
is stored directly in the processor local memory, and it is scheduled
by the operating system – memories are by assumption protected
against faults by employing standard fault tolerant techniques
based on the use of Error Correcting and Detecting codes [16]. Re-
sults of the execution of the software routine are written directly
into the STM.

Fig. 5 shows the architecture designed for supporting the exe-
cution of the software testing routines, which is intended to work
as a wrapper around the processor for helping detecting perma-
nent faults in it. The STM is memory-mapped on the tile’s system
bus and it can be directly accessed by the processor. In the pro-
logue of the software testing routine, the expected signature is
copied in the slv_signature registers. Then, the STM is activated,
by writing into the slv_start_stop register. When active, the STM
samples the outputs of the device under test (DUT) (i.e., the
processor) and copy them in the slv_data_in registers. For each
new data inserted in the slv_data_in registers, the CRC parallel
module calculates immediately the value of the signature for
the samples received up to that moment. At the end of the exe-
cution of the software routine, the STM is stopped by writing into
the slv_start_stop register. The STM compares the value stored
into the slv_signature registers with the final signature calculated
by the CRC parallel module. If the two values does not match, the
fault_detected signal is set to ‘1’ for a clock cycle. The STM also
supports detecting crash errors. A fault may result in the proces-
sor not executing the self-testing routine at all. A timer is intro-
duced inside the STM to detect such errors. If the self-testing
routine does not complete within the time limit, a crash error
is assumed and the fault_detected signal is raised. Otherwise, if
the self-testing routine is completed (inferred by a write into
the slv_start_stop register), the timer is stopped until the next
execution is set and started.

6.1.2. PPN-level self-checking patterns
For critical applications, concurrent self-checking techniques at

process network level are employed [17]. In the case of the
N-modular redundancy (NMR) pattern, N instances of the same task
are created between a fork and a voter task. The fork task simply
forwards same copies of the token to each redundant instance of



Fig. 5. Overview of the STM architecture.

O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 521
the task, whereas the voter task determines the most recurring
result produced by the redundant task instances. For N P 3, the vo-
ter is able to detect the faulty node and mask the error. In order to
yield higher reliability, the redundant instances should be mapped
onto different processing elements. The task graph can be trans-
formed with patterns in various ways leading to different levels
of reliability.

6.2. Fault recovery

The fault recovery mechanism relies on a number of changes
done at the application, run-time and hardware levels.

6.2.1. Modifications to the PPN processes
A part of the fault tolerance support involves the modification

of process bodies. Algorithm 2 shows how the basic process body
shown in Algorithm 1 is modified to support the fault recovery
mechanism.

Algorithm 1. A basic PPN process
1: for (i = 0; i < M; i++) do
2: for (j = 0; j < N; j++) do
3: read (in, CH1);
4: out = f (in);
5: write (out, CH2);
6: end for
7: end for
All PPN processes have the same code structure (as shown in
Algorithm 1). Nested loops iterate, for a given number of times,
the body of the process, which is split into three main parts. First,
the process reads the input data tokens from (a subset of) the input
channels. This is represented by the read() statements in the algo-
rithm. Second, the process function (f) produces the output tokens
by processing the input tokens. Finally, the output tokens are writ-
ten to (a subset of) the output channels represented by the write()
statements.
Algorithm 2. The PPN process template for the proposed fault
tolerance mechanism
1: if (migration) resumeState;
2: for (i = i0; i < M; i++) do
3: for (j = j0; j < N; j++) do
4: acqData (CH1);
5: read (in, CH1);
6: setTimer ();
7: out = f (in);
8: selfTest ();
9: write (out, CH2);
10: relSpace (CH1);
11: end for
12: reset j0;
13: end for

According to Algorithm 2, when the thread starts, it checks if
the migration flag is set (line 1). If the migration flag is false, it
means that the process starts from scratch, with empty input
and output FIFOs and i0 = j0 = 0. Otherwise, it means that a
migration has been performed, so the process state is reloaded.

Since the PPN model definition requires a stateless process
function (for example f in Algorithm 1, i.e., a function whose
execution does not depend on the previous iterations), the state
of a PPN process is represented only by:

� the content of its input and output FIFOs;
� its iterator set, namely the values of the nested loop iterator

variables, see (i, j) in Algorithm 2, lines 2 and 3;

In functions requiring to have a state, the function state is
represented in the PPN model by a stateless function with FIFO
self-edges.

Due to the request-based flow control policy used for imple-
menting the KPN semantics on the NoC platform, the pending
requests on the outgoing channels from the faulty processing ele-
ment also constitute in addition part of the state to be recovered.
All the three state components listed above are transferred from
the faulty tile to the run-time manager upon fault detection.



522 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
Lines 2 and 3 differ from the basic process structure in Algo-
rithm 1 because the iterators inside the for loops do not start from
zero in case of migration. Instead, they start from the values i0 and
j0, which represent the iteration at which the process was inter-
rupted by the fault detection while running on the source tile. After
the first complete execution of the inner for loop, starting from j0,
the value of j0 is set to zero in line 12 such that the next execution
of the inner loop starts correctly with j = 0.

The read communication primitive is different from the one
used in the basic process structure. It is split into three separate
operations (see lines 4, 5, 10). First, the input channel (CH1) is
tested to verify the presence of an available data token, using the
acqData () function in line 4. Then, the token is copied from the
software FIFO to the input variable which will be processed by
the process function f. The copy operation is performed in line 5.
However, differently from the normal read primitive, the memory
locations occupied by the read token are not released immediately.
The actual release, which consumes the data from the FIFO by
increasing the read pointer, takes place only in line 10 (relSpace
(CH1)). In this way, if a fault is detected before the release instruc-
tion, the process can be correctly resumed on the destination tile
since it will read again the same input token, because the read
pointer is not changed. Note that, in case of multiple input or
output channels, the release operations should be grouped
together and placed right after the main body of the process, in
order to guarantee a consistent process state.

In order to tolerate crash errors, which result in the processor
not executing any instructions, a watchdog timer is set to expire
within a time limit (line 6). This time limit is greater or equal to
the sum of the worst case execution time of process function (f)
and the self-testing routine. In the case that the program counter
reaches the end of the self-testing routine, the timer is reset before
it times out. Otherwise, the timer signals the TMH module about
the fault detection. The faults can be more subtle and may result
in computational errors. Such faults are detected by running a
self-testing routine as shown in line 8. In the case that the self-
testing routine produces a different output than normal, it is
detected by the self-testing module, which in turn signals the fault
detection to the TMH.

If a crash fault occurs between the end of self-testing routine
(line 8) and setting of the timer (line 6), it cannot be detected.
Moreover, if a fault occurs just after executing a self-test success-
fully (line 8), it may result in a corrupt data to be written to the
channel while executing line 9. However, we can argue that the
time window (thus the probability) for such cases is very small
as the majority of the time will be spent in executing the process
function f and the self-testing routine.

6.2.2. Fault-aware remapping support
The actors involved in the fault recovery procedure are the fol-

lowing: (i) processing element of the source tile (i.e., the tile that
experiences the fault); (ii) self-testing module in the source tile;
(iii) task migration hardware module in the source tile; (iv) run-time
manager which runs on one of the fault-free tiles; (v) predecessor
and successor tile(s): the tile(s) which has a producer or a consumer
task of any of the tasks on the source tile; (vi) new tile(s): the tiles
that will run at least one of the tasks on the source tile after fault
recovery; (vii) other tile(s): the fault free tile(s) that are neither the
source tile, a new tile, a predecessor or a successor tile.

After executing the self-testing routine, if a fault is detected on
the source tile, the STM issues a fault detection signal to the TMH.
The TMH isolates the faulty processor. The TMH reports the fault to
the RM by sending a fault detection message (the selection of the
RM tile is explained in Section 6.2.4). The RM calculates the new
mapping of the tasks using the remapping heuristics (see Section
6.2.5). The RM informs the predecessor/successor tile(s) and the
other tiles about the new mapping of the tasks to update their
middleware tables. The predecessor/successor tiles send a flush
message to the faulty node to make sure that there are no tokens
or requests still travelling to the faulty tile. Upon the reception of
flush messages from predecessor/successor tiles, the TMH
responds with a flush message to make sure that there are no to-
kens or requests still travelling to predecessors or successors. Then
the TMH sends to the RM the state of the tasks, which consists of (i)
the iterators of the loops in the case of PPN tasks, (ii) the informa-
tion of the FIFO channels (pending requests and number of tokens
in the FIFO channels), (iii) the tokens in the input and output FIFO
channels. After the RM receives the tasks’ state from the TMH, the
procedure goes on similar to the software-based process migration
(without updating the predecessors and successors again) as de-
scribed in Section 5.2. The RM sends these data to the new tile(s)
according to the new mapping decision. Then the RM sends to
the new tiles a task activation message along with the new map-
ping information allowing updating of their middleware tables
and the activation of migrated tasks. This finalizes the fault recov-
ery procedure.

6.2.3. Task migration hardware module
The task migration hardware (TMH) module is mainly responsi-

ble for extracting the critical data from the faulty tile. As shown in
Fig. 1, the TMH resides alongside the Network Adapter of each tile.
It receives as input a fault detection signal from the STM. Upon the
detection of the fault, the TMH carries out the following actions:

1. the TMH isolates the faulty processing core,
2. the TMH notifies the run-time manager (RM) running on the

fault-free core with the nearest bigger index,
3. the TMH receives the flush messages from all predecessor and

successor tiles,
4. the TMH sends the state of all tasks and channels (pending

requests and FIFO tokens) to the RM,

In step 3, TMH waits for all flush messages which guarantees
that the tokens (from the predecessor tiles) and the requests (from
the successor tiles), which may be in transit on the NoC at the time
of fault detection, are received at the faulty node before TMH sends
the migration data to the RM.

The TMH module carrying out this functionality has been de-
signed and integrated into the platform. The main figure of merit
adopted when designing this module has been circuit complexity,
so as to guarantee that failure rate will be much lower than the
processing core.

The interface and the internal block diagram of the TMH are
shown Fig. 6. The interface consists of ports allowing (i) to receive
the fault detection signal from the self-testing module
(fault_detected), (ii) to isolate the processor (to_pu_stall), (iii) to
be read/written by the processing element from/to the register file
inside the TMH (from/to_pu_⁄), (iv) to send data via the NoC
(to_dma_⁄), (v) to receive the flush messages from predecessor
and successor tiles. It consists of a control unit implementing the
finite state machine, a register file, a multiplexer and shmpi_send
registers. The register file contains memory-mapped registers
which store (i) a pointer to the fault detection control message
stored statically in the main memory, (ii) the tile ID that acts as
the RM for the tile, (iii) the size of the control message, (iv) the spe-
cial tag value used to send data carrying interrupt messages over
the NoC, (v) the tasks mapped on the tile, (vi) the pointer to the
array storing task states, (vii) the size of the task state, (viii) the
special tag value used to send task states to the RM, (ix) the chan-
nels mapped on the tile, (x) the special tag value used to send
channel data to the RM, (xi) a reduced middleware table containing
for each channel the pointer to the software FIFO, the number of



Fig. 6. Interface and internal block diagram of the task migration hardware module.

O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 523
tokens in the channel, the size of the token type and a pending
request flag.

When an application is launched, the PE initializes the TMH
registers. During normal execution (when the PE is not faulty),
whenever there is a read or a write, the number of tokens is
updated in the TMH register for the corresponding channel. The
read and write operations of the TMH take only cycle in order to
reduce the overhead of the update operation. After the fault
detection, TMH carries out a number of shmpi_send operations by
using the programmable DMA to notify the RM, and sending states
of mapped tasks and data of mapped channels.

6.2.4. Decentralization of the run-time manager
Centralized techniques represent a single point of failure and

thus they should be avoided in fault tolerance mechanisms. In
our fault recovery mechanism, RM is the main actor coordinating
the recovery process. Therefore it is important that the RM is not
centralized. As a solution to this problem, the RM is run as a
dormant thread on each processing element. Any tile can assume
the role of the RM when it receives an interrupting fault detection
message. A simple algorithm is used to assign an RM instance to
each tile. The TMH of a faulty tile sends the fault detection message
to the RM instance assigned to its tile. The RM assignment
algorithm is as follows: a tile chooses as its RM the tile that has
the smallest index that is greater than its own index and that is
fault-free. If there is no such tile, it chooses the tile that has the
greatest index that is smaller than its own index and that is
fault-free. This makes sure that a fault-free RM tile is assigned to
each tile. Given the single fault assumption, when a fault occurs,
every fault-free tile is informed about the faulty tile and update
their local information about the fault status of other tiles. If the
faulty tile is the currently assigned RM tile of any tile, such tiles
re-run the RM assignment algorithm.

6.2.5. Online task remapping strategies
A fundamental step in the fault-tolerance support is deciding on

the new cores where the tasks formerly executed by the faulty
cores shall continue their execution. In order to provide a graceful
degradation, the remaining fault-free cores of the platform should
be used as optimally as possible. The remapping problem can be
solved by an exhaustive design-time analysis that evaluates all
possible fault scenarios of the system and embeds in the memory
the optimal remapping results to be used when faults are encoun-
tered [2]. An alternative approach is to use online task remapping
heuristics [18], whereby the decision is taken by a remapping
heuristic executed at run-time. Such an approach requires less
memory, it does not require a heavy design time analysis, and it
can work even if the application running on the platform is not
known a priori. However, the estimation of the performance
degradation may result less accurate: in fact, it is not possible to
rely on detailed simulations performed at design time and analyt-
ical models of the system applications should be employed instead.
In the MADNESS project, we have investigated both approaches. In
this paper, we adopt the online heuristics approach, in particular,
the NMS-A/B/C heuristics proposed in [18].

As an example, the NMS-A heuristic can be summarized as
follows: let Lj be the set of tasks assigned to core nj. Lf is the set
of tasks to be migrated from the faulty node nf. TN

j is the sum of

the execution times of tasks assigned to node nj. TTN
capij

is the execu-

tion time of task ti if assigned to node nj. According to the NMS-A
heuristic, inputs to the algorithm implementing it are the initial
mapping L, faulty node set nf, and TN before the fault occurrence.
The output is the new mapping L. The task ti 2 Lf is remapped on
the core that minimizes its finishing time. All of the NMS-A/B/C
heuristics are implemented on the MADNESS platform as a part
of the run-time manager shown in Fig. 2, and the selected one is
called upon the reception of the fault detection message from the
TMH.
7. Experimental results

In this section, we describe a set of experiments that we per-
formed in order to evaluate the implemented system adaptivity
and fault-tolerance techniques. The application case studies are de-
scribed in Section 7.1. We map these applications onto a 2 � 2
mesh of general-purpose processors, as detailed in Section 4,
implemented on a Virtex-6 FPGA board.

Firstly, we verify that the PPN communication API enables in-
ter-tile communication according to the PPN semantics and we
compare the passive and active implementation of the middleware.
Then, we present a remapping process, exploiting the migration



Table 1
Execution times of M-JPEG processes.

Process Avg. execution time (c.c.)

M0 1923
M1 123,626
M2 69,254
M3 47,989

Fig. 8. Simplified PPN specification of the H.264 decoder.

Table 2
Execution times of H.264 processes.

Process Avg. execution time (c.c.)

H0 95,643
H1 55,775
H2 33,645
H3 9724
H4 4075

Sobel M-JPEG 
0,00E+000 
5,00E+007 
1,00E+008 
1,50E+008 
2,00E+008 
2,50E+008 
3,00E+008 
3,50E+008 

Benchmark Applications 

Ex
ec

ut
io

n 
C

yc
le

s 
 

RD 

RD-int 

Fig. 9. Impact of the interrupt-based request messages on the Request-driven flow
control on two benchmark applications.

524 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
mechanism detailed in Section 5.2 and the fault recovery
mechanism described in Section 6.2. Finally, we test the accuracy
of such strategies to verify the optimality of the chosen migration
decision.

7.1. Case studies

We chose as case studies two streaming applications in the
multimedia domain, i.e., an M-JPEG encoder and a H.264 decoder.
The two applications are described below.

7.1.1. M-JPEG encoder
The PPN specification of the M-JPEG encoder is shown in Fig. 7.

The size of tokens ranges between 16 and 1024 bytes, and all of the
channels are written 128 times, except the output of initVideoIn
which is written only once per frame. Fig. 7 also shows how some
processes have been merged to map the application on the NoC
platform, e.g. VLE and videoOut processes have been merged into
process M3. The numbers of clock cycles required for the execution
of each process of the M-JPEG application are summarized in Table
1. Comparing these numbers with the amount of inter-process
communication one can infer that this application has a high com-
putation/communication ratio.

7.1.2. H.264 decoder
The simplified PPN specification of this case study is shown in

Fig. 8. In the final implementation, the nodes get_data,parser, and
cavlc have been merged into a single process, H0. In this case study,
the size of the exchanged tokens ranges between 1 and 5000 bytes.
The execution time of each process of the H.264 decoder applica-
tion are shown in Table 2.

7.2. Flow control functionality assessment

Mapping the application on the hardware platform allowed us
to test the functionality of the PPN communication APIs. We show
the results obtained for the M-JPEG application. As mentioned ear-
lier, the M-JPEG encoder is computation-intensive, so communica-
tion latencies due to the flow control do not have a deep impact on
the overall performances [11]. We tested the Request-driven flow
control by comparing the previously proposed approach with
interrupt-based implementation. The two approaches did not lead
to significant differences in the M-JPEG case study, as shown in
Fig. 9. Thus, in order to compare them over a more communica-
tion-intensive benchmark, we repeated the experiment executing
a Sobel filtering kernel on the platform. In this case, the execution
time was significantly reduced (ca. 64%), as expected.

7.3. Remapping heuristic and process migration execution time
overhead

We evaluate the proposed process migration mechanism and
remapping heuristic overhead by using the setup shown in the left
part of Fig. 10. Processes M0–M3 in the figure refer to the specifica-
tion represented in Fig. 7. Initially, M0 is mapped on tile3, M1 on
tile1, M2 and M3 on tile4. This process mapping results in a total
Fig. 7. PPN specification of the M-JPEG encoder.
execution time of the M-JPEG application of Texe(noMig) =
17,332,807 clock cycles (c.c.) in the case of no migration.

However, in this experiment at time s0 we trigger an interrupt
on tile3, which activates the run-time manager. This interrupt repre-
sents an event triggering a change of the task-to-processor map-
ping (e.g. a switch to a low power operating mode) and, in the
presented experiment is meant to deactivate the processing core
in tile1. Thus, the processes running on it have to be migrated on
other tiles. The migration procedure is then started. It can be di-
vided in the timing intervals shown in the right part of Fig. 10
and described below.

� [s0,s1]: this is the time required by the run-time manager to
make the remapping decision.
� [s1,s2]: in this time interval the source tile (tile1) sends all the

process state to the destination tile.
� [s2,s3]: between these two instants the destination tile (tile2)

copies the process state to its local memory and starts the exe-
cution of the migrated process.

In total, the migration procedure takes (s3 � s0) = 28,934 clock
cycles. Note that the execution of the migrated process has to be



Fig. 10. M-JPEG process scheduling when migrating M1 by using the proposed remapping heuristic and migration mechanism.

O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 525
restarted from the beginning of the interrupted iteration. Thus, all
the time spent since the beginning of the interrupted iteration on
tile1 has to be added to the total overhead. The worst case overhead
due to the re-execution of the interrupted iteration is as large as
the execution time of a whole iteration of the interrupted process,
in this case M1. The worst-case total overhead in the scenario de-
picted in Fig. 10 then grows up to (s3 � s0) + Texe(M1) = 152,560
clock cycles. Compared to the total execution time of the applica-
tion without migration (Texe(noMig)), this represents only 0.88%
of the time. In this experiment, we have calculated the overhead
considering the remapping decision strategy described in Section
6.2.5. This allows to obtain a basis of comparison for the evaluation
of the hardware-based migration mechanism that has to be used in
case of fault tolerance. However, it is worth to point out that the
reported migration time could be reduced using pre-calculated
remapping tables, created at design time, to decide the migration
pattern.

To assess the performance of the migration procedure as a fault
recovery mechanism, we evaluated it with a single fault scenario
(initial mapping shown in Fig. 13a) and the fault on tile1 as shown
in Fig. 13b. Fig. 11 shows the finishing time of each phase of the
fault recovery mechanism averaged over several experiments.
Time 0 corresponds to the fault detection time, i.e., activation of
the TMH. The average fault recovery time is 38,115 clock cycles.
46% of this time is taken by the phase in which the state of tasks
and channels from the TMH is received by the RM. In this particular
scenario, the RM is also the new tile where DCT is being remapped
to. Therefore, the phase of transferring the state to the new tile
does not take as much time. It is worth to note that several actions
of the recovery process happen in parallel, thus reducing the recov-
ery time. For example, the data transfer from the TMH to the RM
overlaps with the execution of the heuristics by the RM.

The experiment shows that the execution time of the fault
recovery procedure is comparable with the duration of the soft-
ware-based migration that can be used in fault-free systems. In
both cases the overhead is negligible when compared with the exe-
cution time of the whole application. The increase is mostly due to
some additional synchronization actions that had to be introduced
in the fault recovery mechanism, to handle possible corner cases in
the management of the software FIFOs. To evaluate the calculation
Fig. 11. Execution times of
time of the remapping decision, the two remapping scenarios given
in Figs. 13 and 16 are used for M-JPEG and H.264 applications. The
NMS-A/B/C heuristics from [18], which aim at minimizing the
throughput degradation, are implemented on the platform. Their
calculation time are displayed in Table 3. The results reveal that
their execution time constitutes a relatively small portion of the
fault recovery time.

7.4. Steady-state performance overhead of the fault tolerance support

There is a performance penalty that is paid in order to support
fault tolerance, even in the absence of faulty processors. This is
mainly due to the modifications that are done in the process
bodies, in particular, the execution of the self-test at each iteration
of each process. Therefore the duration of the self-testing routine
influences the overhead of the technique during normal operation.
Since we have not implemented real self-testing routines for the
Microblaze processor, we report analytical results of this overhead
with respect to various execution times of the self-testing routine
ranging from 10 k to 100 k cycles. The mapping used in the calcu-
lations is the one of Fig. 13a. As shown in Fig. 12, the overhead is
linear with respect to the self-test duration and changes from
7.7% to 71%. Naturally designing a self-testing routine involves a
trade-off between its execution time and fault coverage ratio.
Selecting 40 k cycles as a typical duration for the self-test (taken
from [19] for a processor of supposedly similar complexity), we
see that the overhead would be 29%. This overhead is due to addi-
tional workload inflicted upon the critical node that determines
the throughput of the whole application.

7.5. Evaluation of the remapping strategy

In this section, the quality of the heuristic is evaluated by using
the M-JPEG and H.264 case studies by comparing the remapping
obtained by the NMS-A/B/C heuristics with actual measurements.

7.5.1. M-JPEG remappings
Given a 2 � 2 NoC-based platform with processing elements

(tile1 = n1, tile2 = n2, tile3 = n3, tile4 = n4) and an initial mapping of
M-JPEG tasks I:M0 ? n3, M1 ? n1, M2 ? n2, M3 ? n4 as shown in
fault recovery actions.



Table 3
Calculation times of remapping heuristics.

Heuristic Avg. execution time (c.c.)

M-JPEG H.264

NMS-A 8198 8172
NMS-B 19,608 19,603
NMS-C 6403 6664

Fig. 12. Performance overhead with respect to the duration of the self-testing
routine.

Fig. 14. Comparison of measured and calculated performance degradation of all
possible remappings when n1 is faulty as shown in Fig. 13(b).

Fig. 15. Comparison of measured and calculated performance degradation of all
possible remappings when n2 is faulty as shown in Fig. 13(c).

526 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
Fig. 13a, we consider two single fault scenarios for n1 and n2. As
shown in Fig. 13b, for the case of n1 faulty, all possible remappings
are R1 (M1 ? n2), R2 (M1 ? n3) and R3 (M1 ? n4). Similarly, Fig. 13c
shows the case of n2 faulty for which all possible remappings are R1

(M2 ? n1), R2 (M2 ? n3) and R3 (M2 ? n4). The total execution
times of the M-JPEG application for all possible remappings, TRi

,
are measured on the platform by using the RD-int flow control
and also calculated by the analytical model.

The performance degradation with respect to the execution
time of the initial mapping, TI, is calculated according to Eq. 1.

Performance degradationðRiÞ ¼
TRi
� TI

TI
ð1Þ

Measured and calculated values are used in Eq. 1 for calculating the
measured and analytical model degradation results shown in Figs. 14
and 15 for faulty n1 and faulty n2 cases, respectively. Note that in
some cases, for instance R2 in Fig. 14, the remapping can lead to a
performance speedup. In R2, this is because the reduction of the
communication time over the NoC overcompensates the increased
computational workload on n3.

The optimal remapping is the one which yields to the smallest
performance degradation. For the faulty n1 scenario, all of the
NMS-A/B/C heuristics yield to the remapping R2 which is the opti-
mal decision. For the faulty n2 scenario, it yields to the remapping
R2 which is only.07% worse than the optimal one (R3). NMS-A/B/C
heuristics make the optimal decision according to the analytical
(a) (b)
Fig. 13. Initial mapping and the two single fault
model and the discrepancy between the analytical model and the
actual measurements causes a very slightly sub-optimal decision
in reality. However, as shown in Figs. 14 and 15, the analytical
model estimates the degradation within 3% of the measured val-
ues. The inaccuracy of the analytical model is due to the latency
introduced by the communication API (see Section 5.1) and the
unaccounted context switching times when several tasks are run-
ning on a processor.

7.5.2. H.264 remappings
We use the same procedure to assess the NMS-A/B/C remapping

heuristics in the H.264 case study. The initial mapping is shown in
Fig. 16a. Then, we consider the case of a fault occurring either in n1

or n2. In each of these cases there are three possible remappings (R1

to R3), which are depicted in Fig. 16a and c.
In the case of a fault occurring on n1, all of the NMS-A/B/C heu-

ristics yield to the remapping R3, which is the optimal one as
shown in Fig. 17. In the other considered case, faulty n2, all the heu-
ristics suggest the remapping R3. Also in this case, the suggested
remapping represents the optimal one, as can be deduced by
(c)
scenarios showing all possible remappings.



(a) (b) (c)
Fig. 16. Initial mapping and the two single fault scenarios showing all possible remappings.

Fig. 17. Comparison of measured and calculated performance degradation of all
possible remappings when n1 is faulty as shown in Fig. 16(b).

Fig. 18. Comparison of measured and calculated performance degradation of all
possible remappings when n2 is faulty as shown in Fig. 16(c).

O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 527
Fig. 18. Similar to the M-JPEG experiments, the inaccuracy of the
analytical model is due to the abstraction of the overheads related
to context switches and communication over the platform.
Fig. 19. Area occupation overhead in comparison to the baseline Network Adapter
due to the support for system adaptivity and fault-tolerance.
7.6. Architectural support hardware overhead

Obviously, the circuitry implementing the support for adaptiv-
ity and fault-tolerance at architectural level incurs an overhead
in terms of area obstruction, power consumption and critical path
length. To evaluate the overhead, we consider the basic � pipes
mesh as a baseline architecture. As mentioned earlier, with respect
to the baseline, the Network Adapter has been enriched with the
DMA message-passing handler (MPH). It provides all the message
passing capabilities that are needed to implement the inter-pro-
cessor communication, the triggering of the migration process
and the migration process itself. Moreover, this module allows
the possibility of intra-processor multitasking. Controlling the local
memory, to store the incoming messages when a receive () has not
been performed, the MPH allows, at the producer side, scheduling
a different task when waiting for requested tokens, without stall-
ing on a blocking receive primitive. Thus, the MPH can be consid-
ered as a first level of architectural support for adaptivity. The
second level is represented by the insertion of the STM and the
TMH, that have to take care of detecting faults and sending the
migration data of the processes in the case of faulty processing ele-
ments. In Figs. 19 and 20, an estimation of the overhead due to the
introduction of these modules is shown in terms of area occupation
and maximum working frequency, respectively. The implementa-
tion results are obtained by means of the Xilinx tools during the
protoyping phase.

It can be noticed that the overhead is not negligible. In terms of
timing, the baseline architecture can be more than 25% faster than
the NA featuring full support for fault-tolerance, especially due to
the introduction of the MPH. During the design of the MPH archi-
tecture we tried to reduce as much as possible the latency related
with message passing operations. This required the introduction of
combinational logics which resulted in the mentioned frequency
drop. A retiming of the control circuitry inside the MPH could be
used to improve the achievable working frequency, at the price
of an increment of the communication latency for each packet.
The overhead in terms of used logic is also significant. Such over-
head is mitigated when we consider the area of the entire tile, as
shown in Fig. 21. In this case the area overhead in a tile with full
support for adaptivity and fault-tolerance is almost 60% with re-
spect to a tile instantiating the baseline NA. This overhead would
be even smaller if we consider in the baseline area all the obstruc-
tion related to the memory modules, not accounted in the pre-
sented plot. It is also worth to notice that the baseline
architecture cannot provide complete message-passing capabili-
ties, thus it is not completely sufficient even in static message-
passing systems.



Fig. 20. Critical path length overhead related with support for system adaptivity
and fault-tolerance.

Fig. 21. Area occupation overhead in comparison to the baseline tile architecture
due to the support for system adaptivity and fault-tolerance.

Fig. 22. Area overhead dependence on the supported number of channels.

528 O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529
Moreover, it is useful to point out that both the MPH and the
TMH can be customized at design time, according to the communi-
cation graph of the target application, instantiating only the cir-
cuitry needed to control the required number of channels and
tasks. As an example, we show how the TMH is customized for
the H.264 and the MJPEG applications. In the first design case,
the TMH has to support 4 tasks and 4 channels, requiring 35 regis-
ters to be instantiated. In the second, the circuitry must control 5
tasks and 8 channels, requiring 51 registers. The overhead compar-
ison with the default configuration is shown in Fig. 22.
8. Conclusions

This paper presents the methods developed within the MAD-
NESS project to allow system adaptivity and fault-tolerance on
NoC-based MPSoCs. The proposed approach involves different lay-
ers of the system design. At the application level, the PPN MoC has
been selected, due to its simple operational semantics and the
facilitation of system adaptivity mechanisms. At the middleware
level, we have developed a communication approach to implement
inter-tile PPN communication and a predictable process migration
mechanism. At the hardware level, the platform has been extended
in order to support the PPN MoC and to enable a predictable and
efficient process migration mechanism. The process migration
mechanism, in turn, can be exploited by the run-time manager to
cope with permanent faults by migrating the processes running
on the faulty processing element. A fast heuristic is used to deter-
mine the new mapping of processes to tiles. We show in a real-life
case study that this heuristic is able to find near-optimal remap-
pings. Moreover, the experimental results prove that the overhead
in terms of execution time due to the execution of the remapping
heuristic, together with the actual process migration, is almost
negligible compared to the execution time of the whole applica-
tion. This means that the proposed approach allows the system
to react to faults without a substantial impact on the user experi-
ence. However, the implemented architecture level support has a
significant overhead that should be carefully assessed and limited
when optimizing the design during the pre-product development
phase.

Acknowledgements

The research leading to these results has received funding from
the European Community Seventh Framework Programme (FP7/
2007–2013) under Grant agreement No. 248424, MADNESS Pro-
ject, from ARTEMIS JU – ASAM Project, and from the Region of
Sardinia, Young Researchers Grant, PO Sardegna FSE 2007–2013,
L.R.7/2007 ‘‘Promotion of the scientific research and technological
innovation in Sardinia’’.

References

[1] E. Cannella, L. Di Gregorio, L. Fiorin, M. Lindwer, P. Meloni, O. Neugebauer, A.
Pimentel, Towards an ESL design framework for adaptive and fault-tolerant
MPSoCs: MADNESS or not?, in: 9th IEEE Symposium on Embedded Systems for
Real-Time Multimedia (ESTIMedia), 2011, pp. 120–129.

[2] S. Verdoolaege, Handbook on Signal Processing Systems, Springer.
[3] S. Verdoolaege, H. Nikolov, T. Stefanov, pn: a tool for improved derivation of

process networks, EURASIP J. Embed. Syst. 2007 (2007) 19.
[4] V. Nollet, D. Verkest, H. Corporaal, A safari through the MPSoC run-time

management jungle, J. Signal Proces. Syst. 60 (2010) 251–268.
[5] G.M. Almeida, G. Sassatelli, P. Benoit, N. Saint-Jean, S. Varyani, L. Torres, M.

Robert, An adaptive message passing MPSoC frame-work, Int. J. Reconfigur.
Comput 2009 (2009).

[6] S. Bertozzi, A. Acquaviva, D. Bertozzi, A. Poggiali, Supporting task migration in
multi-processor systems-on-chip: a feasibility study, in: Proceedings of the
Design, Automation and Test in Europe, DATE ’06, 2006, vol. 1, pp. 1–6.

[7] A. Acquaviva, A. Alimonda, S. Carta, M. Pittau, Assessing task migration impact
on embedded soft real-time streaming multimedia applications, EURASIP J.
Embed. Syst. 2008 (2008).

[2] C. Lee, H. Kim, H. woo Park, S. Kim, H. Oh, S. Ha, A task remapping technique for
reliable multi-core embedded systems, in: IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES + ISSS), 2010, pp. 307–316.

[9] C.-L. Chou, R. Marculescu, Farm: fault-aware resource management in noc-
based multiprocessor platforms, in: Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pp. 1–6.

[10] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, L. Benini, Xpipes: a latency
insensitive parameterized network-on-chip architecture for multi-processor
SoCs, in: Proc. of the 21st Int. Conf. on Computer Design, ICCD’03, Washington,
DC, USA, p. 536.

[11] E. Cannella, O. Derin, P. Meloni, G. Tuveri, T. Stefanov, Adaptivity support for
MPSoCs based on process migration in polyhedral process networks, VLSI Des.
2012 (2012) 17.

[12] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis, A.
Raghunathan, S. Ravi, Systematic software-based self-test for pipelined
processors, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16 (2008) 1441–
1453.

[13] N. Foutris, M. Psarakis, D. Gizopoulos, A. Apostolakis, X. Vera, A. Gonzalez, MT-
SBST: self-test optimization in multithreaded multicore architectures, in: IEEE
International Test Conference (ITC), 2010, pp. 1–10.

[14] M. Scholzel, T. Koal, H. Vierhaus, An adaptive self-test routine for infield
diagnosis of permanent faults in simple risc cores, in: IEEE 15th International
Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS),
2012, pp. 312–317.

http://refhub.elsevier.com/S0141-9331(13)00097-5/h0005
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0005
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0010
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0010
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0015
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0015
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0015
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0020
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0020
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0020
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0025
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0025
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0025
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0030
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0030
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0030
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0030


O. Derin et al. / Microprocessors and Microsystems 37 (2013) 515–529 529
[15] M. Malek, A comparison connection assignment for diagnosis of
multiprocessor systems, in: Proceedings of the 7th Annual Symposium on
Computer Architecture, ISCA ’80, ACM, New York, NY, USA, 1980, pp. 31–36.

[16] I. Koren, C.M. Krishna, Fault Tolerant Systems, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[17] O. Derin, E. Diken, L. Fiorin, A middleware approach to achieving fault-
tolerance of Kahn process networks on networks-on-chips, Int. J. Reconfigur.
Comput. 2011 (2011) 15.

[18] O. Derin, D. Kabakci, L. Fiorin, Online task remapping strategies for fault-
tolerant network-on-chip multiprocessors, in: Proc. of the 5th ACM/IEEE Int.
Sym. on Networks-on-Chip, 2011, pp. 129–136.

[19] D. Gizopoulos, Online periodic self-test scheduling for real-time processor-
based systems dependability enhancement, IEEE Trans. Depend. Secure
Comput. 6 (2009) 152–158.

Onur Derin received his B.Sc. in Electrical and Elec-
tronics Engineering from the Faculty of Engineering of
Bogazici University (Turkey) in 2004 and his M.Sc. in
Embedded Systems Design from University of Lugano –
ALaRI (Switzerland) in 2006. He is currently a Ph.D.
candidate at the Faculty of Informatics of the University
of Lugano. His research interests include self-adaptation
and fault-tolerance in the context of on-chip multipro-
cessors.
Emanuele Cannella received the B.Sc. and M.Sc.
degrees in Electronic Engineering from University of
Udine, Italy, in 2006 and 2008 respectively. He is now a
Ph.D. candidate in Computer Science at Leiden Institute
of Advanced Computer Science (LIACS), Leiden Univer-
sity, The Netherlands. His main research interests
include runtime resource management in embedded
multiprocessor platforms, mixed-criticality systems,
and FPGA-based multiprocessor prototyping.
Giuseppe Tuveri received the B.Sc. and M.Sc. degrees in
Electronic Engineering from University of Cagliari, Italy,
in 2006 and 2009 respectively. He is part of EOLAB since
March 2010, when he joined the Department of Elec-
trical and Electronic Engineering of University of Cag-
liari, as a Ph.D. student. His main research interests
include embedded operating systems, system adaptivity
in embedded platforms, and FPGA-based multiproces-
sor prototyping.
Paolo Meloni is currently assistant professor at the
Department of Electrical and Electronic Engineering
(DIEE) in the University of Cagliari. In October 2007 he
received a Ph.D. in Electronic Engineering and Computer
Science, presenting the thesis ‘‘Design and optimization
techniques for VLSI network on chip architectures’’. His
research activity is mainly focused on the development
of advanced digital systems, with special emphasis on
the application-driven design of multi-core on-chip
architectures. He is author of a significant record of
international research papers and tutor of many bach-
elor and master students’ thesis in Electronic Engi-

neering. He is teaching the course of Embedded Systems at University of Cagliari
and is currently part of the technical board and acting as work-package leader in the
research projects ASAM (www.asam-project.org) and MADNESS (www.madness-

project.org).
Todor Stefanov received the Dipl.Ing. and M.S. degrees
in computer engineering from The Technical University
of Sofia, Bulgaria, in 1998 and the Ph.D. degree in
computer science from Leiden University, The Nether-
lands, in 2004. From 1998 to May 2000, he was a
Research and Development Engineer with Innovative
Micro Systems, Ltd., Bulgaria. From June 2000 to August
2007, he was with the Leiden Institute of Advanced
Computer Science, Leiden University, where he was a
Research Assistant (Ph.D. student) and a PostDoc
Researcher at the Leiden Embedded Research Center.
From September 2007 to August 2008, he was a Senior

Researcher at the Computer Engineering Lab, Delft University of Technology, The
Netherlands. Since September 1, 2008, Todor Stefanov has been an Assistant Pro-
fessor with the Leiden Institute of Advanced Computer Science, Leiden University

where currently he is the head of the Leiden Embedded Research Center. Dr.
Stefanov is a recipient of the 2009 IEEE TCAD DONALD O. PEDERSON BEST PAPER
AWARD. His research interests include several aspects of embedded systems
design, with particular emphasis on system-level design automation, multipro-
cessor systems-on-chip design, and hardware/software codesign. He serves on the
organizational committees of several leading conferences and workshops in the
field.

Leandro Fiorin obtained his Ph.D. from the Faculty of
Informatics of the University of Lugano (USI), Switzer-
land, in 2012. He also received a Master of Engineering
in Embedded System Design in 2004 from USI, and he
holds a M.S. degree in Electronic Engineering, from
University of Cagliari, Italy. He is currently research
associate at USI – ALaRI. Previously he was also contract
researcher at USI, working on networks-on-chip and
embedded systems architectures. His research interests
focus on fault tolerant and secure networks-on-chips
and embedded systems, on-chip multiprocessors,
reconfigurable systems. He is co-author of several sci-

entific papers on networks-on-chip, design methodologies for systems-on-chip,
embedded system security, and of two patents on networks-on-chip security.
Luigi Raffo (MSc Electronic Engineering (magna cum
laude) in 1989, Ph.D. in Electronica and Computer Sci-
ence in 1994, University of Genova, Italy) is full pro-
fessor of Electronics at the Dept. Electrical and
Electronic Engineering of the University of Cagliari,
Italy. He is a teacher of electronics and system design
courses. His main research field is the design of digital/
analog devices and systems. In this field he has authored
more than 80 international publications, and patents.
He has been coordinator of EU, Italian Research Minis-
try, Italian Space Agency, industrial projects.
Mariagiovanna Sami is Professor, Digital Processing
systems, at Politecnico di Milano. She holds an Elec-
tronics Engineer degree (Politecnico di Milano, 1966)
and a Libera Docenza, Switching Theory and Computing
(Italian Ministry for Education, 1971). Her research
interests include various aspects of digital architecture
design, with particular reference to defect and fault-
tolerance of digital architectures, parallel architectures,
low-power design and high-level synthesis. She is co-
author and/or co-editor of several books and of over 200
technical papers. She has been Chairman of the
Department of Electronics, Politecnico di Milano, and is

at present Scientific Director of the ALaRI Institute, University of Lugano. Prof. Sami
has been Editor-in-Chief of the Journal of Systems Architecture and member of the
Board of Editors of IEEE Micro, IEEE Design and Test, IEEE Transactions of com-

puters. She is a member of the Board of Editors of JETTA – Journal of Electronic
Testing. She was General Chair or Program Chair for a number of international
conferences chair; in 2000 she was General chair of IJCNN (the International Joint
Conference on Computer Networks). She was also co-director of the NATO
Advanced Study Institutes on VLSI Testing held in Como, Italy, in 1985 and on
Hardware/Software co-design held in Tremezzo (Italy) in 1995.

http://refhub.elsevier.com/S0141-9331(13)00097-5/h0035
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0035
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0035
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0035
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0040
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0040
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0040
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0045
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0045
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0045
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0050
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0050
http://refhub.elsevier.com/S0141-9331(13)00097-5/h0050
http://www.asam-project.org
http://www.madnessproject.org
http://www.madnessproject.org

	A system-level approach to adaptivity and fault-tolerance in NoC-based MPSoCs: The MADNESS project
	1 Introduction
	2 The MADNESS project approach to fault-tolerance and adaptivity
	3 Related work
	4 Architectural support
	4.1 Programming model
	4.2 Message passing support
	4.3 Interrupt generation support

	5 Software/middleware infrastructure
	5.1 PPN communication API
	5.1.1 Interrupt-based request messages

	5.2 Process migration mechanism
	5.2.1 Actions on the source tile
	5.2.2 Actions on the destination tile
	5.2.3 Actions on predecessor and successor tile(s)

	5.3 Run-time manager

	6 Fault-tolerance support
	6.1 Fault detection
	6.1.1 Self-testing module
	6.1.2 PPN-level self-checking patterns

	6.2 Fault recovery
	6.2.1 Modifications to the PPN processes
	6.2.2 Fault-aware remapping support
	6.2.3 Task migration hardware module
	6.2.4 Decentralization of the run-time manager
	6.2.5 Online task remapping strategies


	7 Experimental results
	7.1 Case studies
	7.1.1 M-JPEG encoder
	7.1.2 H.264 decoder

	7.2 Flow control functionality assessment
	7.3 Remapping heuristic and process migration execution time overhead
	7.4 Steady-state performance overhead of the fault tolerance support
	7.5 Evaluation of the remapping strategy
	7.5.1 M-JPEG remappings
	7.5.2 H.264 remappings

	7.6 Architectural support hardware overhead

	8 Conclusions
	Acknowledgements
	References


