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SlimSeiz: Efficient Channel-Adaptive Seizure
Prediction Using a Mamba-Enhanced Network
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Abstract—Epileptic seizures cause abnormal brain activity,
and their unpredictability can lead to accidents, underscoring
the need for long-term seizure prediction. Although seizures
can be predicted by analyzing electroencephalogram (EEG)
signals, existing methods often require too many channels or
larger models, limiting mobile usability. This paper introduces a
SlimSeiz framework that utilizes adaptive channel selection with
a lightweight neural network model. SlimSeiz operates in two
states: the first stage selects the optimal channel set for seizure
prediction using machine learning algorithms, and the second
stage employs a lightweight neural network based on convolution
and Mamba for prediction. On the Children’s Hospital Boston-
MIT (CHB-MIT) EEG dataset, SlimSeiz can reduce channels
from 22 to 8 while claiming a satisfactory result of 94.8% ac-
curacy, 95.5% sensitivity, and 94.0% specificity with only 21.2 K
model parameters, matching or outperforming larger models’
performance. We also validate SlimSeiz on a new EEG dataset,
SRH-LEI, collected from Shanghai Renji Hospital, demonstrating
its effectiveness across different patients. The code and SRH-LEI
dataset are available at https://github.com/guoruilu/SlimSeiz.

Index Terms—Deep learning, seizure prediction, state-space
model, convolutional neural network, healthcare.

I. INTRODUCTION

Epileptic seizure affects more than 50 million patients
around the world according to the World Health Organization
(WHO) [1]. Its accompanying symptoms can cause sudden and
unforeseen accidents, making patients vulnerable to injury [2].
Therefore, continuous patient monitoring and accurate seizure
prediction are essential for improving safety and quality of
life. Electroencephalogram (EEG), an electrical recording of
brain activity, is a key diagnostic tool for clinicians assessing
epilepsy. Fig. 1 illustrates that epilepsy EEG signals can
be classified into four states: inter-ictal, pre-ictal, ictal, and
post-ictal. Seizure prediction aims at identifying the pre-ictal
state. However, due to the complexity of EEG signals and
the prolonged nature of seizures, manual identification is
impractical, requiring algorithms for automatic identification.

During the past decade, many deep learning techniques have
been explored to build seizure prediction systems [3]-[11].
However, most existing methods rely on more than 20 EEG
channels to achieve this [3]-[7]. Although effective, using
over 20 channels limits patient mobility, increases discom-
fort, and complicates hardware device design, making these
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Fig. 1. A segment of a patient’s scalp EEG from the CHB-MIT dataset. The
states can be divided into inter-ictal, pre-ictal, ictal, and post-ictal.

post-ictal

methods unsuitable for mobile and long-term monitoring. Sev-
eral studies [8]-[11] have explored using fewer channels for
seizure prediction. However, some of these works [8], [9] have
struggled to achieve 80% prediction accuracy. While other
methods [10], [11] have surpassed 90% prediction accuracy
using neural network models, they require over 100 K model
parameters, making such large models less suitable for long-
term use on mobile devices.

To address the aforementioned issues, we propose a frame-
work, called SlimSeiz, for efficient seizure prediction using
a lightweight Mamba-enhanced neural network with adaptive
EEG channel selection. Our main novel contributions are:

1) A machine learning-based adaptive channel selection

method that reduces the number of EEG channels from
22 to 8 while maintaining satisfactory accuracy.

2) A lightweight neural network model with only 21.2K
parameters, consisting of one-dimensional convolutions
and the Mamba [12] block.

3) A new dataset called the Shanghai Renji Hospital-LEI
(SRH-LEI) EEG dataset.

4) An experimental evaluation of SlimSeiz on the Chil-
dren’s Hospital Boston-MIT (CHB-MIT) EEG dataset
and the SRH-LEI EEG dataset. SlimSeiz achieves 94.8%
accuracy, 95.5% sensitivity, and 94.0% specificity on the
CHB-MIT dataset, and 92.7% accuracy, 94.7% sensitiv-
ity, and 90.7% specificity on the SRH-LEI dataset.

II. THE SLIMSEIZ FRAMEWORK

In this section, we start by explaining how the EEG data is
pre-processed (Section II-A). Then, we describe the two main
parts of SlimSeiz: the channel selection method (Section II-B)
and the network model (Section II-C). The channel selection
module picks the top k channels that are most important for
predictions. The neural network model then makes predictions
based on these selected channels.

A. EEG Data Pre-processing

In this work, we use the CHB-MIT and the newly collected
SRH-LEI EEG datasets (details are described in Section III-A).
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Fig. 2. The overview of SlimSeiz framework. Data from the original 22 channels are input into the channel selection module to select the k£ (an adjustable
hyperparameter) channels that contribute most significantly to seizure prediction, using accuracy (ACC) as the metric. The selected k channels are then sent
to the neural network for training and validation. All activation functions are not shown in the figure. The convolutional module in the Mamba block uses the
SiLU function, while the other convolution modules use the ReLU function. The FC layers at the input of the Mamba block increase the channel count from

32 to 64, and the output FC layer reduces it from 64 to 32.

Due to the imbalanced nature of the recorded EEG data, where
the duration of seizure events is significantly shorter than
inter-ictal and post-ictal events, necessary data pre-processing
operations can have a considerable impact on the model
training and its predictive accuracy. Some previous work [3],
[10], [11], [13] discarded the majority of the data to achieve a
balanced dataset. In this work, we choose to use overlapping
sliding windows with adjustable step sizes to increase the
number of pre-ictal segments, similar to the approach used
in [5].

The goal of seizure prediction is to identify pre-ictal states.
Therefore, ictal segments are discarded because the seizure has
already begun. The remaining segments, except pre-ictal, are
grouped into a single category for simplicity. We set the pre-
ictal segment length to 30 minutes, as prior work indicates this
period contains important EEG information for pre-ictal/inter-
ictal recognition [14]. If the gap between two seizures is
less than 30 minutes, we combine them due to difficulties
in distinguishing post-ictal and pre-ictal states. Each EEG
recording is split into 4-second segments given as input to
the neural network model within SlimSeiz.

B. Channel Selection Method

Long-term monitoring requires selecting a smaller subset
of channels to reduce the computational load on the seizure
predicting device and to enhance the patient mobility and com-
fort. However, the challenge lies in identifying which channels
contribute most to the seizure prediction. In our work, we use
the prediction accuracy achieved by each individual channel
as an indicator of its contribution, based on the assumption
that channels with higher prediction accuracy contain more
useful information. Although the channel selection is a one-
time effort for each patient, we aim to minimize the channel
selection time as much as possible. Thus, we propose a channel

selection method based on traditional machine learning that
can yield results more quickly compared to neural networks.

The channel selection method is illustrated in the top part
of Fig. 2 as a workflow. First, we split each channel data
into training and testing segments. Given the fact that tradi-
tional machine learning (ML) methods have limited feature
extraction capabilities, we use longer 5-second data segments
to provide the ML model with more information. Then, we
apply Principal Component Analysis (PCA) [15] to reduce
the dimension for the training and testing segments separately
while preserving key information, thereby reducing subse-
quent computational overhead. The Synthetic Minority Over-
sampling Technique (SMOTE) [16] is employed to balance the
dimension-reduced training set, which occupies less memory
compared to using overlapping sliding windows. Next, we
train and test a decision tree on the processed dataset to obtain
the prediction accuracy for the current channel. By executing
the aforementioned procedure for each channel, we generate a
list of accuracy numbers and select the top k channels based on
these accuracy numbers to form a channel subset. To mitigate
the influence of random factors, such as the channel data
splitting into training and testing segments, on the results, we
repeat this procedure m times to obtain m channel subsets.

Finally, we count the occurrences of each channel across all
subsets and select the k& channels that appear most frequently
as the final result. The subset size k and the number of
iterations m are two hyperparameters. In this study, we set m
to 30 to balance the channel selection time and elimination of
random factors. The optimal value of k is determined through
relevant experiments to achieve a balance between reducing
the number of channels and maintaining high accuracy of the
neural network model we have devised to predict seizures.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 26,2025 at 11:42:13 UTC from IEEE Xplore. Restrictions apply.



C. Neural Network Model Architecture

As shown in the bottom part of Fig. 2, our lightweight
model for seizure prediction consists of convolutional feature
extraction, Mamba, and classification head.

1) Convolutional Feature Extraction: We implement the
feature extraction from the EEG input data by stacking one-
dimensional (1D) convolutional layers that form the main
body of our neural network model for seizure prediction.
As shown in Fig. 2, a larger convolution kernel of size 21
is applied on the EEG input data in the first convolutional
layer. This is followed by two residual connections, each
consisting of three convolutional layers with different smaller
kernel sizes. Different kernel sizes help the network extract
features at various temporal resolutions. Max pooling and
global average pooling are employed to reduce the feature
dimensions and computational load. It is worth mentioning
that previous work [5], [13], [17]-[19] primarily uses over
20 channels for seizure prediction, treating channels and time
as the height and width of an image, respectively, and thus
tend to use 2D convolutional neural network to extract spatial
and temporal features. In our work, however, we use fewer
channels, thereby reducing the complexity of spatial features
and making is less necessary to use parameter- and compute-
intensive 2D convolutional networks.

2) Mamba: The Mamba block is based on the State Space
Model (SSM). Its structure, as shown in Fig. 2, uses a fully
connected (FC) layer at the input to increase the channel
count for capturing more complex features. The subsequent
convolutional layer and SSM establish short-term and long-
term sequential dependencies, respectively. The FC layer at
the output reduces the channel count to maintain consis-
tent input and output dimensions. This structure enables the
Mamba block to efficiently capture dependencies within the
sequence [20]. Mamba is proposed as an alternative to Trans-
former to reduce the computational load in the multi-head self-
attention mechanism [21] and has shown promising potential
in processing physical signals, such as audio signals [22], [23].

Mamba’s abilities to capture dependencies in sequential data
and reduce computation complexity match our goal to design a
lightweight model for processing of EEG signals. To enhance
the model’s ability to capture temporal dependencies without
increasing the model parameters, we add the Mamba block
after the convolutional layers. This choice is due to the limited
semantic information of sensor signals at a single time point,
making it difficult to establish correlations [24]. Therefore,
extracting features through convolutional layers and increasing
channel count enriches the semantic information at each time
point, allowing the Mamba block to work more effectively.

3) Classification Head: A fully connected layer is used for
classification. Cross-entropy loss and supervised contrastive
loss are used to supervise the model’s training.

III. EXPERIMENTAL EVALUATION AND RESULTS

In this section, we evaluate our proposed SlimSeiz frame-
work to demonstrate its potential and efficiency.

TABLE I
DETAILS OF THE SRH-LEI DATASET

Case . Seizure duration EEG duration
Gender #Seizures

No. mm:ss hh:mm:ss
1 Female 12 00:19 18:29:23
2 Female 95 13:53 23:59:50
3 Male 8 27:57 21:33:56
4 Female 46 1:12 23:58:51
5 Male 32 67:10 22:30:45
6 Male 3 24:7 23:58:51
7 Male 45 479:12 22:47:10
8 Female 33 270:34 17:08:34

A. Experimental Setup and Datasets

We evaluate SlimSeiz using two datasets. First, we utilize
the CHB-MIT scalp long-term EEG dataset. This dataset com-
prises recordings from 23 children with intractable seizures at
the Children’s Hospital Boston, resulting in 24 cases (with
two cases derived from a single patient). The duration of
EEG recordings for each patient ranges from 19 to 165 hours,
totaling approximately 983 hours. The sampling frequency for
signal collection is 256 Hz. Second, we introduce and utilize
the new SRH-LEI EEG dataset, which we have collected
at Shanghai Renji Hospital, Shanghai Jiao Tong University.
This dataset includes data from 8 patients, consisting of 4
males and 4 females, aged between 14 and 77 years old. The
data collection duration ranges from 17 to 24 hours, with a
sampling frequency of 128 Hz. Detailed information about the
dateset features is provided in Table 1.

We use accuracy (ACC), sensitivity (SENS), and specificity
(SPEC) as evaluation metrics. SENS measures the model’s
ability to correctly identify actual pre-ictal segments, higher
sensitivity means fewer missed pre-ictal cases. SPEC indicates
how well the model identifies actual inter-ictal segments,
higher specificity reflects fewer false alarms for pre-ictal states.

B. Optimal Number of Channels

To determine the optimal channel counts, we evaluated the
model’s performance using channel counts of 4, 6, 8, and 10.
In this experiment, we randomly split the data into 80% for
training and 20% for testing to assess the effectiveness of each
channel configuration.

As shown in Fig. 3, our experimental results indicate that
increasing the number of channels beyond 8 does not lead
to significant performance improvements. More importantly,
for most cases (patients), an accuracy of over 90% can be
achieved using just 4 channels, and for some patients (e.g.,
case 01 and 07), the accuracy even exceeds 95%. Therefore,
increasing the number of channels offers little benefit for
most patients. Only for a few patients (e.g., case 15 and 21)
with an accuracy below 90% using 4 channels, increasing
the number of channels results in a noticeable performance
enhancement (up to 10%). Considering both performance
gains and the associated complexity of the device with the
number of channels, we conclude that 8 is the optimal number
of channels and we use this result in subsequent experiments.
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Fig. 3. Performance: (a) accuracy (b) sensitivity (c) specificity across different cases for various channel counts on the CHB-MIT dataset. (d) Overall accuracy,
sensitivity, and specificity trends as the number of channels increases from 4 to 10 on the CHB-MIT dataset.

TABLE II
PERFORMANCE COMPARISON OF SLIMSEIZ WITH OTHER WORKS. THE BEST METRIC NUMBER IS BOLDED; THE SECOND BEST IS UNDERLINED.
Feature Lo Performance
Ref Cases Model Channels Parameter Extraction Validation ACC  SENS — SPEC
Zhang et all. 2020 [25] 15 CNN 18 194.6K CSP LOOCV 90.0 922 92.0
Buyukccakir et al. 2020 [26] 10 MLP 18 40.9K HVD 10-Fold CV - 89.9 -
Baghdadi et al. 2020 [27] 24 Deep LSTM 18 >3M Raw EEG 10-Fold CV 889 84.0 90.0
Tian et al. 2021 [7] 7 Spiking CNN 23 10.3K Raw EEG 80-20 split - 95.1 99.2
Zhao et al. 2022 [13] 19 AddNet-SCL 22 120K Raw EEG LOOCV - 94.9 -
Lu et al. 2023 [6] 11 CBAM-3D CNN-LSTM 22 - STFT LOOCV 97.9 98.4 -
Chen et al. 2024 [5] 24 Spiking Conformer 22 40.3K Raw EEG 10-Fold CV  93.1 96.8 89.5
Our work 24 Convolution Mamba 8 21.2K Raw EEG 10-Fold CV  94.8 95.5 94.0
TABLE III seizure prediction neural networks.
PERFORMANCE OF SLIMSEIZ ON THE SRH-LEI DATASET We also conduct experiments on the SRH-LEI EEG dataset.
Cas‘i No. Accu;2c7y (%) Se“S‘tQ‘;“ly (%) SPec‘g?tZY (%) The results when utilizing 8 selected channels are shown in
2 743 76 10 Table III. SlimSeiz achieves an average of over 90% for each
3 98.0 99.0 97.0 metric, demonstrating its generalization on adult patients.
‘5‘ ggg gg-g ggg Finally, we compare our framework with state-of-the-art
6 99.0 99.5 08.4 seizure prediction methods on the CHB-MIT dataset. As
7 90.5 923 88.6 shown in Table II, our framework using only 8 channels and a
8 95.6 99.1 92.2 small model (21.2K parameters) achieves comparable average
Average 92.7 94.7 90.7

C. Performance and Comparison Results

To validate the effectiveness of the Mamba block, we re-
place it with a convolutional block of a similar parameter scale.
The total parameters for the network with the Mamba block
and the network with the replaced convolutional block are
21.2K and 22.2K, respectively. While having a slightly smaller
model size, the network with the Mamba block achieves an
average accuracy that is 0.1% higher than the network with the
replaced convolutional block in 10-fold cross validation (CV),
indicating the effectiveness of the Mamba block in lightweight

accuracy to methods using over 18 channels and larger models,
highlighting its suitability for long-term wearable monitoring.

IV. CONCLUSION AND FUTURE WORK

We present SlimSeiz, a lightweight framework for efficient
seizure prediction, using only 21.2 K model parameters and
reducing EEG channels from 22 to 8 while matching state-of-
the-art performance on the CHB-MIT dataset. Additionally,
SlimSeiz is validated on the newly collected SRH-LEI EEG
dataset, which will be released soon. We found that Chan-
nels P3-O1, P8-02, C3-P3, C4-P4, FZ-CZ, and P4-O2 are
selected in over 17 patients, paving the way for future patient-
independent systems with fewer channels.
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