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Abstract
A Brain Computer Interface (BCI) character speller
allows human-beings to directly spell characters us-
ing eye-gazes, thereby building communication be-
tween the human brain and a computer. Convolu-
tional Neural Networks (CNNs) have shown bet-
ter performance than traditional machine learning
methods for BCI signal recognition and its appli-
cation to the character speller. However, current
CNN architectures limit further accuracy improve-
ments of signal detection and character spelling and
also need high complexity to achieve competitive
accuracy, thereby preventing the use of CNNs in
portable BCIs. To address these issues, we pro-
pose a novel and simple CNN which effectively
learns feature representations from both raw tem-
poral information and raw spatial information. The
complexity of the proposed CNN is significantly
reduced compared with state-of-the-art CNNs for
BCI signal detection. We perform experiments on
three benchmark datasets and compare our results
with those in previous research works which report
the best results. The comparison shows that our
proposed CNN can increase the signal detection ac-
curacy by up to 15.61% and the character spelling
accuracy by up to 19.35%.

1 Introduction
A Brain Computer Interface (BCI) translates brain signals
into computer commands, thereby building communication
between the human brain and outside devices. In this way,
human-beings can use only the brain to express their thoughts
without any real movement. BCI has been developed to help
locked-in (e.g. Amyotrophic Lateral Sclerosis (ALS) ) pa-
tients [Sellers and Donchin, 2006]. In recent years, BCI has
also been popularly developed for healthy people, in appli-
cation domains such as entertainments [Gilroy et al., 2013],
mental state monitoring [Lin et al., 2013] as well as in IoT
services [Lin et al., 2014]. Electroencephalogram (EEG)-
based BCI attracts most of the research due to its noninvasive
way of measuring/acquiring brain signals and easy recording
with inexpensive equipment. Among all kinds of EEG sig-
nals, P300 performs outstandingly well in character spelling
applications. Therefore, this paper considers the P300 signal

detection as our main BCI task and the P300-based character
speller as our target BCI application.

A P300 signal is very difficult to detect because of its very
low signal-to-noise ratio (SNR). Previous research on P300
detection and P300-based spellers uses traditional machine
learning methods, namely manually-designed signal process-
ing techniques for feature extraction as well as classifiers
like Support Vector Machine (SVM) and Linear Discrimi-
nant Analysis (LDA). It focuses on enhancing P300 poten-
tials [Rivet et al., 2009], extracting useful features [Bostanov,
2004], choosing the most relevant EEG electrodes [Cecotti et
al., 2011], or removing artifacts caused by the muscle con-
traction [Gao et al., 2010], the eye movement [Mennes et
al., 2010] and the body movement [Gwin et al., 2010]. Un-
fortunately, manually-designed feature extraction and tradi-
tional classification techniques have the following problems:
1) they can only learn the features that researchers are fo-
cusing on but lose or remove other underlying features; 2)
brain signals have subject-to-subject variability, which makes
it possible that methods performing well on certain subjects
(with similar age or occupation) may not give a satisfactory
performance on others. These problems limit the potential of
manually-designed feature extraction and traditional classifi-
cation techniques for further accuracy improvements.

In recent years, deep learning, especially using Con-
volutional Neural Networks (CNNs), has achieved signifi-
cant performance improvements in the computer vision field
[Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
He et al., 2016]. Deep CNNs have the advantage of automat-
ically learning feature representations from raw data. They
can learn not only something we know but also something
important and unknown to us. Automatically learning from
raw data has better ability to achieve good results which are
invariant to different subjects. Thus, CNNs are able to boost
the full potential of recognizing BCI signals, overcoming the
aforementioned shortcomings of traditional machine learning
methods.

Therefore, in recent years, researchers have started to de-
sign (deep) CNNs for P300-based BCIs [Cecotti and Graser,
2011; Manor and Geva, 2015; Liu et al., 2017] and achieved
better accuracy than traditional techniques. However, these
CNNs first perform spatial convolution on raw data and
then they perform temporal convolution on the abstract data
coming from the spatial convolution. In this way, the in-
put for a temporal convolution layer is not raw temporal
signals. In fact, raw temporal signals are more important
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to learn P300-related feature representations. Therefore,
these CNN architectures lose useful raw temporal informa-
tion and this leads to problems that: 1) they prevent fur-
ther P300 detection and spelling accuracy improvements; 2)
they require high network complexity to achieve compet-
itive accuracy, which prevents the use of these CNNs for
portable BCIs, like the mobile-based BCI [Wang et al., 2011;
Chen et al., 2016].

To solve the problems mentioned above, we propose a sim-
ple, yet efficient CNN architecture which can capture feature
representations from both raw temporal and raw spatial in-
formation. The complexity is significantly reduced while im-
proving the P300 detection accuracy and P300-based spelling
accuracy. The novel contributions of this paper are the fol-
lowing:
• We propose a CNN architecture with only one convolu-

tion layer. Our CNN is able to better learn P300-related
features from both raw temporal information and raw
spatial information. It exhibits very low network com-
plexity.
• We perform experiments on three benchmark datasets

and compare our results with those in previous research
works which report the best results. The comparison
shows that our proposed CNN can increase the P300 sig-
nal detection accuracy by up to 15.61% and the character
spelling accuracy by up to 19.35%.

The rest of the paper is organized as follows: Section 2 de-
scribes the related work. Section 3 provides background in-
formation on the P300 signal, its detection, its application on
character spelling, and the datasets used in this paper. Sec-
tion 4 presents the proposed CNN. Section 5 compares the
complexity, the P300 signal detection accuracy, and the char-
acter spelling accuracy between the proposed CNN and other
methods on P300 detection and spelling. Section 6 ends the
paper with conclusions.

2 Related Work
The general architecture of current CNNs for P300-based
BCI [Cecotti and Graser, 2011; Manor and Geva, 2015;
Liu et al., 2017] uses the input tensor (N × C) shown in Fig-
ure 1, where N denotes the number of temporal signal sam-
ples and C denotes the number of electrodes used for EEG
signal recording and obtaining the samples. This architecture
has three stages. In the first stage, it performs convolution
along space to learn spatial features. In the second stage, it
performs convolution along time to learn temporal features.
In the final stage, it uses fully-connected layers to make ac-
curate correlation between learned features and a particular
class.

Figure 1: Spatial convolution in current CNNs. x denotes a signal
sample in the input tensor. f denotes a datum in a feature map.

Cecotti [Cecotti and Graser, 2011] is the first to propose
the aforementioned architecture. Let us call his architecture

CCNN. Table 1 shows the detailed architecture of CCNN.
The first column in the table describes the sequence of lay-
ers. The second column describes the operation in a layer.
The third column describes the kernel size in the convolu-
tion layers. The last column describes the number of feature
maps/neurons in a layer.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 10
2 Convolution (13,1) 50
3 Fully-Connected — 100

Output Fully-Connected — 2

Table 1: CCNN architecture.

Liu [Liu et al., 2017] improves CCNN by combining Batch
Normalization and Droupout techniques (see Table 2). This
CNN is named BN3 in [Liu et al., 2017]. BN3 does not per-
form input normalization in the preprocessing but uses Batch
Normalization: one is in Layer 1 and the other is in Layer
3. BN3 also employs dropout in the fully-connected layers
to reduce overfitting. Before the output layer, BN3 uses two
fully-connected layers instead of one for better generalization
and accumulation of features.

Layer Operation Kernel Size Feature Maps/Neurons
1 Batch Norm — —

Convolution (1,C) 16
2 Convolution (20,1) 16

Batch Norm — 16
3 Fully-Connected — 128

Dropout — 128
4 Fully-Connected — 128

Dropout — 128
Output Fully-Connected — 2

Table 2: BN3 architecture.

Manor [Manor and Geva, 2015] proposes a deep CNN for
P300 signal detection. Let us call his architecture CNN-R.
It is shown in Table 3. CNN-R improves CCNN by using a
deeper and wider network architecture. It uses smaller kernel
size but more layers for temporal convolution. It also uses two
fully-connected layers before the output layer. In addition,
CNN-R uses more feature maps for the convolution layers
and more neurons for the fully-connected layers. For such
complex network, CNN-R uses pooling as well as dropout to
reduce overfitting.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 96

Pooling (3,1) 96
2 Convolution (6,1) 96

Pooling (3,1) 96
3 Convolution (6,1) 96
4 Fully-Connected — 2048

Dropout — 2048
5 Fully-Connected — 4096

Dropout — 4096
Output Fully-Connected — 2

Table 3: CNN-R architecture.

The problem of the aforementioned CNNs is that they all
perform a spatial convolution with kernel (1,C) in the first
layer, which makes these CNNs not able to learn temporal
features well. This spatial convolution operation is shown in
Figure 1. Every column in the input tensor contains a set of
C signal samples. These samples come from C electrodes at
a certain sampling time point. The spatial convolution opera-
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tion converts each column of spatial data from the input ten-
sor into an abstract datum in a feature map. The spatial con-
volution layer (the first layer) outputs several feature maps,
which are given as input to the temporal convolution layer.
These feature maps are abstract temporal signals instead of
raw temporal signals. Thus, the spatial convolution operation
leads to losing raw temporal information. Losing raw tem-
poral information means losing important temporal features,
because the nature of P300 signals is the positive voltage po-
tential in raw temporal information, see Figure 2 explained
in Section 3.1, as well as many important P300-related fea-
tures are also embodied in raw temporal information [Polich,
2007]. As a result, the network can not learn temporal fea-
tures well. Due to this problem, the aforementioned CNNs
have to use a deeper and wider network architecture to learn
temporal features better and achieve competitive accuracy.
As a result, these CNNs exhibit high complexity.

In contrast, our novel CNN architecture performs both spa-
tial convolution and temporal convolution in the first layer in-
stead of performing only spatial convolution as in the afore-
mentioned CNNs. As a result, our CNN is able to learn fea-
ture representations from raw temporal information and at the
same time, it can also learn spatial features. Therefore, our
CNN learns P300-related features better. By learning in this
way, our CNN can achieve better accuracy (see Section 5.3
and Section 5.4) with only one convolution layer and without
fully-connected layers before the output layer, which reduces
the network complexity significantly (see Section 5.2).

3 Background
In this section, we first introduce the P300 signal and its de-
tection followed by its character speller application. Then,
we describe the benchmark datasets used in this paper.

3.1 P300 Detection and Speller
The P300 signal is the largest event-related potential (ERP),
first reported by Sutton [Sutton et al., 1967]. A P300 signal,
recorded in EEG, occurs with a positive deflection in voltage
at a latency about 300ms after a rare stimulus, as shown in
Figure 2. The P300 detection is a binary classification prob-
lem: one class corresponds to a P300 signal within a certain
time period while the second class corresponds to non-P300
within the time period.

Figure 2: P300 signal.
Figure 3: P300 speller char-
acter matrix.

Farwell and Donchin developed the first P300-based BCI
speller in 1988 [Farwell and Donchin, 1988]. The subject
in the experiment is presented with a 6 by 6 character matrix
(see Figure 3) and he focuses his attention on a target char-
acter he wants to spell. All rows and columns in this matrix
are intensified successively and randomly but separately. Two
out of twelve intensifications contain the target character, i.e.,

one target row and one target column. As a result, the tar-
get row/column intensification becomes a rare stimulus to the
subject. A P300 signal is then evoked by the rare stimulus. By
detecting the P300 signal, we can infer which row or column
the subject is focused on. By combing the row and column
positions, we can infer the target character position.

Assume that one epoch includes 12 intensifications, in
which there exist one target row intensification and one target
column intensification. Then, in theory, one epoch is suffi-
cient to infer one target character. However, in practice, since
the P300 signal has a very low SNR and is also influenced by
artifacts, one epoch can hardly be sufficient to infer one tar-
get character correctly. As a result, in practice, experimenters
use many epochs to help the subject’s brain generate more
P300 signals. Then by counting which row/column intensi-
fication has evoked the most P300 signals, we can inter the
target character. Using more epochs guarantees higher char-
acter spelling accuracy but impairs the communication speed
between the human brain and the computer.

3.2 Datasets

This paper uses three benchmark datasets, namely, BCI
Competition II - Data set IIb [Blankertz, 2003] as well as
BCI Competition III - Data set II Subject A and Subject
B [Blankertz, 2008]. Since many P300-based BCI algorithms
use these three benchmark datasets, we can fairly compare
the performance of our CNN with those of other state-of-the-
art methods on P300 detection and spelling. Here, we give a
short description of the three datasets.

BCI Competition II - Data set IIb and BCI Competition
III - Data set II Subject A and Subject B are provided by
the Wadsworth Center, NYS Department of Health. They are
recorded with the BCI2000 platform, using the P300 speller
developed by Farwell and Donchin. Brain signals are col-
lected from 64 electrodes at a sampling frequency of 240Hz.
One intensification lasts for 100ms, followed by a 75ms blank
period for the matrix. The experiment uses 15 epochs for
each character. After each sequence of 15 epochs, the matrix
is blank for 2.5s, to inform the subject that this character is
completed and to focus on the next character.

In BCI Competition II - Data set IIb, there is one subject
with separated training and test datasets. The training dataset
has 42 characters and the test dataset has 31 characters. In
each character epoch, composed of 12 sets of signal samples,
2 sets are supposed to have a P300 signal and 10 sets are sup-
posed to not have a P300 signal. So, the training dataset has
42 * 15 * 2 = 1260 sets of signal samples labelled “P300”, and
there are 42 * 15 * 10 = 6300 sets labelled “non-P300”. The
test dataset has 930 sets of signal samples labelled “P300”
and 4650 sets labelled “non-P300”.

In BCI Competition III - Data set II, there are two sub-
jects. We call them Subject A and Subject B. For each sub-
ject, the training dataset has 85 characters and the test dataset
has 100 characters. So, the training dataset has 2550 sets of
signal samples labelled “P300” and 12750 sets labelled “non-
P300”. The test dataset has 3000 sets of signal samples la-
belled “P300” and 15000 sets labelled “non-P300”.

Table 4 shows the number of P300s/non-P300s for each
dataset. II denotes BCI Competition II - Data set IIb, III-A
denotes BCI Competition III - Data set II Subject A, and III-
B denotes BCI Competition III - Data set II Subject B.
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Dataset Train Test
P300 non-P300 P300 non-P300

II 1260 6300 930 4650
III-A 2550 12750 3000 15000
III-B 2550 12750 3000 15000

Table 4: Number of P300s/non-P300s for each dataset.

4 Proposed Convolutional Neural Network
In this section, we introduce our novel CNN. We call it
One Convolution Layer Neural Network (OCLNN). First, in
Section 4.1, we describe the input to the network. In Sec-
tion 4.2, we describe our proposed network architecture. In
Section 4.3, we explain how we train the network. Finally, in
Section 4.4, we describe how our CNN is used in a character
speller application.

4.1 Input to the Network
The input to OCLNN is the tensor (N × C) shown in Fig-
ure 4. C denotes the number of electrodes used for EEG sig-
nal recording and obtaining the samples. N denotes the num-
ber of temporal signal samples. Here N= Ts×Fs, where Ts
denotes the time period between 0 and Ts posterior to the be-
ginning of each row/column intensification (see Section 3.1),
and Fs denotes the signal sampling frequency.

In the input tensor, the temporal signal samples are band-
pass filtered between 0.1Hz and 20Hz to remove high fre-
quency noise. Then, the temporal signal samples are normal-
ized to have zero mean and unit variance based on each indi-
vidual pattern and for each electrode. Each individual pattern
represents N signal samples in the time period between 0 and
Ts posterior to the beginning of each intensification.

Figure 4: Illustration of OCLNN for P300 signal detection.

4.2 Network Architecture
The architecture of OCLNN is described in Table 5 and illus-
trated in Figure 4. The first column in the table describes the
sequence of layers. The second column describes the opera-
tion in a layer. The third column describes the kernel size in
the convolution layer. The last column describes the number
of feature maps/neurons in a layer. We have 2 layers in total,
i.e., Layer 1 and Layer Output.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (N /15,C) 16

Dropout — —
Output Fully-Connected — 2

Table 5: OCLNN architecture.

In Layer 1, we segment the temporal signals from all elec-
trodes into 15 parts and perform convolution operation on
each part to learn features. Therefore, the kernel size of the

convolution operation is (N /15, C) and each receptive field
of the input tensor contains a (N /15, C) tensor of signal sam-
ples. In the time domain, these signal samples come from a
time period of Ts/15. In the space domain, these signal sam-
ples come from all C electrodes. The convolution operation
in this layer converts each receptive filed of data into an ab-
stract datum in a feature map. In this way, this layer learns
features from both raw temporal information and raw spa-
tial information. We do not employ overlapped convolution,
so the stride for the convolution operation is N /15. We use
a Rectified Linear Unit (ReLU) as an activation function to
model a neuron’s output in this layer because a network with
ReLUs is trained much faster than with traditional activation
functions [Krizhevsky et al., 2012]. In this layer, we employ
dropout [Srivastava et al., 2014] to reduce overfitting. The
dropout rate is set to be 0.25. This layer generates 16 feature
maps.

In Layer Output, OCLNN performs fully-connected oper-
ation. There are two neurons in this layer. One neuron rep-
resents the class “P300” and the other neuron represents the
class “non-P300”. The fully-connected operation makes cor-
relation between the feature maps from Layer 1 and the two
classes. We employ Softmax as an activation function for the
neurons in this layer. The output of the Softmax function for
class “P300” and class “non-P300” is denoted by P 1

(i,j) and
P 0
(i,j), respectively. Therefore, P 1

(i,j) represents the probabil-
ity of having a P300 signal and P 0

(i,j) represents the probabil-
ity of not having a P300 signal at epoch i and intensification
j. Thus, the detection of a P300 signal is defined by Equa-
tion 1, where X(i,j) is the input tensor to be classified and E
is the binary classifier.

E(X(i,j)) =

{
1 if P 1

(i,j) > P 0
(i,j)

0 otherwise
(1)

4.3 Training
The training of OCLNN is carried out by minimizing the bi-
nary cross-entropy loss function. It uses Stochastic Gradient
Descent as an optimizer with momentum and weight decay.
The learning rate is set to be 0.01. The momentum is set to
be 0.9. The batch size is set to be 128. The weight decay is
set to be 0.0005. The weights and biases of all neurons in the
convolution layer are regularised by L2 Regularizer.

4.4 Character Spelling Using the Network
We use P 1

(i,j), the output of OCLNN for class “P300”, to cal-
culate the position of the target character in the P300 speller
application described in Section 3.1. The detailed calculation
process is defined by Equation 2, 3 and 4, where C(j) de-
notes the sum of the probabilities, indexcol denotes the col-
umn index of the target character in the matrix in Figure 3,
and indexrow denotes the row index of the target character.
When j ∈ [1, 6], j denotes a column intensification. When
j ∈ [7, 12], j denotes a row intensification.

Equation 2 cumulates the probabilities of having a P300
signal evoked by intensification j over all the epochs. In
Equation 3, we assign the index of the maximum C(j) to
indexcol when j ∈ [1, 6]. This equation finds the index of the
column intensification, with the maximum sum of probabili-
ties, to have evoked a P300 signal. This index is the column
position of the target character. In Equation 4, the row posi-
tion of the target character is calculated in the same way as in
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Equation 3. The position of the target character in the matrix
in Figure 3 is the coordinate formed by the row position and
the column position.

C(j) =
n∑

i=1

P 1
(i,j) (2)

indexcol = argmax
1≤j≤6

C(j) (3)

indexrow = argmax
7≤j≤12

C(j) (4)

5 Experimental Results
First, we introduce our experimental setup in Section 5.1.
Then, we present the experimental results and show the per-
formance comparison between OCLNN and other related re-
search works in terms of complexity (see Section 5.2), P300
detection accuracy (see Section 5.3) and character spelling
accuracy (see Section 5.4).

5.1 Experimental Setup
We train OCLNN using each training dataset in Dataset II,
III-A and III-B, described in Section 3.2, separately. Thus,
the number of used electrodes is 64 and the signal sampling
frequency is 240 Hz. Therefore, for the input to OCLNN (see
Section 4.1), we have C = 64 and Fs = 240 Hz. Ts = 1000ms
because we take each individual pattern to be the signal sam-
ples between 0 and 1000 ms posterior to the beginning of each
intensification. Then, N = Ts×Fs = 240.

We run each of our trained OCLNNs on the correspond-
ing test dataset in Dataset II, III-A and III-B and calculate
the P300 detection accuracy using Equation 5 and the char-
acter spelling accuracy using Equation 6 for each test dataset.
In Equation 5, accP300 denotes the P300 detection accuracy,
Ntp denotes the number of truly classified P300s for a test
dataset, Ntn denotes the number of truly classified non-P300s
for the test dataset, and Spn denotes the number of all P300s
and non-P300s in the test dataset. In Equation 6, accchar(k)
denotes the character spelling accuracy when using the first
k epochs for each character in a test dataset, Ntc(k) denotes
the number of truly predicted characters when using the first
k epochs for each character in the test dataset, and Sc denotes
the number of all characters in the test dataset.

accP300 =
Ntp +Ntn

Spn
(5) accchar(k) =

Ntc(k)

Sc

(6)

OCLNN is implemented using Keras [Chollet and others,
2015] with the Tensorflow [Abadi et al., 2016] backend. The
network is trained on an NVIDIA GeForce GTX 980 Ti GPU.

For a fair comparison with CNN-R [Manor and Geva,
2015], we apply the bandpass filtering and signal decimation
methods used for our OCLNN on CNN-R because we obtain
low character spelling accuracy for CNN-R using the original
filtering and decimation methods in [Manor and Geva, 2015].

5.2 Complexity
In this section, we compare the complexity, in terms of num-
ber of parameters and layers, of OCLNN with the networks
CCNN, BN3, and CNN-R described in Section 2. The num-
ber of parameters is the number of weights and biases for all
neurons in a network. We show the complexity in Table 6.
The first row in the table lists the CNNs for comparison. The

OCLNN CCNN BN3 CNN-R
Parameters 16882 37502 39489 21950818

Layers 2 4 5 6

Table 6: Complexity comparison of different CNNs.
second row provides the number of parameters for each CNN.
The third row shows the number of layers used in each CNN.

In terms of number of parameters, OCLNN is much
smaller than the other three CNNs. OCLNN has only 16882
parameters while CCNN has 37502 parameters1, BN3 has
39489 parameters, and CNN-R has 21950818 parameters.
Thus, the number of parameters for OCLNN is only 45%,
42%, and 0.07% of that for CCNN, BN3, and CNN-R, re-
spectively.

In terms of number of layers used in a CNN, OCLNN has
less layers than the other three CNNs. OCLNN has only 2
layers while CCNN has 4 layers, BN3 has 5 layers, and CNN-
R has 6 layers. Thus, the number of layers in OCLNN is only
50%, 40%, and 33.33% of that in CCNN, BN3, and CNN-R,
respectively.

5.3 P300 Detection Accuracy
This section compares the P300 detection accuracies
achieved by OCLNN with accuracies obtained by CCNN,
MCNN-1, BN3, and CNN-R on Dataset II, III-A and III-B.
MCNN-1 [Cecotti and Graser, 2011] is a multi-classifier with
five CCNNs.

The P300 detection accuracy is shown in Table 7. The first
row in the table lists the CNNs used for comparison. The sec-
ond, third, and last row show the P300 detection accuracy of
the different CNNs on Dataset II, III-A, III-B, respectively.
The numbers are given in percentage (%) and calculated us-
ing Equation 5. An accuracy number in bold indicates the
highest accuracy along a row. “–” in the table means that the
accuracy is not reported in the reference paper describing the
corresponding CNN.

OCLNN CCNN MCNN-1 BN3 CNN-R
P300 Accuracy on II 92.41 – – 84.44 86.29

P300 Accuracy on III-A 84.60 70.37 68.99 75.13 73.06
P300 Accuracy on III-B 86.40 78.19 75.86 79.02 79.80

Table 7: P300 detection accuracy of different CNNs on Dataset II,
III-A and III-B.

Overall, OCLNN achieves the highest accuracies among
all CNNs on Dataset II, III-A and III-B. It increases the P300
detection accuracies obtained from the other CNNs by up
to 15.61%. For Dataset II, OCLNN achieves 92.41% P300
detection accuracy. The accuracy achieved by OCLNN is
7.97% and 6.12% higher than that achieved by BN3 and
CNN-R, respectively. For Dataset III-A, OCLNN achieves
84.60% P300 detection accuracy. The accuracy achieved by
OCLNN is 14.23%, 15.61%, 9.47%, and 11.54% higher than
that achieved by CCNN, MCNN-1, BN3, and CNN-R, re-
spectively. For Dataset III-B, OCLNN achieves 86.40% P300
detection accuracy. The accuracy achieved by OCLNN is
8.21%, 10.54%, 7.38%, and 6.60% higher than that achieved
by CCNN, MCNN-1, BN3, and CNN-R, respectively.

5.4 Character Spelling Accuracy
This section compares the character spelling accuracies
achieved by OCLNN and the accuracies achieved by CCNN,

1Cecotti [Cecotti and Graser, 2011] calculated the number of pa-
rameters erroneously for L2. It should be 5Ns*(13*Ns+1) instead
of 5Ns*(13+1)
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MCNN-1, BN3, CNN-R, and ESVM [Rakotomamonjy and
Guigue, 2008] for Dataset III-A and III-B, as well as the char-
acter spelling accuracies achieved by OCLNN and the accu-
racies achieved by BN3, CNN-R, and Bostanov [Bostanov,
2004] for Dataset II. The paper [Cecotti and Graser, 2011]
describing CCNN and MCNN-1 does not report the accura-
cies for Dataset II. ESVM is the champion spelling method of
BCI Competition III - Data set II. Bostanov is the champion
spelling method of BCI Competition II - Data set IIb.

Table 8, 9, and 10 show the character spelling accuracies
of different methods on Dataset II, III-A and III-B, respec-
tively. The first column in a table lists the different methods
we compare. Each row provides the character spelling accu-
racy of a method calculated by Equation 6 for different epoch
numbers k ∈ [1, 15]. An accuracy number in bold indicates
the highest accuracy along a column. “–” in a table means the
accuracy is not reported in the reference paper describing the
corresponding method.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100
CNN-R 70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100
Bostanov 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 8: Spelling accuracy of different methods on Dataset II.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
CCNN 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97

MCNN-1 18 31 50 54 61 68 76 76 79 82 89 92 91 93 97
CNN-R 14 28 38 53 57 62 71 75 77 82 89 87 87 92 95

BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98
ESVM 16 32 52 60 72 – – – – 83 – – 94 – 97

Table 9: Spelling accuracy of different methods on Dataset III-A.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
CCNN 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92

MCNN-1 39 55 62 64 77 79 86 92 91 92 95 95 95 94 94
CNN-R 36 46 66 70 77 80 86 86 88 91 94 95 95 96 96

BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95
ESVM 35 53 62 68 75 – – – – 91 – – 96 – 96

Table 10: Spelling accuracy of different methods on Dataset III-B.

The goal of the aforementioned competitions is to achieve
the highest character spelling accuracy using epoch number
k = 15. For this goal, OCLNN achieves the best results for
all three datasets in the two competitions. For Dataset III-
A and III-B, we achieve 99% and 98% spelling accuracy for
k = 15. For Dataset II, we only need 3 epochs to achieve
100% spelling accuracy.

Improving the character spelling accuracy using less
epochs will increase the Information Transfer Rate
(ITR) [Wolpaw and Wolpaw, 2012], thereby increasing
the communication speed between a human brain and a
computer. Therefore, we also analyse the character spelling
accuracies for every epoch number k ∈ [1, 15]. Overall, in
most cases, OCLNN achieves better accuracies than the other
methods. OCLNN increases the character spelling accuracies
obtained from the other methods by up to 19.35%.

For Dataset II, OCLNN achieves the highest character
spelling accuracies for every epoch number k ∈ [1, 15]
among all methods. Compared with the accuracies obtained
by CNN-R, BN3, and Bostanov, our OCLNN increases the
accuracies by up to 6.45%, 19.35%, and 12.90%, respec-
tively.

For Dataset III-A, when compared with methods CCNN,
MCNN-1, CNN-R, and ESVM, our OCLNN achieves the
highest character spelling accuracies for every epoch num-
ber k ∈ [1, 15] among all the methods. OCLNN increases
the accuracies by up to 14%, 12%, 18%, and 8% compared
with the accuracies obtained by CCNN, MCNN-1, CNN-R,
and ESVM, respectively.

For Dataset III-B, when compared with methods CCNN,
MCNN-1, CNN-R, and ESVM, our OCLNN achieves the
highest character spelling accuracies for every epoch num-
ber k ∈ [1, 15] among all the methods. OCLNN increases
the accuracies by up to 13%, 15%, 16%, and 11% compared
with the accuracies obtained by CCNN, MCNN-1, CNN-R,
and ESVM, respectively.

When compared with BN3 on Dataset III-A and III-B,
our OCLNN increases the accuracies by up to 8% consid-
ering epoch numbers 1, 2, and 5 to 15 on Dataset III-A as
well as OCLNN increases the accuracies by up to 8% con-
sidering epoch numbers 2 to 15 on Dataset III-B. However,
OCLNN decreases the accuracies for epoch numbers 3 and
4 on Dataset III-A and for epoch number 1 on Dataset III-
B. This is because BN3 uses the Batch Normalization opera-
tion to improve the accuracies on smaller epoch numbers [Liu
et al., 2017]. However, the Batch Normalization operation
used in BN3 can only improve the accuracies on Dataset III-
A and III-B. On Dataset II, BN3 achieves much worse re-
sults on smaller epoch numbers. In OCLNN, we do not use
the Batch Normalization operation because we aim at a CNN
with better potential to achieve higher accuracies across dif-
ferent datasets obtained from different subjects. The Batch
Normalization operation is not very helpful to our OCLNN
because it is more useful in deep CNNs [Ioffe and Szegedy,
2015] but our network has only 2 layers while BN3 has 5
layers. We have performed extra experiments, which are not
presented in this paper. These extra experiments show that
the Batch Normalization operation impairs the accuracies on
Dataset II and III-A and only increases the accuracies a bit on
Dataset III-B. Therefore, in order to achieve higher accuracies
across all three datasets obtained from different subjects, we
abandon the Batch Normalization operation for our OCLNN.

6 Conclusions

In this paper, we propose a simple CNN, called OCLNN,
for P300 signal detection and its application for character
spelling. Our CNN learns P300-related features better by per-
forming both spatial convolution and temporal convolution in
the first layer. Compared with the state-of-the-art CNNs for
P300 signal detection, our CNN has only two layers and much
smaller number of parameters, which reduces the complex-
ity significantly. Experimental results on three datasets show
that our CNN always increases the P300 signal detection ac-
curacy and increases the character spelling accuracy in most
cases, when compared with the state-of-the-art methods for
P300 signal detection and character spelling. Our CNN ex-
hibits lower complexity while still achieving better accuracy,
which enables the use of CNNs in resource-constrained em-
bedded portable BCIs. In addition, our CNN can serve as a
base architecture to learn low-level features. On top of it, re-
searchers can design deep neural networks to further increase
the P300 signal detection accuracy and the character spelling
accuracy when the complexity is not a constraint.
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