
1

Automated Exploration and Implementation of
Distributed CNN Inference at the Edge

Xiaotian Guo , Student Member, IEEE,
Andy D. Pimentel , Senior Member, IEEE, and Todor Stefanov , Member, IEEE

Abstract—For model inference of Convolutional Neural Net-
works (CNNs), we nowadays witness a shift from the Cloud to
the Edge. Unfortunately, deploying and inferring large, compute-
and memory-intensive CNNs on Internet-of-Things devices at the
Edge is challenging as they typically have limited resources. One
approach to address this challenge is to leverage all available
resources across multiple edge devices to execute a large CNN by
properly partitioning it and running each CNN partition on a sep-
arate edge device. However, there currently does not exist a design
and programming framework that takes a trained CNN model
as input and subsequently allows for efficiently exploring and
automatically implementing a range of different CNN partitions
on multiple edge devices to facilitate distributed CNN inference.
Therefore, in this paper, we propose a novel framework that
automates the splitting of a CNN model into a set of sub-models
as well as the code generation needed for the distributed and
collaborative execution of these sub-models on multiple, possibly
heterogeneous, edge devices, while supporting the exploitation
of parallelism among and within the edge devices. In addition,
since the number of different CNN mapping possibilities on
multiple edge devices is vast, our framework also features a multi-
stage and hierarchical Design Space Exploration methodology to
efficiently search for (near-)optimal distributed CNN inference
implementations. Our experimental results demonstrate that our
work allows for rapidly finding and realizing distributed CNN
inference implementations with reduced energy consumption and
memory usage per edge device, and under certain conditions,
with improved system throughput as well.

Keywords-edge computing; internet of things; deep learning;
distributed inference; design space exploration.

I. INTRODUCTION

DEEP learning (DL) [1] has become a popular method in
AI-based applications in various fields including com-

puter vision, natural language processing, automotive, and
many more. Especially, DL approaches based on convolutional
neural networks (CNNs) [2] have been extensively utilized
because of their huge success in image classification [3] and
speech recognition applications [4].

Due to the high complexity of state-of-the-art CNN models,
the training of these models is performed mainly on high-

Xiaotian Guo is with the Informatics Institute at the University of Am-
sterdam and the Leiden Institute of Advanced Computer Science at Leiden
University, The Netherlands. (e-mail: x.guo3@uva.nl).

Andy D. Pimentel is with the Informatics Institute at the University of
Amsterdam, Amsterdam, The Netherlands. (e-mail: a.d.pimentel@uva.nl).

Todor Stefanov is with the Leiden Institute of Advanced Com-
puter Science at Leiden University, Leiden, The Netherlands. (e-mail:
t.p.stefanov@liacs.leidenuniv.nl).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

performance platforms, while the model inference is usu-
ally provided as a cloud service [5], allowing less powerful
Internet-of-Things (IoT) devices at the Edge to easily use
such services. Realizing CNN inference on edge devices
using cloud services, however, requires users to communicate
a substantial amount of data between an edge device and
a cloud server. Such data communication may cause data
privacy concerns as well as low device responsiveness due to
data transmission delays or temporal unavailability of cloud
services. Evidently, this is highly undesirable for those CNN-
based applications that are particularly sensitive to compute
response delays or the privacy of the processed data. For
example, CNN-based navigation in self-driving cars [6] cannot
tolerate variable and large response delays occurring due to
the communication between the car and a cloud server. Or,
applications in healthcare [7] using CNNs on IoT devices
dealing with patient data cannot send their data to the cloud
because this could lead to leakages of private data and viola-
tion of patients’ privacy rights. The aforementioned concerns
motivate the shift of the CNN inference from the Cloud to the
Edge. When entirely executed at the Edge, a CNN is deployed
close to the source of data, and data communication with a
cloud server is not required, thereby ensuring high application
responsiveness and reducing the risk of private data leakage.

Unfortunately, deploying and inferring a large CNN, which
is typically memory/power-hungry and compute-intensive, on
an IoT edge device is challenging because many edge devices
have limited energy budgets and compute and memory re-
sources. One approach to address this challenge is to construct
a lightweight CNN model from a large CNN model by
utilizing model compression techniques (e.g., pruning [8],
quantization [9], knowledge distillation [10]), thereby reducing
the CNN model size to a degree that allows the CNN to be
deployed and efficiently executed on a resource-constrained
edge device. However, the accuracy of the compressed CNN
model is significantly decreased if high compression rates are
required. Another approach is to infer only part of a large
CNN model on the edge device and the rest on the cloud by
efficiently partitioning the model and distributing the partitions
vertically along the edge-cloud continuum [11]. However,
the aforementioned edge device responsiveness and private
data leakage issues are still inevitable in such partitioned
CNN inference due to the partial involvement of the cloud.
Finally, a third approach to address the challenge is to leverage
all available resources horizontally along multiple, possibly
heterogeneous, edge devices to deploy and execute a large
CNN by properly partitioning the CNN model and running

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4540-9013
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0001-6006-9366

2

each CNN partition on a separate edge device. The size of
each CNN partition should match the limited energy, memory,
and compute resources of the edge device the partition runs
on. Such an approach not only makes it possible to deploy
large CNN models without the need of model compression,
respectively without loss of accuracy, but it also resolves the
aforementioned responsiveness and privacy issues because a
cloud server is not involved in the CNN inference. Thus, in this
paper, we focus on this last approach, i.e., entirely distributing
and executing a large CNN model at the Edge.

Although distributing, deploying, and executing a large
CNN model on multiple IoT edge devices is a desirable and
beneficial approach, currently, it requires a significant manual
design and programming effort involving advanced skills in
CNN model design, embedded systems and programming, and
parallel programming for (heterogeneous) distributed systems.
At this moment, no design and programming framework exists
that fully automates these tasks. Moreover, such distributed
execution of the CNN model inference often needs to take mul-
tiple requirements into account as well, like latency, through-
put, resource usage, power/energy consumption, etc. Here, the
way how the different CNN layers are distributed and mapped
onto the edge devices plays a key role in optimizing/satisfying
these requirements. As today’s CNN models are becoming
increasingly deep and complex, the number of different CNN
mapping possibilities when deploying multiple edge devices,
and the various compute resources in each of them, is vast.
Therefore, efficient Design Space Exploration (DSE) methods
are essential to find a set of (near-)optimal CNN mappings
subject to one or more design requirements (i.e., objectives).

To address the above needs, this paper presents a novel
framework that allows for efficiently exploring and automati-
cally implementing a, possibly large, range of different CNN
partitions/mappings on multiple edge devices to facilitate dis-
tributed CNN inference at the Edge. The framework consists
of two main components, namely a multi-stage hierarchical
DSE methodology for efficient exploration of CNN mappings
and the AutoDiCE tool for fully automated implementation of
a CNN mapped on multiple edge devices. The multi-stage
hierarchical DSE methodology deploys a tailored Genetic
Algorithm (GA) as the underlying search engine and also
leverages the AutoDiCE tool to assess the quality (in terms of
inference throughput, memory footprint, and energy consump-
tion) of particular CNN mapping implementations. At every
stage, DSE is performed at two hierarchical levels. In the first
level, analytical models are used inside a GA to approximate
each objective function (i.e., throughput, memory, and energy
consumption) to avoid relatively long evaluation times through
real on-device (i.e., on-board) measurements using AutoDiCE.
The near-optimal solutions found in the first level together
with Pareto-optimal solutions from a previous DSE stage
are utilized as a starting point for the second level DSE.
In this second level, we further search and evaluate design
solutions using real measurements taken from AutoDiCE-
generated CNN inference implementations to determine the
Pareto front for the next DSE stage. The output of the last DSE
stage provides the final Pareto-optimal solutions in the form of
AutoDiCE-based distributed CNN implementations. An initial

version of this multi-stage hierarchical DSE methodology has
been presented in [12]. The AutoDiCE tool used in the DSE
methodology takes as input a specific DSE solution candidate,
i.e., a trained CNN model and a CNN partitioning/mapping
specification, and subsequently performs automated splitting
of the CNN model into a set of sub-models and automated
code generation for distributed and collaborative execution of
these sub-models on multiple, possibly heterogeneous, edge
devices. Doing so, it supports the exploitation of parallelism
among and within the edge devices.

Our novel contributions can be summarized as follows:

• A tool, called AutoDiCE, featuring automated splitting
of a CNN model into a set of sub-models and auto-
mated code generation for distributed and collaborative
execution of these sub-models on multiple, possibly het-
erogeneous, edge devices. AutoDiCE is the first fully
automated tool for distributed CNN inference over multi-
ple resource-constrained devices at the Edge. It is open-
source and available at [13];

• A hybrid MPI and OpenMP code generation approach
in AutoDiCE to support the exploitation of parallelism
among and within the edge devices, i.e., the latter ex-
ploiting multi-core execution;

• A highly flexible AutoDiCE implementation that facil-
itates easy specification and reuse of existing CNNs
(via the ONNX format [14]), and can target a range
of (heterogeneous) edge devices via a custom inference
engine library which supports a variety of CPUs (x86,
ARM), GPUs (NVIDIA, Mali, AMDRX) and GPU APIs
(VULKAN, CUDA);

• An advanced DSE methodology for efficiently exploring
distributed CNN implementations at the edge, using i)
analytical models to approximate each objective function
and to prune the design space that is evaluated with
AutoDiCE implementations and on-board measurements,
ii) multiple DSE stages where at each stage only a specific
part of the design space is considered of which the Pareto-
optimal solutions from a previous DSE stage are used to
find Pareto-optimal solutions in a next DSE stage, and
iii) a GA with a tailored chromosome encoding method
to scale down the search space;

• A range of experiments in which we show that our frame-
work, composed of the multi-stage hierarchical DSE
and AutoDiCE, can rapidly explore and realize a wide
variety of distributed CNN inference implementations on
multiple edge devices, achieving improved (i.e., reduced)
per-device energy consumption and per-device memory
usage, and under certain conditions, improved system
(inference) throughput as well.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work, after which Section III presents
our AutoDiCE tool. Section IV discusses our multi-stage
hierarchical DSE methodology for efficient CNN mapping
exploration, which leverages the AutoDiCE tool. In Section V,
we describe a range of experiments, demonstrating that our
framework can rapidly explore and realize a wide variety of
distributed CNN inference implementations with diverse trade-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

3

offs regarding energy consumption, memory usage and system
throughput. Section VI provides a discussion on the current
version of our framework and how it could be further improved
in the future. Moreover, we further clarify, with examples,
why distributed CNN inference using our novel framework is
beneficial in real-world application scenarios when the CNN
memory footprint and energy consumption are a concern.
Finally, Section VII concludes the paper.

II. RELATED WORK

Today’s convolutional neural network (CNN) models for
computer vision tasks are becoming increasingly complex. For
example, the CNN-based model CoAtNet-7 [15] reaching the
top-1 accuracy of 90.88% for the ImageNet dataset has 2.44
billion parameters (weights and biases) which values have to
be determined during the training and stored/used during the
inference. To train and deploy such large CNN models, parallel
or distributed computing is often required. For model training,
a common approach to accelerate the training process is to
exploit pipeline parallelism. For example, GPipe [16] applies
pipeline parallelism by splitting a mini-batch of training data
into smaller micro-batches, where different GPUs train on
different micro-batches. Another example is PipeDream [17]
which partitions the CNN model for multiple GPUs such that
each GPU trains a different part of the model. An alternative
distributed training approach, motivated by privacy concerns
among multiple devices/machines, is federated learning (FL)
[18], [19]. FL aims at training a global centralized model
with multiple, local datasets on distributed devices or data
centers, thereby preserving local data privacy and improving
learning efficiency. All of the aforementioned approaches
target efficient, distributed training of large CNN models. In
contrast, our work presented in this paper focuses on efficient,
distributed inference of large CNNs.

Unlike the parallel or distributed CNN training, discussed
above, the inference of large CNN models often needs to
take multiple requirements into account, such as latency,
throughput, resource usage, power/energy consumption, etc.
To satisfy these requirements when executing the inference of
large CNNs on edge devices, the following two approaches for
distributed CNN model inference are typically used: vertically
and horizontally distributed inference.

In vertically distributed inference (e.g., [11], [20], [21]), the
workload of a large CNN is distributed along the cloud-edge
continuum. Such an approach maximizes the utilization of
computing resources on edge devices, reduces the computation
workload on the cloud, and usually improves the CNN infer-
ence throughput. The most common idea in this approach is to
obtain a specific small sub-model from or an early-exit branch
of the initial large CNN model that runs on the edge device.
Only if the inference result of the deployed sub-model/early-
exit branch on the edge device is below a certain confidence
threshold, the device has to upload its data on the cloud and
the CNN inference has to continue on the cloud. Vertical
distribution along the cloud-edge continuum still relies on the
quality and stability of network connections between the edge
device and the cloud server because intermediate results of the

small CNN sub-models or early-exit branches may still need
to be uploaded to the cloud. This not only suffers from high
communication latency but also there is a risk of information
leakage. In contrast, our framework achieves lower inference
latency by deploying a large CNN model over edge devices
without the cloud, and therefore also preserves both data and
model privacy to some extent.

In horizontally distributed inference (e.g., [22]–[27]), the
workload of a large CNN is fully distributed among multiple
edge devices. That is, all CNN computations are collabo-
ratively executed at the Edge and there is no dependency
on the cloud. Data partitioning and model partitioning are
two common methods to horizontally distribute the CNN
inference across multiple edge devices. Data partitioning ex-
ploits data parallelism among multiple devices by splitting the
input/output data to/from CNN layers into several parts while
each device executes all layers of a CNN model using only
some parts of the data. For example, DeepThings [23] uses
the Fused Tile Partitioning (FTP) method for splitting input
data frames of CNN layers in a grid fashion to reduce the
CNN memory usage per device. The main drawback of the
data partitioning method is that an edge device should still
be capable of executing all layers of a CNN model which
implies that the edge device should be able to store the weights
and biases of the entire CNN model. Alternatively, the model
partitioning method splits the CNN layers and/or connections
of a large CNN model, thereby creating several smaller sub-
models (model partitions) where each sub-model is executed
on a different edge device [24]. For example, MoDNN [22]
splits convolution layers and fully connect layers in the VGG-
16 model. In [25], [27], CNN layer connections are split
and each CNN layer is treated as a sub-task. These sub-
tasks are then mapped to edge devices through a balanced
processing pipeline approach. In addition to using data and
CNN model partitioning to map large CNNs on resource-
constrained edge devices, researchers try to optimize the CNN
mapping to improve the inference performance. For example,
the methodologies in [27]–[30] propose efficient algorithms
to determine partitioning policies that generate efficient CNN
mappings in order to improve the performance of cooperative
inference over multiple edge devices. However, all of these
methodologies typically optimize and evaluate CNN mappings
based on analytical models only and consider a limited number
of objectives. In contrast, our framework optimizes more ob-
jectives, and besides analytical models, it deploys AutoDiCE
to evaluate mappings by real on-device measurements.

Distributed inference of large CNN models typically needs
to consider a range of different design requirements, such as
latency, throughput, resource usage, power/energy consump-
tion, etc. These requirements/objectives can be conflicting,
implying that there usually does not exist a single optimal
CNN mapping that satisfies all requirements. Usually, multiple
solutions (the so-called Pareto optimal solutions) co-exist and
the set of all optimal solutions is called the Pareto front.
Finding these Pareto-optimal CNN mappings for a given
number of edge devices to perform distributed CNN inference
under several requirements is addressed in this paper. A
popular approach to perform such a search for Pareto-optimal

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

4

solutions is by using multi-objective evolutionary algorithms
[31]. More specifically, in the domain of DSE, multi-objective
Genetic Algorithms (GAs), such as the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [32], are widely used and have
demonstrated to produce good results [33]. For instance, [34],
[35] use the NSGA-II GA to explore the design space to
find improved neural network architectures for CNN-based
applications. Our DSE methodology also employs NSGA-
II to explore the Pareto-optimal CNN mapping solutions
with respect to systems (inference) throughput, maximum
memory usage per device, and maximum energy consump-
tion per device. However, NSGA-II can easily get stuck in
so-called dominance resistant solutions [36], which are far
away from the true Pareto front. Therefore, how to search
the optimal CNN mappings for distributed inference using
NSGA-II, and efficiently find the Pareto front in the huge
search space, are important research challenges. In this paper,
we try to address these challenges by devising and using a
multi-stage hierarchical DSE methodology based on NSGA-II
with a tailored chromosome encoding method. Although our
method does not guarantee to completely solve the problem
of dominance-resistant solutions, our experiments in Section
V-D demonstrate that our method mitigates this problem.

III. THE AUTODICE TOOL

In this section, we present our AutoDiCE tool, which is
deployed in our DSE methodology for efficiently searching
for (near-)optimal distributed CNN inference implementations
at the Edge. To this end, we describe AutoDiCE as a design
flow and explain the main steps in the flow with the help of an
illustrative example. First, we provide a high-level overview of
the AutoDiCE design flow. Second, we describe AutoDiCE’s
unified user interface. Next, we explain in detail the main steps
in the front-end of the AutoDiCE design flow. Finally, we do
the same for the back-end of the flow.

A. Overview

AutoDiCE is a flexible tool that facilitates distributed infer-
ence of a CNN model, embedded in an AI application, at the
Edge. More specifically, it allows designers and programmers
of such CNN-based AI applications to perform, in a fully
automated manner, CNN model partitioning, deployment,
and execution on multiple resource-constrained edge devices.
Figure 1 shows the AutoDiCE user interface and design flow
where the main steps in the flow are divided into two modules:
front-end and back-end.

The interface is composed of three specifications, namely
Pre-trained CNN Model provided as an .onnx file, Mapping
Specification provided as a .json file, and Platform Specifica-
tion provided as a .txt file.

The Pre-trained CNN Model specification includes the CNN
topology description with all layers and connections among
layers as well as the weights/biases that are associated with the
layers and obtained by training on a specific dataset using deep
learning frameworks like PyTorch, TensorFlow, etc. Many
such CNN model specifications in ONNX format [14] are

Mapping Specification

.json

Frontend

Backend

Pre-trained CNN Model

.onnx

.onnx (models)

Platform Specification

.txt

Model Splitting

Model 1 … Model NModel 0 Comm 0

Config & Communication
Generation

Comm 1 … Comm N

MPI

Comm

 Library

CNN

Inference

 Library

Code
Generation

.json (tables)

.txt (mpi rankfile)
.cpp (code)

…
.cpp

Model N

Rankfile

.cpp

Model 0

Rankfile

.cpp

Model 1

Rankfile

Interface

Package 1Package 0 Package N

Package
Generation

Fig. 1: The AutoDiCE design flow and its user interface

readily available in open-access libraries and can be directly
used as an input to AutoDiCE.

The Platform Specification lists all available edge devices
together with their computational hardware resources and
specific software libraries associated with these resources. This
specification is simple to draw up and can be generated by
external tools that query the network connecting the edge
devices or provided manually by the user.

The Mapping Specification is a simple list of key-value pairs
in JSON format that explicitly shows how all layers described
in the Pre-trained CNN Model specification are mapped onto
the computational hardware resources listed in the Platform
Specification. Every unique key corresponds to an edge device
with a selection of its hardware resources to be used for
computation. Every value corresponds to a set of CNN layers
to be deployed and executed on the edge device resources.
Such a Mapping Specification can be provided manually by
the user or, like in this paper, generated by a system-level
design-space exploration (DSE) tool.

The three aforementioned specifications are given as an
input to the front-end module as shown in Figure 1. Two
main steps are performed in this module: Model Splitting and
Config & Communication Generation. The Model Splitting
takes as an input the Pre-trained CNN Model and Mapping
specifications, splits the input CNN model into multiple sub-
models, and generates these sub-models in ONNX format.
The number of generated sub-models is equal to the number
of unique key-value pairs in the Mapping Specification. Each
sub-model contains input buffers, output buffers, and the set
of CNN layers, specified in the corresponding key-value pair.
The Config & Communication Generation step takes all three
specification files as an input and generates specific tables
in JSON format containing information needed to realize
proper communication and synchronization among the sub-
models using the well-known MPI interface. In addition, a

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

5

Model template Mapping template

{

“edge01_arm123”: [

 “MaxPool1”,

 “Add1”

],

“edge01_gpu”: [

 “FC1”

],

“edge04_gpu”: [

 “Conv1”,

 “Relu1”

]

}

Platform template

edge01, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge02, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge03, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge04, x86, slots=0-11, gpu=AMDRX6800 (VULKAN)

edge05, arm, slots=0-3, gpu=ArmMali-G610 (VULKAN)

Conv1

MaxPool1

Input

Output

FC1

Add1

Relu1

MaxPool1

Input Buff1

Buff3

FC1

Buff2

Buff4

Add1

Buff3

Buff1

edge01_arm123

Model 0

Conv1

Buff1

Output

Relu1

Buff4

Buff2

edge01_gpu

Model 1

edge04_gpu

Model 2

// rankfile.txt

rank 0=edge01 slots=1,2,3

rank 1=edge01 slots=0

rank 2=edge04 slots=0

// receiver.json

{ "0": {“Buff2”: [“2”], “Buff3”: [“1”]},

 “1”: {“Buff1”: [“0”]},

 “2”: {“Buff1”: [“0”], “Buff4”: [“0”]}

}

// 0,1,2 indicate MPI process ID

// sender.json

{ “0": {"Buff1": [“1”,“2”], “Buff4”: [“2”]},

 “1”: {“Buff3”: [“0”]},

 “2”: {"Buff2": [“0”]} }Comm 0

Comm 1
Comm 2

Rankfile

Model
splitting

Config
generation

Communication
generation

Code
generation

1 if (rank_id==0){

2 Read Input Image;

3 Register Recv & Send Functions;

4 Execute MaxPool1;

5 Send Buff1;

6 Wait Buff2 & Buff3 Recv;

7 Execute Add1;

8 Send Buff4;

9 Wait Buff1 Send;

10 Wait Buff4 Send;

11 }

12 if (rank_id==1){

13 Register Recv & Send Functions;

14 Wait Buff1 Recv;

15 Execute FC1;

16 Send Buff3;

17 Wait Buff3 Send;

18 }

19 if (rank_id==2){

20 Register Recv & Send Functions;

21 Wait Buff1 Recv;

22 Execute Conv1;

23 Send Buff2;

24 Wait Buff4 Recv;

25 Execute Relu1;

26 Return Output;

27 Wait Buff2 Send;

28 }

Fig. 2: AutoDiCE in action: a detailed example

configuration text file (MPI rankfile) is generated to initialize
and run the sub-models as different MPI processes.

As shown in Figure 1, the generated configuration file, sub-
models, and tables are used in the back-end module for code
and deployment package generation. During the Code Gener-
ation step in this module, efficient C++ code is generated for
every edge device based on the input sub-models and tables. In
the generated code, primitives from the standard MPI library
are used for data communication and synchronization among
sub-models as well as primitives from our customized CNN
Inference Library are used for implementation of the CNN
layers belonging to every sub-model. Both libraries enable
the generation of cross-platform code that can be compiled
for and executed on multiple heterogeneous edge devices.
Finally, the Package Generation step packs the generated
cross-platform C++ code, the MPI rankfile, and a sub-model
together to generate a specific deployment package for every
edge device. All packages contain the same C++ code and the
same MPI rankfile but different sub-models. When a package
is compiled, deployed, and executed on an edge device, the
specific sub-model in the package will be loaded and only the
part of the code that corresponds to the loaded sub-model will
run as an MPI process as specified in the MPI configuration
rankfile.

In the following subsections, the interface and the main
steps of the AutoDiCE design flow, introduced above, are
explained in more detail with the example in Figure 2.

B. Interface
In the left-most part of Figure 2, we show three templates

(examples) representing the three specifications of the user
interface introduced in Section III-A. By using these example
templates, we comprehensively reveal and explain the flexibil-
ity of and heterogeneity support in AutoDiCE.

In general, the Platform Specification lists all available edge
devices with their computational resources. Every line in the

list specifies the name of the edge device, the CPU architec-
ture, the number of CPU cores, and (optionally) a GPU device
with its architecture and programming library. For instance, the
first line of the platform template in Figure 2 specifies that
the name of the device is ”edge01” with an ARM processor
architecture including six cores in total (slots=0-5) and one
GPU device with NVIDIAVolta architecture supported by the
CUDA library. Through the Platform Specification, a user can
easily and flexibly specify alternative heterogeneous hardware
platforms including different numbers of edge devices and
types of resources. As shown in Figure 2, the user can select
different CPU architectures per edge device such as ARM,
x86, etc. with different numbers of cores as well as different
GPU architectures per edge device such as NVIDIA, Mali,
AMDRX, etc. with different GPU programming APIs such as
CUDA, VULKAN, etc.

The model template in Figure 2 is an example of a part
of a Pre-trained CNN Model specification that visualizes
the CNN model topology only. It contains an input layer,
five hidden layers (i.e., MaxPool1, Conv1, FC1, Add1, and
Relu1), and an output layer. Every hidden layer stores its
own parameters (such as weights, bias, etc.) that are not
shown in Figure 2. To support interoperability of AutoDiCE
with other DL frameworks, we adopt ONNX as the standard
format to represent/specify a pre-trained CNN model in the
AutoDiCE interface. The choice of ONNX allows users to
provide a CNN model designed, trained, and verified in well-
known and widely-used frameworks such as TensorFlow [37],
PyTorch [38], etc. A large variety of trained CNN models
are already available in ONNX format that can be readily
utilized by AutoDiCE, allowing easy deployment of these
models over multiple edge devices. In addition, the use of
the ONNX interface facilitates reproducibility in terms of
CNN designs (e.g., CNN topology, used parameters, etc.)
and in CNN evaluations (for CNN model accuracy and non-
functional characteristics). For example, in experimental evalu-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

6

ations, users can confidently and reliably compare CNN model
characteristics such as accuracy, memory usage, performance,
and power/energy consumption, obtained by AutoDiCE, with
the same characteristics obtained by other frameworks and
approaches, applied on exactly the same CNNs.

As mentioned in Section III-A, the Mapping specification
lists several different key-value pairs to describe a distribution
of the layers in a CNN model over different computational
platform resources. The Mapping template in Figure 2 is an
example of such specification. It lists three different key-
value pairs. For example, the unique key ”edge01 arm123”
specifies that three ARM CPU cores (i.e., cores 1, 2, and 3)
of device edge01, described in the Platform specification, are
allocated for CNN layers execution. The corresponding value
[”MaxPool1”, ”Add1”] specifies that layers MaxPool1 and
Add1, described in the Pre-trained CNN model specification,
are executed on the allocated three cores. All valid keys must
be generated from the Platform Specification to ensure the
availability of chosen computational resources. CNN layers
can be bound to a single GPU, a single CPU core, or
multiple CPU cores. Specifically, if all keys use computational
resources of the same device, the distributed inference turns
into a multi-threaded execution on a single device. All valid
values must be selected from layers of the Pre-trained CNN
model, and all CNN layers in that model should be assigned to
at least one hardware processing unit (CPU or GPU) to ensure
the mapping consistency. The mapping example in Figure 2
is a vertical partitioning, which means that every CNN layer
is mapped to a single unique key (device). If a CNN layer
is mapped to multiple unique keys, then the layer will be
horizontally distributed over multiple computational resources.
Users can realize different approaches for splitting (and par-
allel execution of) a CNN model, namely vertical, horizontal,
and using data parallelism (the latter two are not shown in
Figure 2). This is done by changing the layer distribution in
the Mapping Specification. However, in this paper, we will
only focus on vertical partitioning. It is easy and flexible for
users (or DSE and other tools, for that matter) to change the
CNN model partitioning as well as mapping of partitions to
edge devices through selecting different combinations of key-
value pairs in the Mapping Specification.

C. Front-end

The front-end module is designed to parse, check, and pre-
process all user specifications through its two main steps:
Model Splitting and Config & Communication Generation.
Model Splitting splits the input CNN model according to the
mapping specification and generates several CNN sub-models.
Each sub-model will be implemented and executed as an
MPI process. Config & Communication Generation generates
an MPI-specific configuration file and communication tables
based on the three input specification files. At the top center of
Figure 2, the model splitting step is illustrated. Based on the
three key-value pairs in the Mapping template (specification),
the CNN model template is vertically partitioned into three
sub-models (Model 0, Model 1, and Model 2). The layers of
the CNN model mapped on the same edge device resource

will be grouped into a single sub-model. For example, the
two layers MaxPool1 and Add1 are grouped together to form
sub-model Model 0.

The output of a CNN layer in the initial Model template is
the input of its next connected CNN layers. If two connected
CNN layers are mapped onto different edge devices or differ-
ent compute resources (CPU or GPU) within an edge device,
i.e., the two layers belong to two different sub-models, the
direct connection between these two layers is replaced by one
output buffer belonging to one of the sub-models and one input
buffer belonging to the other sub-model. These two buffers are
used to store and communicate intermediate results between
the two CNN layers. For example, the directly connected
CNN layers MaxPool1 and Conv1 of the Model template in
Figure 2 are mapped onto two different edge devices according
to the Mapping template. Thus, layer MaxPool1 belongs to
sub-model Model 0 and layer Conv1 belongs to sub-model
Model 2. As a consequence, the direct connection between
MaxPool1 and Conv1 is replaced by output buffer Buff1 in
Model 0 and input buffer Buff1 in Model 2.

The Config Generation step is illustrated in the bottom
center of Figure 2. It generates an MPI-specific Rankfile which
provides detailed information about how the individual MPI
processes, corresponding to the generated sub-models, should
be mapped onto edge devices, and to which processor/core(s)
of an edge device an MPI process should be bound to. In
the example in Figure 2, we have three sub-models Model 0,
Model 1, and Model 2 that will be implemented and executed
as three different MPI processes 0, 1, and 2, respectively.
Based on the Mapping template, the example Rankfile in
Figure 2 specifies that the MPI processes 0 and 1 should
be mapped onto edge device edge01 and the MPI process 2
should be mapped onto edge device edge04. In addition, each
line of the Rankfile specifies the physical processors/cores
allocated to the corresponding MPI process. In our example
Rankfile, the first line specifies that MPI process 0 should
be mapped on edge device edge01 and slots 1, 2, and 3 are
allocated to this process on this device. This means that this
process will run on three ARM CPU cores (i.e., core 1, 2, and
3) of device edge01.

The Communication Generation step is illustrated in the
center of Figure 2. It generates a sender table and a receiver ta-
ble as .json files. These two communication tables specify the
necessary communications between individual MPI processes
to ensure that the input/output buffers of the corresponding
sub-models are synchronized through the MPI interface. For
example, the first line in the sender table specifies that MPI
process 0 needs to send the contents of Buff1 to MPI pro-
cesses 1 and 2, and the contents of Buff4 to MPI process 2.
Correspondingly, the third line in the receiver table specifies
that MPI process 2 needs to receive the contents of Buff1
and Buff4, both from MPI process 0. The communication and
synchronization information in the sender and receiver tables
ensure that the initial input CNN model is correctly executed
after the model splitting.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

7

D. Back-end

The back-end module constitutes AutoDiCE’s final stage to
create a CNN-based application for deployment over multiple
edge devices. It contains two main steps: Code Generation and
Package Generation.

The first step, Code Generation, turns all intermediately
generated files (all sub-models and communication tables) by
the front-end module into efficient C++ code. The output of
this step is a single .cpp file which has a very specific and well-
defined code structure, making calls to specific primitives and
functions located in two libraries: a standard MPI Library and
our customized CNN Inference Library. The code structure
contains several code blocks. Each code block is surrounded
by an if statement and implements one CNN sub-model. The
sub-models are executed as individual MPI processes mapped
on different edge device resources, meaning that every MPI
process runs only the code block implementing the corre-
sponding sub-model. The code block is uniquely identified
by a rank ID checked in the if statements surrounding
the code blocks. Unique rank IDs are assigned according
to the Rankfile, explained in Section III-C, during the MPI
initialization stage. The pseudo-code template in the right-
most part of Figure 2 illustrates the specific code structure
of the generated .cpp file. It contains three code blocks, i.e.,
Lines 1-11, Lines 12-18, and Lines 19-28, that implement
sub-models Model 0, Model 1, and Model 2, respectively.
Model 0, Model 1, and Model 2 will be executed as three MPI
processes 0, 1, and 2, respectively. Every MPI process contains
the aforementioned code template but the MPI process 0
corresponding to sub-model Model 0 will run only the code
block between lines 1 and 11. Similarly, the MPI process 1
will run only the code block between lines 12 and 18, etc.

The code blocks themselves all have a similar, well-defined
structure starting with code that registers all MPI send and re-
ceive primitives (e.g., lines 3, 13, and 20 in Figure 2) followed
by MPI Wait primitives that block the code execution until
the necessary data to be processed by CNN layers is received
(e.g., lines 6, 14, 21, and 24). Then, code implementing the
CNN layers is executed followed by MPI Send primitives that
communicate the output data from a layer to other layers
executing in different MPI processes mapped on different
edge devices/resources (e.g., lines 7-8, 15-16, 22-23). Finally,
MPI Wait primitives are used to block the code execution until
the sent data arrives at the destination (e.g., lines 9, 10, 17,
and 27).

Some code blocks have to implement and execute more than
one CNN layer because the corresponding CNN sub-models
contain multiple CNN layers. Every code block implementing
multiple CNN layers has to execute the layers in the order
specified by the data dependencies in the input CNN Model
template to preserve the functional correctness of the dis-
tributed CNN model. For example, the CNN sub-model Model
0 in Figure 2 is implemented by the code block between lines
1 and 11 in Figure 2. Line 2 reads an image file to prepare the
input data for the CNN model. The code in line 3 registers all
non-blocking MPI send and receive primitive calls according
to the first lines in the sender and receiver tables, explained in

Section III-C. In lines 4 and 7, the MaxPool1 and Add1 layers
are executed one after the other, thereby preserving the order
specified in the CNN Model template given in Figure 2. After
executing each layer, they store their output data in Buff1 and
Buff4, respectively. Line 5 sends the content of Buff1 to MPI
process 1 and MPI process 2 according to the sender table.
To allow for overlapping communication with computation,
the generated code uses non-blocking MPI Send primitives
that return immediately and will not block the execution. A
layer within a code block is executed once its input data is
available, i.e., layers are executed in a data-driven fashion. For
those layers that read their input data from communication
buffers (i.e., data generated by another sub-model, possibly
running on a different edge device), MPI synchronization
(wait) primitives enforce that layers cannot start execution
before their input data is available. For example, this data-
driven based execution of layers enforces that the Add1 layer
in Model 0 can only be executed after the input data in Buff2
and Buff3 is available. Such synchronization is realized by
the MPI Wait primitives in line 6 of Figure 2. Line 8 uses the
non-blocking MPI Send primitive again to transfer the content
of Buff4 to MPI process 2. Finally, at the end of the code
block, in lines 9-10, two synchronization MPI Wait primitives
are called that are associated with the two asynchronous send
requests in lines 5 and 8. All such synchronization primitives
are always called at the end of a code block in order to stop
the code execution until the corresponding send requests (in
this example the requests to send the contents of Buff1 and
Buff4) are completed.

In every code block, the implementation and execution of
the CNN layers is realized by calling functions and primi-
tives located in our customized CNN Inference Library. By
encapsulating the NCNN [39] and Darknet [40] neural network
engines into a uniform wrapper, our custom inference library
supports CNN layer implementation and execution on a variety
of hardware platforms (e.g., Raspberry Pi with a quad-core
ARM v8 SoC, NVIDIA Jetson AGX Xavier series, etc.).

The used MPI primitives in the code blocks are part of
the Open MPI library [41], which is an open-source im-
plementation of the standard MPI interface for high perfor-
mance message passing. It enables parallel execution on both
homogeneous and heterogeneous platforms without drastic
modifications to the device-specific code.

Besides facilitating the C++ code generation and distributed
execution of CNN models (using MPI), our customized CNN
Inference Library also integrates and provides OpenMP sup-
port. This means that if a CNN layer is mapped onto mul-
tiple CPU cores in an edge device, the actual execution of
such layer will be multi-threaded using OpenMP in order
to efficiently utilize the multiple CPU cores by exploiting
data parallelism available within the layer. For example, the
MaxPool1 layer in Figure 2 is implemented and executed as
multiple threads within MPI process 0 which is mapped onto
the three ARM CPU cores 1, 2 and 3 in edge device edge01.
More specifically, in Figure 3, we show some details about
how the multiple threads bound to the three CPU cores 1, 2
and 3 are executed within MPI process 0. A thread number
variable, called num threads, is set to 3 in the code block

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

8

OpenMP

MPI Process 0

threads

Hardware Device 0

memory

31 2

// rankfile.txt
rank 0=edge01 slots=1,2,3

// .cpp

1 if (rank_id == 0){

2 opt.num_threads = 3;
3 …

4 }

// pooling.cpp in CNN inference library

if (pooling_type == MAX_POOL){

 #pragma omp parallel for num_threads(opt.num_threads)
 for (int q = 0; q < channels; q++)

 {

 …;

 }

}

CNN Inference
 Library

cores

Fig. 3: MPI process 0 with OpenMP

implementing MPI process 0 during the code generation step.
In our customized CNN Inference Library, this variable is
used in the implementation code of all types of layers (i.e.,
convolution, pooling, etc.), and it configures the OpenMP
macro line #pragma omp parallel for shown in Figure 3. This
macro line spawns a group of multiple threads and divides
the loop iterations (the for loop in Figure 3) that follow this
macro line between the spawned threads during the execution.
So, during the execution, layer MaxPool1 is executed as three
threads running on CPU cores 1, 2, and 3.

The above discussion on the first step (Code Generation) of
the back-end module clearly indicates that AutoDiCE employs
a hybrid MPI+OpenMP programming model. OpenMP is used
for parallel execution of a CNN layer within an edge device
and MPI is used for communication and synchronization
among CNN sub-models running on different edge devices or
on different compute resources (e.g., CPUs and GPUs) within
an edge device. By doing so, AutoDiCE provides extreme
flexibility in terms of many alternative ways to distribute the
CNN inference within and across edge devices by treating
every CPU core or GPU unit in edge devices as a separate
entity with its own address space. This allows AutoDiCE to
be used in very complex IoT scenarios that may contain a lot
of heterogeneous devices.

The second step of the back-end module, i.e. Package
Generation, packs the generated .cpp code, sub-models, and
Rankfile together into a deployment package for every edge
device utilized in the distributed CNN inference. As it is
essential to identify the individual MPI process running on an
edge device, this step must put the Rankfile in every package.
The Rankfile provides detailed information about the MPI
processes’ binding, which constrains each MPI process to run
on specific compute resources of different edge devices. The
executable binary (to be deployed on an edge device) will be
generated when the corresponding .cpp code in a package is
compiled together with the aforementioned customized CNN
Inference Library we have developed. As all packages contain
the same .cpp code (i.e., we use the Single Program Multiple
Data paradigm in this sense), the same binary can be deployed
and executed on the same type of edge devices where each
edge device will load the corresponding CNN sub-model

from its own package before the execution of the binary. For
different types of edge devices, we can generate an executable
binary for every type.

IV. MULTI-STAGE HIERARCHICAL DSE

In this section, we first describe the set of analytical models,
we have devised, to approximate the objectives (throughput,
memory usage, and energy consumption) of distributed CNN
inference implementations. We use these models in the first
level of our multi-stage hierarchical (two-level) DSE method-
ology to reduce the number of solutions that need to be
evaluated using (more costly) measurements on AutoDiCE-
generated implementations, which takes place at the second
level of DSE. After describing our analytical models, we
present the details of all the steps in our multi-stage hier-
archical DSE methodology.

A. Analytical Models

We use tlj , Mlj , Elj to represent the execution time, the
memory usage, and the energy consumption of layer lj in
a CNN model, respectively. A CNN mapping x is denoted
as x = [x1, x2, · · · , xL], where L is the number of layers
in the CNN model and xj = PEi means that layer lj is
mapped on processing element PEi, which could, e.g., be a
CPU or GPU inside an edge device. For a given mapping x,
the three objectives of the distributed system can be computed
as follows.

1) Throughput: The overall system throughput Tsystem is
defined as the images processed per second (img/sec) over
multiple PEs:

Tsystem =
1

max1≤i≤N (ti)

ti =
∑

∀j:1≤j≤L∧xj=PEi

tlj + tcomm
i

where ti is the time to process one image on PEi, N is the
total number of deployed PEs in the distributed system, and
tcomm
i is the time needed for data communication related to
PEi. We assume that the size of input images is already deter-
mined as well as the input and output tensor shapes of every
CNN layer are also fixed and known. Then, we can estimate
the total number of operations in every layer and the total size
of communicated data related to PEi. The execution time
tlj is estimated through the number of multiply–accumulate
operations (MACs). A proper estimation of communication
time tcomm

i depends on different data transfers associated with
the corresponding PEi inside an edge device, and involves
intra-device data communication via shared memory, intra-
device data communication between CPU and GPU, and/or
inter-device communication over the network connecting the
edge devices in the distributed system.

2) Memory: Every PEi allocates memory Mi which con-
sists of three parts: memory for CNN coefficients (i.e. weights,
bias, and parameters), memory for output buffers to store

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

9

intermediate results of layers, and memory for input buffers
of some layers to receive data from other PEs:

Mi =
∑

∀j:1≤j≤L∧xj=PEi

(M coeffs
lj

+Moutbuffs
lj

+M inbuffs
lj

)

where M coeffs
lj

, Moutbuffs
lj

, and M inbuffs
lj

denote the sizes
of the aforementioned memory parts associated with layer lj
mapped on PEi. These sizes (in number of elements) are
estimated based on the type of CNN layer lj . For example,
given a convolutional layer lj , the memory sizes are calculated
as follows:

M coeffs
lj

= wk
lj ∗ h

k
lj ∗ C

in
lj ∗ Cout

lj + Cout
lj

Moutbuffs
lj

= wout
lj ∗ hout

lj ∗ Cout
lj

M inbuffs
lj

= win
lj ∗ hin

lj ∗ Cin
lj

where wk
lj

and hk
lj

are the width and height of the convolution
kernel, Cin

lj
and Cout

lj
are the number of input and output

channels of layer lj , and win
lj

, hin
lj

, wout
lj

, hout
lj

are the width
and height of the input and output tensors of layer lj . If layer
lj mapped on PEi does not receive data from layers that are
mapped on other PEs then M inbuffs

lj
= 0.

3) Energy: Every PEi consumes energy Ei to execute the
CNN layers mapped on PEi. In our energy consumption ana-
lytical model, Ei includes the energy consumed for inference
computation and data communication with other PEs:

Ei =
∑

∀j:1≤j≤L∧xj=PEi

Ecomp
lj

+
∑

∀j:1≤j≤L∧xj=PEi

Ecomm
lj

where Ecomp
lj

and Ecomm
lj

denote the computation and commu-
nication energy consumption for layer lj , respectively. Here,
Ecomm

lj
has a non-zero value only when layer lj actually

communicates with another PE. We calculate Ecomp
lj

and
Ecomm

lj
as follows:

Ecomp
lj

=

∫ tlj

0

P comp
lj

(t) dt

Ecomm
lj =

∫ tcomm
lj

0

P comm
lj (t) dt

where P comp
lj

(t) is the power consumption during the ex-
ecution time tlj of layer lj , and P comm

lj
(t) is the power

consumption during the data communication time tcomm
lj

of
layer lj with another PE. P comp

lj
(t) and P comm

lj
(t) are acquired

by real measurements during CNN layer profiling on an edge
device.

B. DSE Methodology

Our DSE methodology utilizes a Genetic Algorithm (GA),
namely the NSGA-II algorithm [32], to search for optimal
mappings of (complete) CNN layers to different, distributed
edge devices. We assume that each edge device contains a
number of internal compute resources (i.e. PEs), like a CPU
and GPU, and we map CNN layers directly to these specific
PEs within an edge device.

NSGA-II

Previous solutions +
 Random Population

Final
Pareto Front

On-Board
Evaluation

Previous solutions +
 Random Population

NSGA-II

Analytical Model

Near-optimal Pareto

 Pareto front
for next stage

(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs

PE1 PE1 PE2 PE3 PE4PE4 PE4 40 2 5

Stage 1

Stage 2

Stage 3

Stage K

Pareto front
from previous stage

K-1

PE2

Fig. 4: Two Chromosome Encoding Methods

Given a trained CNN model with L layers, a layer lj
performs a computation operation in the CNN model such
as a convolution (Conv), a matrix multiplication (FC), etc. As
mentioned in Section IV-A, a mapping x of the CNN layers
onto a total of N PEs is denoted as x = [x1, x2, · · · , xL].
Such mapping notation x is typically encoded with the GA’s
chromosome where PEi, i ∈ [1..N] define the gene types
in the chromosome. An example of such encoding, called
Naive Encoding (NE), is shown in Figure 4. The GA chromo-
some [PE1,PE1,PE2,PE2,PE3,PE4,PE4,PE4] encodes an
8-layer CNN (L = 8) mapped onto four PEs (N = 4), where
layers l1 and l2 are mapped on PE1, l3 and l4 on PE2, l5 on
PE3, and l6, l7, l8 on PE4. Such naive encoding for CNN
mappings is simple and intuitive but it may require exploration
of a huge design space because the space size depends
exponentially on the number of layers L in a CNN model and
L is typically large. Therefore, in our DSE methodology, we
propose and utilize a tailored chromosome encoding method,
called Split Point Encoding (SPE). It encodes points in a
CNN model that partition the model into N groups of CNN
layers, where each group consists of consecutive layers and
is mapped on one PE. In Figure 4, the Split Point Encoding
example encodes the same mapping as the Naive Encoding
example. It can be seen that the 8-layer CNN has four split
points, visualized with the vertical dashed lines, at positions
0, 2, 4, and 5 determined by the layer index j. Therefore,
the GA chromosome using our SPE method is [0, 2, 4, 5]
and it encodes four groups of layers each mapped on one PE
as follows: 1) for j ∈ (0..2], lj is mapped on PE1; 2) for
j ∈ (2..4], lj is mapped on PE2; 3) for j ∈ (4..5], lj is
mapped on PE3; 4) for j > 5, lj is mapped on PE4. The
length of our SPE chromosome is equal to the number of PEs
which is N , thus SPE requires exploration of a design space
which size depends exponentially on N . Since N is typically
much smaller than the number of CNN layers L, our SPE
method largely scales down the design space and improves
the search efficiency compared to the NE method.

Given a trained CNN model and all edge devices with
in total N PEs, our DSE methodology searches for Pareto
CNN mappings to optimize the three objectives, mentioned in
Section IV-A. In Figure 5, we present the general structure
of our multi-stage hierarchical DSE methodology. On the left,
the K stages in our DSE workflow are depicted, and on the
right a zoomed-in view of each stage is provided with the
two rectangular boxes showing the two hierarchical levels per
stage. We accelerate our DSE process by splitting it into K
different stages, where K is the ceiling value of log2(N).
At each stage, we perform a two-level DSE. At both levels,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

10

NSGA-II

Previous solutions +
 Random Population

Final
Pareto Front

On-Board
Evaluation

Previous solutions +
 Random Population

NSGA-II

Analytical Model

Near-optimal Pareto

 Pareto front
for next stage

PE2

(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs

PE1 PE1 PE2 PE3 PE4PE4 PE4 40 2 5

Stage 1

Stage 2

Stage 3

Stage K

Pareto front
from previous stage

K-1

Fig. 5: The DSE Methodology workflow

the NSGA-II GA is deployed to evolve a population of CNN
mappings over multiple generations to search for a Pareto front
in terms of the targeted objectives. In the first DSE level,
we use the analytical models, introduced in Section IV-A,
inside the GA to approximate each objective function. In the
second DSE level, we use real distributed CNN inference
implementations generated by AutoDiCE (see Figure 1) for
evaluation, thereby producing more accurate Pareto solutions
as they are based on real (on-board) measurements.

At every DSE stage k ∈ [1..K − 1], we search for optimal
CNN mappings on 2k target PEs. Figure 5 shows that to
initialize the GA population at stage k, with k > 1, the Pareto
optimal results found by the previous stage k − 1 are used.
By doing so, we can retain the information of Pareto CNN
mappings in previous stages to improve the DSE convergence.
Moreover, the second level DSE at each stage also uses the
results from the first level of DSE to initialize its population.
Finally, the output of the last DSE stage (k = K) provides the
final Pareto-optimal solutions for N PEs.

V. FRAMEWORK EVALUATION

In this section, we present an evaluation of our proposed
framework. First, we describe the setup for our experiments in
Section V-A. Then, in Section V-B, we evaluate the execution
time of our AutoDiCE tool to show its efficiency. Moreover,
we also present a range of experimental results for three
representative CNNs to demonstrate that our novel framework,
using multi-stage hierarchical DSE and AutoDiCE, can rapidly
realize a wide variety of distributed CNN inference implemen-
tations with diverse trade-offs regarding energy consumption
per device, memory usage per device, and overall system
throughput. Subsequently, Section V-C analyzes the effects
on the energy consumption per device, the memory usage per
device and the overall system throughput when scaling the dis-
tributed CNN inference to a varying number of deployed edge
devices. Finally, in Section V-D, we evaluate the efficiency of
our multi-stage hierarchical DSE methodology by comparing
it against one-stage non-hierarchical DSE featuring our Split
Point Encoding as well as to more traditional GA-based DSE,
i.e., one-stage non-hierarchical DSE with the naive encoding.

A. Experimental Setup

The goal of our experiments is to demonstrate that, thanks
to our novel contributions presented in this paper, our frame-
work can rapidly explore and automatically implement CNN
partitions over multiple edge devices to realize distributed
CNN inference. Moreover, it can do so with lower per-device
energy consumption, with smaller per-device memory usage,
and under certain conditions, with the same or higher CNN
inference throughput, as compared to CNN execution on a
single edge device.

In our experiments, we use three real-world CNNs, namely
VGG-19 [42], Resnet-101 [43], and Densenet-121 [44], from
the ONNX models zoo [45] that take images as an input for
CNN inference. These CNNs are used in image classification
and are diverse in terms of types and number of layers,
and memory requirements to store parameters (weights and
biases). The first four columns in Table I list the details of
the used CNN models. As these CNNs provide a good layer
and parameter diversity, we believe that they are representative
and good targets for our evaluations to demonstrate the merits
of our framework. The aforementioned CNN models are
mapped and executed on a set of up to eight edge devices
where all devices are NVIDIA Jetson Xavier NX development
boards [46] connected over a Gigabit network switch. Each
Jetson Xavier NX device has an embedded MPSoC featuring
six CPUs (6-core NVIDIA Carmel ARMv8) plus one Volta
GPU (384 NVIDIA CUDA cores and 48 Tensor cores, with
a theoretical maximum performance of 844.8 GFLOPS). In
our DSE experiments, every CNN layer can be mapped either
onto a single CPU core, onto six CPU cores, or onto a GPU
inside an NVIDIA Jetson Xavier NX edge device.

As explained in Section IV, the second level in our DSE
methodology uses AutoDiCE to evaluate CNN mappings.
This means that for the CNN mapping specifications in that
DSE level, we apply AutoDiCE to generate and distribute
a deployment package for every Jetson Xavier NX device.
Subsequently, we measure and collect energy consumption
per device, CNN inference throughput, and memory usage per
device results, as an average value over 20 CNN inference exe-
cutions. As the experiments are targeted to embedded devices,
the batch size of CNN inference is 1. The inference throughput
(measured by instrumenting the code with appropriate timers)
and the memory usage per device are reported directly by
the code itself during the CNN execution. To measure the
energy consumption per device, a special sampling program
reads power values from the integrated power monitors on each
NVIDIA Jetson Xavier NX board during the CNN execution
period, where the power consumption involves the whole
board including CPUs, GPU, SoC, etc.

To evaluate the fitness of CNN mappings during DSE
using our AutoDiCE tool, the chromosomes inside our GA
are translated to the AutoDiCE mapping format described in
Section III-B. The GA is executed with a population size of
100 individuals, a mutation probability of 0.2, a crossover
probability of 0.5, and performs 400 search generations. For all
experiments with the three aforementioned CNNs, the original
data precision (i.e., float32) is utilized to preserve the original

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

11

TABLE I: Used CNN models and AutoDiCE execution time breakdown

Network Total # Total # Memory for AutoDiCE Execution Time (seconds)
Layers Parameters Parameters (MB) Front-end Back-end Package deployment

DenseNet-121 [44] 910 8.06 million 32 1.93 0.3 21.3

ResNet-101 [43] 344 44.6 million 171 7.30 0.1 23.3

VGG-19 [42] 47 143 million 549 21.50 0.4 26.9

model accuracy of classification.

B. Efficiency of AutoDiCE and DSE Results

We start with evaluating the execution time of AutoDiCE
itself, to provide insight on how long this tool generally takes
to split a CNN model (front-end), to generate the code for
the distributed CNN execution (back-end), and to deploy the
generated packages to the edge devices for actual execution.
To this end, we have measured the required time for each
of these phases using the ’worst-case scenario’ in the scope
of our experiments: using the maximum number of splits in
our CNNs to generate sub-models (24 splits/sub-models of
a CNN in our experiments), and mapping and deploying the
generated sub-models to the maximum number of edge devices
(8 in our experiments). These measurements were done on
a system equipped with an Intel Core i7-9850H processor,
running Ubuntu 20.04.3 LTS. The last three columns in Table I
provide a breakdown of the execution time (in seconds) of
AutoDiCE for the three CNNs in these worst-case scenarios.
From the results in Table I, we can see that AutoDiCE is able
to produce executable, distributed CNNs and deploy them on
the various edge devices in a relatively short time frame, i.e., in
less than a minute for any of the three used CNNs in our worst-
case scenario. The comparatively larger execution time of the
front-end for VGG-19 is due to the high number of parameters
in this model, and the resulting overheads in AutoDiCE of
copying these parameters to the large number of sub-models.
In any case, these results demonstrate that AutoDiCE allows
for rapidly splitting CNNs and deploying them for distributed
execution on multiple edge devices.

Our DSE experiments explore a wide range of different
CNN mappings and these experiments result in a Pareto
front with several Pareto-optimal mappings. In such a set
of Pareto-optimal mappings, none of the targeted objectives
(energy consumption, throughput, and memory usage) can
be further improved without worsening some of the other
objectives. More specifically, we consider the maximum en-
ergy consumption per device, maximum memory usage per
device, and total system (CNN inference) throughput as our
target objectives. Figures 6a, 6b, and 6c show the Pareto-
optimal CNN mappings found by our DSE for DenseNet-121,
ResNet-101, and VGG-19, respectively. To better illustrate (the
diversity of) these Pareto-optimal mappings, Table II shows
more details about a selection of these mappings (points A to
I in Figure 6) for comparison. As a reference, the table also
includes the mapping results when using a single edge device
with 6 CPUs or 1 GPU.

Moreover, to provide a feeling of how the distributed CNN

execution on resource-constrained edge devices compares to
CNN execution on a (centralized) powerful server, Table II
also includes throughput and GPU memory results from an
experiment on an NVIDIA GeForce RTX2080 Ti card (4352
NVIDIA CUDA cores and 544 Tensor cores, with a theoretical
maximum performance of 13.45 TFLOPS) with Pytorch to
mimic a cloud server based execution of the CNNs. Here, we
would like to stress that the mimicked cloud server results do
not include any latencies required for sending data to and from
the cloud server, which would be the case in reality. To make
a fair comparison with our experimental edge devices, the
inference batch size when using the aforementioned NVIDIA
GPU card is also set to 1. We note that it is not possible to
precisely measure the energy consumption of the GPU card,
thus its energy consumption is not given in Table II. However,
its energy consumption is definitely much higher compared to
our experimental edge devices. For memory usage, we have
taken the peak memory usage of the GPU card because it is
influenced by the CNN model and its execution.

Columns 3 and 5 in Table II show the maximum energy
consumption per device (in Joules per image) and maximum
memory usage per device (in MegaBytes) for a specific CNN
mapping, respectively. Column 4 shows the overall system
throughput (in images per second). Columns 6, 7 and 8 show
the hardware configurations of the selected CNN mappings,
consisting of the number of deployed edge devices, and total
of CPU cores and GPUs used in these devices, respectively.

From Figure 6 and Table II, we can see that our novel
framework allows for easily and rapidly realizing a wide
variety of distributed CNN inference implementations with
diverse trade-offs regarding per-device energy consumption,
per-device memory usage, and overall system throughput.
Taking point A as an example, a distributed execution of
DenseNet-121 on four devices utilizing only GPUs can reduce
the maximum energy consumption per device by 52.5% and
33.8% as compared to the 1-Device CPU and 1-Device GPU
hardware configurations, respectively. The system throughput
of DenseNet-121 on four devices achieves a 3.5x and 2.2x
performance improvement compared to the 1-Device CPU
and 1-Device GPU configurations, respectively. In terms of
per-device memory usage, the CNN mapping A with four
devices consumes 39.3% less memory than the 1-Device
GPU implementation, but consumes 17.2% more memory
as compared to the 1-Device CPU configuration. Moreover,
the distributed CNN inference results in Table II show that
for the CNNs with many layers (DenseNet-121 and ResNet-
101) comparable performance (throughput) can be obtained
as the mimicked powerful cloud server (NVIDIA GeForce

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

12

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2 5
1 0

1 5
2 0

2 5
3 0

3 0

6 0

9 0

1 2 0

1 5 0

1 8 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(a) DenseNet-121 (910 layers)

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0 0

8

1 6

2 4

3 2
1 0 0

2 0 0

3 0 0

4 0 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(b) ResNet-101 (344 layers)

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

1 . 2 5 5

1 0

1 5

2 0

2 5
4 5 0

6 0 0

7 5 0

9 0 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(c) VGG-19 (47 layers)

Fig. 6: Pareto-optimal CNN mappings from our DSE experiment with three CNNs.

TABLE II: Selected Pareto-optimal Mappings (points) from Figure 6

Network Points Max. per-device System Max. per-device # Edge Devices # CPU cores # GPUs
Energy (J/img) Throughput (img/sec) Memory (MB)

NVIDIA GeForce RTX 2080 Ti - 21.339 286.854 - - 1
1-Device CPU 0.905 7.987 129.984 1 6 0
1-Device GPU 0.650 12.807 251.172 1 0 1

DenseNet-121 A 0.430 27.941 152.336 4 0 4
B 0.408 23.551 149.941 6 6 5
C 0.977 7.546 51.066 8 38 0

NVIDIA GeForce RTX 2080 Ti - 30.823 437.446 - - 1
1-Device CPU 1.635 5.786 656.527 1 6 0
1-Device GPU 1.031 21.767 955.012 1 0 1

ResNet-101 D 0.425 26.406 360.766 7 0 7
E 0.488 30.048 329.641 7 12 5
F 0.886 12.123 127.883 8 48 0

NVIDIA GeForce RTX 2080 Ti - 166.820 822.902 - - 1
1-Device CPU 1.471 7.273 1310.91 1 6 0
1-Device GPU 1.523 11.664 1666.418 1 0 1

VGG-19 G 0.680 11.651 998.273 6 0 6
H 0.791 17.385 868.496 6 6 5
I 1.035 7.194 604.504 7 30 2

RTX2080).

An observation that can be made in general from our DSE
results is that by increasing the number of utilized devices,
the per-device memory usage is not always reduced if GPUs
are deployed within (some of) the devices. In Table II, this is
clearly illustrated by, for example, CNN mappings A and B.
These mappings have even higher per-device memory usage
when distributing the CNN over, respectively, four and six
devices as compared to a 1-Device CPU configuration. The
higher memory usage when deploying GPUs is due to the fact
that an NVIDIA Jetson Xavier NX device has 8GB memory
that is shared between CPU and GPU programs. During the
loading phase of CNN models, there will typically be at least
two copies of the CNN weights when using the GPU: those
from the original model file in the host memory, and those
initialized as part of the GPU engine.

C. Varying the Number of Edge Devices

In Figure 7, we show the effects on the maximum per-device
energy consumption, maximum per-device memory usage,
and system throughput when scaling the number of deployed
edge devices in the distributed CNN execution. Every bar in
Figure 7 reflects the best value (energy consumption, memory
usage, or throughput) found among all the evaluated mappings,
during our DSE experiment, with a specific number of de-
ployed edge devices. This implies that the value reflected by
each bar may come from a different Pareto-optimal mapping.
For better visualization, all results in Figure 7 have been
normalized, where the results for a configuration with one
edge device are taken as the reference (i.e., these represent
the results of the best-found mappings when targeting a single
edge device).

From Figure 7, we can see that, in general, both the per-
device energy consumption and the per-device memory usage
can be improved (i.e., reduced) when increasing the number of
deployed edge devices. Evidently, this is due to the fact that

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

13

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
DenseNet-121

Max Energy per device
System Throughput
Max Memory per device

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2
ResNet-101

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2
VGG-19

Fig. 7: System throughput and max energy/memory per device when varying the number of edge devices for three CNNs.

the workload (the size and/or the number of executed sub-
models) on each participating edge device is reduced when
increasing the number of edge devices. Moreover, in some
cases, the improvement can be significant. For example, for
ResNet-101, the maximum per-device energy consumption
and maximum memory usage are reduced by around 40%
and 80%, respectively, when distributing the CNN over eight
edge devices as compared to execution on a single device.
Furthermore, the results in Figure 7 show that the system
(CNN inference) throughput can also be improved by means of
distributed CNN execution. This is because of the exploitation
of pipeline parallelism in the distributed CNN execution. For
example, for DenseNet-121, ResNet-101, and VGG-19, the
inference throughput increases by up to 38%, 18%, and 18%,
respectively when executing the CNN inference on up to
four edge devices as compared to a single device. However,
the inter-device data communication overheads involved in
distributed CNN execution may prevent any further throughput
gains, or even cause a slowdown, when scaling the CNN
execution to a larger number of edge devices. For example, for
all three CNNs, DenseNet-121, ResNet-101, and VGG-19, we
see a slowdown in system throughput when scaling the CNN
inference from four to eight edge devices.

D. DSE acceleration

To evaluate and demonstrate the search efficiency of our
multi-stage hierarchical DSE methodology, we conducted
three DSE experiments using the ResNet-101 [43] CNN model
and with a slightly smaller cluster of four edge devices. We
compare the obtained DSE results in terms of the quality of
the found solutions and how this quality changes over time
during the DSE process (i.e., the search). In the first DSE
experiment, referred as 3s-2l-SPE, we utilize our multi-stage
hierarchical DSE methodology as presented in Section IV with
3 stages, 2 levels per stage, and the chromosome is encoded
using our SPE method. In the second experiment, referred as
1s-non-SPE, we utilize a classical 1-stage, non-hierarchical
DSE methodology based on the NSGA-II algorithm with our
AutoDiCE-based on-board evaluation as the fitness function
and our SPE as the chromosome encoding method. In the third
experiment, referred as 1s-non-NE, we utilize the same DSE

methodology as in the second experiment but we replace SPE
with the naive encoding (NE) method mentioned in Section IV.
In these experiments, every CNN layer can be mapped either
onto a 6-core CPU or a GPU present in any of the four
edge devices. In each DSE experiment, we run the search for
optimal mappings for 70 hours and compare the quality of
solutions found within these 70 hours.

Figure 8 shows how the quality of the found mappings in
terms of the three targeted objectives improves during the
search in the three DSE experiments. The results for each
objective are plotted in a separate chart where the X-axis rep-
resents the search time in hours and the Y-axis represents the
objective value in images per second (img/sec) for the CNN
inference throughput, in megabytes (MB) for the maximum
memory usage per edge device, and in joules per image (J/img)
for the maximum energy consumption per edge device. Every
point in a chart represents the best-found mapping with respect
to the objective at a given point in time.

The results in Figure 8 clearly indicate that the 1s-non-
NE DSE gets easily stuck in dominance resistant solutions,
which means that such DSE cannot find high-quality mappings
even after hundreds of generations. In contrast, by replacing
the common NE encoding method with our tailored SPE
method, the search efficiency is significantly improved as
shown in Figure 8 where the 1s-non-SPE DSE delivers high-
quality mappings for the three objectives after 20 hours. This
is because our SPE method ensures that only consecutive
CNN layers will be mapped on a PE, thereby scaling down
significantly the design space and allowing only exploration of
mappings with reduced data communication among PEs. Such
mappings are better than less restricted mappings allowed by
the NE method.

Finally, comparing the 1s-non-SPE and 3s-2l-SPE results
shown in Figure 8, we see that by introducing multiple stages
and hierarchy in the DSE process, it further accelerates the
finding of high-quality mappings. For example, after 40 hours
of search time, our 3s-2l-SPE DSE delivers better mappings
for the three objectives than the 1s-non-SPE DSE.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

14

20

25

30

35

40
System Throughput

(img/sec)

6

7

8

9
Max Energy Consumption

 Per Device (J/img)

0 10 20 30 40 50 60 70
time (h)

0.35

0.40

0.45

0.50

0.55

0 10 20 30 40 50 60 70
time (h)

0.2
0.4
0.6
0.8
1.0
1.2

0 10 20 30 40 50 60 70
time (h)

200

300

400

500

600

700

800

900

Max Memory Usage
 Per Device (MB)

3s-2l-SPE
1s-non-SPE
1s-non-NE

Fig. 8: Quality of found mappings during the three DSE experiments.

VI. DISCUSSION

Our current AutoDiCE tool implementation seeks to provide
the greatest flexibility in terms of facilitating distributed exe-
cution of CNN models on a wide range of different hardware
configurations at the Edge, i.e., configurations different in
the number of deployed edge devices as well as in the
nature (architecture) of these devices. Therefore, in the current
version of AutoDiCE, we have integrated our own customized
CNN Inference Library (based on the NCNN [39] and Dark-
net [40] frameworks) that supports CNN implementation and
execution on a variety of hardware platforms (e.g., Raspberry
Pi, NVIDIA Jetson, etc.). Our own customized library is not
optimized for specific devices in order to provide the greatest
possible flexibility. With our focus on flexibility, we have not
yet heavily invested in the performance optimization of our
AutoDiCE tool when, e.g., targeting specific edge devices.
For example, in the future, we plan to integrate the TensorRT
framework into AutoDiCE to support very optimized and
efficient CNN execution when targeting specific NVIDIA-
based devices such as the NVIDIA Jetson series of embedded
computing boards because TensorRT has demonstrated to
produce superior CNN inference performance on NVIDIA-
based devices [47].

Moreover, in our experiments, we have used edge devices
that are interconnected using a Gigabit network switch. Ev-
idently, in more realistic edge/IoT settings the connectivity
between edge devices might have a lower bandwidth, e.g.
using WiFi or other wireless protocols. This would have
a detrimental effect on the system throughput objective of
distributed CNN inference implementations, possibly leading
to more or even purely slowdowns when distributing the
inference of a CNN on multiple edge devices. However, we
would like to stress that this will not have any impact on the
positive effects on (i.e., the reduction of) the per-device energy
consumption and per-device memory usage that can always be
achieved by distributing CNNs over multiple edge devices.

Finally, since the Jetson NX boards with 16GB of memory
used as edge devices in our experiments are sufficiently

equipped for executing complete CNNs, one could question
why distributed execution would be needed. However, in real-
world application scenarios, there are often other running
application tasks, besides the CNN execution, on an edge
device. In such scenarios, the device memory cannot be fully
utilized for the CNN execution, and therefore the available
memory may be insufficient for CNN-based applications. If
CNN models cannot be mapped on a single device because
of memory limitations (either due to memory usage of other
application tasks on the device or the fact that the device is less
capable than the one we used in our experiments and simply
has not enough physical memory), then we have to split the
CNN model and execute it on multiple collaborative edge/IoT
devices.

Another important reason for distributing CNN execution
over multiple edge/IoT devices, even if CNN execution on
a single edge/IoT device would be feasible, is when the
consumed energy by a single (battery-operated) device does
not provide enough ‘lifetime’ for the application mission to
be performed. For example, consider an application scenario
where a swarm of eight collaborating battery-operated mobile
robots has to perform a surveillance mission for 20 hours
without recharging the batteries. One of the tasks, among
several mission tasks the swarm has to perform, is a continuous
on-board CNN-based image processing of a camera-captured
video stream using the ResNet-101 CNN model. Every mobile
robot in the swarm is equipped with a Jetson NX board
(edge device) used for the robot control/navigation and for
running tasks related to the mission. Let us assume that the
Jetson NX board is powered by a battery with capacity 18000
mAh and output voltage of 19 V. On the one hand, if the
CNN-based image processing task of the swarm is assigned
to and performed by only one of the robots then, with the
aforementioned battery capacity, the execution of the ResNet-
101 model on the robot’s Jetson NX edge device can last
only for 15.24 hours, thus the swarm will not be able to
accomplish the 20-hour mission without battery recharging.
This is because the energy consumption per image of ResNet-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

15

101 executed on Jetson NX is 1.031 J, and after processing
1194181 images with processing time of 45.94 ms per image,
the aforementioned battery will be completely discharged. On
the other hand, if the CNN-based image processing task of the
swarm is assigned to and performed collaboratively by four out
of the eight robots in the swarm, i.e., distributing the ResNet-
101 CNN model on four Jetson NX edge devices, then the 20-
hour mission of the swarm without battery recharging could
be accomplished. This is because, according to our results
shown in Figure 7 for ResNet-101, the distributed ResNet-
101 execution on four edge devices will reduce the energy
consumption per device by around 35%, thereby increasing
the ‘lifetime’ of ResNet-101 on a single battery charge with
1.54x to about 23.45 hours.

The real-world application scenarios and example, discussed
above, clearly demonstrate the benefits of reducing the per-
device memory usage and per-device energy consumption
that could be achieved by using our novel framework for
distributed CNN inference at the Edge.

VII. CONCLUSIONS

In this paper, we have presented a novel framework for
efficiently exploring and automatically implementing CNN
partitionings on multiple edge devices to facilitate distributed
CNN inference at the Edge. To this end, we have introduced
a novel multi-stage hierarchical DSE methodology for ex-
ploring a wide range of different distributed CNN inference
implementations using a variety of edge device resources. To
accelerate the DSE process and improve its efficiency, our
DSE methodology combines analytical models with real on-
board measurements to speedup the evaluations of individual
design points and utilizes a tailored chromosome encoding
method to effectively scale down the explored design space.
To perform the measurement-based evaluations, our DSE
methodology leverages the AutoDiCE tool. AutoDiCE is the
first fully automated tool for distributed CNN inference over
multiple resource-constrained devices at the Edge. It features
a unified and flexible user interface, fast CNN model par-
titioning and code generation, and easy deployment of the
CNN partitions on edge devices. We have demonstrated the
flexibility of AutoDiCE with a detailed example illustrating all
main steps in the AutoDiCE design flow. We have evaluated
our novel framework by applying it to three representative
CNNs, demonstrating its efficiency and usefulness in facil-
itating fast and accurate DSE as well as fully automated
distributed CNN implementation. Our experiments and results
show that our framework, using multi-stage hierarchical DSE
and AutoDiCE, can easily and rapidly explore and realize a
wide variety of distributed CNN inference implementations
on multiple edge devices, achieving improved (i.e., reduced)
per-device energy consumption and per-device memory usage,
and under certain conditions, improved system (inference)
throughput as well. It is worth noting that these improvements
are achieved without losing the initial CNN model accuracy
because the steps in our framework change neither the CNN
layers and their data dependencies nor the values and precision
of the CNN parameters (weights and biases).

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys (CSUR), vol. 51,
no. 5, pp. 1–36, 2018.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[4] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams et al., “Recent advances in deep learning
for speech research at microsoft,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. IEEE, 2013, pp.
8604–8608.

[5] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and chal-
lenges,” in 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, 2010, pp. 27–33.

[6] K. Patel, K. Rambach, T. Visentin, D. Rusev, M. Pfeiffer, and B. Yang,
“Deep learning-based object classification on automotive radar spectra,”
in 2019 IEEE Radar Conference (RadarConf), 2019, pp. 1–6.

[7] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
A nested u-net architecture for medical image segmentation,” in Deep
learning in medical image analysis and multimodal learning for clinical
decision support. Springer, 2018, pp. 3–11.

[8] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on Neural
Networks, vol. 4, no. 5, pp. 740–747, 1993.

[9] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” arXiv preprint arXiv:1808.04752, 2018.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[11] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017, publisher: ACM New York, NY, USA.

[12] X. Guo, A. D. Pimentel, and T. Stefanov, “Hierarchical Design Space
Exploration for Distributed CNN Inference at the Edge,” in Proc. of
the Int. Workshop on IoT, Edge, and Mobile for Embedded Machine
Learning (ITEM 2022), Sept. 2022.

[13] AutoDiCE, “https://github.com/parrotsky/autodice,” 2022.
[14] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”

2019. [Online]. Available: https://github.com/onnx/onnx
[15] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying convolution

and attention for all data sizes,” arXiv preprint arXiv:2106.04803, 2021.
[16] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,

J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, pp. 103–112, 2019.

[17] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1–15.

[18] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[19] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Comput. Surv., vol. 54, no. 6, jul 2021.

[20] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 328–339.

[21] E. Li, Z. Zhou, and X. Chen, “Edge Intelligence: On-Demand
Deep Learning Model Co-Inference with Device-Edge Synergy,”
arXiv:1806.07840 [cs], Dec. 2018, arXiv: 1806.07840. [Online].
Available: http://arxiv.org/abs/1806.07840

[22] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1396–1401.

[23] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, Nov. 2018.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

https://github.com/onnx/onnx
http://arxiv.org/abs/1806.07840

16

[24] R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Fully distributed deep learning inference on resource-
constrained edge devices,” in International Conference on Embedded
Computer Systems. Springer, 2019, pp. 77–90.

[25] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward Collaborative
Inferencing of Deep Neural Networks on Internet-of-Things Devices,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4950–4960, Jun.
2020.

[26] R. Stahl et al., “Deeperthings: Fully distributed cnn inference on
resource-constrained edge devices,” International Journal of Parallel
Programming, vol. 49, no. 4, pp. 600–624, 2021.

[27] E. Tang and T. Stefanov, “Low-Memory and High-Performance CNN
Inference on Distributed Systems at the Edge,” in Proc. of the 14th
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC). ACM, 2021, pp. 1–8.

[28] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019, pp. 195–208.

[29] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 595–608, 2020.

[30] X. Hou, Y. Guan, T. Han, and N. Zhang, “Distredge: Speeding up
convolutional neural network inference on distributed edge devices,” in
2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2022, pp. 1097–1107.

[31] K. Deb, Multi-Objective Evolutionary Algorithms. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 995–1015.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[33] A. Pimentel, “Exploring exploration: A tutorial introduction to embed-
ded systems design space exploration,” IEEE Design & Test, vol. 34,
no. 1, pp. 77–90, 2 2017.

[34] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, and M. Sjödin,
“Deepmaker: A multi-objective optimization framework for deep neural
networks in embedded systems,” Microprocessors and Microsystems,
vol. 73, p. 102989, 2020.

[35] S. Minakova, D. Sapra, T. Stefanov, and A. D. Pimentel, “Scenario based
run-time switching for adaptive cnn-based applications at the edge,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 21,
no. 2, pp. 1–33, 2022.

[36] L. M. Pang, H. Ishibuchi, and K. Shang, “Nsga-ii with simple modifi-
cation works well on a wide variety of many-objective problems,” IEEE
Access, vol. 8, 2020.

[37] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[38] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.

[39] L. Tencent. (2017) Ncnn. [Online]. Available: https://github.com/
Tencent/ncnn

[40] J. Redmon. (2013–2016) Darknet: Open source neural networks in c.
[Online]. Available: http://pjreddie.com/darknet/

[41] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next gener-
ation MPI implementation,” in Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004, pp. 97–
104.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[44] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger,
“Convolutional networks with dense connectivity,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[45] ONNX. (2022) Onnx model zoo. [Online]. Available: https://github.
com/onnx/models

[46] (2020) Nvidia jetson xavier nx. [Online]. Available: https://developer.
nvidia.com/embedded/jetson-xavier-nx

[47] B. Ulker, S. Stuijk, H. Corporaal, and R. Wijnhoven, “Reviewing
inference performance of state-of-the-art deep learning frameworks,” in

Proc. of the 23th International Workshop on Software and Compilers
for Embedded Systems (SCOPES), 2020, p. 48–53.

Xiaotian Guo received the B.S. degree in applied
physics and the M.S. degree in electronic science
and technology from the University of Science and
Technology of China, Hefei, China, in 2013 and
2016, respectively. He is pursuing the joint Ph.D.
degree with the University of Amsterdam and Leiden
University. His current research interest includes
deep learning at the edge and design space explo-
ration.

Andy D. Pimentel is full professor at the University
of Amsterdam where he chairs the Parallel Com-
puting Systems group. His research centers around
the design, programming and run-time management
of multi-core and multi-processor computer systems.
The modeling, analysis and optimization of the
extra-functional aspects of these systems, such as
performance, power/energy consumption, thermals,
reliability but also the degree of productivity to
design and program these systems, play a pivotal
role in his work. He has an MSc and PhD in

computer science from the University of Amsterdam. He is a co-founder of
the International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS). He has (co-)authored more than 130
scientific publications and is an Associate Editor of the Simulation Modelling
Practice and Theory journal as well as the Journal of Signal Processing
Systems. He is a recipient of the prestigious Test of Time Award from the
IEEE/ACM CODE+ISSS 2022 conference. He served as the General Chair of
the HIPEAC 2015 conference, as Local Organization Co-Chair of Embedded
Systems Week 2015, as Program (Co-)Chair of CODES+ISSS in 2016 and
2017, and as General Chair of DATE in 2024. Furthermore, he has served on
the TPC of many leading (embedded) computer systems design conferences,
such as DAC, DATE, CODES+ISSS, ICCD, ICCAD, FPL, and LCTES.

Todor Stefanov (S’01–M’05) received the Dipl.Ing.
and M.S. degrees in computer engineering from the
Technical University of Sofia, Bulgaria, in 1998 and
the Ph.D. degree in computer science from Leiden
University, The Netherlands, in 2004. He is currently
an Associate Professor in the Leiden Institute of Ad-
vanced Computer Science at Leiden University and
the Head of the Leiden Embedded Research Center
(LERC) which is a medium-size research group with
a strong track record in the area of system-level
modeling and analysis, scheduling and synthesis,

programming, and implementation of heterogeneous embedded and cyber-
physical systems. He has (co-)authored over 100 scientific papers. His current
research interests include several aspects of cyber-physical and embedded sys-
tems design, with particular emphasis on system-level design automation for
distributed deep learning at the edge, deep learning on heterogeneous resource-
constrained embedded systems, multiprocessor systems-on-chip design, and
hardware/software co-design. Dr. Stefanov is a recipient of two prestigious
awards: The 2022 ACM/IEEE/ESWEEK TEST-OF-TIME AWARD for his
CODES+ISSS 2007 conference paper ”A Framework for Rapid System-level
Exploration, Synthesis, and Programming of Multimedia MP-SoCs” and The
2009 IEEE TCAD DONALD O.PEDERSON BEST PAPER AWARD for his
journal article ”Systematic and Automated Multi-processor System Design,
Programming, and Implementation published in the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD). He
has been an editorial board member of the Springer Journal on Embedded
Systems and the International Journal of Reconfigurable Computing as well
as a guest associate editor of the ACM Transactions on Embedded Computing
Systems (2013). He has been General Chair of ESTIMedia 2015 and Local
Organization Co-Chair of ESWeek 2015. Moreover, he serves (has served) on
the organizational committees of several leading conferences, symposia, and
workshops, such as DATE, ACM/IEEE CODES+ISSS, RTSS, IEEE ICCD,
FPL, LCTES, IEEE/IFIP VLSI-SoC, ESTIMedia, SAMOS, EUC (as TPC
member), and IEEE ESTIMedia, ACM SCOPES (as Program Chair).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237572

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:01:14 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
http://pjreddie.com/darknet/
https://github.com/onnx/models
https://github.com/onnx/models
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://developer.nvidia.com/embedded/jetson-xavier-nx

	Introduction
	Related Work
	The AutoDiCE tool
	Overview
	Interface
	Front-end
	Back-end

	Multi-stage Hierarchical DSE
	Analytical Models
	Throughput
	Memory
	Energy

	DSE Methodology

	Framework Evaluation
	Experimental Setup
	Efficiency of AutoDiCE and DSE Results
	Varying the Number of Edge Devices
	DSE acceleration

	Discussion
	Conclusions
	References
	Biographies
	Xiaotian Guo
	Andy D. Pimentel
	Todor Stefanov

