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Abstract—For model inference of convolutional neural
networks (CNNs), we nowadays witness a shift from the Cloud to
the Edge. Unfortunately, deploying and inferring large, compute-
and memory-intensive CNNs on Internet of Things devices at the
Edge is challenging as they typically have limited resources. One
approach to address this challenge is to leverage all available
resources across multiple edge devices to execute a large CNN by
properly partitioning it and running each CNN partition on a sep-
arate edge device. However, there currently does not exist a design
and programming framework that takes a trained CNN model
as input and subsequently allows for efficiently exploring and
automatically implementing a range of different CNN partitions
on multiple edge devices to facilitate distributed CNN inference.
Therefore, in this article, we propose a novel framework that
automates the splitting of a CNN model into a set of submodels
as well as the code generation needed for the distributed and
collaborative execution of these submodels on multiple, possibly
heterogeneous, edge devices, while supporting the exploitation
of parallelism among and within the edge devices. In addition,
since the number of different CNN mapping possibilities on
multiple edge devices is vast, our framework also features a mul-
tistage and hierarchical design space exploration methodology to
efficiently search for (near-)optimal distributed CNN inference
implementations. Our experimental results demonstrate that our
work allows for rapidly finding and realizing distributed CNN
inference implementations with reduced energy consumption and
memory usage per edge device, and under certain conditions,
with improved system throughput as well.

Index Terms—Deep learning (DL), design space exploration
(DSE), distributed inference, edge computing, Internet of
Things (IoT).

I. INTRODUCTION

DEEP learning (DL) [1] has become a popular method in
AI-based applications in various fields, including com-

puter vision, natural language processing, automotive, and
many more. Especially, DL approaches based on convolutional
neural networks (CNNs) [2] have been extensively utilized
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because of their huge success in image classification [3] and
speech recognition applications [4].

Due to the high complexity of state-of-the-art CNN mod-
els, the training of these models is performed mainly on
high-performance platforms, while the model inference is usu-
ally provided as a cloud service [5], allowing less powerful
Internet of Things (IoT) devices at the Edge to easily use
such services. Realizing CNN inference on edge devices using
cloud services, however, requires users to communicate a
substantial amount of data between an edge device and a
cloud server. Such data communication may cause data pri-
vacy concerns as well as low-device responsiveness due to
data transmission delays or temporal unavailability of cloud
services. Evidently, this is highly undesirable for those CNN-
based applications that are particularly sensitive to compute
response delays or the privacy of the processed data. For
example, CNN-based navigation in self-driving cars [6] can-
not tolerate variable and large response delays occurring due
to the communication between the car and a cloud server.
Or, applications in healthcare [7] using CNNs on IoT devices
dealing with patient data cannot send their data to the cloud
because this could lead to leakages of private data and viola-
tion of patients’ privacy rights. The aforementioned concerns
motivate the shift of the CNN inference from the Cloud to the
Edge. When entirely executed at the Edge, a CNN is deployed
close to the source of data, and data communication with a
cloud server is not required, thereby ensuring high-application
responsiveness and reducing the risk of private data leakage.

Unfortunately, deploying and inferring a large CNN, which
is typically memory/power-hungry and compute-intensive,
on an IoT edge device is challenging because many edge
devices have limited energy budgets and compute and memory
resources. One approach to address this challenge is to con-
struct a lightweight CNN model from a large CNN model
by utilizing model compression techniques (e.g., pruning [8],
quantization [9], knowledge distillation [10]), thereby reduc-
ing the CNN model size to a degree that allows the CNN to
be deployed and efficiently executed on a resource-constrained
edge device. However, the accuracy of the compressed CNN
model is significantly decreased if high compression rates are
required. Another approach is to infer only part of a large
CNN model on the edge device and the rest on the cloud by
efficiently partitioning the model and distributing the partitions
vertically along the edge-cloud continuum [11]. However, the
aforementioned edge device responsiveness and private data
leakage issues are still inevitable in such partitioned CNN
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inference due to the partial involvement of the cloud. Finally,
a third approach to address the challenge is to leverage all
available resources horizontally along multiple, possibly het-
erogeneous, edge devices to deploy and execute a large CNN
by properly partitioning the CNN model and running each
CNN partition on a separate edge device. The size of each
CNN partition should match the limited energy, memory,
and compute resources of the edge device the partition runs
on. Such an approach not only makes it possible to deploy
large CNN models without the need of model compression,
respectively, without loss of accuracy but it also resolves the
aforementioned responsiveness and privacy issues because a
cloud server is not involved in the CNN inference. Thus, in this
article, we focus on this last approach, i.e., entirely distributing
and executing a large CNN model at the Edge.

Although distributing, deploying, and executing a large
CNN model on multiple IoT edge devices is a desirable and
beneficial approach, currently, it requires a significant manual
design and programming effort involving advanced skills in
CNN model design, embedded systems and programming, and
parallel programming for (heterogeneous) distributed systems.
At this moment, no design and programming framework
exists that fully automates these tasks. Moreover, such dis-
tributed execution of the CNN model inference often needs to
take multiple requirements into account as well, like latency,
throughput, resource usage, power/energy consumption, etc.
Here, the way how the different CNN layers are distributed
and mapped onto the edge devices plays a key role in opti-
mizing/satisfying these requirements. As today’s CNN models
are becoming increasingly deep and complex, the number of
different CNN mapping possibilities when deploying multiple
edge devices, and the various compute resources in each of
them, are vast. Therefore, efficient design space exploration
(DSE) methods are essential to find a set of (near-)optimal
CNN mappings subject to one or more design requirements
(i.e., objectives).

To address the above needs, this article presents a novel
framework that allows for efficiently exploring and automati-
cally implementing a, possibly large, range of different CNN
partitions/mappings on multiple edge devices to facilitate dis-
tributed CNN inference at the Edge. The framework consists of
two main components, namely, a multistage hierarchical DSE
methodology for efficient exploration of CNN mappings and
the AutoDiCE tool for the fully automated implementation
of a CNN mapped on multiple edge devices. The multi-
stage hierarchical DSE methodology deploys a tailored genetic
algorithm (GA) as the underlying search engine and also lever-
ages the AutoDiCE tool to assess the quality (in terms of
inference throughput, memory footprint, and energy consump-
tion) of particular CNN mapping implementations. At every
stage, DSE is performed at two hierarchical levels. In the
first level, analytical models are used inside a GA to approx-
imate each objective function (i.e., throughput, memory, and
energy consumption) to avoid relatively long evaluation times
through real on-device (i.e., on-board) measurements using
AutoDiCE. The near-optimal solutions found in the first level
together with Pareto-optimal solutions from a previous DSE
stage are utilized as a starting point for the second-level DSE.

In this second level, we further search and evaluate design
solutions using real measurements taken from AutoDiCE-
generated CNN inference implementations to determine the
Pareto front for the next DSE stage. The output of the last DSE
stage provides the final Pareto-optimal solutions in the form of
AutoDiCE-based distributed CNN implementations. An initial
version of this multistage hierarchical DSE methodology has
been presented in [12]. The AutoDiCE tool used in the DSE
methodology takes as input a specific DSE solution candidate,
i.e., a trained CNN model and a CNN partitioning/mapping
specification, and subsequently performs automated splitting
of the CNN model into a set of submodels and automated code
generation for distributed and collaborative execution of these
submodels on multiple, possibly heterogeneous, edge devices.
Doing so, it supports the exploitation of parallelism among
and within the edge devices.

Our novel contributions can be summarized as follows.
1) A tool, called AutoDiCE, featuring automated split-

ting of a CNN model into a set of submodels and
automated code generation for distributed and collabora-
tive execution of these submodels on multiple, possibly
heterogeneous, edge devices. AutoDiCE is the first
fully automated tool for distributed CNN inference over
multiple resource-constrained devices at the Edge. It is
open-source and available at [13].

2) A hybrid MPI and OpenMP code generation approach
in AutoDiCE to support the exploitation of parallelism
among and within the edge devices, i.e., the latter
exploiting multicore execution.

3) A highly flexible AutoDiCE implementation that facili-
tates the easy specification and reuse of existing CNNs
(via the ONNX format [14]), and can target a range
of (heterogeneous) edge devices via a custom inference
engine library which supports a variety of CPUs (x86,
ARM), GPUs (NVIDIA, Mali, AMDRX), and GPU
APIs (VULKAN, CUDA).

4) An advanced DSE methodology for efficiently explor-
ing distributed CNN implementations at the edge, using
a) analytical models to approximate each objective func-
tion and to prune the design space that is evaluated
with AutoDiCE implementations and on-board measure-
ments; b) multiple DSE stages where at each stage only
a specific part of the design space is considered of which
the Pareto-optimal solutions from a previous DSE stage
are used to find Pareto-optimal solutions in a next DSE
stage; and c) a GA with a tailored chromosome encoding
method to scale down the search space.

5) A range of experiments in which we show that our
framework, composed of the multistage hierarchical
DSE and AutoDiCE, can rapidly explore and realize a
wide variety of distributed CNN inference implementa-
tions on multiple edge devices, achieving improved (i.e.,
reduced) per-device energy consumption and per-device
memory usage, and under certain conditions, improved
system (inference) throughput as well.

The remainder of this article is organized as follows.
Section II discusses related work, after which Section III
presents our AutoDiCE tool. Section IV discusses our
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multistage hierarchical DSE methodology for efficient CNN
mapping exploration, which leverages the AutoDiCE tool. In
Section V, we describe a range of experiments, demonstrat-
ing that our framework can rapidly explore and realize a
wide variety of distributed CNN inference implementations
with diverse tradeoffs regarding energy consumption, memory
usage, and system throughput. Section VI provides a discus-
sion on the current version of our framework and how it could
be further improved in the future. Moreover, we further clar-
ify, with examples, why distributed CNN inference using our
novel framework is beneficial in real-world application scenar-
ios when the CNN memory footprint and energy consumption
are a concern. Finally, Section VII concludes this article.

II. RELATED WORK

Today’s CNN models for computer vision tasks are becom-
ing increasingly complex. For example, the CNN-based model
CoAtNet-7 [15] reaching the top-1 accuracy of 90.88% for the
ImageNet data set has 2.44 billion parameters (weights and
biases) which values have to be determined during the training
and stored/used during the inference. To train and deploy such
large CNN models, parallel or distributed computing is often
required. For model training, a common approach to acceler-
ate the training process is to exploit pipeline parallelism. For
example, GPipe [16] applies pipeline parallelism by splitting a
mini-batch of training data into smaller micro-batches, where
different GPUs train on different micro-batches. Another
example is PipeDream [17] which partitions the CNN model
for multiple GPUs such that each GPU trains a different part of
the model. An alternative distributed training approach, moti-
vated by privacy concerns among multiple devices/machines,
is federated learning (FL) [18], [19]. FL aims at training a
global centralized model with multiple, local data sets on dis-
tributed devices or data centers, thereby preserving local data
privacy and improving learning efficiency. All of the aforemen-
tioned approaches target efficient, distributed training of large
CNN models. In contrast, our work presented in this article
focuses on efficient, distributed inference of large CNNs.

Unlike the parallel or distributed CNN training, discussed
above, the inference of large CNN models often needs to take
multiple requirements into account, such as latency, through-
put, resource usage, power/energy consumption, etc. To satisfy
these requirements when executing the inference of large
CNNs on edge devices, the following two approaches for dis-
tributed CNN model inference are typically used: vertically
and horizontally distributed inferences.

In vertically distributed inference (e.g., [11], [20], and [21]),
the workload of a large CNN is distributed along the cloud–
edge continuum. Such an approach maximizes the utilization
of computing resources on edge devices, reduces the com-
putation workload on the cloud, and usually improves the
CNN inference throughput. The most common idea in this
approach is to obtain a specific small submodel from or an
early-exit branch of the initial large CNN model that runs on
the edge device. Only if the inference result of the deployed
submodel/early-exit branch on the edge device is below a cer-
tain confidence threshold, the device has to upload its data

on the cloud and the CNN inference has to continue on the
cloud. Vertical distribution along the cloud–edge continuum
still relies on the quality and stability of network connec-
tions between the edge device and the cloud server because
intermediate results of the small CNN submodels or early-exit
branches may still need to be uploaded to the cloud. This not
only suffers from high-communication latency but also there
is a risk of information leakage. In contrast, our framework
achieves lower inference latency by deploying a large CNN
model over edge devices without the cloud, and therefore also
preserves both data and model privacy to some extent.

In horizontally distributed inference (e.g., [22], [23], [24],
[25], [26], and [27]), the workload of a large CNN is fully
distributed among multiple edge devices. That is, all CNN
computations are collaboratively executed at the Edge and
there is no dependency on the cloud. Data partitioning and
model partitioning are two common methods to horizontally
distribute the CNN inference across multiple edge devices.
Data partitioning exploits data parallelism among multiple
devices by splitting the input/output data to/from CNN lay-
ers into several parts while each device executes all layers of
a CNN model using only some parts of the data. For exam-
ple, DeepThings [23] uses the fused tile partitioning (FTP)
method for splitting input data frames of CNN layers in a
grid fashion to reduce the CNN memory usage per device.
The main drawback of the data partitioning method is that
an edge device should still be capable of executing all layers
of a CNN model which implies that the edge device should
be able to store the weights and biases of the entire CNN
model. Alternatively, the model partitioning method splits the
CNN layers and/or connections of a large CNN model, thereby
creating several smaller submodels (model partitions) where
each submodel is executed on a different edge device [24].
For example, MoDNN [22] splits convolution layers and fully
connected layers in the VGG-16 model. In [25] and [27],
CNN layer connections are split and each CNN layer is
treated as a subtask. These subtasks are then mapped to edge
devices through a balanced processing pipeline approach. In
addition to using data and CNN model partitioning to map
large CNNs on resource-constrained edge devices, researchers
try to optimize CNN mapping to improve the inference
performance. For example, the methodologies in [27], [28],
[29], and [30] propose efficient algorithms to determine par-
titioning policies that generate efficient CNN mappings in
order to improve the performance of cooperative inference
over multiple edge devices. However, all of these method-
ologies typically optimize and evaluate CNN mappings based
on analytical models only and consider a limited number of
objectives. In contrast, our framework optimizes more objec-
tives, and besides analytical models, it deploys AutoDiCE to
evaluate mappings by real on-device measurements.

Distributed inference of large CNN models typically needs
to consider a range of different design requirements, such as
latency, throughput, resource usage, power/energy consump-
tion, etc. These requirements/objectives can be conflicting,
implying that there usually does not exist a single optimal
CNN mapping that satisfies all requirements. Usually, multiple
solutions (the so-called Pareto optimal solutions) co-exist and
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the set of all optimal solutions is called the Pareto front.
Finding these Pareto-optimal CNN mappings for a given
number of edge devices to perform distributed CNN infer-
ence under several requirements is addressed in this article.
A popular approach to perform such a search for Pareto-
optimal solutions is by using multiobjective evolutionary
algorithms [31]. More specifically, in the domain of DSE,
multiobjective GAs, such as the nondominated sorting GA
(NSGA-II) [32], are widely used and have been demonstrated
to produce good results [33]. For instance, Loni et al. [34]
and Minakova et al. [35] used the NSGA-II GA to explore
the design space to find improved neural network architec-
tures for CNN-based applications. Our DSE methodology also
employs NSGA-II to explore the Pareto-optimal CNN map-
ping solutions with respect to systems (inference) throughput,
the maximum memory usage per device, and the maximum
energy consumption per device. However, NSGA-II can eas-
ily get stuck in so-called dominance-resistant solutions [36],
which are far away from the true Pareto front. Therefore, how
to search the optimal CNN mappings for distributed inference
using NSGA-II, and efficiently find the Pareto front in the huge
search space, are important research challenges. In this arti-
cle, we try to address these challenges by devising and using a
multistage hierarchical DSE methodology based on NSGA-II
with a tailored chromosome encoding method. Although our
method does not guarantee to completely solve the problem of
dominance-resistant solutions, our experiments in Section V-D
demonstrate that our method mitigates this problem.

III. AUTODICE TOOL

In this section, we present our AutoDiCE tool, which is
deployed in our DSE methodology for efficiently searching
for (near-)optimal distributed CNN inference implementations
at the Edge. To this end, we describe AutoDiCE as a design
flow and explain the main steps in the flow with the help of an
illustrative example. First, we provide a high-level overview of
the AutoDiCE design flow. Second, we describe AutoDiCE‘s
unified user interface. Next, we explain in detail the main steps
in the front end of the AutoDiCE design flow. Finally, we do
the same for the back end of the flow.

A. Overview

AutoDiCE is a flexible tool that facilitates distributed infer-
ence of a CNN model, embedded in an AI application, at
the Edge. More specifically, it allows designers and program-
mers of such CNN-based AI applications to perform, in a fully
automated manner, CNN model partitioning, deployment, and
execution on multiple resource-constrained edge devices.

Fig. 1 shows the AutoDiCE user interface and design flow
where the main steps in the flow are divided into two modules:
1) front-end and 2) back-end.

The interface is composed of three specifications, namely,
the Pretrained CNN Model provided as an.onnx file,
Mapping Specification provided as a.json file, and Platform
Specification provided as a.txt file.

The Pretrained CNN Model specification includes the CNN
topology description with all layers and connections among

Fig. 1. AutoDiCE design flow and its user interface.

layers as well as the weights/biases that are associated with the
layers and obtained by training on a specific data set using DL
frameworks like PyTorch, TensorFlow, etc. Many such CNN
model specifications in ONNX format [14] are readily avail-
able in open-access libraries and can be directly used as an
input to AutoDiCE.

The Platform Specification lists all available edge devices
together with their computational hardware resources and spe-
cific software libraries associated with these resources. This
specification is simple to draw up and can be generated by
external tools that query the network connecting the edge
devices or provided manually by the user.

The Mapping Specification is a simple list of key-value pairs
in JSON format that explicitly shows how all layers described
in the Pretrained CNN Model specification are mapped onto
the computational hardware resources listed in the Platform
Specification. Every unique key corresponds to an edge device
with a selection of its hardware resources to be used for com-
putation. Every value corresponds to a set of CNN layers to
be deployed and executed on the edge device resources. Such
a Mapping Specification can be provided manually by the user
or, like in this article, generated by a system-level design-space
exploration (DSE) tool.

The three aforementioned specifications are given as an
input to the front-end module, as shown in Fig. 1. Two main
steps are performed in this module: 1) model splitting and
2) config & communication generation. The model splitting
takes as an input the Pretrained CNN Model and Mapping
specifications, splits the input CNN model into multiple sub-
models, and generates these submodels in ONNX format. The
number of generated submodels is equal to the number of
unique key-value pairs in the Mapping Specification. Each
submodel contains input buffers, output buffers, and the set
of CNN layers, specified in the corresponding key-value pair.
The config & communication generation step takes all three
specification files as an input and generates specific tables in
JSON format containing information needed to realize proper
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Fig. 2. AutoDiCE in action: a detailed example.

communication and synchronization among the submodels
using the well-known MPI interface. In addition, a configu-
ration text file (MPI rankfile) is generated to initialize and run
the submodels as different MPI processes.

As shown in Fig. 1, the generated configuration file, sub-
models, and tables are used in the back-end module for
code and deployment package generation. During the Code
Generation step in this module, efficient C++ code is gener-
ated for every edge device based on the input submodels and
tables. In the generated code, primitives from the standard
MPI library are used for data communication and synchro-
nization among submodels as well as primitives from our
customized CNN Inference Library are used for implementa-
tion of the CNN layers belonging to every submodel. Both
libraries enable the generation of cross-platform code that
can be compiled for and executed on multiple heterogeneous
edge devices. Finally, the Package Generation step packs the
generated cross-platform C++ code, the MPI rankfile, and a
submodel together to generate a specific deployment package
for every edge device. All packages contain the same C++
code and the same MPI rankfile but different submodels. When
a package is compiled, deployed, and executed on an edge
device, the specific submodel in the package will be loaded
and only the part of the code that corresponds to the loaded
submodel will run as an MPI process as specified in the MPI
configuration rankfile.

In the following sections, the interface and the main steps
of the AutoDiCE design flow, introduced above, are explained
in more detail with the example in Fig. 2.

B. Interface

In the left-most part of Fig. 2, we show three templates
(examples) representing the three specifications of the user
interface introduced in Section III-A. By using these exam-
ple templates, we comprehensively reveal and explain the
flexibility of and heterogeneity support in AutoDiCE.

In general, the Platform Specification lists all available edge
devices with their computational resources. Every line in the
list specifies the name of the edge device, the CPU architec-
ture, the number of CPU cores, and (optionally) a GPU device
with its architecture and programming library. For instance,
the first line of the platform template in Fig. 2 specifies that
the name of the device is “edge01” with an ARM processor
architecture, including six cores in total (slots = 0–5) and one
GPU device with NVIDIAVolta architecture supported by the
CUDA library. Through the Platform Specification, a user can
easily and flexibly specify alternative heterogeneous hardware
platforms, including the different number of edge devices and
types of resources. As shown in Fig. 2, the user can select
different CPU architectures per edge device, such as ARM,
x86, etc., with different numbers of cores as well as different
GPU architectures per edge device, such as NVIDIA, Mali,
AMDRX, etc., with different GPU programming APIs, such
as CUDA, VULKAN, etc.

The model template in Fig. 2 is an example of a part
of a Pretrained CNN Model specification that visualizes
the CNN model topology only. It contains an input layer,
five hidden layers (i.e., MaxPool1, Conv1, FC1, Add1, and
Relu1), and an output layer. Every hidden layer stores its
own parameters (such as weights, bias, etc.) that are not
shown in Fig. 2. To support interoperability of AutoDiCE
with other DL frameworks, we adopt ONNX as the standard
format to represent/specify a pretrained CNN model in the
AutoDiCE interface. The choice of ONNX allows users to
provide a CNN model designed, trained, and verified in well-
known and widely used frameworks, such as TensorFlow [37],
PyTorch [38], etc. A large variety of trained CNN models
are already available in ONNX format that can be readily
utilized by AutoDiCE, allowing easy deployment of these
models over multiple edge devices. In addition, the use of the
ONNX interface facilitates reproducibility in terms of CNN
designs (e.g., CNN topology, used parameters, etc.) and in
CNN evaluations (for CNN model accuracy and nonfunctional
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characteristics). For example, in experimental evaluations,
users can confidently and reliably compare CNN model char-
acteristics, such as accuracy, memory usage, performance,
and power/energy consumption, obtained by AutoDiCE, with
the same characteristics obtained by other frameworks and
approaches, applied on exactly the same CNNs.

As mentioned in Section III-A, the Mapping specification
lists several different key-value pairs to describe a distribution
of the layers in a CNN model over different computational
platform resources. The Mapping template in Fig. 2 is an
example of such specification. It lists three different key-
value pairs. For example, the unique key “edge01_arm123”
specifies that three ARM CPU cores (i.e., cores 1, 2, and
3) of device edge01, described in the Platform specification,
are allocated for CNN layers execution. The corresponding
value [“MaxPool1,” “Add1”] specifies that layers MaxPool1
and Add1, described in the Pretrained CNN model specifica-
tion, are executed on the allocated three cores. All valid keys
must be generated from the Platform Specification to ensure
the availability of chosen computational resources. CNN lay-
ers can be bound to a single GPU, a single CPU core, or
multiple CPU cores. Specifically, if all keys use computa-
tional resources of the same device, the distributed inference
turns into a multithreaded execution on a single device. All
valid values must be selected from layers of the Pretrained
CNN model, and all CNN layers in that model should be
assigned to at least one hardware processing unit (CPU or
GPU) to ensure the mapping consistency. The mapping exam-
ple in Fig. 2 is a vertical partitioning, which means that every
CNN layer is mapped to a single unique key (device). If a
CNN layer is mapped to multiple unique keys, then the layer
will be horizontally distributed over multiple computational
resources. Users can realize different approaches for splitting
(and parallel execution of) a CNN model, namely, vertical,
horizontal, and using data parallelism (the latter two are not
shown in Fig. 2). This is done by changing the layer distribu-
tion in the Mapping Specification. However, in this article, we
will only focus on vertical partitioning. It is easy and flexible
for users (or DSE and other tools, for that matter) to change
the CNN model partitioning as well as mapping of partitions
to edge devices through selecting different combinations of
key-value pairs in the Mapping Specification.

C. Front-End

The front-end module is designed to parse, check, and pre-
process all user specifications through its two main steps:
1) model splitting and 2) config & communication genera-
tion. Model splitting splits the input CNN model according to
the mapping specification and generates several CNN submod-
els. Each submodel will be implemented and executed as an
MPI process. Config & communication generation generates
an MPI-specific configuration file and communication tables
based on the three input specification files. At the top center
of Fig. 2, the model splitting step is illustrated. Based on the
three key-value pairs in the Mapping template (specification),
the CNN model template is vertically partitioned into three
submodels (Model 0, Model 1, and Model 2). The layers of the
CNN model mapped on the same edge device resource will be

grouped into a single submodel. For example, the two layers
MaxPool1 and Add1 are grouped together to form submodel
Model 0.

The output of a CNN layer in the initial Model template is
the input of its next connected CNN layers. If two connected
CNN layers are mapped onto different edge devices or differ-
ent compute resources (CPU or GPU) within an edge device,
i.e., the two layers belong to two different submodels, the
direct connection between these two layers is replaced by one
output buffer belonging to one of the submodels and one input
buffer belonging to the other submodel. These two buffers are
used to store and communicate intermediate results between
the two CNN layers. For example, the directly connected CNN
layers MaxPool1 and Conv1 of the Model template in Fig. 2
are mapped onto two different edge devices according to the
Mapping template. Thus, layer MaxPool1 belongs to submodel
Model 0 and layer Conv1 belongs to submodel Model 2. As
a consequence, the direct connection between MaxPool1 and
Conv1 is replaced by output buffer Buff1 in Model 0 and input
buffer Buff1 in Model 2.

The Config Generation step is illustrated in the bottom cen-
ter of Fig. 2. It generates an MPI-specific Rankfile which
provides detailed information about how the individual MPI
processes, corresponding to the generated submodels, should
be mapped onto edge devices, and to which processor/core(s)
of an edge device an MPI process should be bound. In the
example in Fig. 2, we have three submodels Model 0, Model 1,
and Model 2 that will be implemented and executed as three
different MPI processes 0, 1, and 2, respectively. Based on
the Mapping template, the example Rankfile in Fig. 2 speci-
fies that the MPI processes 0 and 1 should be mapped onto
edge device edge01 and the MPI process 2 should be mapped
onto edge device edge04. In addition, each line of the Rankfile
specifies the physical processors/cores allocated to the corre-
sponding MPI process. In our example Rankfile, the first line
specifies that MPI process 0 should be mapped on edge device
edge01 and slots 1, 2, and 3 are allocated to this process on
this device. This means that this process will run on three
ARM CPU cores (i.e., core 1, 2, and 3) of device edge01.

The Communication Generation step is illustrated in the
center of Fig. 2. It generates a sender table and a receiver
table as.json files. These two communication tables specify the
necessary communications between individual MPI processes
to ensure that the input/output buffers of the correspond-
ing submodels are synchronized through the MPI interface.
For example, the first line in the sender table specifies that
MPI process 0 needs to send the contents of Buff1 to MPI
processes 1 and 2, and the contents of Buff4 to MPI process 2.
Correspondingly, the third line in the receiver table specifies
that MPI process 2 needs to receive the contents of Buff1
and Buff4, both from MPI process 0. The communication and
synchronization information in the sender and receiver tables
ensure that the initial input CNN model is correctly executed
after the model splitting.

D. Back-End

The back-end module constitutes AutoDiCE‘s final stage to
create a CNN-based application for deployment over multiple
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edge devices. It contains two main steps: 1) Code Generation
and 2) Package Generation.

The first step, Code Generation, turns all intermediately
generated files (all submodels and communication tables) by
the front-end module into efficient C++ code. The output of
this step is a single.cpp file which has a very specific and
well-defined code structure, making calls to specific prim-
itives and functions located in two libraries: 1) a standard
MPI Library and 2) our customized CNN Inference Library.
The code structure contains several code blocks. Each code
block is surrounded by an if statement and implements one
CNN submodel. The submodels are executed as individual
MPI processes mapped on different edge device resources,
meaning that every MPI process runs only the code block
implementing the corresponding submodel. The code block is
uniquely identified by a rank ID checked in the if statements
surrounding the code blocks. Unique rank IDs are assigned
according to the Rankfile, explained in Section III-C, during
the MPI initialization stage. The pseudocode template in the
right-most part of Fig. 2 illustrates the specific code structure
of the generated.cpp file. It contains three code blocks, i.e.,
lines 1–11, lines 12–18, and lines 19–28, that implement sub-
models Model 0, Model 1, and Model 2, respectively. Model 0,
Model 1, and Model 2 will be executed as three MPI processes
0, 1, and 2, respectively. Every MPI process contains the afore-
mentioned code template but the MPI process 0 corresponding
to submodel Model 0 will run only the code block between
lines 1 and 11. Similarly, the MPI process 1 will run only the
code block between lines 12 and 18, etc.

The code blocks themselves all have a similar, well-defined
structure starting with code that registers all MPI send and
receive primitives (e.g., lines 3, 13, and 20 in Fig. 2) followed
by MPI_Wait primitives that block the code execution until
the necessary data to be processed by CNN layers is received
(e.g., lines 6, 14, 21, and 24). Then, code implementing the
CNN layers is executed followed by MPI_Send primitives
that communicate the output data from a layer to other lay-
ers executing in different MPI processes mapped on different
edge devices/resources (e.g., lines 7–8, 15–16, 22–23). Finally,
MPI_Wait primitives are used to block the code execution until
the sent data arrives at the destination (e.g., lines 9, 10, 17,
and 27).

Some code blocks have to implement and execute more than
one CNN layer because the corresponding CNN submodels
contain multiple CNN layers. Every code block implement-
ing multiple CNN layers has to execute the layers in the
order specified by the data dependencies in the input CNN
Model template to preserve the functional correctness of the
distributed CNN model. For example, the CNN submodel
Model 0 in Fig. 2 is implemented by the code block between
lines 1 and 11 in Fig. 2. Line 2 reads an image file to prepare
the input data for the CNN model. The code in line 3 registers
all nonblocking MPI send and receive primitive calls according
to the first lines in the sender and receiver tables, explained in
Section III-C. In lines 4 and 7, the MaxPool1 and Add1 layers
are executed one after the other, thereby preserving the order
specified in the CNN Model template given in Fig. 2. After
executing each layer, they store their output data in Buff1 and
Buff4, respectively. Line 5 sends the content of Buff1 to MPI

process 1 and MPI process 2 according to the sender table. To
allow for overlapping communication with computation, the
generated code uses nonblocking MPI_Send primitives that
return immediately and will not block the execution. A layer
within a code block is executed once its input data is available,
i.e., layers are executed in a data-driven fashion. For those lay-
ers that read their input data from communication buffers (i.e.,
data generated by another submodel, possibly running on a
different edge device), MPI synchronization (wait) primitives
enforce that layers cannot start execution before their input
data is available. For example, this data-driven-based execu-
tion of layers enforces that the Add1 layer in Model 0 can only
be executed after the input data in Buff2 and Buff3 is available.
Such synchronization is realized by the MPI_Wait primitives
in line 6 of Fig. 2. Line 8 uses the nonblocking MPI_Send
primitive again to transfer the content of Buff4 to MPI pro-
cess 2. Finally, at the end of the code block, in lines 9–10,
two synchronization MPI_Wait primitives are called that are
associated with the two asynchronous send requests in lines 5
and 8. All such synchronization primitives are always called at
the end of a code block in order to stop the code execution until
the corresponding send requests (in this example the requests
to send the contents of Buff1 and Buff4) are completed.

In every code block, the implementation and execution of
the CNN layers is realized by calling functions and primi-
tives located in our customized CNN Inference Library. By
encapsulating the NCNN [39] and Darknet [40] neural network
engines into a uniform wrapper, our custom inference library
supports CNN layer implementation and execution on a vari-
ety of hardware platforms (e.g., Raspberry Pi with a quad-core
ARM v8 SoC, NVIDIA Jetson AGX Xavier series, etc.).

The used MPI primitives in the code blocks are part of
the Open MPI library [41], which is an open-source imple-
mentation of the standard MPI interface for high-performance
message passing. It enables parallel execution on both homo-
geneous and heterogeneous platforms without drastic modifi-
cations to the device-specific code.

Besides facilitating the C++ code generation and dis-
tributed execution of CNN models (using MPI), our cus-
tomized CNN Inference Library also integrates and provides
OpenMP support. This means that if a CNN layer is mapped
onto multiple CPU cores in an edge device, the actual exe-
cution of such layer will be multithreaded using OpenMP in
order to efficiently utilize the multiple CPU cores by exploit-
ing data parallelism available within the layer. For example,
the MaxPool1 layer in Fig. 2 is implemented and executed as
multiple threads within MPI process 0 which is mapped onto
the three ARM CPU cores 1, 2, and 3 in edge device edge01.
More specifically, in Fig. 3, we show some details about how
the multiple threads bound to the three CPU cores 1, 2, and 3
are executed within MPI process 0. A thread number variable,
called num_threads, is set to 3 in the code block implement-
ing MPI process 0 during the code generation step. In our
customized CNN Inference Library, this variable is used in
the implementation code of all types of layers (i.e., convolu-
tion, pooling, etc.), and it configures the OpenMP macro line
#pragma omp parallel for shown in Fig. 3. This macro line
spawns a group of multiple threads and divides the loop iter-
ations (the for loop in Fig. 3) that follow this macro line
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Fig. 3. MPI process 0 with OpenMP.

between the spawned threads during the execution. So, dur-
ing the execution, layer MaxPool1 is executed as three threads
running on CPU cores 1, 2, and 3.

The above discussion on the first step (Code Generation) of
the back-end module clearly indicates that AutoDiCE employs
a hybrid MPI+OpenMP programming model. OpenMP is used
for parallel execution of a CNN layer within an edge device
and MPI is used for communication and synchronization
among CNN submodels running on different edge devices or
on different compute resources (e.g., CPUs and GPUs) within
an edge device. By doing so, AutoDiCE provides extreme
flexibility in terms of many alternative ways to distribute the
CNN inference within and across edge devices by treating
every CPU core or GPU unit in edge devices as a separate
entity with its own address space. This allows AutoDiCE to
be used in very complex IoT scenarios that may contain a lot
of heterogeneous devices.

The second step of the back-end module, i.e., Package
Generation, packs the generated.cpp code, submodels, and
Rankfile together into a deployment package for every edge
device utilized in the distributed CNN inference. As it is
essential to identify the individual MPI process running on
an edge device, this step must put the Rankfile in every pack-
age. The Rankfile provides detailed information about the MPI
processes’ binding, which constrains each MPI process to run
on specific compute resources of different edge devices. The
executable binary (to be deployed on an edge device) will be
generated when the corresponding.cpp code in a package is
compiled together with the aforementioned customized CNN
Inference Library we have developed. As all packages contain
the same.cpp code (i.e., we use the Single Program Multiple
Data paradigm in this sense), the same binary can be deployed
and executed on the same type of edge devices where each
edge device will load the corresponding CNN submodel from
its own package before the execution of the binary. For dif-
ferent types of edge devices, we can generate an executable
binary for every type.

IV. MULTISTAGE HIERARCHICAL DSE

In this section, we first describe the set of analytical models,
we have devised, to approximate the objectives (throughput,

memory usage, and energy consumption) of distributed CNN
inference implementations. We use these models in the first
level of our multistage hierarchical (two-level) DSE methodol-
ogy to reduce the number of solutions that need to be evaluated
using (more costly) measurements on AutoDiCE-generated
implementations, which takes place at the second level of
DSE. After describing our analytical models, we present the
details of all the steps in our multistage hierarchical DSE
methodology.

A. Analytical Models

We use tlj , Mlj , Elj to represent the execution time, the
memory usage, and the energy consumption of layer lj in
a CNN model, respectively. A CNN mapping x is denoted
as x = [x1, x2, . . . , xL], where L is the number of layers in
the CNN model and xj = PEi means that layer lj is mapped
on processing element PEi, which could, e.g., be a CPU or
GPU inside an edge device. For a given mapping x, the
three objectives of the distributed system can be computed
as follows.

1) Throughput: The overall system throughput Tsystem is
defined as the images processed per second (img/sec) over
multiple PEs

Tsystem = 1

max1≤i≤N (ti)

ti =
∑

∀j:1≤j≤L∧xj=PEi

tlj + tcomm
i

where ti is the time to process one image on PEi, N is the
total number of deployed PEs in the distributed system, and
tcomm
i is the time needed for data communication related to

PEi. We assume that the size of input images is already deter-
mined as well as the input and output tensor shapes of every
CNN layer are also fixed and known. Then, we can estimate
the total number of operations in every layer and the total size
of communicated data related to PEi. The execution time tlj
is estimated through the number of multiply accumulate oper-
ations (MACs). A proper estimation of communication time
tcomm
i depends on different data transfers associated with the

corresponding PEi inside an edge device, and involves intrade-
vice data communication via shared memory, intradevice data
communication between CPU and GPU, and/or interdevice
communication over the network connecting the edge devices
in the distributed system.

2) Memory: Every PEi allocates memory Mi which con-
sists of three parts: 1) memory for CNN coefficients (i.e.,
weights, bias, and parameters); 2) memory for output buffers
to store intermediate results of layers; and 3) memory for input
buffers of some layers to receive data from other PEs

Mi =
∑

∀j:1≤j≤L∧xj=PEi

(
Mcoeffs

lj + Moutbuffs
lj + Minbuffs

lj

)

where Mcoeffs
lj

, Moutbuffs
lj

, and Minbuffs
lj

denote the sizes of the
aforementioned memory parts associated with layer lj mapped
on PEi. These sizes (in the number of elements) are esti-
mated based on the type of CNN layer lj. For example, given

Authorized licensed use limited to: Universiteit Leiden. Downloaded on March 24,2023 at 14:35:55 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: AUTOMATED EXPLORATION AND IMPLEMENTATION OF DISTRIBUTED CNN INFERENCE AT THE EDGE 5851

a convolutional layer lj, the memory sizes are calculated as
follows:

Mcoeffs
lj = wk

lj ∗ hk
lj ∗ Cin

lj ∗ Cout
lj + Cout

lj

Moutbuffs
lj = wout

lj ∗ hout
lj ∗ Cout

lj

Minbuffs
lj = win

lj ∗ hin
lj ∗ Cin

lj

where wk
lj

and hk
lj

are the width and height of the convolution

kernel, Cin
lj

and Cout
lj

are the number of input and output chan-

nels of layer lj, and win
lj

, hin
lj

, wout
lj

, hout
lj

are the width and height
of the input and output tensors of layer lj. If layer lj mapped
on PEi does not receive data from layers that are mapped on
other PEs then Minbuffs

lj
= 0.

3) Energy: Every PEi consumes energy Ei to execute the
CNN layers mapped on PEi. In our energy consumption ana-
lytical model, Ei includes the energy consumed for inference
computation and data communication with other PEs

Ei =
∑

∀j:1≤j≤L∧xj=PEi

Ecomp
lj

+
∑

∀j:1≤j≤L∧xj=PEi

Ecomm
lj

where Ecomp
lj

and Ecomm
lj

denote the computation and commu-
nication energy consumption for layer lj, respectively. Here,
Ecomm

lj
has a nonzero value only when layer lj actually com-

municates with another PE. We calculate Ecomp
lj

and Ecomm
lj

as
follows:

Ecomp
lj

=
∫ tlj

0
Pcomp

lj
(t)dt

Ecomm
lj =

∫ tcomm
lj

0
Pcomm

lj (t)dt

where Pcomp
lj

(t) is the power consumption during the execution
time tlj of layer lj, and Pcomm

lj
(t) is the power consumption dur-

ing the data communication time tcomm
lj

of layer lj with another

PE. Pcomp
lj

(t) and Pcomm
lj

(t) are acquired by real measurements
during CNN layer profiling on an edge device.

B. DSE Methodology

Our DSE methodology utilizes a GA, namely the NSGA-II
algorithm [32], to search for optimal mappings of (complete)
CNN layers to different, distributed edge devices. We assume
that each edge device contains a number of internal compute
resources (i.e., PEs), like a CPU and GPU, and we map CNN
layers directly to these specific PEs within an edge device.

Given a trained CNN model with L layers, a layer lj per-
forms a computation operation in the CNN model, such as
a convolution (Conv), a matrix multiplication (FC), etc. As
mentioned in Section IV-A, a mapping x of the CNN lay-
ers onto a total of N PEs is denoted as x = [x1, x2, . . . , xL].
Such mapping notation x is typically encoded with the GA’s
chromosome where PEi, i ∈ [1 . . . N] define the gene types in
the chromosome. An example of such encoding, called naive
encoding (NE), is shown in Fig. 4. The GA chromosome [PE1,
PE1, PE2, PE2, PE3, PE4, PE4, PE4] encodes an 8-layer CNN
(L = 8) mapped onto four PEs (N = 4), where layers l1 and
l2 are mapped on PE1, l3 and l4 on PE2, l5 on PE3, and l6, l7,
l8 on PE4. Such NE for CNN mappings is simple and intuitive

Fig. 4. Two chromosome encoding methods.

Fig. 5. DSE methodology workflow.

but it may require exploration of a huge design space because
the space size depends exponentially on the number of lay-
ers L in a CNN model and L is typically large. Therefore, in
our DSE methodology, we propose and utilize a tailored chro-
mosome encoding method, called split point encoding (SPE).
It encodes points in a CNN model that partition the model
into N groups of CNN layers, where each group consists of
consecutive layers and is mapped on one PE. In Fig. 4, the
SPE example encodes the same mapping as the NE example.
It can be seen that the 8-layer CNN has four split points, visu-
alized with the vertical dashed lines, at positions 0, 2, 4, and
5 determined by the layer index j. Therefore, the GA chromo-
some using our SPE method is [0, 2, 4, 5] and it encodes four
groups of layers each mapped on one PE as follows: 1) for
j ∈ (0 . . . 2], lj is mapped on PE1; 2) for j ∈ (2 . . . 4], lj is
mapped on PE2; 3) for j ∈ (4 . . . 5], lj is mapped on PE3; and
4) for j > 5, lj is mapped on PE4. The length of our SPE chro-
mosome is equal to the number of PEs which is N, thus SPE
requires exploration of a design space in which size depends
exponentially on N. Since N is typically much smaller than the
number of CNN layers L, our SPE method largely scales down
the design space and improves the search efficiency compared
to the NE method.

Given a trained CNN model and all edge devices within
total N PEs, our DSE methodology searches for Pareto CNN
mappings to optimize the three objectives, mentioned in
Section IV-A. In Fig. 5, we present the general structure of
our multistage hierarchical DSE methodology. On the left, the
K stages in our DSE workflow are depicted, and on the right,
a zoomed-in view of each stage is provided with the two rect-
angular boxes showing the two-hierarchical levels per stage.
We accelerate our DSE process by splitting it into K different
stages, where K is the ceiling value of log2(N). At each stage,
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TABLE I
USED CNN MODELS AND AUTODICE EXECUTION TIME BREAKDOWN

we perform a two-level DSE. At both levels, the NSGA-II
GA is deployed to evolve a population of CNN mappings
over multiple generations to search for a Pareto front in terms
of the targeted objectives. In the first DSE level, we use the
analytical models, introduced in Section IV-A, inside the GA
to approximate each objective function. In the second DSE
level, we use real distributed CNN inference implementations
generated by AutoDiCE (see Fig. 1) for evaluation, thereby
producing more accurate Pareto solutions as they are based
on real (on-board) measurements.

At every DSE stage k ∈ [1 . . . K −1], we search for optimal
CNN mappings on 2k target PEs. Fig. 5 shows that to initialize
the GA population at stage k, with k > 1, the Pareto optimal
results found by the previous stage k − 1 are used. By doing
so, we can retain the information of Pareto CNN mappings in
previous stages to improve the DSE convergence. Moreover,
the second level DSE at each stage also uses the results from
the first level of DSE to initialize its population. Finally, the
output of the last DSE stage (k = K) provides the final Pareto-
optimal solutions for N PEs.

V. FRAMEWORK EVALUATION

In this section, we present an evaluation of our proposed
framework. First, we describe the setup for our experiments in
Section V-A. Then, in Section V-B, we evaluate the execution
time of our AutoDiCE tool to show its efficiency. Moreover,
we also present a range of experimental results for three rep-
resentative CNNs to demonstrate that our novel framework,
using multistage hierarchical DSE and AutoDiCE, can rapidly
realize a wide variety of distributed CNN inference implemen-
tations with diverse tradeoffs regarding energy consumption
per device, memory usage per device, and overall system
throughput. Subsequently, Section V-C analyzes the effects on
the energy consumption per device, the memory usage per
device, and the overall system throughput when scaling the
distributed CNN inference to a varying number of deployed
edge devices. Finally, in Section V-D, we evaluate the effi-
ciency of our multistage hierarchical DSE methodology by
comparing it against one-stage nonhierarchical DSE featuring
our SPE as well as to more traditional GA-based DSE, i.e.,
one-stage nonhierarchical DSE with the NE.

A. Experimental Setup

The goal of our experiments is to demonstrate that, thanks
to our novel contributions presented in this article, our frame-
work can rapidly explore and automatically implement CNN
partitions over multiple edge devices to realize distributed

CNN inference. Moreover, it can do so with lower per-device
energy consumption, with smaller per-device memory usage,
and under certain conditions, with the same or higher CNN
inference throughput, as compared to CNN execution on a
single-edge device.

In our experiments, we use three real-world CNNs, namely
VGG-19 [42], Resnet-101 [43], and Densenet-121 [44], from
the ONNX models zoo [45] that take images as an input for
CNN inference. These CNNs are used in image classification
and are diverse in terms of types and the number of layers,
and memory requirements to store parameters (weights and
biases). The first four columns in Table I list the details of
the used CNN models. As these CNNs provide a good layer
and parameter diversity, we believe that they are representa-
tive and good targets for our evaluations to demonstrate the
merits of our framework. The aforementioned CNN models
are mapped and executed on a set of up to eight edge devices
where all devices are NVIDIA Jetson Xavier NX development
boards [46] connected over a Gigabit network switch. Each
Jetson Xavier NX device has an embedded MPSoC featuring
six CPUs (6-core NVIDIA Carmel ARMv8) plus one Volta
GPU (384 NVIDIA CUDA cores and 48 Tensor cores, with
a theoretical maximum performance of 844.8 GFLOPS). In
our DSE experiments, every CNN layer can be mapped either
onto a single CPU core, onto six CPU cores, or onto a GPU
inside an NVIDIA Jetson Xavier NX edge device.

As explained in Section IV, the second level in our DSE
methodology uses AutoDiCE to evaluate CNN mappings.
This means that for the CNN mapping specifications in that
DSE level, we apply AutoDiCE to generate and distribute
a deployment package for every Jetson Xavier NX device.
Subsequently, we measure and collect energy consumption
per device, CNN inference throughput, and memory usage
per device results, as an average value over 20 CNN infer-
ence executions. As the experiments are targeted to embedded
devices, the batch size of CNN inference is 1. The inference
throughput (measured by instrumenting the code with appro-
priate timers) and the memory usage per device are reported
directly by the code itself during the CNN execution. To mea-
sure the energy consumption per device, a special sampling
program reads power values from the integrated power moni-
tors on each NVIDIA Jetson Xavier NX board during the CNN
execution period, where the power consumption involves the
whole board, including CPUs, GPU, SoC, etc.

To evaluate the fitness of CNN mappings during DSE
using our AutoDiCE tool, the chromosomes inside our GA
are translated to the AutoDiCE mapping format described in
Section III-B. The GA is executed with a population size of
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TABLE II
SELECTED PARETO-OPTIMAL MAPPINGS (POINTS) FROM FIG. 6

100 individuals, a mutation probability of 0.2, a crossover
probability of 0.5, and performs 400 search generations. For all
experiments with the three aforementioned CNNs, the original
data precision (i.e., float32) is utilized to preserve the original
model accuracy of classification.

B. Efficiency of AutoDiCE and DSE Results

We start with evaluating the execution time of AutoDiCE
itself, to provide insight on how long this tool generally takes
to split a CNN model (front-end), to generate the code for
the distributed CNN execution (back-end), and to deploy the
generated packages to the edge devices for actual execution.
To this end, we have measured the required time for each
of these phases using the “worst-case scenario” in the scope
of our experiments: using the maximum number of splits in
our CNNs to generate submodels (24 splits/submodels of a
CNN in our experiments), and mapping and deploying the
generated submodels to the maximum number of edge devices
(eight in our experiments). These measurements were done
on a system equipped with an Intel Core i7-9850H processor,
running Ubuntu 20.04.3 LTS. The last three columns in Table I
provide a breakdown of the execution time (in seconds) of
AutoDiCE for the three CNNs in these worst-case scenarios.
From the results in Table I, we can see that AutoDiCE is able
to produce executable, distributed CNNs and deploy them on
the various edge devices in a relatively short time frame, i.e., in
less than a minute for any of the three used CNNs in our worst-
case scenario. The comparatively larger execution time of the
front-end for VGG-19 is due to the high number of parameters
in this model, and the resulting overheads in AutoDiCE of
copying these parameters to a large number of submodels.
In any case, these results demonstrate that AutoDiCE allows
for rapidly splitting CNNs and deploying them for distributed
execution on multiple edge devices.

Our DSE experiments explore a wide range of different
CNN mappings and these experiments result in a Pareto
front with several Pareto-optimal mappings. In such a set

of Pareto-optimal mappings, none of the targeted objectives
(energy consumption, throughput, and memory usage) can be
further improved without worsening some of the other objec-
tives. More specifically, we consider the maximum energy
consumption per device, maximum memory usage per device,
and total system (CNN inference) throughput as our target
objectives. Fig. 6(a)–(c) shows the Pareto-optimal CNN map-
pings found by our DSE for DenseNet-121, ResNet-101, and
VGG-19, respectively. To better illustrate (the diversity of)
these Pareto-optimal mappings, Table II shows more details
about a selection of these mappings (points A to I in Fig. 6) for
comparison. As a reference, the table also includes the map-
ping results when using a single-edge device with six CPUs
or one GPU.

Moreover, to provide a feeling of how the distributed CNN
execution on resource-constrained edge devices compares to
CNN execution on a (centralized) powerful server, Table II
also includes throughput and GPU memory results from an
experiment on an NVIDIA GeForce RTX2080 Ti card (4352
NVIDIA CUDA cores and 544 Tensor cores, with a theoreti-
cal maximum performance of 13.45 TFLOPS) with Pytorch to
mimic a cloud server-based execution of the CNNs. Here, we
would like to stress that the mimicked cloud server results do
not include any latencies required for sending data to and from
the cloud server, which would be the case in reality. To make
a fair comparison with our experimental edge devices, the
inference batch size when using the aforementioned NVIDIA
GPU card is also set to 1. We note that it is not possible to
precisely measure the energy consumption of the GPU card,
thus its energy consumption is not given in Table II. However,
its energy consumption is definitely much higher compared to
our experimental edge devices. For memory usage, we have
taken the peak memory usage of the GPU card because it is
influenced by the CNN model and its execution.

Columns 3 and 5 in Table II show the maximum energy
consumption per device (in Joules per image) and maximum
memory usage per device (in MegaBytes) for a specific CNN
mapping, respectively. Column 4 shows the overall system

Authorized licensed use limited to: Universiteit Leiden. Downloaded on March 24,2023 at 14:35:55 UTC from IEEE Xplore.  Restrictions apply. 



5854 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 7, 1 APRIL 2023

Fig. 6. Pareto-optimal CNN mappings from our DSE experiment with three CNNs. (a) DenseNet-121 (910 layers). (b) ResNet-101 (344 layers). (c) VGG-19
(47 layers).

throughput (in images per second). Columns 6, 7, and 8
show the hardware configurations of the selected CNN map-
pings, consisting of the number of deployed edge devices,
and the total of CPU cores and GPUs used in these devices,
respectively.

From Fig. 6 and Table II, we can see that our novel frame-
work allows for easily and rapidly realizing a wide variety
of distributed CNN inference implementations with diverse
tradeoffs regarding per-device energy consumption, per-device
memory usage, and overall system throughput. Taking point
A as an example, a distributed execution of DenseNet-121
on four devices utilizing only GPUs can reduce the maxi-
mum energy consumption per device by 52.5% and 33.8%
as compared to the 1-Device CPU and 1-Device GPU hard-
ware configurations, respectively. The system throughput of
DenseNet-121 on four devices achieves a 3.5× and 2.2×
performance improvement compared to the 1-Device CPU and
1-Device GPU configurations, respectively. In terms of per-
device memory usage, the CNN mapping A with four devices
consumes 39.3% less memory than the 1-Device GPU imple-
mentation but consumes 17.2% more memory as compared
to the 1-Device CPU configuration. Moreover, the distributed
CNN inference results in Table II show that for the CNNs
with many layers (DenseNet-121 and ResNet-101) compara-
ble performance (throughput) can be obtained as the mimicked
powerful cloud server (NVIDIA GeForce RTX2080).

An observation that can be made in general from our
DSE results is that by increasing the number of utilized
devices, the per-device memory usage is not always reduced if
GPUs are deployed within (some of) the devices. In Table II,
this is clearly illustrated by, for example, CNN mappings A
and B. These mappings have even higher per-device memory
usage when distributing the CNN over, respectively, four
and six devices as compared to a 1-Device CPU configu-
ration. The higher memory usage when deploying GPUs is
due to the fact that an NVIDIA Jetson Xavier NX device
has 8-GB memory that is shared between CPU and GPU
programs. During the loading phase of CNN models, there
will typically be at least two copies of the CNN weights

when using the GPU: those from the original model file in
the host memory, and those initialized as part of the GPU
engine.

C. Varying the Number of Edge Devices

In Fig. 7, we show the effects on the maximum per-device
energy consumption, maximum per-device memory usage, and
system throughput when scaling the number of deployed edge
devices in the distributed CNN execution. Every bar in Fig. 7
reflects the best value (energy consumption, memory usage,
or throughput) found among all the evaluated mappings, dur-
ing our DSE experiment, with a specific number of deployed
edge devices. This implies that the value reflected by each bar
may come from a different Pareto-optimal mapping. For bet-
ter visualization, all results in Fig. 7 have been normalized,
where the results for a configuration with a one-edge device
are taken as the reference (i.e., these represent the results of
the best-found mappings when targeting a single-edge device).

From Fig. 7, we can see that, in general, both the per-
device energy consumption and the per-device memory usage
can be improved (i.e., reduced) when increasing the num-
ber of deployed edge devices. Evidently, this is due to the
fact that the workload (the size and/or the number of exe-
cuted submodels) on each participating edge device is reduced
when increasing the number of edge devices. Moreover, in
some cases, the improvement can be significant. For example,
for ResNet-101, the maximum per-device energy consump-
tion and maximum memory usage are reduced by around 40%
and 80%, respectively, when distributing the CNN over eight-
edge devices as compared to execution on a single device.
Furthermore, the results in Fig. 7 show that the system (CNN
inference) throughput can also be improved by means of dis-
tributed CNN execution. This is because of the exploitation
of pipeline parallelism in the distributed CNN execution. For
example, for DenseNet-121, ResNet-101, and VGG-19, the
inference throughput increases by up to 38%, 18%, and 18%,
respectively, when executing the CNN inference on up to
four-edge devices as compared to a single device. However,
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Fig. 7. System throughput and max energy/memory per device when varying the number of edge devices for three CNNs.

Fig. 8. Quality of found mappings during the three DSE experiments.

the interdevice data communication overheads involved in
distributed CNN execution may prevent any further through-
put gains, or even cause a slowdown, when scaling the
CNN execution to a larger number of edge devices. For
example, for all three CNNs, DenseNet-121, ResNet-101,
and VGG-19, we see a slowdown in system throughput
when scaling the CNN inference from four to eight-edge
devices.

D. DSE Acceleration

To evaluate and demonstrate the search efficiency of our
multistage hierarchical DSE methodology, we conducted three
DSE experiments using the ResNet-101 [43] CNN model and
with a slightly smaller cluster of four edge devices. We com-
pare the obtained DSE results in terms of the quality of the
found solutions and how this quality changes over time during
the DSE process (i.e., the search). In the first DSE exper-
iment, referred to as 3s-2l-SPE, we utilize our multistage
hierarchical DSE methodology as presented in Section IV with
3 stages, 2 levels per stage, and the chromosome is encoded
using our SPE method. In the second experiment, referred to
as 1s-non-SPE, we utilize a classical 1-stage, nonhierarchical

DSE methodology based on the NSGA-II algorithm with our
AutoDiCE-based on-board evaluation as the fitness function
and our SPE as the chromosome encoding method. In the third
experiment, referred to as 1s-non-NE, we utilize the same DSE
methodology as in the second experiment but we replace SPE
with the NE method mentioned in Section IV. In these exper-
iments, every CNN layer can be mapped either onto a 6-core
CPU or a GPU present in any of the four-edge devices. In each
DSE experiment, we run the search for optimal mappings for
70 h and compare the quality of solutions found within this
70 h.

Fig. 8 shows how the quality of the found mappings in terms
of the three targeted objectives improves during the search in
the three DSE experiments. The results for each objective are
plotted in a separate chart where the X-axis represents the
search time in hours and the Y-axis represents the objective
value in images per second (img/sec) for the CNN inference
throughput, in megabytes (MB) for the maximum memory
usage per edge device, and in joules per image (J/img) for the
maximum energy consumption per edge device. Every point
in a chart represents the best-found mapping with respect to
the objective at a given point in time.
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The results in Fig. 8 clearly indicate that the 1s-non-NE
DSE gets easily stuck in dominance-resistant solutions, which
means that such DSE cannot find high-quality mappings even
after hundreds of generations. In contrast, by replacing the
common NE encoding method with our tailored SPE method,
the search efficiency is significantly improved, as shown in
Fig. 8, where the 1s-non-SPE DSE delivers high-quality map-
pings for the three objectives after 20 h. This is because our
SPE method ensures that only consecutive CNN layers will
be mapped on a PE, thereby scaling down significantly the
design space and allowing only exploration of mappings with
reduced data communication among PEs. Such mappings are
better than less restricted mappings allowed by the NE method.

Finally, comparing the 1s-non-SPE and 3s-2l-SPE results
shown in Fig. 8, we see that by introducing multiple stages
and hierarchy in the DSE process, it further accelerates the
finding of high-quality mappings. For example, after 40 h of
search time, our 3s-2l-SPE DSE delivers better mappings for
the three objectives than the 1s-non-SPE DSE.

VI. DISCUSSION

Our current AutoDiCE tool implementation seeks to pro-
vide the greatest flexibility in terms of facilitating distributed
execution of CNN models on a wide range of different
hardware configurations at the Edge, i.e., configurations dif-
ferent in the number of deployed edge devices as well as in
the nature (architecture) of these devices. Therefore, in the
current version of AutoDiCE, we have integrated our own
customized CNN Inference Library (based on the NCNN [39]
and Darknet [40] frameworks) that supports CNN implemen-
tation and execution on a variety of hardware platforms (e.g.,
Raspberry Pi, NVIDIA Jetson, etc.). Our own customized
library is not optimized for specific devices in order to provide
the greatest possible flexibility. With our focus on flexibil-
ity, we have not yet heavily invested in the performance
optimization of our AutoDiCE tool when, e.g., targeting spe-
cific edge devices. For example, in the future, we plan to
integrate the TensorRT framework into AutoDiCE to support
very optimized and efficient CNN execution when targeting
specific NVIDIA-based devices such as the NVIDIA Jetson
series of embedded computing boards because TensorRT has
demonstrated to produce superior CNN inference performance
on NVIDIA-based devices [47].

Moreover, in our experiments, we have used edge devices
that are interconnected using a Gigabit network switch.
Evidently, in more realistic edge/IoT settings the connectiv-
ity between edge devices might have a lower bandwidth, e.g.,
using Wi-Fi or other wireless protocols. This would have
a detrimental effect on the system throughput objective of
distributed CNN inference implementations, possibly lead-
ing to more or even purely slowdowns when distributing the
inference of a CNN on multiple edge devices. However, we
would like to stress that this will not have any impact on
the positive effects on (i.e., the reduction of) the per-device
energy consumption and per-device memory usage that can
always be achieved by distributing CNNs over multiple edge
devices.

Finally, since the Jetson NX boards with 16 GB of memory
used as edge devices in our experiments are sufficiently
equipped for executing complete CNNs, one could question
why distributed execution would be needed. However, in real-
world application scenarios, there are often other running
application tasks, besides the CNN execution, on an edge
device. In such scenarios, the device memory cannot be fully
utilized for the CNN execution, and therefore the available
memory may be insufficient for CNN-based applications. If
CNN models cannot be mapped on a single device because
of memory limitations (either due to memory usage of other
application tasks on the device or the fact that the device is less
capable than the one we used in our experiments and simply
has not enough physical memory), then, we have to split the
CNN model and execute it on multiple collaborative edge/IoT
devices.

Another important reason for distributing CNN execution
over multiple edge/IoT devices, even if CNN execution on
a single edge/IoT device would be feasible, is when the
consumed energy by a single (battery-operated) device does
not provide enough “lifetime” for the application mission to
be performed. For example, consider an application scenario
where a swarm of eight collaborating battery-operated mobile
robots has to perform a surveillance mission for 20 h without
recharging the batteries. One of the tasks, among several mis-
sion tasks the swarm has to perform, is a continuous on-board
CNN-based image processing of a camera-captured video
stream using the ResNet-101 CNN model. Every mobile robot
in the swarm is equipped with a Jetson NX board (edge device)
used for the robot control/navigation and for running tasks
related to the mission. Let us assume that the Jetson NX board
is powered by a battery with a capacity of 18000 mAh and an
output voltage of 19 V. On the one hand, if the CNN-based
image processing task of the swarm is assigned to and
performed by only one of the robots then, with the aforemen-
tioned battery capacity, the execution of the ResNet-101 model
on the robot’s Jetson NX edge device can last only for 15.24 h,
thus the swarm will not be able to accomplish the 20-h mis-
sion without battery recharging. This is because the energy
consumption per image of ResNet-101 executed on Jetson
NX is 1.031 J, and after processing 1194181 images with a
processing time of 45.94 ms per image, the aforementioned
battery will be completely discharged. On the other hand, if the
CNN-based image processing task of the swarm is assigned to
and performed collaboratively by four out of the eight robots
in the swarm, i.e., distributing the ResNet-101 CNN model
on four Jetson NX edge devices, then the 20-h mission of
the swarm without battery recharging could be accomplished.
This is because, according to our results shown in Fig. 7 for
ResNet-101, the distributed ResNet-101 execution on four-
edge devices will reduce the energy consumption per device
by around 35%, thereby increasing the lifetime of ResNet-101
on a single battery charge with 1.54× to about 23.45 h.

The real-world application scenarios and example, discussed
above, clearly demonstrate the benefits of reducing the per-
device memory usage and per-device energy consumption
that could be achieved by using our novel framework for
distributed CNN inference at the Edge.
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VII. CONCLUSION

In this article, we have presented a novel framework for
efficiently exploring and automatically implementing CNN
partitionings on multiple edge devices to facilitate distributed
CNN inference at the Edge. To this end, we have intro-
duced a novel multistage hierarchical DSE methodology for
exploring a wide range of different distributed CNN inference
implementations using a variety of edge device resources. To
accelerate the DSE process and improve its efficiency, our
DSE methodology combines analytical models with real on-
board measurements to speed up the evaluations of individual
design points and utilizes a tailored chromosome encoding
method to effectively scale down the explored design space. To
perform the measurement-based evaluations, our DSE method-
ology leverages the AutoDiCE tool. AutoDiCE is the first fully
automated tool for distributed CNN inference over multiple
resource-constrained devices at the Edge. It features a uni-
fied and flexible user interface, fast CNN model partitioning
and code generation, and easy deployment of the CNN par-
titions on edge devices. We have demonstrated the flexibility
of AutoDiCE with a detailed example illustrating all main
steps in the AutoDiCE design flow. We have evaluated our
novel framework by applying it to three representative CNNs,
demonstrating its efficiency and usefulness in facilitating fast
and accurate DSE as well as fully automated distributed CNN
implementation. Our experiments and results show that our
framework, using multistage hierarchical DSE and AutoDiCE,
can easily and rapidly explore and realize a wide variety of
distributed CNN inference implementations on multiple edge
devices, achieving improved (i.e., reduced) per-device energy
consumption and per-device memory usage, and under certain
conditions, improved system (inference) throughput as well.
It is worth noting that these improvements are achieved with-
out losing the initial CNN model accuracy because the steps
in our framework change neither the CNN layers and their
data dependencies nor the values and precision of the CNN
parameters (weights and biases).
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