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ABSTRACT CNN design and deployment on embedded edge-processing systems is an error-prone and
effort-hungry process, that poses the need for accurate and effective automated assisting tools. In such
tools, pre-evaluating the platform-aware CNN metrics such as latency, energy cost, and throughput is a key
requirement for successfully reaching the implementation goals imposed by use-case constraints. Especially
when more complex parallel and heterogeneous computing platforms are considered, currently utilized
estimation methods are inaccurate or require a lot of characterization experiments and efforts. In this paper,
we propose an alternative method, designed to be flexible, easy to use, and accurate at the same time.
Considering a modular platform and execution model that adequately describes the details of the platform and
the scheduling of different CNN operators on different platform processing elements, our method captures
precisely operations and data transfers and their deployment on computing and communication resources,
significantly improving the evaluation accuracy. We have tested our method on more than 2000 CNN layers,
targeting an FPGA-based accelerator and a GPU platform as reference example architectures. Results have
shown that our evaluation method increases the estimation precision by up to 5x for execution time, and by
2x for energy, compared to other widely used analytical methods. Moreover, we assessed the impact of the
improved platform-awareness on a set of neural architecture search experiments, targeting both hardware
platforms, and enforcing 2 sets of latency constraints, performing 5 trials on each search space, for a total
number of 20 experiments. The predictability is improved by 4 x, reaching, with respect to alternatives,

selection results clearly more similar to those obtained with on-hardware measurements.

INDEX TERMS Convolutional neural networks, edge-computing, platform awareness.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [1] are biologically
inspired graph computational models, characterized by a
large number of parameters and a high degree of parallelism.
Due to their ability to handle large, unstructured data, CNNs
are widely used to perform tasks such as image and video
recognition, image segmentation, natural language process-
ing, and many others [2]. Nowadays, CNNs are the back-
bone of many applications, such as navigation in self-driving
cars [3], medical image recognition [4], surveillance [5],
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and others [2]. Due to the intense computation workload
associated with their execution, CNNs often require, espe-
cially when operating at the edge, to exploit acceleration on
dedicated processing elements, usually heterogeneous and
highly parallel. CNN inference has been ported on a wide
spectrum of platforms: from high-performance GPU clusters
to embedded systems and mobile devices [6], [7]. Neverthe-
less, the landscape of CNN-enabling cores and processors in
literature is increasingly vast: the majority of silicon vendors
and market actors are proposing new accelerator or processor
architectures designed to improve the efficiency of CNN
execution ([8]-[12]). Rounding up the numbers, the main
three classes of processing elements exploited for this kind
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of workload are CPUs, GPUs, and dedicated processing
elements. Understanding the execution of a specific CNN
architecture on such complex processing systems, before the
actual deployment, is a key need during several design steps:
e.g. during target platform selection, CNN topology defini-
tion also referred to as Neural Architecture Search (NAS),
task-to-core mapping optimization, code-level optimization.
Most of these steps are time-consuming activities requiring
sufficient expertise in the field of Deep Learning (DL) [2],
to be performed manually.

Thus, automated design flows and tools are appearing in
the literature, to assist non-experts in such challenging tasks.

However, most tools reported in the literature have a lim-
ited degree of platform awareness: they fail to capture the
effect of potential design choices on the performance metrics
achievable by a CNN architecture under consideration exe-
cuted on a target computing platform, especially when deal-
ing with more complex processing systems, endowed with
accelerators, highly-parallel processors and/or GPUs. Esti-
mation methods implemented in these tools are inaccurate
([13]-[15]), or not sufficiently general ([16]-[23]), or require
a lot of design experiments and modeling skills to be used
([241-[26]).

A common unified method that solves all these issues,
implementing platform-awareness within automated tools for
CNN design, is still missing.

Therefore, in this paper, we propose the ALOHA! method
for the evaluation of platform-dependent metrics of a CNN,
executed on a heterogeneous platform. Our method relies on
a platform-aware evaluation model, described in Section VI,
designed to:

o provide realistic and accurate results: the model
is capable of capturing platform-aware characteristics,
such as occupancy of platform processors, exploitation
of parallelism available in a platform by CNN operators,
repeated data transfers occurring during CNN execution,
and others;

« be flexible: the model is not dependent on any specific
processing element architectural template. Characteris-
tics that are captured in the model are abstract enough
to be usable for the description of significantly different
platform organizations and structures;

« be modular: one component of the model describes the
platform, while a second part describes the deployment
strategy which is used by the implementation of CNN
layers (defined by the user or the selected library). This
improves both accuracy and re-usability because both
components can be adopted in different design cases.

o require low development effort: the model does not
require benchmarking. All the information required to
capture the platform and library can be easily derived

IThe ALOHA project is available at https://www.aloha-h2020.eu/
and aims at developing a framework providing several tools for
architecture-aware CNN exploration. This work only focuses on modeling,
and it does not deal with adaptivity, pruning, and quantization themes.
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from specs or a general understanding of the plat-
form/library operation principles.

To evaluate our method, we compare the accuracy provided
by our proposed method with others with a similar level of
abstraction and development effort, considering two hetero-
geneous platforms as a reference: an open-source FPGA-
based platform called NEURAghe [27] and a GPU-based
Jetson TX2 platform [28]. The architectures presented in
this paper are exactly chosen to represent the three classes
of common processing elements in the embedded domain.
JetsonTX2 is a SoC integrating CPU and GPU. NEURAghe
is implemented on a SoC that integrates CPU and a
CNN-dedicated processing element implemented on recon-
figurable logic. Thus we believe that overall, this selection
covers most of the embedded landscape.

The comparison shows that our approach significantly
improves the evaluation precision. Moreover, we perform
several NAS experiments, optimizing the topology of a CNN
to perform classification on the CIFAR-10 dataset [29], under
user-defined latency constraints and targeting the afore-
mentioned platforms. For each exploration, we used dif-
ferent kinds of evaluation methods to confront candidate
design points with the constraint. Comparing the NAS results
obtained using our method with those obtained using other
comparable models, we show that our method significantly
improves predictability, bringing NAS selection very similar
to the one obtained by actual on-hardware measurements.

A. PAPER CONTRIBUTIONS
The main novel contributions in this paper can be summarized
as:

e an accurate, easy to create and yet generalizable
and reusable platform model and evaluation method,
proposed in Section V and Section VI, suitable to
implement platform-awareness in CNN design and
optimization tools;

o assessment of the impact of platform-awareness on
the latency estimation (Section VIII-A), reducing by
3x to 5x the average error in CNN latency estima-
tion, compared to commonly used methods such as the
Roofline model [16] and operation count, for layer-level
evaluation, and by 1.6x when considering aggregated
CNNe-level results on multiple cores (Section VIII-D);

« assessment of the impact of platform-awareness on the
energy estimation (Section VIII-B), showing a 1.9x
estimation precision improvement;

o assessment of the impact of platform-awareness on
NAS (Section VIII-C), reducing thanks to the proposed
method the latency and accuracy deviation from a simi-
lar NAS exploration having access to actual on-hardware
measurements by a factor of 4, compared to the alterna-
tive methods examined.

Il. RELATED WORK
As an answer to the demand for CNN-based edge-processing,
custom-developed devices and computing systems, an
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TABLE 1. Comparison of methods for evaluation of platform-aware CNN metrics.

Eval. method category Methods Metric Accuracy Re-usability Modularity
[13] latency very
OPS [14] memory, latency, energy low high X
Roofline [30] latency low/ medium high X
Specialized [23] latency, energy, memory .
analytical [21], [31] Tatency, energy m}el;h;]lm/ low X
methods [197, 1201, [22] Tatency, energy, throughput g medium
[32] latency . very
Measurements [33] Tatency, energy high low X
Look-up tables [34] latency high low X
(LUT) [35] Tatency high medium/ Tow
[36] latency, energy . very
ML [26] Tatency high low X
ALOHA this work latency, energy, throughput medium/ high high v

ever-increasing number of automated/assisted design tools
have been recently proposed. Among such tools, some act
very early in the design flow, when the processing platform
and the on-platform deployment strategy are still not already
selected or physically available. A key example of such
early intervention is provided by Neural Architecture Search
(NAS). Multi-objective NAS has been an active research
topic during the last several years, and a large number of
methods, capable of evaluating platform-dependent CNN
metrics to assist it, have been proposed. Table 1 provides
the overview and comparison of these methods, summarized
into categories, listed in Column 1. Every evaluation method
is supplied with a list of evaluated platform-aware metrics
(Column 3). Every evaluation methods category is supplied
with a list of methods belonging to it (Column 2), and char-
acterized with: 1) the method accuracy (Column 4); 2) the
method re-usability (Column 5); 3) modularity (Column 6).
The method re-usability determines how sensitive the evalua-
tion method category is to a specific CNN architecture or/and
hardware platform, and determines the applicability of the
evaluation method category. For example, the OPS category,
shown in Row 2 of Table 1, has very high re-usability: it
can be easily applied to a wide range of CNNs and hardware
platforms and does not require any modifications if the range
of explored CNNs or target platform is changed. In contrast
to the methods from the OPS category, the methods, based
on ML models, and shown in Rows 12 to 13 of Table 1,
demonstrate very low re-usability. Once designed, the ML
models, used in these methods, are only applicable to a
specific set of explored CNNs and a specific target platform.
If the target platform or set of explored CNNs changes,
the ML-based models have to be designed from scratch. Low
re-usability of an evaluation method might limit the use of
this method or involve large design time overheads. With the
rapidly increasing number and diversity of CNNs as well as
platforms, used to execute the CNNs, high evaluation method
re-usability is an important quality metric of the evaluation
methods, used in NAS.

Modularity (Column 6) specifies whether an evalua-
tion method accounts for the modular composition of the
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platform, considering the distribution of CNN layers over the
processors of a heterogeneous platform as well as for a spe-
cific schedule, associated with the CNN execution. Typically
the execution of a CNN, on an accelerator-based platform,
involves layer-by-layer execution of a CNN and offloading
of computations within every CNN layer onto a platform
accelerator [2]. Such CNN execution is typical for the major-
ity of widely used DL frameworks such as PyTorch [37]
or TensorFlow [38]. However, the ongoing research in the
field of Edge Al is exploring alternative, more efficient ways
to execute CNNs on heterogeneous edge platforms [7]. For
example, methods, proposed in papers [39]-[41], enable for
better utilization of computational resources, available on the
platform. The exploitation of these methods can significantly
affect platform-aware CNN metrics, such as CNN throughput
and energy consumption. Thus, for efficient evaluation of
platform-aware metrics of a CNN, executed at the edge,
evaluation methods should have means to account for such
advanced CNN execution methods.

The OPS-based evaluation methods, shown in Rows 2 to 3
of Table 1, estimate the CNN latency using the number of
operations (OPs) required to execute a CNN. Such evaluation
methods are simple to use and are characterized by high re-
usability. However, the predictions provided by the ops-based
evaluation methods are often inaccurate [42], [43]. Low accu-
racy in the evaluation methods might lead to a large margin
between predicted CNN metric and real CNN metric mea-
sured when a CNN is executed on the target platform. Such
a large margin is unacceptable for the design of CNN-based
applications with strict resource constraints, such as self-
driving cars [3] or object recognition on drones [44]. Unlike
the OPS-based methods, our method provides more accurate
evaluations, and thus, allows us to obtain more realistic pre-
dictions of platform-dependent CNN metrics.

The Roofline methods, shown in Row 4 of Table 1, evaluate
platform-dependent metrics of a CNN, using the analytical
platform-aware Roofline model [ 16]. These methods, in addi-
tion to the number of OPS performed by a CNN during its
execution, take into account the impact of memory access
on the platform-aware CNN metrics, which allows these
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methods to perform more precise CNN metrics evaluation,
compared to the OPS-based methods, explained above. How-
ever, as the OPS-based evaluation methods, the Roofline
methods lack evaluation accuracy. In our method, we pro-
pose a novel platform-aware evaluation model, alternative
to the Roofline model. Our evaluation model considers a
wider range of platform-aware characteristics, and provides a
more precise evaluation of platform-dependent CNN metrics,
compared to the Roofline model.

Specialized analytical methods, shown in Rows 5 to 7 of
Table 1, use highly detailed representations of hardware plat-
forms to provide a precise estimation of platform-dependent
CNN metrics. However, the utilization of highly special-
ized hardware specifications leads to narrow application and
low re-usability of these methods. For example, the authors
of [19]-[21] target the exploitation of a precise roofline-based
model for FPGA codesign. However, the model, utilized
in [19]-[21] cannot be applied to other platforms, such
as CPUs-GPUs platforms. Analogously, the work in [22]
explores ASICs codesign, through performance evaluation
based on MAESTRO [45], which makes the evaluation
method, proposed in [22], only applicable to ASICs-based
platforms. With the rapidly increasing number and diversity
of devices, used to execute CNNSs, such high specialization
significantly limits the use of these methods. In contrast to
these methods, we propose an abstract high-level specifica-
tion of a hardware platform, which contains many platform-
aware details, affecting platform-dependent metrics of CNNss,
and which applies to a wide range of diverse hardware plat-
forms. Thus, our method enables for higher applicability and
re-usability, compared to the methods proposed in [19]-[21].

The measurement-based methods, Rows 8-9 of Table 1,
are based on actual measures of real latency of CNNs on
the target platforms. Some similar approaches, Rows 10-11
of Table 1, use measured latency values for CNN compo-
nents collected in Look-up Tables (LUTs) to produce by
composition the estimation of entire CNNs. These methods
ensure highly precise evaluations. However, they involve a
large number of measurements of specific CNNs mapped
on a specific target platform, especially in the case of
measurement-based methods [32], [33], or limit the range
of analyzable CNNs to those composed by modules avail-
able in the LUT. Thus, these methods show very low
re-usability. On the contrary, our method uses abstract plat-
form specification and CNN description, enabling its high
re-usability.

The evaluation methods, based on ML models, and shown
in Rows 12 to 13 of Table 1, use trainable ML mod-
els such as neural networks or regression models, to pre-
dict the platform-dependent metrics of a CNN. However,
like the measurement-based methods and LUTs, explained
above, the ML methods require a large amount of platform-
and CNN-specific measurements, and demonstrate very low
re-usability. Unlike these methods, ours does not require
platform- and CNN-specific measurements and demonstrates
high re-usability.
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TABLE 2. The required profiling time for the evaluation methods based
on ML models is described as the sum of two major components: the
time required to acquire the training data, and the time required to
perform the training procedure. The Data Collection time is expressed as
the product of 1) the number of samples evaluated, n_sample, 2) their
execution time on the target hardware, ¢, and 3) the number of times
each measure is repeated to obtain an accurate value, Ngyg.

Method Data Collection time Training time
n_sample x t * Ngyg
[25] 75000 * t * 5 (300 epochs)
[26] 80000 * t * Nqug 1h (1000 epochs)
[32] 90000 * t * 50 20min (150 epochs)
[36] 447 % 108 * t * Ngug not specified

Table 2 provides an overview of the required profiling
time for the highly accurate estimation methods based on
ML models. All of the listed works require a significant
amount of deployments and measurements: assuming the
execution time of a network to be, on average, equal to
15 ms, for example, [25] would require over 1 hour of data
collection, while over 18 hours are needed in [32]. This is
a very soft hypothesis, as in [26] almost 2 weeks of data
collection time are claimed. In some cases, the training pro-
cedure can be exploited for a wide range of targets (e.g. [36]
evaluates 447 different GPU configurations, while [25] sug-
gests training a single network for predicting performance
on multiple hardware), while, in general, such procedure has
to be repeated for each target platform. On the contrary,
the ALOHA method does not require benchmarking.

Finally, to the best of our knowledge, our method advances
the state-of-the-art combining the flexibility characteristics
of analytical methods with improved accuracy. Thus, it pro-
vides results similar to measurement-based methods, without
requiring intensive modeling effort. Moreover, to the best of
our knowledge, this is the first work that implements modular
pre-estimation, taking into account the mapping and concur-
rent execution of different computational kernels on different
processing cores, among those available on the platform, and
providing system-level performance estimation.

Ill. BACKGROUND

We summarize in this section some background notions that
will be widely used in the paper. In Section III-A we describe
the specifics of CNN architectures. In Section III-B and III-C
we briefly present the theory of the analytical methods that we
compare our method with in the following sections, the OPS
count and the Roofline models.

A. CNN COMPUTATIONAL KERNEL DESCRIPTION
A Convolutional Neural Network (CNN) can be represented
as a directed acyclic computational graph CNN (L, E) with a
set of nodes L, also called layers, and a set of edges E [2].
An example of a CNN with layers L = {l1, I», I3} and edges
E = {e12, ex3} is given in Figure 1.

Every layer [; € L represents a part of CNN functionality.
It accepts as input data X;, provided by other CNN layers
or external sources, and provides as output data Y;. The
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X,=[128,28281  Y,=X,=[512,28,28] Y,=X=[512,14,14 ] Y,=[10,1,1]

Iz op: MaxPool, K: 2x2 13 op: GEMM, K: 1x1

W, =[512*14*14, 10]

L op: cony, K: 1x1
W, =512, 128, 1, 1]

FIGURE 1. CNN.

layers input and output data are stored in multidimensional
arrays, called tensors [2]. In this paper, the input and out-
put data tensors have the format [T.B, T.C, T.H, T.W],
where T denotes the tensor; T.B, T.C, T.H, T.W are the
batch size, the number of channels, the height and the width
of the tensor, respectively. Being one of the most common
processing choices for embedded inference execution, and
the one required by most real-time applications, we place
particular focus on the processing case where the batch size
is equal to 1, where T.B dimension can be omitted in the
notation. To obtain the output data Y; from the input data Xj,
layer /; moves along its input with a sliding window Kj;, and
applies a CNN operator op; (such as convolution, MaxPool-
ing, GEMM, RelU etc. [2]), parameterized with weights W;
to its input data tensor X;. We consider layer /; in the CNN
structure in Figure 1 as an example of CNN layer, with input
data tensor X; = [128, 28, 28], output data tensor ¥; =
[512, 28, 28], and a 2-dimensional sliding window K| with
width K;.W = 1, and height K1.H = 1.

Each CNN edge e¢;; € E specifies a data dependency
between CNN layers /; and [;, such that layer /; accepts
as input the data tensor Y;, produced by layer /;. The data
dependencies, specified by the CNN edges, determine the
order, in which CNN layers are executed on a target plat-
form. Typically, CNN layers are executed in sequential order,
i.e.,a CNN execution can be represented as |L| computational
steps, where at every i-th computational step, CNN layer
l; € L is executed.

Considering the memory footprint of current state-of-the-
art CNNs and the on-chip memory available in most embed-
ded processing platforms, execution of layer /; on a target
platform typically involves:

1) loading of input data X; and weights W; of layer /; from
the global memory of the platform into the local mem-
ories of the platform processor, allocated for execution
of I;;

2) execution of the computations within the layer on the
allocated platform processor;

3) copying of output data Y; of layer /; from the local
memories of the allocated processor into the platform
global memory;

The computations, performed within every CNN layer, are
data-parallel computations, that can be represented using a
set of nested loops, bound by the dimensions of tensors X;
and Y;, as well as sliding window K;. The nested loops enclose
a simple operation, applied to the input and output data of the
CNN layer. Hereinafter, we refer to such a set of nested loops
as to the computational tensor of a CNN layer.
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TABLE 3. Layer-specific computational tensor parameter.

CNN Computational tensor boundaries simplg
op BSTIF JOF] FW [FH [ KH] KW | op
Conv X.B X.C|YC| YW| YH KH KW MAC
GEMM | X.B X.Cl YC| XW| X.H 1 1 MAC
ReLU X.B 1 YC| YW|] YH 1 1 max
MaxPool| X.B 1 Y.C| YW| YH| K.H KW| max

1 for batch in range (BS):
for o_feat in range (OF) :

for i_feat in range (IF):

4 for fh in range (FH) :
for fw in range (FW) :

6 for k_y in range (KH) :
7 for k_x in range (KW) :
8 do simple_op

Listing 1. Generic CNN layer computational tensor.

for o_feat in range (512):
for i_feat in range (128):
for fh in range(28):
for fw in range (28):
for k_y in range(l):
6 for k_x in range(l):
do MAC

Listing 2. Computational tensor of convolutional layer /;.

In this paper, we represent the computational tensor of
every CNN layer, using a generic computational tensor and
Table 3. The generic computational tensor, given in Listing 1,
represents computations within every layer of a CNN archi-
tecture as a set of 7 loops, bound by generic loop bounds BS,
OF,IF,FH,FW,KH and KW, and enclosing a generic sim-
ple operation simple_op. To represent computations within a
specific CNN layer /, the loop bounds and the simple oper-
ation in the generic computational tensor are replaced with
their respective layer-specific values. For example, to rep-
resent the computations within CNN layer /;, shown in
Figure 1, the generic loop bounds OF, IF, FH, FW, KH,
KW of the generic computational tensor in Listing 1, are
replaced in Listing 2 with their layer-specific values: Y1.C =
512, and X;.C = 128, also called number of output and
input features of the layer, respectively; Y1.H = 28, and
X1 = 28, the height and width of the layer output data tensor;
Ki.H =1, and K;.W = 1, the height and width of the layer
sliding window K7j; and the generic operation simple_op is
replaced by the layer-specific simple operation MAC. The
external loop on batch size BS is omitted, assuming batch
size equal to 1.

Table 3 specifies how the generic loop bounds and generic
simple operations are replaced with their layer-specific
values for CNN layers, performing various CNN opera-
tors. In Table 3, Column 1 lists common CNN operators;
Columns 2 to 8 show how generic loop bounds BS, OF, IF,
FH, FW, KH and KW of the generic computational tensor,
given in Listing 1, are replaced by the dimensions of input
layer X, output layer Y and sliding window K of a CNN
layer; Column 9 shows how generic operator simple_op of the
generic computational tensor is replaced with a layer-specific
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simple operator for a CNN layer. We note, that if needed,
Table 3 can be customized or extended with new CNN oper-
ators or their specific implementations.

B. OPS-BASED PERFORMANCE PREDICTION
Most approaches in the literature evaluate the execution
latency of a CNN as:

tors = OPS /AP (1)

where the attainable performance AP is considered equal
to the peak performance of the hardware platform, APmax
[OPS/s], while OPS is the total number of operations, that
must be executed during the CNN inference. The value of
OPS is computed as:

N
OPS = ]_[ T .dim,, * #OPS_enclosed )

n=1

where ]_[I,Y=1 T .dimy, is a product of all computational tensor
dimensions dim,,, n € [1, N]; #OPS_enclosed is the number
of OPS in a simple operation, enclosed in the loops of the
layer computational tensor. For example, the total number of
operations, performed by the convolutional layer, represented
as a computational tensor in Listing 2, is evaluated as: 512
128428428 1x1%2 ~ 102, 76x10°, where 512128%28%28
11 is the product of all computational tensor dimensions and
2 indicates that every MAC operation, enclosed in the loops
of the computational tensor, consists of two operations: one
multiplication and one addition.

C. ROOFLINE MODEL

The well-known Roofline Model [16] takes into account the
impact of memory access on execution time. It exists in the
OPS/s vs OPS/byte plane, and combines peak performance,
represented as a horizontal line, with the actual bandwidth
available to off-chip memory, defining a diagonal line with
45° inclination. The best-case execution time for a given
kernel is defined by the operating point in the roofline. This is
obtained as the intersection with the vertical line representing
the kernel’s Operational Intensity, Int(l;), defined as the ratio
among OPS count and total data transferred:

Int(l;) = OPS(l;)/ Trafficmem(l:) 3

For a CNN layer /;, explained in Section III-A, the amount
of data transfers, performed during the layer execution, can
be estimated as:

Trafficmem(li) = Size(X;) + Size(W;) + Size(Y;) “4)

where Size(X;), Size(W;) and Size(Y;) stand for the amount of
data (in Bytes) in input data X;, weights W; and output data Y;
of layer /;. The amount of data in a data tensor 7 is computed
as:

N
Size(T) = [ | T.dim, x sizeof (pixel) (5)

n=1
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4{ CNN ‘ ‘ALOHA platform model‘ ‘ [CNN execution configuration] ‘
[ [ [

|

comp.
tensor Platform-aware
refinement comp. tensor

comp. tensor
automated
generation

Platform-
agnostic comp.
tensor

ALOHA

layer-level | comp. tensor
evaluation Platform-dependent metric of a layer
procedure ‘ I [ analysis

| |
13 i

CNN schedule CNN CNN metric
generator schedule aggregation
[

\ Platform-dependent metric of a CNN \
FIGURE 2. ALOHA methodology design flow.

(
|
aggregation L

where ]_[nN=1 T .dimy, is the total number of elements in the
data tensor; sizeof (pixel) is the number of bytes, required to
store one element of data tensor 7.

Based on this representation, execution time is estimated
according to Equation 1, with AP = AP, evaluated as:

AP oor = min(APyqy, Int x bw) (6)

where bw is the bandwidth to the off-chip memory.

IV. ALOHA METHOD

In this section, we propose our ALOHA method. The main
purpose of our method is to evaluate platform-dependent
metrics, such as latency and energy consumption, related
to the execution of a CNN on a specific accelerator-based
target platform. The design flow of our method? is shown
in Figure 2. Our method accepts as inputs:

o a CNN description, for example, in ONNX format [46],
which describes a CNN as a directed computational
graph, explained in Section III-A;

o a specification of the accelerator-based platform,
represented using the novel ALOHA platform model,
proposed in Section V;

« (optionally) a CNN execution configuration, explained
in details in Section VII.

Such input is used through the phases of the proposed

method:

o Phase 1: The algorithm architecture and the platform-
aware characteristics, specified in the platform model,
are used by the ALOHA layer-level evaluation proce-
dure, proposed in Section VI. The procedure is itself
composed of several steps:

— first, as described in Section VI-A, the procedure
generates a computational tensor for every layer
in the CNN, depending on the layer features; we
indicate this process as Computational tensor gen-
eration;

— second, as described in Section VI-B, the compu-
tational tensor is annotated considering platform
features: the loops of operations and data transfers

2The presented design flow corresponds to the open-source
implementation of our ALOHA method, available at https://gitlab.com/
aloha.eu/alohaeval
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are ordered, mapped on available parallel hardware
operators, and partitioned depending on the limits
imposed by storage resources. In this way a new
platform-aware computational tensor is obtained
for every layer; we refer to this process as Compu-
tational tensor refinement,

— third, as described in Section VI-C, the obtained
tensor is analyzed to derive accurate estimation of
the metrics under evaluation; this process is referred
to as Computational tensor analysis.

o Phase 2: The obtained layer-level estimations are
passed as input to an aggregation module, described in
Section VII, that schedules the execution of the different
components on the processing elements in the platform,
to deliver the final estimation of a platform-dependent
metric of a CNN.

V. ALOHA PLATFORM MODEL

When it comes to describing details of a platform, sim-
ple specifications, such as the Roofline model, fail to
describe some characteristics of the implementation, or the
execution dataflow, that may have a significant impact on
the platform-aware metrics of a CNN. Therefore, we have
defined an abstract and generalizable, yet more detailed
model which enables us to capture such characteristics. In this
section, we describe the main details of the proposed model.
We also provide two examples of such a platform model:
Table 4 and Table 5, show the platform models for the refer-
ence NEURAghe platform (see Section V-A) and the Jetson
TX2 platform (see Section V-B), used in this work. The same
description scheme may also apply to micro-controller based
platforms, as long as the needed information regarding the
working frequency and achievable performance, the local
storage size and the communication resources are made avail-
able by the vendor in the related documentation. Our platform
model is composed of three main elements:

« Memory resources (Row 2): specifies available on- and
off-chip memory blocks, assigns an ID to each block,
and indicates the related capacity;

o IO channels (Row 3): specifies connections that can
be used to load/store input/output data to/from internal
memories from/to external storage, assigns an ID to
each connection, and lists the corresponding available
bandwidth;

« Processors (Rows 4 to 16): a set of (parallel) processors,
that represent the distributed heterogeneous computa-
tional resources, available on the platform, and can share
the CNN workload. For the sake of brevity, in Table 4
and Table 5, we only show full processor description for
the platform accelerators, and omit the full description
of other processors, such as CPUs.

Every processor in our proposed platform model is com-
posed of two main elements: a processor description, which
describes the features of the processor, and a computational
model, which indicates how the computational workload
associated with CNN operators is deployed on the resources
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TABLE 4. ALOHA platform model for NEURAghe.

NEURAghe Platform

D Size
Memory 0 73728 B
resources 1 163840 B
2 92160 B
3 2097152 B
ID Bandwidth (BW)
10 0 0.72 GB/s
channels 1 0.72 GB/s
2 2.88 GB/s
Processor description
id 0
General type/sub-type accelerator/FPGA engine
characteristics top performance 129.6 GOPs/s
[frequency 0.18 GHz
Level Dimension Description
Parallelism level 0 9 MAC matrix has
level 1 10 9*10 MAGCs,
level 2 4 4 pixels/cycle
active power 3.6W
Power idle power 1.8W
bit access to DDR 91pJ
Overhead 0.1 ms
Comp ional Model
Loop iterating on Assigned order
OF level 1
Loop nesting IF level 0
order FH level 2
and usage Fw level 3
KH level 4
KW level 5
Transfer type at loop level
Data transfers Input Features level 1
positioning Output Features level 0
Weights level 1
Transfer type to channel ID
10 channel Input Features
assignment Output Features 1
Weights 2
Data type to memory ID limited loop
Memory Input Features 0 FH (Loop level 2)
assignment Output Features 1 OF (Loop level 1)
Weights 2 OF (Loop level 1)
Level to loop iterator
Parallelism 0 IF (Loop level 0)
levels 1 OF (Loop level 1)
assignment 2 FW (Loop level 3)
Processor description
id 1
General type/sub-type CPU/Arm Cortex-A53
characteristics top performance 9,6 GOPs/s
frequency 1,2 GHz

specified in the platform model. The processor description
(Rows 4 to 8 and Rows 15 to 16) describes the following
parameters:

o General characteristics (Row 5 and Row 16): this
section describes general characteristics of the proces-
sor, such as unique processor identifier (id), core type,
and sub-type, top performance, and frequency.

« Parallelism (Row 6): this section describes how many
operations in parallel can be executed by each core.
To be compliant with what commonly happens in
accelerators, where processing capabilities can often
be implemented using multi-dimensional connected
structures of processing elements, hierarchically orga-
nized, the available parallelism is described as an
n-dimensional grid. The user must list n parallel factors
corresponding to the hierarchy levels exposed by the
processing element structures in the platform.

o Power (Row 7): this section contains optional infor-
mation about the power consumption of the processor
described. It may report a power consumption value in
the active and idle state of the processor, and an energy
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TABLE 5. ALOHA platform model for Jetson TX2.

Jetson Platform

ID Size
Memory 0 8589934592 B
resources 1 131072 B
2 524288 B
ID Bandwidth (BW)
10 0 20 GB/s
channels 1 20 GB/s
2 35 GB/s
Processor description
id 0
General type/sub-type accelerator/GPU
characteristics top performance 666.6 GOPs/s
frequency 1.3 GHz
Level Dimension Description
Parallelism level 0 2 MAC matrix contains
level 1 16 x 2 SM x 16 blocks
level 2 128 per SM x 128 cores
Power active power 15W
Overhead 0.01 ms
Computational Model
Loop iterating on Assigned order
OF level 0
Loop nesting IF level 1
order FH level 2
and usage rw level 3
KH level 4
KW level 5

Transfer type at loop level

Data transfers Input Features level 0
positioning Output Features level 0
Weights level 0
Transfer type to channel ID
10 channel Input Features 1
assignment Output Features 0
Weights 0
Data type to memory ID limited loop
Memory Input Features 1 OF (Loop level 0)
assignment Output Features 0 OF (Loop level 0)
Weights 0 OF (Loop level 0)
Level to loop iterator
Parallelism 0 IF (Loop level 1)
levels assignment 1 OF (Loop level 0)
2 FH, FW (Loop level 2, 3)
Processor description
id I
General type/sub-type CPU/ARM Cortex A-57
characteristics top performance 16.28 GOPs/s
frequency 2.35 GHz

cost per bit accessed in the global memory. This field is
not needed if only latency is evaluated.

o Overhead: (Row 8) optional field allowing to account
for programming cycles, required to start computations
on the given processor.

The computational model (Rows 9 to 14) depicts the fol-

lowing parameters:

« Loop nesting order and usage (Row 10): specifies the
order, in which loop of the layer computational tensor,
given in Listing 1, explained in Section III-A, are exe-
cuted on a specified processor.

« Data transfers positioning (Row 11): specifies the
exact positions of data transfers in the layer computa-
tional tensor. As discussed in [47], this parameter can
significantly affect the layer latency and energy con-
sumption.

o 10 channels assignment (Row 12): specifies the assign-
ment of the platform data transfer channels to input data,
output data, and weights, transferred during the layer
execution.

+« Memory assignment (Row 13): specifies the assign-
ment of the platform memories to input data, output
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data, and weights, stored on the platform during the layer
execution, and poses memory constraints on the loops of
the computational tensor. This parameter is specified by
the assignment of the platform memories of limited sizes
to the loops of the layer computational tensor. By intro-
ducing this parameter, we model the impact of limited
memory resources on the layer execution. The impact of
the memory hierarchy is opposed to the loop unrolling
and leads certain loops of the layer computational tensor
to be tiled: partitioned in chunks that can be handled with
the data fitting those memories.

« Parallelism levels assignment (Row 14): based on the
computing units available on the platform, it describes
how different degrees of parallelism are used to partially
unroll the convolution loops. To correctly model the exe-
cution, we associate a computational tensor loop level to
each dimension of the parallel computational grid of the
platform accelerator.

A. EXAMPLE 1: DESCRIBING NEURAghe

NEURAghe is a CNN inference accelerator that can be
configured at design time with different parameterization,
but we consider in this paper a setup that is implemented
on Ultra9%6 board by Avnet, embedding a Xilinx Zynq
UltraScale4+ MPSoC ZU3EG A484 and a RAM Micron 2 GB
LPDDR4 Memory. The memory subsystem in NEURAghe
includes four defined storage spaces, defined in the Memory
Resources slot of Table 4. The memories specified as memory
0, memory I and memory 2 are local to the hardware convolu-
tion accelerator available on the platform and are respectively
destined to weights, activation data, and computed results,
while the last one, specified as memory 3 is the off-chip mem-
ory, shared among the hardware accelerator and the general-
purpose processor. The data transfers between the global
and local memories in the NEURAghe platform are handled
through three separate DMA channels, transferring 8 B/cycle,
described in Table 4 as IO channel 0 and I, operating at
90 MHz, and 10 channel 2 operating at 180 MHz.

The computational resources of the NEURAghe plat-
form consist of an ARM Cortex-a53 core exploited as a
general-purpose processor and a convolution-specific FPGA-
based accelerator. Due to the limited space, only the platform
accelerator is fully described in Table 4.

The considered configuration features a matrix of 90 MAC
modules, distributed over 9 parallel input channels and
10 parallel output channels, working at 180 MHz clock
frequency. Moreover, each MAC module in NEURAghe is
designed to process four neighboring pixels in an input row
per cycle. Table 4 models its computing resources by defin-
ing, in the Parallelism field, a levelO and levell parallelism,
respectively set to 9 and 10 and representing the dimensions
of the computational grid, and a level2 parallelism, set to 4
and corresponding to the number of pixels processed per
cycle. Thus the platform is able to deliver a peak perfor-
mance of 129,6 GOPS/s for 16 bit CNN data precision. The
platform power consumption was assessed using the Xilinx
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Power Estimator tool [48], obtaining P, = 3,6 W for the
active state, and Py, = 1, 8 W for the idle state. Moreover,
we have accounted for DDR energy consumption. To this
aim, we have used the DRAMpower tool [49], fed with
transaction traces obtained by RTL simulation. We obtained
a per-bit energy contribution of Enp; = 91 pl/bit for a
4Gb Micron LPDDR3 memory. A typical CNN execution
dataflow on the platform is described in the Computational
model field. Parallelism levels are linked to their correspond-
ing loop levels in the Parallelism level assignment section,
by referring to the specific nesting order implemented in the
platform, and defined in the Loop nesting order and usage
section. The level(Q parallelism is exploited to unroll computa-
tions over IFs, while the level1 parallelism, defines unrolling
over OFs and level2 parallelism allows to unroll by a factor
of 4 the X loop. The Memory assignment section defines how
CNN data is stored in each of the storage spaces available,
and how their limited size affects the execution dataflow of a
CNN layer.

B. EXAMPLE 2: DESCRIBING JETSON

Jetson TX2 [28] is a GPU-based platform from NVIDIA.
The memory system in Jetson includes a unified 1.866-GHz
DRAM memory, directly accessed and shared among all plat-
form processors, a local GPU memory of total size 128 KB,
and a shared L2 cache with a configurable size of 512 KB to
2 MB, specified in Table 5 as memory 0, memory 1, and mem-
ory 2, respectively. Transfers between the platform global
memory and other platform memories are handled through
separate data transfer channels, described in Table 5 as 10
channels 0, 1, 2, respectively. The computational resources
of the Jetson TX2 platform are composed of an NVIDIA
Pascal GPU, a quad-core Dual-Core NVIDIA Denver 2
64-Bit CPU, and a quad-Core ARM Cortex-A57 MPCore.
Due to the limited space, only the platform GPU is fully
described in Table 5. The GPU processor of the NVIDIA Jet-
son TX2 platform has two Streaming Multiprocessors (SMs).
Each SM has 128 1.3-GHz cores and is capable of running
2048 threads, organized in 2048/128=16 thread blocks. The
parallelism within the platform GPU is specified in the field
Parallelism in Table 5, as parallelism levels 0, 1, and 2 of
size 2 (SMs), 16 (blocks per SM) and 128 (threads per
block), respectively. The peak performance of the NVIDIA
Jetson TX2 GPU reaches 666.6 GOPs/s for FP32 CNN data
precision (see field General characteristics in Table 5). Exe-
cution of a CNN on the Jetson TX2 platform is typically
performed using the TensorRT DL framework [50], provided
by NVIDIAs as an official DL framework for the platform.
The TensorRT framework exploits the parallelism within the
CNN layers, as specified in Loop nesting order and usage
field in Table 5. As specified in field Memory assignment,
during the CNN execution, the framework uses the global
platform memory to store the output data and weights of
CNN layers, and the shared GPU memory to store input
data of CNN layers. When executed on the Jetson TX2 plat-
form, computations within the CNN layers are limited by the
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sizes of the platform memories, as specified in field Memory
assignment in Table 5.

VI. ALOHA EVALUATION PROCEDURE

In this section, we provide details about the ALOHA
evaluation procedure. Our method ensures fast, yet accu-
rate, evaluation of the CNN layers performance. Unlike
other analytical methods with a similar level of abstrac-
tion, such as the Roofline model or OPS-based evaluation,
discussed in Section II, our evaluation procedure captures
the following important platform-aware factors, that affect
platform-dependent metrics of every CNN layer executed on
heterogeneous hardware platforms:

« repeated transfers of the layer input data and weights
from the platform global memory to the local memories
of the platform processors occur when the local platform
memory, allocated to store the layer data and weights.
cannot accommodate all the data and weights at once.
Memory size also affects the amount of output data
transferred from the local memory to the global one.
The repetitive transfers cause additional time and energy
overheads during the CNN layer execution;

« occupancy/rounding effect, i.e., a waste of computa-
tional power, caused by inefficient exploitation of the
parallelism available in the platform, by the parallel
computations to be carried out within a CNN layer [47].
Such waste is typically measured using wasted compu-
tational cycles, or partial processor occupancy, resulting
in reduced performance of the platform computational
resources [47];

o separate bandwidth ceilings reflect communication
overheads, caused by an uneven distribution of the
CNN layer data (input data, output data, and weights)
over platform memories and data communication chan-
nels. Typically, the memory bandwidth of the platform
is described by the peak memory bandwidth, which
accounts for a high utilization of all data communi-
cation channels, available on the platform. However,
in practice, not all data communication channels, avail-
able on the platform, are (efficiently) utilized, which
leads to additional time overheads during the CNN layer
execution.

Considering the aforementioned factors allows our method to
achieve higher accuracy in evaluating platform-aware met-
rics of a CNN layer, compared to other analytical methods
with a similar level of abstraction. The evaluation procedure
involves three main phases:

o Computational tensor generation. This phase generates
a representation of a CNN layer, annotated with an
operator, input, and output data formats and weights,
as a computational tensor, explained in Section III-A.
It enables for explicit specification of the parallelism
available within the CNN layer. The description of its
functioning is placed in Section VI-A.

o Computational tensor refinement. In this phase, the gen-
erated platform-agnostic layer computational tensor
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is enriched with platform-aware parameters of the
ALOHA platform model, explained in Section V, and
transformed into a platform-aware computational tensor.
A detailed description of the steps performed in this
phase, and of their effects, is given in Section VI-B.

o Computational tensor analysis. This phase involves
analysis of the platform-aware computational tensor and
final estimation of the platform-dependent metric of
interest. Further description is given in Section VI-C.

To illustrate the phases of our evaluation procedure, we use

as an example the convolutional layer /1, shown in Figure 1,
and explained in Section III-A, executed on the NEURAghe
platform, represented as the ALOHA platform description
in Table 4.

A. COMPUTATIONAL TENSOR GENERATION

In this phase, the ALOHA evaluation procedure represents
the CNN layer as a 6-dimensional computational tensor,
explained in Section III-A. To generate the layer computa-
tional tensor, the ALOHA method uses the generic CNN layer
representation, given in Listing 1 and Table 3. For example,
for the CNN layer /1, shown in Figure 1, and explained in
Section III-A, the ALOHA procedure generates the CNN
layer computational tensor, provided in Listing 2.

B. COMPUTATIONAL TENSOR REFINEMENT

In this phase, the ALOHA evaluation procedure enriches the
computational tensor of the CNN layer with platform-aware
parameters of the ALOHA platform model, explained in
Section V. The computational tensor refinement is per-
formed in four steps (see Step 1 to Step 4 below).
Steps 1 to 4 subsequently apply specific transformations to
the computational tensor of the CNN layer. In this section,
we show an example where the platform-agnostic computa-
tional tensor, given in Listing 2, explained in Section III-A,
is refined with platform-aware details of the NEURAghe
platform, represented using the ALOHA platform description
in Table 4.

o Step 1: Apply loop nesting order and usage to the
order of computational tensor loops. This step makes
lines 1 and 2 in Listing 2 to swap places, resulting in
Listing 3;

o Step 2: Apply parallelism level assignment to every
computational tensor loop, unrolled over a dimension
of a parallel computational grid. During this step,
an indented loop par_x, representing parallel computa-
tions, is inserted in the nested structure, according to the
Parallelism level assignment field. The consequence of
this action is that the number of iterations of the new
couple of loops is rounded over the corresponding com-
putational grid dimension. For example, the level O par-
allelism of size 9, shown in Table 4, and assigned to the
IF loop of the computational tensor, causes the insertion
of loop par_0 with 9 iterations in Listing 4 (line 2), and
rounding of the IF loop (line 1) to roundup(128/9) =
15 iterations. Analogously, the level 1 parallelism of
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size 10, shown in Table 4, and assigned to the OF
loop of the computational tensor, causes the insertion
of loop par_1 with 10 iterations in Listing 4 (line 4),
and rounding of loop OF (line 3) to roundup(512/10) =
52 iterations.

Step 3: Introduce data transfers, i.e., explicitly specify
the transfer of the layer input data, output data, and
weights in the layer computational tensor. Every data
transfer is assigned to a specific loop in the compu-
tational tensor, as described in the data transfer posi-
tioning field of the platform computational model, and
is represented as a line action(data_bytes, mem;, chj),
where action € (load, store) specifies whether the data
is transferred from the main memory to the local pro-
cessor memory (action = load), or from the local pro-
cessor memory to the main platform memory (action =
store). If action = load, the data transfer is placed
before the computations within the assigned loop are
performed. If action = store, the data transfer is
placed after the computations within the assigned loop
are performed; data_bytes specifies the amount of data
(in bytes) transferred during the data transfer action.
The data_bytes parameter is assessed for every op/data
type, using specific properties of the CNN layer and the
layer computational tensor; mem; specifies the platform
memory, where data is accumulated; ch; specifies the
data transfer channel, used for transfer of the data. For
example, in Listing 5, this step leads to the insertion
of line 2, where input data of the CNN layer of size
9 % 28 % 7 x 4 x 2 bytes is loaded from the device main
memory into the processor local memory memy through
data communication channel chy. How to evaluate data
transfer size is further detailed in Equation 7, introduced
in the following phase, describing the Computational
tensor analysis.

Step 4: Pose memory constraints onto computational
tensor loops. During this step, the evaluation procedure
checks every loop, associated with a limited platform
memory, as specified in the Memory assignment field
of the platform model. If the utilization of the platform
memory within the loop violates the memory constraint,
the loop is tiled to avoid the violation. For example,
as specified in Table 4, the OF loop of the computational
tensor is limited by the local memory mem; of size
163840 bytes. In Listing 5, the layer tries to accumu-
late 815360 bytes in memory mem; (line 13), where
815360 > 163840, and thus, Listing 5 violates a con-
straint, placed by memory mem; on the OF loop. This
causes introduction of additional loop out_tile (line 1 in
Listing 6) with 6 iterations, and reduction of the OF loop
(line 6 in Listing 6) to 52/6 = 9 iterations. In Listing 6,
the layer stores 9 % 10 % 28 x 7 x 4 % 2 = 141120 bytes
< 163840 bytes of output data in memory mem; at each
iteration of loop out_tile, and thus, does not violate the
memory constraint, placed by memory mem; on the OF
loop.
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for i_feat in range(128):
2 for o_feat in range (512):
for fh in range(28):
4 for fw in range(28):
for k_y in range(l):
6 for k_x in range(l):
7 do MAC

Listing 3. Step 1. Loops nesting order and usage.

1 for i_feat in range (15):

for par0 in range(9):

for o_feat in range (52):

4 for parl in range (10):
5 for fh in range (28):
6 for fw in range(7):
7 for par2 in range(4):
8 for k_y in range(l):
9 for k_x in range(l):
10 do MAC

Listing 4. Step 2. Parallelism levels assignment.

1 for i_feat in range (15):
load (9%28x7x4%2, mem0O, ch0) #input data
load (9x52%10(1x1+1) *2, mem2, ch2) # weights
4 for par0 in range(9):
5 for o_feat in range(52):
6 for parl in range(10):
for fh in range(28):
8 for fw in range(7):
9 for par2 in range (4)
10 for k_y in range(1l)
1 for k_x in range (1
12 do MAC
13 store (52x10%28%7%4%2, meml, chl) f#output data

) 8

Listing 5. Step 3. Data transfers introduction.

1 for out_tile in range(6) :
for i_feat in range (15):
load (9%28%7+4%2, mem0, ch0) #input data
4 load (9%9%10(1%1+1) %2, mem2, ch2) # weights
5 for par0 in range(9):
6 for o_feat in range(9):
for parl in range(10):
8 for fh in range(28):
9 for fw in range(7):
10 for par2 in range(4):
1 for k_y in range(1l):
12 for k_x in range(l):
13 do MAC
14 store (9+x10x28%7x4x2, meml, chl) f#output data

Listing 6. Step 4. Limits posing (tiling).

C. COMPUTATIONAL TENSOR ANALYSIS

In this phase, the ALOHA evaluation procedure analyses the
platform-aware computational tensor, to estimate the total
number of operations and data transfers, performed during
the execution of a CNN layer. The total number of operations
is computed using Equation 2 in Section III-B. According to
Equation 2, the total number of operations OPS;,, performed
by the refined CNN layer computational tensor, shown in
Listing 6, is computed as: OPS;.> = 6% 15%9 %9 % 10
28%x T*x4*x1x1x2~ 110,07*106.

3Description in Listing 6 is simplified for the reader. It does not present
some details, e.g. in the last iteration of the loop at line 2, the loop at line
6 stops as soon as roundupOF = 520 OFs have been processed.
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We note, that this number of operations does not match the
total number of operations OPSy, = 102, 76 100, computed
in Section III-A for the platform-agnostic CNN layer compu-
tational tensor, shown in Listing 2. The difference between
OPS,, and OPSy, estimations occurs, because of an imper-
fect distribution of the layer computations over the platform
processors. As a result, the CNN layer, distributed over the
parallel computational resources of the platform (Listing 6),
wastes some of the computational cycles, i.e., suffers the
rounding effect. The refinement of the layer computational
tensor with platform details enables for consideration of the
rounding effect and therefore enables for more precise repre-
sentation of the CNN layer execution on the target platform.

Analogously, considering the platform-aware computa-
tional tensor allows assessing the actual amount of memory
transfers, impacting the layer’s operational intensity. Instead
of using Equation 5, which defines the theoretical transfers
based on data tensor dimensions, under the assumption that
all of the data can be transferred at once to local memo-
ries and made available throughout the entire computation,
the ALOHA method considers how the specific nesting struc-
ture implemented impacts the actual memory traffic.

The amount of data transferred for every data tensor can be
evaluated as:

N
Size(T) = H T.dimfl * sizeof (pixel) x iterationsy (7)
n=1
where, if one of the T.dim, dimensions of data tensor T is
subject to partitioning among multiple loops, we define as
T .dim,, the dimension that is handled in convolution loops
internal to the transfer level ¢/, which is subject to a certain
number of iferations;;, based on loop nesting structure.

Given the IO channel assignment, the ALOHA model eval-
uates the operational intensity over single available channels,
exploiting Equation 3, where the OPS count is evaluated in
details, considering rounding effects and tiling according to
Listing 6, and the traffic value accounts for repeated transfers,
exploiting Equation 7.

At this point, it is possible to use an approach inspired by
the Roofline model, but turning Equation 6 into:

o Intepy % bwepp)
3

Considering AP = AP4srona in Equation 1, the execution
time is evaluated as:

taLoHA = OPSye [(APpLOHA) + OV 9)

where known programming overhead, acting as a fixed
offset ov, is added to the predicted value.

APproHA =MIN(AP g, Intepo * bwepo, . .

VIl. CNN METRIC AGGREGATION

In this section, we present our CNN metric aggregation
module. As explained in Section VI, the CNN metric
aggregation module accepts as inputs estimations of the
platform-dependent metrics of CNN layers and aggregates
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them to deliver the final estimation of a platform-dependent
metric of a CNN, such as CNN latency, CNN energy, and
CNN throughput.

Despite systems with multiple accelerators being hardly
available in the embedded domain, some research efforts
have demonstrated that such a design technique can be use-
ful [51], [52]. Thus our aggregation methodology enables
the estimation to take into account an arbitrary number of
processing elements. We do not account for contention on
the off-chip memory, since previous experiments have shown
that the effect of this issue is limited. References [51] shows
this for the case of multiple NEURAghe instances insisting
on the same DDR memory. We also assume, as in most of
the approaches in the literature, communication with the host
to be asynchronous, thus we do not consider the host CPU
intervention to become a bottleneck.

Furthermore, in embedded systems, sensors are usually
monitored with a specific frequency that is known at design
time. Thus we assume input samples to be processed as
soon as possible, as allowed by the throughput estimated
by the method. In the case of variable sampling frequency,
we assume design constraints to be defined according to the
maximum rate of input samples and lower instant rates to be
exploited for energy reduction using clock frequency scaling.

Along with the CNN, the platform specification, and the
per-layer estimations of platform-dependent metrics, dis-
cussed in Section IV, the aggregation module accepts an
optional CNN execution configuration input. This input con-
sists of two optional parameters, characterizing the execution
of a CNN on a target platform:

1) distribution of CNN operators over the target platform

processors;

2) exploitation of task-level (pipeline) parallelism, avail-

able among layers of a CNN.

The distribution of CNN operators specifies how the CNN
layers should be distributed over heterogeneous processors
in a target platform, prospectively dedicated to different sets
of operators (e.g. on an FPGA-based platform, where only
some of the CNN operators can be executed on the FPGA, and
the rest of the CNN operators are executed on the platform
CPUs). Formally, we define this parameter as a set of tuples
op_dist = {(op, proc_type)}, where op is a CNN operator
(such as Convolution or Pooling) and proc_type is the type of
a platform processor (e.g. CPU or GPU). For example, a set
of tuples {(conv, accelerator), (gemm, CPU)} specifies that
during the CNN execution, computations within every CNN
layer [ with [.op = conv are performed only on the platform
accelerator, and the computations within every CNN layer /
with [.op = gemm are performed only on the platform CPUs.
If for a CNN operator op, no processor types are specified
in the distribution op_dist, the aggregation module assumes,
that every layer, performing operator op, can be executed on
every processor, available on the target platform.

The exploitation of task-level (pipeline) parallelism speci-
fies if a CNN is executed sequentially or as a pipeline. When
a CNN is executed sequentially, only one of the CNN layers is
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executed at every moment in time. This type of CNN execu-
tion is typical for the majority of widely used DL frameworks
such as PyTorch [37] or TensorFlow [38]. The execution of a
CNN as a pipeline is an alternative to the sequential CNN
execution. When a CNN is executed as a pipeline, several
CNN layers can be executed in parallel, processing different
inputs of a CNN. Execution of a CNN as a pipeline enables
for higher throughput of CNNs, executed on heterogeneous
target platforms [39], [40], and thus, it should be taken into
account. Formally, we define the exploitation of task-level
(pipeline) parallelism as a parameter pipeline € {true, false}
with default value pipeline = false. If pipeline = true,a CNN
is executed as a pipeline, otherwise the CNN is executed
sequentially.

The CNN execution configuration is accepted as input
by the CNN schedule generator module of the CNN metric
aggregation module. The CNN schedule generator generates
aschedule J for the input CNN. Schedule J assigns each layer
l; € L of the CNN a starting time s; > 0 and a processor
PE;,j € [1,M] to be executed on. Currently, our CNN
schedule generator can generate two types of schedule: 1) a
sequential schedule, typical for CNNs, executed by widely
used DL frameworks. This type of schedule is generated
for CNN execution configurations with pipeline = false;
2) a pipeline schedule, proposed in [39], where a CNN is
partitioned into M partitions, mapped onto M processors of
the target platform, and all M CNN partitions are executed
in parallel. This type of schedule is generated for the CNN
execution configurations with pipeline = true. Additionally,
if needed, one can extend our proposed CNN schedule gen-
erator or replace it with an alternative.

To generate a sequential schedule, our aggregation module
uses Algorithm 1. Algorithm 1 accepts as inputs: 1) a CNN;
2) set of processors PE = {PE1, PE,, ... PEy}, available
on the target platform; 3) a distribution of the CNN oper-
ators over the target platform processors op_dist; 4) a set
of per-layer latency estimations {¢(/;, PE))},i < [1,L],j €
[1, M]. As output, Algorithm 1 provides a CNN schedule,
represented as a set of pairs (s;, PE;), where s; is the starting
time of a layer [; € L; PE; € PE is a processor of the
target platform. In Line 1, Algorithm 1 defines an empty
schedule J and sets current starting time s to 0. In Lines 2
to 17, Algorithm 1 assigns time s; > 0 and processor
PE; € PE to every layer [; € L of a CNN. In Lines 3 to 9,
Algorithm 1 defines list of processors PEgyitapie, Suitable for
execution of layer /;. If operator op, performed by layer /; is
specified in the distribution op_dist, list of suitable processors
PEitable 1s defined in Lines 5 to 7 as a list of all processors,
that support operator op. Otherwise, PEgitqpie 1S defined in
Line 9 as a list of all processors, available on the platform.
In Lines 10 to 14, Algorithm 1 selects processor PE; from the
list of suitable processors PEjyiple, such that execution of
layer /; on the processor PE; leads to the smallest latency
t(l;, PEj) of layer /;. In Lines 15 to 17, Algorithm 1 assigns
time s; = s and processor PE; to the layer /; (Line 15) and
increases starting time s by the latency t(l;, [;) of layer [;,
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Algorithm 1: Sequential Schedule Generation
Input: CNN(L, E), PE, op_dist, {t(l;, PE))}
Result: CNN schedule J
1J=0;,5s=0;
2 forie[l,|L|]do
PEgitaple = ¥;
if 3(op, proc_type) € op_dist : op = l;.op then
for (I;.op, proc_type) € op_dist do
for PE; € PE : PEj.type = proc_type do
L L PEjsuitapie = PEsuitabie + PEj;

N S BW

else

9 L PEgyjtabie = PE;

10 PEj = PEsuitablepop();
11 while PEgqpi. 7 ¥ do

=)

12 PE} = PEgjuapie-pop();

13 if 1(l;, PEy) < t(l;, PE)) then
14 | PEj = PEy;

15 Si=3;

16 J =J + (s, PE));
17 s = s+ 1(l;, PE));

8 returnJ

[

executed on processor PE;. Finally, in Line 18, Algorithm 1
returns sequential schedule of the input CNN.

To generate a pipeline schedule, our aggregation module
uses the heuristic algorithm, proposed in [39]. As explained
above, the pipeline schedule can affect the CNN throughput.
Our proposed CNN metric aggregation module captures the
impact of the CNN schedule on the CNN throughput by
considering the CNN schedule during the CNN throughput
estimation (see Equation 11 explained below).

The CNN schedule, generated by the CNN schedule gen-
erator, is accepted as input by the CNN metric aggregation
sub-module, along with per-layer CNN metric evaluations.
The CNN metric aggregation sub-module, uses Equation 10,
Equation 11 and Equation 12 to estimate CNN latency fcyn
(in seconds), CNN throughput Thcyy (in frames per second)
and CNN energy cost Encyy (in Joules), respectively.

teny = s+ tiL) — 81 (10)
1 X ppaeg L) ifpipeline
Theny = /max; Z(s“PEJ)gj (i)  ifpipelin (11)
1/tenn otherwise
Encyy = Z t % Pacr + tidle * Pidle + Dace * Enpit
(si,PEj)eJ
(12)

In Equation 10, the total CNN latency is computed as the
difference between end time s +1({||) of the last CNN layer
lir) and the start time s of the first CNN layer /;; Latency
t(l;) of CNN layer /; is estimated by the ALOHA per-layer
evaluation procedure, proposed in Section VI.
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In Equation 11, the CNN throughput is computed. If a
CNN is executed as a pipeline, its throughput is estimated
as 1, divided on time max; Z(s,«, PE)es t(l;), required to exe-
cute CNN on processors {PE;},j € [1,M] of the target
platform, where Z( 5:.PE))ES t(I;) is time (in seconds), taken by
processor PE; to execute all CNN layers {/;}, mapped on this
processor. If a CNN is executed sequentially, its throughput
is computed as 1/tcyy, where fcyy is the CNN latency,
computed using Equation 10.

In Equation 12, the total CNN energy Encyy is computed
as the sum of energy costs of all layers of a CNN. The
energy cost of layer /; € L is computed as the sum of
three factors: the layer latency t, which is actually a function
t(l;, PE;) of the layer /; and of the processor PE; on which
it is executed, multiplied on peak power consumption P,
which is depending on the processor PEj; the idle time #;4y.,
which is defined according to a latency constraint and the
layer latency t, multiplied on idle power consumption P;g;
the cost Enyp;; of bit accesses to the global memory, multiplied
on the number of bits by transferred by the processor PE;
during the execution of layer /;.

VIil. EXPERIMENTAL RESULTS

In the following, we present experimental results involving
execution time and energy consumption predictions obtained
by the ALOHA method. In section VIII-A, the accuracy of
our proposed method is compared with the OPS count and the
Roofline model in a single layer execution time estimation,
showing reduced average prediction error in both evaluated
platforms, NEURAghe and Jetson. In section VIII-B, we con-
sider a consumption model characterized for NEURAghe,
and evaluate the advantages of the ALOHA method, over
the Roofline model, in providing accurate execution time and
memory access count predictions for the energy consumption
estimation. In section VIII-C, we consider a NAS process,
aiming at selecting optimal CNN architectures for both target
platforms, NEURAghe and Jetson. The last section VIII-D
explores throughput estimations for CNNs executed on a
heterogeneous platform, such as Jetson TX2. We evalu-
ate the combined impact of layer-level ALOHA prediction
accuracy and the proposed CNN metric aggregation when
different scheduling schemes are exploited. All of the con-
sidered estimation methods, as well as the aggregation mod-
ule, and the evolutionary algorithm, were implemented in
python3 scripts, running on Azure NC6_v?2 Virtual Machine,
and exploiting an NVIDIA Tesla P100 GPU.

A. LAYER-LEVEL ACCURACY

We characterized a grid of over 2000 common CNN con-
volutional layer configurations, whose parameters are sum-
marized in Table 6, to quantitatively compare the presented
ALOHA method with the OPS count, and the traditional
Roofline model, in execution time estimation. Figure 3a
and 3b show the prediction error distribution for the three
methods, through comparison with execution time measured
on the target platforms.
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FIGURE 3. Error distribution on the latency estimation for the examined estimation methods.

TABLE 6. Parameters of the convolutional layers measured for the
ALOHA method accuracy assessment. The evaluated layer configurations
were obtained as different combinations of the listed values, for Input
Features, Output Features, Image Size, and Kernel Size.

Parameters
3,8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 1024
16, 32, 48, 64, 128, 192, 256, 384, 512, 1024

Input Features
Output Features

Image Size 2x2, 4x4, 8x8, 14x14, 16x16, 28x28, 32x32,
56x56, 64x64, 112x112, 128x128, 224x224, 256x356, 512x512
Kernel Size 1x1, 3x3, 5x5, 7x7, 11x11

NEURAghe. The rounding effects on the layer’s param-
eters, connected to the computing matrix size, deeply affect
execution time prediction. Neglecting such an effect leads to
dramatically underestimate the actual number of OPS per-
formed during the layer execution, by a factor of 0.25 on
average, and up to a factor of over 0.85. To highlight
the contribution of the other non-idealities modeled by our
approach, the rounding effect correction was also considered
in the Roofline and the OPS-based estimations. Nonethe-
less, as shown in Figure 3a, the OPS count method pro-
vides latency estimations suffering from 63.4% average error,
despite being very immediate and comfortable to build.
The Roofline model, although introducing rough data trans-
fer time evaluation considering the IO bandwidth ceiling,
still shows 57.3% estimation error. On the other hand,
NEURAghe’s ALOHA model proves to be significantly more
accurate, reducing the average estimation error to 12.7%.

Jetson. The runtime management in the GPU engine
is intrinsically less predictable than the hardware-based
scheduling in NEURAghe. The ALOHA method only pro-
vides the possibility to account for inefficiencies connected
to the Operating System in terms of startup time, modeled
for Jetson as a constant startup overhead. Thus, the unpre-
dictability of the runtime management results in a less
accurate platform model, compared to the one obtained for
NEURAghe. The evaluated layers in Table 6 were imple-
mented with the TensorRT [50] Deep Learning library, which
is the best-known and state-of-the-art Deep learning library
for the NVIDIA Jetson TX2 platform. The estimation error
affecting the examined methods, depicted in Figure 3b, shows
how both the OPS count and the Roofline model provide
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very poor precision, with up to 2x times over-estimation of
the CNN layers performance, compared to the performance
measured on the platform, while the ALOHA model shows
reduced 56.5% average error.

Impact of batch processing on Jetson. To account for
other processing scenarios, we consider the case of batch
processing on the Jetson platform. Figure 3c reports the esti-
mation error of the examined methods, considering variable
batch sizes, up to a value of 32. This scheduling choice allows
for better resource utilization, providing greater opportunities
for parallelization. This results in a measured operating per-
formance closer to the peak value for the platform, thus both
the OPS and the Roofline-based estimations show a reduced
prediction error, although its average value is still over 2x the
one obtainable thanks to the ALOHA method.

B. IMPACT ON ENERGY CONSUMPTION ESTIMATION

The scope of this section is to provide an overview of the
impact that the ALOHA method has on energy consumption
estimation. To this aim, we have considered an energy con-
sumption expression that highlights the dependence of this
metric on execution time and memory access count, as repre-
sented in Equation 13, which is a simplified version of 12
considering only the power dissipated by a convolutional
layer executed on the accelerator:

En = Pact x4+ Enbit * bacc (13)

For single layer estimation we neglect the idle contribution,
considering t;5. = 0 in Equation 12. As an example of the
impact of detailed platform modelling, we have character-
ized Equation 13 for NEURAghe, using the values reported
in Table 4 for P, and Enp;. For brevity reasons, we only
refer to the NEURAghe platform, although a similar model
could be exploited to perform energy consumption estima-
tions for the Jetson, as long as the active and idle consumption
values, as well as the energy per bit accessed, are known.

Exploiting the model in Equation 13, we have estimated
the energy consumption for the grid of layers with param-
eters summarized in Table 6, by referring to access count
and execution time predictions based on the Roofline and
ALOHA methods. The prediction error is evaluated through
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comparison with estimates relying on measured execution
time and precise access count. The results in terms of error
distribution are summarized in Figure 4a. The ALOHA
method provides more accurate execution time predictions,
and a precise evaluation of data transfers, producing an aver-
age 11.3% estimation error on the energy consumption value.
The Roofline model estimations are affected by an average
error of around 52.7%, which is mainly connected to the
predicted execution time, as shown in Figure 4b. Neglecting
repeated transfers, in evaluating the number of accesses to the
DDR, produces an average 17% error on the memory traffic
evaluation, although it only determines 2% prediction error
on the energy estimation.

C. IMPACT ON NAS

We analyze here the impact of platform awareness and accu-
rate inference execution time prediction in a NAS process,
aiming at selecting optimal CNN architectures for the target
platforms modeled in the previous sections, NEURAghe and
Jetson.

The selected search space explores network architectures
for image classification, exploiting the structure of the well
known VGG architecture [53], targeting CIFAR-10 [29]. The
considered network architectures are composed as indicated
in Table 7. Each network presents 5 convolutional stages.
Within each stage, all convolutional layers share the same
kernel and feature sizes, defined in columns 4 and 5. The
architectures differentiate on the number of convolutional
layers in each stage, whose maximum value is reported in
column 6, and on their channel width value. Possible width
values in each stage are listed in column 3. A MaxPool-
ing layer is placed between successive convolutional stages,
while a Global Average Pooling precedes the final Gemm
stage, described in the last row of Table 7.

The search strategy first exploits one-shot training as devel-
oped by the authors of [34], to train all the possible combina-
tions of the parameters in Table 7. The total number of trained
networks sums up to 3.16M design points.

Once the training is completed, an evolutionary algorithm
is exploited to search for the optimal network architecture.

VOLUME 9, 2021

TABLE 7. Design Space Exploration parameters for NAS targeting
NEURAghe and Jetson.

Stage Operator Output Kernel Input Max
Features Size Size Depth
0 Conv 48/64 3x3 32x32 2
1 Conv 96/128 3x3 16x16 2
2 Conv 192/256 3x3 8x8 4
3 Conv 384/512 3x3 4x4 4
4 Conv 384/512 3x3 2x2 4
5 Gemm 384/512 2

The training procedure was executed on Azure NC6_v2 Vir-
tual Machine, exploiting an NVIDIA Tesla P100 GPU.
According to the Progressive Shrinking method exploited
by [34], the teacher network was trained for 15 epochs, then
subnetworks with different depth values were refined through
additional 45 epochs, while different values of channel width,
as described in Table 7, are lastly enabled through the final
180 epochs. The algorithm starts from the random selection
of 100 network architectures, which constitute the starting
population. At each evolution step, the architectures in the
population are evaluated and a new generation is created
depending on the evaluation results, as the union of three
components:

« 25 most accurate architectures of the previous genera-
tion;

« 50 architectures obtained through their random mutation
in stage depth and layer width;

e 25 architectures obtained through the crossover of
the top 2 most accurate architectures of the previous
generation.

According to the implementation in [34], the latency con-
straint limits a platform-aware search space [54]. Network
architectures are only admitted in evolving generations if they
are compliant with the latency constraint.

The results presented in the following involve selec-
tions targeting best network accuracy, where applying the
latency constraint at each generation exploits OPS, Roofline,
or ALOHA methods. We compare the resulting architecture
selections, with those obtained using LUTs for the latency
evaluation. Since LUTs contain latency numbers measured on
the actual hardware, this method, although being not flexible,
is very precise and it is considered as a reference in the
following. The LUTs were populated by performing latency
on-hardware measurements on both NEURAghe and Jetson
platforms. Thus, the four NAS strategies considered (the one
based on LUTs, and the ones based on the three estimation
methods) define different search spaces, and produce an inde-
pendent selection output, after 20 generations.

Every NAS experiment is repeated 5 times, to account for
the effect of random selections within the genetic algorithm.

NAS targeting NEURAghe. We have performed two NAS
processes, using respectively 10 ms and 12.5 ms as latency
constraints.

For each constraint, we have executed the whole selec-
tion process using each of the four latency estimation meth-
ods presented above and we compared the selection results.
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The Pareto plots in Figure 5a and 5c show the distribution
of the design points in the last generation, in one of the
five trials: the design points selected by the NAS based on
the ALOHA method are much closer to the points selected
by the NAS according to LUTSs; on the contrary, both the
OPS and Roofline methods mistakenly focus on complex
architectures, with higher levels of accuracy, but violating
the search constraint on execution time. However, while the
ALOHA pattern in Figure 5a looks very different from the
one of the evaluated alternatives, the example in Figure Sc
shows that the accuracy in inference time prediction has a
lower impact on the design points selection when the latency
constraint is more relaxed.

Figure 5b and 5d, show how different the CNN architec-
tures selected using the evaluation methods are from the CNN
selected by LUT, over the five trials. In general, in terms
of latency, the solution found using ALOHA is significantly
more similar (around 3% deviation on average for the 10 ms
constraints and always few percentage points for 12 ms).

To quantitative estimate the similarity of the explorations,
besides the final selection points, we have built the Pareto
front resulting from each of the NAS processes and referred
to common metrics as the Degree of Approximation [55] and
the Hypervolume [56] to compare them. The DoA values,
reported in Table 8, show that the ALOHA-driven Pareto front
is by one order-of-magnitude closer to the LUT-driven one,
compared to those obtained using the other methods.

Figure 5e and 5g show the hypervolume shapes, in the
admissible region, of the fronts obtained in one of NAS trials,
for each of the constraints defined. The hypervolumes in this
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TABLE 8. Degree of approximation from the reference Pareto front of the
fronts resulting from evolutionary NAS based on the examined estimation
methods, targeting NEURAghe with 10ms and 12.5ms latency constraint.

Constraint OPS DoA Roofline DoA ALOHA DoA
10 ms 0.54 0.63 0.02
12.5 ms 0.51 0.47 0.04

section are evaluated by choosing a reference point aligned
with the constraint, with coordinates (90%, constraint ms).
The ALOHA prediction produces a pattern similar to LUTs,
while the Roofline and OPS count methods result in sig-
nificantly different hypervolume shapes. Figure 5f and 5h
report the deviation of the hypervolume indicator from the
one evaluated on the LUT Pareto front, throughout the set of
trials, confirming that the ALOHA Pareto front shapes are,
in all the trials, much more similar to LUT compared to the
alternatives.

Finally, we compare the methods also in terms of pre-
dictability and reliability, since, when using inaccurate esti-
mation methods, during the selection process, the algorithm
could include in evolving populations design points that
are wrongly estimated to be compliant with the constraints.
We have counted how often the architectures included in the
last population are instead inadmissible according to their on-
hardware measure. Table 9 shows ALOHA has selected only
CNN architectures compliant with the latency constraint,
at the end of all the five trials (100% of selected admissible
points). On the contrary, OPS- and Roofline-based selections
include a quite high rate of inadmissible points: only around
3% of the points are legal at 10 ms and only around 30% for
12.5 ms.
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TABLE 9. Percentage of admissible design points evaluated in the last
generation of evolutionary NAS based on the examined estimation
methods, targeting NEURAghe with 10ms and 12.5ms latency constraint.

Constraint OPS Roofline ALOHA
10 ms 2.5% 3.6% 100%
12.5 ms 26.2% 33.7% 100%

NAS targeting Jetson. In the case of NAS targeting Jetson,
we selected a soft latency constraint equal to 3.18 ms, and a
more demanding one equal to 2 ms. Figure 6a and Figure 6¢
highlight that, although in general the ALOHA method is
less accurate on Jetson, the discrepancy between the selection
operated using LUTs and ALOHA is still reduced compared
to the alternatives. Figure 6b shows that this has been the
case in all the trials when considering the tightest constraint,
while Figure 6d shows that when the constraint is softened,
the inaccuracy in performance estimation has a lower impact.
Nevertheless, on average, the ALOHA method has produced
results clearly more aligned with what was produced by
LUTs. The comparison based on the Pareto fronts confirms
the same trend. Hypervolumes in Figure 6e and 6g show that
ALOHA finds Pareto-optimal points that better follow the
LUT’s Pareto front profile, especially in the case of the 2ms
constraint. In this case, the ALOHA-driven Hypervolume
indicator differs from the LUT-driven one, in general, by less
than 10%, while, in their more favorable cases, the alter-
natives differ by at least 40%. The DoA metric reported
in Table 10 provides similar results since ALOHA reduces
deviation by at least a factor of 4. When the constraint is more
relaxed the benefits are, as expectable, less visible. ALOHA
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TABLE 10. Degree of approximation from the reference Pareto front of
the fronts resulting from evolutionary NAS based on the examined
estimation methods, targeting Jetson with 2ms and 3.18ms latency
constraint.

Constraint OPS DoA Roofline DoA ALOHA DoA
2 ms 0.3 0.32 0.07
3.18 ms 0.16 0.15 0.07

TABLE 11. Percentage of admissible design points evaluated in the last
generation of evolutionary NAS based on the examined estimation
methods, targeting Jetson with 2ms and 3.18ms latency constraint.

Constraint OPS Roofline ALOHA
10 ms 2.6% 2.1% 29.6%
12.5 ms 61.9% 61.9% 76 %

reduces DoA by 2x and Hypervolume deviation by around
3%, on average. Table 11 provides a view of the effects of
ALOHA, when exploring for Jetson, on predictability and
reliability. Considering the tightest constraint, when using
Roofline and OPS, only around 3% of the architectures in
the last population are effectively legal. ALOHA, in this
case, is also selecting some inadmissible points, however,
the rate of legal points at the end of the process is one order
of magnitude higher. When the constraint is softer, finding
admissible points is easier for all the estimation methods,
however, ALOHA still proves to be slightly more reliable
(76% vs 62% ).

D. IMPACT OF AGGREGATION ON PREDICTION
ACCURACY

Finally, in this section, we evaluate the impact of CNN met-
ric aggregation, proposed in Section VII, on the prediction
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accuracy of our proposed methodology. We perform an
experiment, where we use our proposed evaluation method
with different CNN execution configurations, to estimate
the throughput of over 1700 common CNNs, resulting from
NAS exploration described in Section VIII-C. The structure
of these CNNs is summarized in Table 7. Experiments in
this section focus on the aggregation of throughput of the
CNNs, executed on Jetson TX2 heterogeneous embedded
platform [28], with different ways of CNN execution, dis-
cussed in Section VII. In this experiment, we perform two
trials.

In Trial 1, we study the impact of CNN distribution over
platform processors, discussed in Section VII on evaluation
of platform-aware metrics of CNNs. In this trial, we esti-
mate throughput of the CNNs, when layers of every CNN
are executed sequentially (one-by-one) and are distributed
over a GPU and 4 ARM Cortex A-57 CPUs of the Jetson
TX2 platform, so that the computations within every layer
l; : op; = conv are offloaded on the platform GPU, and com-
putations within every layer /; : op; # conv are performed
on the platform CPUs. We compare the CNN throughput
measured on the platform, with the throughput estimated by
the ALOHA method when the CNN execution configuration:
A) is unspecified; B) is specified as pipeline = false and
ops_dist = {(conv, accelerator), (gemm : CPU), (pool
CPU)}. The results of this experiment are given in Figure 7a
using mean-and-error. The CNN throughput estimation is
very inaccurate when the layers distribution is not considered.
Error, on average, reaches 450% when using estimation A.
In B, considering the execution configuration, proposed in
our CNN metric aggregation (see Section VII), our method
takes into account heterogeneity and reduces error down
t0 27%.

In Trial 2, we study the impact of pipeline parallelism
exploitation, discussed in Section VII on the evaluation of
platform-aware metrics of CNNs. In this trial, we estimate
throughput of the CNNs, when layers are distributed over
all processors in the platform exploiting pipeline parallelism.
We compare the error in CNN throughput estimation, with
respect to the throughput measured on hardware, when the
CNN execution configuration is specified as: A) pipeline =
false and ops_dist = (; B) pipeline = true and ops_dist = (.
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The results of this experiment are given in Figure 7b. The
CNN throughput estimation error, on average, reaches 48%
when using estimation A, unaware of the parallel execu-
tion, and 21% when using estimation B, which considers the
exploitation of pipeline.

IX. CONCLUSION

We proposed the ALOHA method, as a general and flexible
instrument to provide accurate latency, energy, and through-
put estimations of a given CNN architecture executed on
a target hardware platform, by exploiting easy-to-use plat-
form and computational models, introducing platform aware-
ness without requiring access to on-hardware measurements.
We showed it allows for a reduction of 3x, up to 5x, of the
average layer-level latency estimation error affecting com-
mon alternative analytical methods and evaluated on two
different platforms: an FPGA-based accelerator, NEURAghe,
and a GPU-based platform, Jetson TX2. Moreover, the pro-
posed method allows to model execution on heterogeneous
platforms, considering different mappings and scheduling
schemes of the CNN computations on the platform’s process-
ing resources, and providing accurate system-level through-
put estimations. The accuracy in execution modeling and
latency estimation was also evaluated in its impact on the
energy consumption estimation, resulting in a 2x precision
improvement. Finally, we show that the high level of platform
awareness provided by detailed modeling through ALOHA
improves by a factor of 4x NAS output predictability, when
compared to the OPS count and Roofline models, and leads
to select Pareto optimal points close to the ones evaluated in
measurement-based NAS.
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