Received July 23, 2021, accepted September 13, 2021, date of publication September 23, 2021, date of current version October 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115243

ALOHA: A Unified Platform-Aware Evaluation
Method for CNNs Execution on Heterogeneous
Systems at the Edge

PAOLA BUSIA®?, SVETLANA MINAKOVA2, TODOR STEFANOV®2, (Member, IEEE),
LUIGI RAFFO®2, AND PAOLO MELONI®2, (Member, IEEE)

IDIEE, University of Cagliari, 09123 Cagliari, Italy
2LIACS, Leiden University, 2333 CA Leiden, The Netherlands

Corresponding author: Paolo Meloni (paolo.meloni@unica.it)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 780788.

ABSTRACT CNN design and deployment on embedded edge-processing systems is an error-prone and
effort-hungry process, that poses the need for accurate and effective automated assisting tools. In such
tools, pre-evaluating the platform-aware CNN metrics such as latency, energy cost, and throughput is a key
requirement for successfully reaching the implementation goals imposed by use-case constraints. Especially
when more complex parallel and heterogeneous computing platforms are considered, currently utilized
estimation methods are inaccurate or require a lot of characterization experiments and efforts. In this paper,
we propose an alternative method, designed to be exible, easy to use, and accurate at the same time.
Considering a modular platform and execution model that adequately describes the details of the platform and
the scheduling of different CNN operators on different platform processing elements, our method captures
precisely operations and data transfers and their deployment on computing and communication resources,
signi cantly improving the evaluation accuracy. We have tested our method on more than 2000 CNN layers,
targeting an FPGA-based accelerator and a GPU platform as reference example architectures. Results have
shown that our evaluation method increases the estimation precision by upto 5 for execution time, and by
2 for energy, compared to other widely used analytical methods. Moreover, we assessed the impact of the
improved platform-awareness on a set of neural architecture search experiments, targeting both hardware
platforms, and enforcing 2 sets of latency constraints, performing 5 trials on each search space, for a total
number of 20 experiments. The predictability is improved by 4 , reaching, with respect to alternatives,

selection results clearly more similar to those obtained with on-hardware measurements.

INDEX TERMS Convolutional neural networks, edge-computing, platform awareness.

I. INTRODUCTION

Convolutional Neural Networks (CNNSs) [1] are biologically
inspired graph computational models, characterized by a
large number of parameters and a high degree of parallelism.
Due to their ability to handle large, unstructured data, CNNs
are widely used to perform tasks such as image and video
recognition, image segmentation, natural language process-
ing, and many others [2]. Nowadays, CNNs are the back-
bone of many applications, such as navigation in self-driving
cars [3], medical image recognition [4], surveillance [5],

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang™ .

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and others [2]. Due to the intense computation workload
associated with their execution, CNNs often require, espe-
cially when operating at the edge, to exploit acceleration on
dedicated processing elements, usually heterogeneous and
highly parallel. CNN inference has been ported on a wide
spectrum of platforms: from high-performance GPU clusters
to embedded systems and mobile devices [6], [7]. Neverthe-
less, the landscape of CNN-enabling cores and processors in
literature is increasingly vast: the majority of silicon vendors
and market actors are proposing new accelerator or processor
architectures designed to improve the ef ciency of CNN
execution ([8] [12]). Rounding up the numbers, the main
three classes of processing elements exploited for this kind

133289

https://orcid.org/0000-0002-1434-9858
https://orcid.org/0000-0001-6006-9366
https://orcid.org/0000-0001-9683-009X
https://orcid.org/0000-0002-8106-4641
https://orcid.org/0000-0002-2058-2373

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

of workload are CPUs, GPUs, and dedicated processing
elements. Understanding the execution of a speci ¢ CNN
architecture on such complex processing systems, before the
actual deployment, is a key need during several design steps:
e.g. during target platform selection, CNN topology de ni-
tion also referred to as Neural Architecture Search (NAS),
task-to-core mapping optimization, code-level optimization.
Most of these steps are time-consuming activities requiring
suf cient expertise in the eld of Deep Learning (DL) [2],
to be performed manually.

Thus, automated design ows and tools are appearing in
the literature, to assist non-experts in such challenging tasks.

However, most tools reported in the literature have a lim-
ited degree of platform awareness: they fail to capture the
effect of potential design choices on the performance metrics
achievable by a CNN architecture under consideration exe-
cuted on a target computing platform, especially when deal-
ing with more complex processing systems, endowed with
accelerators, highly-parallel processors and/or GPUs. Esti-
mation methods implemented in these tools are inaccurate
(I13] [15]), or not suf ciently general ([16] [23]), or require
a lot of design experiments and modeling skills to be used
([24] [26]).

A common uni ed method that solves all these issues,
implementing platform-awareness within automated tools for
CNN design, is still missing.

Therefore, in this paper, we propose the ALOHA® method
for the evaluation of platform-dependent metrics of a CNN,
executed on a heterogeneous platform. Our method relies on
a platform-aware evaluation model, described in Section VI,
designed toV

provide realistic and accurate results: the model
is capable of capturing platform-aware characteristics,
such as occupancy of platform processors, exploitation
of parallelism available in a platform by CNN operators,
repeated data transfers occurring during CNN execution,
and others;

be exible: the model is not dependent on any speci ¢
processing element architectural template. Characteris-
tics that are captured in the model are abstract enough
to be usable for the description of signi cantly different
platform organizations and structures;

be modular: one component of the model describes the
platform, while a second part describes the deployment
strategy which is used by the implementation of CNN
layers (de ned by the user or the selected library). This
improves both accuracy and re-usability because both
components can be adopted in different design cases.
require low development effort: the model does not
require benchmarking. All the information required to
capture the platform and library can be easily derived

1The ALOHA project is available at https://www.aloha-h2020.eu/
and aims at developing a framework providing several tools for
architecture-aware CNN exploration. This work only focuses on modeling,
and it does not deal with adaptivity, pruning, and quantization themes.

133290

from specs or a general understanding of the plat-
form/library operation principles.

To evaluate our method, we compare the accuracy provided
by our proposed method with others with a similar level of
abstraction and development effort, considering two hetero-
geneous platforms as a reference: an open-source FPGA-
based platform called NEURAghe [27] and a GPU-based
Jetson TX2 platform [28]. The architectures presented in
this paper are exactly chosen to represent the three classes
of common processing elements in the embedded domain.
JetsonTX2 is a SoC integrating CPU and GPU. NEURAghe
is implemented on a SoC that integrates CPU and a
CNN-dedicated processing element implemented on recon-

gurable logic. Thus we believe that overall, this selection
covers most of the embedded landscape.

The comparison shows that our approach signi cantly
improves the evaluation precision. Moreover, we perform
several NAS experiments, optimizing the topology of a CNN
to perform classi cation on the CIFAR-10 dataset [29], under
user-de ned latency constraints and targeting the afore-
mentioned platforms. For each exploration, we used dif-
ferent kinds of evaluation methods to confront candidate
design points with the constraint. Comparing the NAS results
obtained using our method with those obtained using other
comparable models, we show that our method signi cantly
improves predictability, bringing NAS selection very similar
to the one obtained by actual on-hardware measurements.

A. PAPER CONTRIBUTIONS

The main novel contributions in this paper can be summarized

asV
an accurate, easy to create and yet generalizable
and reusable platform model and evaluation method,
proposed in Section V and Section VI, suitable to
implement platform-awareness in CNN design and
optimization tools;
assessment of the impact of platform-awareness on
the latency estimation (Section VIII-A), reducing by
3 to 5 the average error in CNN latency estima-
tion, compared to commonly used methods such as the
Roo ine model [16] and operation count, for layer-level
evaluation, and by 1.6 when considering aggregated
CNN-level results on multiple cores (Section V1I1-D);
assessment of the impact of platform-awareness on the
energy estimation (Section VIII-B), showing a 1.9
estimation precision improvement;
assessment of the impact of platform-awareness on
NAS (Section VI11-C), reducing thanks to the proposed
method the latency and accuracy deviation from a simi-
lar NAS exploration having access to actual on-hardware
measurements by a factor of 4, compared to the alterna-
tive methods examined.

Il. RELATED WORK
As an answer to the demand for CNN-based edge-processing,
custom-developed devices and computing systems, an

VOLUME 9, 2021

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

Algorithm 1: Sequential Schedule Generation

Input: CNN(L; E); PE; op_dist, ft(l;; P§)g

Result: CNN schedule J

JD ;;sDO;

fori 2 [1;]jLj] do

PEsuitable D ;;

if 9(op; proc_type)2 op_distV op D I;:op then
for (lj:op; proc_type)2 op_distdo

for PE; 2 PEV PEj:typeD proc_typedo

L L PEsuitable D PEsuitable C PE;

~N oo OB W N e

8 else
9 L PEsuitable D PE;

10 | PE D PEsgitabiepop();
11 while PEsyitable ® ; do

12 PEx D PEsyitabiepop();

13 if t(;; PE,) < t(Ii; PE) then
14 L PE D PE;

15 s Ds;

16 | JDJC(s;PE);
17 sD sCt(lj; PE);

8 returnJ

=

executed on processor PE;. Finally, in Line 18, Algorithm 1
returns sequential schedule of the input CNN.

To generate a pipeline schedule, our aggregation module
uses the heuristic algorithm, proposed in [39]. As explained
above, the pipeline schedule can affect the CNN throughput.
Our proposed CNN metric aggregation module captures the
impact of the CNN schedule on the CNN throughput by
considering the CNN schedule during the CNN throughput
estimation (see Equation 11 explained below).

The CNN schedule, generated by the CNN schedule gen-
erator, is accepted as input by the CNN metric aggregation
sub-module, along with per-layer CNN metric evaluations.
The CNN metric aggregation sub-module, uses Equation 10,
Equation 11 and Equation 12 to estimate CNN latency tcnn
(in seconds), CNN throughput Theny (in frames per second)
and CNN energy cost Encyn (in Joules), respectively.

tcnn D ?Lj C t(|j|L:j) s1 (10)
Theny D l=max (g;pg)29 1) |fp|pel|he (11)
1;tCNN otherwise
Encnn D t Pact Ctidle Pidie C bacc Empit
(s;PE)2J

(12)

In Equation 10, the total CNN latency is computed as the
difference between end time s;_jCt(lj.;) of the last CNN layer
lij and the start time s; of the rst CNN layer I1; Latency
t(lj) of CNN layer [; is estimated by the ALOHA per-layer
evaluation procedure, proposed in Section V1.

VOLUME 9, 2021

In Equation 11, the CNN throughput is computed. If a
CNN is executed as a pipeHne, its throughput is estimated
as 1, divided on time max (4.pg;)2st(li), required to exe-
cute CNN on pgpcessors fPEg;j 2 [1,M] of the target
platform, where (s;PEj)ZSt(li) is time (in seconds), taken by
processor PE; to execute all CNN layers flijg, mapped on this
processor. If a CNN is executed sequentially, its throughput
is computed as 1l/tcnn, Where tonn is the CNN latency,
computed using Equation 10.

In Equation 12, the total CNN energy Encny is computed
as the sum of energy costs of all layers of a CNN. The
energy cost of layer I; 2 L is computed as the sum of
three factors: the layer latency t, which is actually a function
t(li; PE) of the layer Ij and of the processor PE; on which
it is executed, multiplied on peak power consumption Pact,
which is depending on the processor PE; the idle time tigje,
which is de ned according to a latency constraint and the
layer latency t, multiplied on idle power consumption Pigje;
the cost Enyj; of bit accesses to the global memory, multiplied
on the number of bits bacc transferred by the processor PE;
during the execution of layer |;.

VIII. EXPERIMENTAL RESULTS

In the following, we present experimental results involving
execution time and energy consumption predictions obtained
by the ALOHA method. In section VIII-A, the accuracy of
our proposed method is compared with the OPS count and the
Roo ine model in a single layer execution time estimation,
showing reduced average prediction error in both evaluated
platforms, NEURAghe and Jetson. In section V111-B, we con-
sider a consumption model characterized for NEURAghe,
and evaluate the advantages of the ALOHA method, over
the Roo ine model, in providing accurate execution time and
memory access count predictions for the energy consumption
estimation. In section VIII-C, we consider a NAS process,
aiming at selecting optimal CNN architectures for both target
platforms, NEURAghe and Jetson. The last section VIII-D
explores throughput estimations for CNNs executed on a
heterogeneous platform, such as Jetson TX2. We evalu-
ate the combined impact of layer-level ALOHA prediction
accuracy and the proposed CNN metric aggregation when
different scheduling schemes are exploited. All of the con-
sidered estimation methods, as well as the aggregation mod-
ule, and the evolutionary algorithm, were implemented in
python3 scripts, running on Azure NC6_v2 Virtual Machine,
and exploiting an NVIDIA Tesla P100 GPU.

A. LAYER-LEVEL ACCURACY

We characterized a grid of over 2000 common CNN con-
volutional layer con gurations, whose parameters are sum-
marized in Table 6, to quantitatively compare the presented
ALOHA method with the OPS count, and the traditional
Roo ine model, in execution time estimation. Figure 3a
and 3b show the prediction error distribution for the three
methods, through comparison with execution time measured
on the target platforms.

133301

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

160
146.35

100y s0—L T 520
%0 85.65 450
L 80 gy . 400
g £ 350
5] 6337] x 6337 5
o 60 x |57.26 %300
g 50 g 250 24022
S 40 S 200 21104
3 30.21 30.21 8
B 3 : 30. B 150
20 18.18 100
12,66 57.46

OPS Roofline ALOHA oPs

(a) NEURAghe

(b) Jetson

140 144.94 7 144.94
5 120 ‘
2 ‘ 113.62
o 100
& ‘ $6.53
s 80 7445 | 74.36) T
=
186.9 5
T18114 1 60 4536
O 4 w6 42.15 L S/
27.24 2724
a L 2 |
™ 13.56 10.86
Roofline ALOHA 5% 0 OPS Roofline ALOHA

(c) Batch processing on Jetson

FIGURE 3. Error distribution on the latency estimation for the examined estimation methods.

TABLE 6. Parameters of the convolutional layers measured for the
ALOHA method accuracy assessment. The evaluated layer configurations
were obtained as different combinations of the listed values, for Input
Features, Output Features, Image Size, and Kernel Size.

Parameters
3,8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 1024
16, 32, 48, 64, 128, 192, 256, 384, 512, 1024
2x2, 4x4, 8x8, 14x14, 16x16, 28x28, 32x32,
56x56, 64x64, 112x112, 128x128, 224x224, 256x356, 512x512
1x1, 3x3, 5x5, 7x7, 11x11

Input Features
Output Features
Image Size

Kernel Size

NEURAghe. The rounding effects on the layer’s param-
eters, connected to the computing matrix size, deeply affect
execution time prediction. Neglecting such an effect leads to
dramatically underestimate the actual number of OPS per-
formed during the layer execution, by a factor of 0.25 on
average, and up to a factor of over 0.85. To highlight
the contribution of the other non-idealities modeled by our
approach, the rounding effect correction was also considered
in the Roo ine and the OPS-based estimations. Nonethe-
less, as shown in Figure 3a, the OPS count method pro-
vides latency estimations suffering from 63.4% average error,
despite being very immediate and comfortable to build.
The Roo ine model, although introducing rough data trans-
fer time evaluation considering the 10 bandwidth ceiling,
still shows 57.3% estimation error. On the other hand,
NEURAghe’s ALOHA model proves to be signi cantly more
accurate, reducing the average estimation error to 12.7%.

Jetson. The runtime management in the GPU engine
is intrinsically less predictable than the hardware-based
scheduling in NEURAghe. The ALOHA method only pro-
vides the possibility to account for inef ciencies connected
to the Operating System in terms of startup time, modeled
for Jetson as a constant startup overhead. Thus, the unpre-
dictability of the runtime management results in a less
accurate platform model, compared to the one obtained for
NEURAghe. The evaluated layers in Table 6 were imple-
mented with the TensorRT [50] Deep Learning library, which
is the best-known and state-of-the-art Deep learning library
for the NVIDIA Jetson TX2 platform. The estimation error
affecting the examined methods, depicted in Figure 3b, shows
how both the OPS count and the Roo ine model provide

133302

very poor precision, with up to 2x times over-estimation of
the CNN layers performance, compared to the performance
measured on the platform, while the ALOHA model shows
reduced 56.5% average error.

Impact of batch processing on Jetson. To account for
other processing scenarios, we consider the case of batch
processing on the Jetson platform. Figure 3c reports the esti-
mation error of the examined methods, considering variable
batch sizes, up to a value of 32. This scheduling choice allows
for better resource utilization, providing greater opportunities
for parallelization. This results in a measured operating per-
formance closer to the peak value for the platform, thus both
the OPS and the Roo ine-based estimations show a reduced
prediction error, although its average value is still over 2x the
one obtainable thanks to the ALOHA method.

B. IMPACT ON ENERGY CONSUMPTION ESTIMATION

The scope of this section is to provide an overview of the
impact that the ALOHA method has on energy consumption
estimation. To this aim, we have considered an energy con-
sumption expression that highlights the dependence of this
metric on execution time and memory access count, as repre-
sented in Equation 13, which is a simpli ed version of 12
considering only the power dissipated by a convolutional
layer executed on the acceleratorV

EnD Pact t CEnit bacc (13)

For single layer estimation we neglect the idle contribution,
considering tige D 0 in Equation 12. As an example of the
impact of detailed platform modelling, we have character-
ized Equation 13 for NEURAghe, using the values reported
in Table 4 for P4t and Enyjt. For brevity reasons, we only
refer to the NEURAghe platform, although a similar model
could be exploited to perform energy consumption estima-
tions for the Jetson, as long as the active and idle consumption
values, as well as the energy per bit accessed, are known.

Exploiting the model in Equation 13, we have estimated
the energy consumption for the grid of layers with param-
eters summarized in Table 6, by referring to access count
and execution time predictions based on the Roo ine and
ALOHA methods. The prediction error is evaluated through

VOLUME 9, 2021

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

Access count
3.9%

78.30

59.42
52.68

26.08 96.1% Texe

16.39

11.27
7.20
272

Roofline ALOHA

(a) Prediction error distribu- (b) Contributions to the error
tion for the Roofline and in energy estimation based on
ALOHA models. the Roofline model.

FIGURE 4. Error on NEURAghe energy consumption estimation.

comparison with estimates relying on measured execution
time and precise access count. The results in terms of error
distribution are summarized in Figure 4a. The ALOHA
method provides more accurate execution time predictions,
and a precise evaluation of data transfers, producing an aver-
age 11.3% estimation error on the energy consumption value.
The Roo ine model estimations are affected by an average
error of around 52.7%, which is mainly connected to the
predicted execution time, as shown in Figure 4b. Neglecting
repeated transfers, in evaluating the number of accesses to the
DDR, produces an average 17% error on the memory traf c
evaluation, although it only determines 2% prediction error
on the energy estimation.

C. IMPACT ON NAS

We analyze here the impact of platform awareness and accu-
rate inference execution time prediction in a NAS process,
aiming at selecting optimal CNN architectures for the target
platforms modeled in the previous sections, NEURAghe and
Jetson.

The selected search space explores network architectures
for image classi cation, exploiting the structure of the well
known VGG architecture [53], targeting CIFAR-10 [29]. The
considered network architectures are composed as indicated
in Table 7. Each network presents 5 convolutional stages.
Within each stage, all convolutional layers share the same
kernel and feature sizes, de ned in columns 4 and 5. The
architectures differentiate on the number of convolutional
layers in each stage, whose maximum value is reported in
column 6, and on their channel width value. Possible width
values in each stage are listed in column 3. A MaxPool-
ing layer is placed between successive convolutional stages,
while a Global Average Pooling precedes the nal Gemm
stage, described in the last row of Table 7.

The search strategy rst exploits one-shot training as devel-
oped by the authors of [34], to train all the possible combina-
tions of the parameters in Table 7. The total number of trained
networks sums up to 3.16M design points.

Once the training is completed, an evolutionary algorithm
is exploited to search for the optimal network architecture.

VOLUME 9, 2021

TABLE 7. Design Space Exploration parameters for NAS targeting
NEURAghe and Jetson.

Stage Operator Output Kernel Input Max
Features Size Size Depth
0 Conv 48/64 3x3 32x32 2
1 Conv 96/128 3x3 16x16 2
2 Conv 192/256 3x3 8x8 4
3 Conv 384/512 3x3 4x4 4
4 Conv 384/512 3x3 2x2 4
5 Gemm 384/512 2

The training procedure was executed on Azure NC6_v2 Vir-
tual Machine, exploiting an NVIDIA Tesla P100 GPU.
According to the Progressive Shrinking method exploited
by [34], the teacher network was trained for 15 epochs, then
subnetworks with different depth values were re ned through
additional 45 epochs, while different values of channel width,
as described in Table 7, are lastly enabled through the nal
180 epochs. The algorithm starts from the random selection
of 100 network architectures, which constitute the starting
population. At each evolution step, the architectures in the
population are evaluated and a new generation is created
depending on the evaluation results, as the union of three
componentsV

25 most accurate architectures of the previous genera-

tion;

50 architectures obtained through their random mutation

in stage depth and layer width;

25 architectures obtained through the crossover of

the top 2 most accurate architectures of the previous

generation.

According to the implementation in [34], the latency con-
straint limits a platform-aware search space [54]. Network
architectures are only admitted in evolving generations if they
are compliant with the latency constraint.

The results presented in the following involve selec-
tions targeting best network accuracy, where applying the
latency constraint at each generation exploits OPS, Roo ine,
or ALOHA methods. We compare the resulting architecture
selections, with those obtained using LUTs for the latency
evaluation. Since LUTSs contain latency numbers measured on
the actual hardware, this method, although being not exible,
is very precise and it is considered as a reference in the
following. The LUTs were populated by performing latency
on-hardware measurements on both NEURAghe and Jetson
platforms. Thus, the four NAS strategies considered (the one
based on LUTS, and the ones based on the three estimation
methods) de ne different search spaces, and produce an inde-
pendent selection output, after 20 generations.

Every NAS experiment is repeated 5 times, to account for
the effect of random selections within the genetic algorithm.

NAS targeting NEURAghe. We have performed two NAS
processes, using respectively 10 ms and 12.5 ms as latency
constraints.

For each constraint, we have executed the whole selec-
tion process using each of the four latency estimation meth-
ods presented above and we compared the selection results.

133303

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

925 Roof

LUT e s @ se ~hukOFS
ALOHA Mg o ‘ 63.25
92,0 RS 57.30 57.40
2915 4532
8
El 32.66
<910 2448
- 2136
90,5 12.10
3.61
900
5 7 9 il 315 7 192 23
Execution time ms ALOHA Roof OPS
(a) 10 ms (b) 10 ms
93
925 679
026 %22 g4
5526
92
= 45.63
g
Z915
<
91
90,5
11.62
591 365
90
6 65 7 7.5 8 8.5 9 9.5 10
Execution time ms ALOHA Roof OPS
——LUT -=+-~ALOHA -<-Roof -=-OPS
(e) 10 ms (f) 10 ms

925 LUT ALOH,
Saatipepd BOLOPS L

3683 3733

23.67
21.29

Accuracy

910 - 1715 17.14

11.45
578

141

5 7 9 1 13 15 17 19 21 23

Execution time ms ALOHA Roof OPS

(c) 12,5 ms (d) 12,5 ms

44.58
39.83

Accuracy
©

24.80
21.84
274

1416
939 769 405

636
1.03

6 7 8 9 10 11 12

Execution time ms ALOHA Roof OPS

(2) 12,5 ms (h) 12,5 ms

FIGURE 5. a-c) Pareto plot of accuracy vs latency for the design points in the last generation of one trial of evolutionary NAS targeting NEURAghe.
Performance evaluation exploits LUTs or ALOHA, Roofline, and OPS based estimation. b-d) Latency deviation distribution, among 5 trials, of NAS
selection. Performance evaluation based on the ALOHA, Roofline, and OPS models is compared to NAS selection obtained by performance evaluation
based on LUTs. e-g) Hypervolume comparison for the Pareto fronts resulting from evolutionary NAS. Performance evaluation is based on LUTs, and on the
evaluated prediction methods. f-h) Hypervolume deviation of the Pareto fronts resulting from NAS based on the examined prediction methods, from the

Pareto front produced in NAS exploiting LUTs.

The Pareto plots in Figure 5a and 5¢ show the distribution
of the design points in the last generation, in one of the

ve trials: the design points selected by the NAS based on
the ALOHA method are much closer to the points selected
by the NAS according to LUTS; on the contrary, both the
OPS and Roo ine methods mistakenly focus on complex
architectures, with higher levels of accuracy, but violating
the search constraint on execution time. However, while the
ALOHA pattern in Figure 5a looks very different from the
one of the evaluated alternatives, the example in Figure 5¢
shows that the accuracy in inference time prediction has a
lower impact on the design points selection when the latency
constraint is more relaxed.

Figure 5b and 5d, show how different the CNN architec-
tures selected using the evaluation methods are from the CNN
selected by LUT, over the ve trials. In general, in terms
of latency, the solution found using ALOHA is signi cantly
more similar (around 3% deviation on average for the 10 ms
constraints and always few percentage points for 12 ms).

To quantitative estimate the similarity of the explorations,
besides the nal selection points, we have built the Pareto
front resulting from each of the NAS processes and referred
to common metrics as the Degree of Approximation [55] and
the Hypervolume [56] to compare them. The DoA values,
reported in Table 8, show that the ALOHA-driven Pareto front
is by one order-of-magnitude closer to the LUT-driven one,
compared to those obtained using the other methods.

Figure 5e and 5g show the hypervolume shapes, in the
admissible region, of the fronts obtained in one of NAS trials,
for each of the constraints de ned. The hypervolumes in this

133304

TABLE 8. Degree of approximation from the reference Pareto front of the
fronts resulting from evolutionary NAS based on the examined estimation
methods, targeting NEURAghe with 10ms and 12.5ms latency constraint.

Constraint OPS DoA Roofline DoA ALOHA DoA
10 ms 0.54 0.63 0.02
12.5 ms 0.51 0.47 0.04

section are evaluated by choosing a reference point aligned
with the constraint, with coordinates (90%, constraintms).
The ALOHA prediction produces a pattern similar to LUTS,
while the Roo ine and OPS count methods result in sig-
ni cantly different hypervolume shapes. Figure 5f and 5h
report the deviation of the hypervolume indicator from the
one evaluated on the LUT Pareto front, throughout the set of
trials, con rming that the ALOHA Pareto front shapes are,
in all the trials, much more similar to LUT compared to the
alternatives.

Finally, we compare the methods also in terms of pre-
dictability and reliability, since, when using inaccurate esti-
mation methods, during the selection process, the algorithm
could include in evolving populations design points that
are wrongly estimated to be compliant with the constraints.
We have counted how often the architectures included in the
last population are instead inadmissible according to their on-
hardware measure. Table 9 shows ALOHA has selected only
CNN architectures compliant with the latency constraint,
at the end of all the ve trials (100% of selected admissible
points). On the contrary, OPS- and Roo ine-based selections
include a quite high rate of inadmissible points: only around
3% of the points are legal at 10 ms and only around 30% for
12.5 ms.

VOLUME 9, 2021

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

925 Roof, OPS
ALOHA s~ A
LUT &, .
920
.. 58.56 58.56
N
5915 “’ .
] i 4233 4233
2 4
2 3879 3831
=910 R
- 17.26
90.5 1004
9.61
579
90,0
o 1 2 3 4 5 6 7 8
Execution time ms ALOHA Roof OPS
«LUT +ALOHA Roof = OPS 4 NAS selection
(a) 2 ms (b) 2 ms
93 100 100
86.81
925 78.93
80.30
73.82
92
Z 57.35
H
E 915 45.08
< 43.55
91
29.54
90,5 1673
90 '
1 12 14 16 18 2
Exceution time ms ALOHA Roof OPS
——LUT -#~-ALOHA -=--OPS --+--Roof
()2 ms () 2 ms

92,5
. . 4 Roof, OPS

92,0

Accuracy

=

3342 3342

8

2133 2133

15.69

816156 163 163

g
B3

0 1 2 3 4 H 6 7 8

Exccution time ms. ALOHA Roof OPS

(c) 3,18 ms (d) 3,18 ms

2275 2275

Accuracy
°
o

1081 105

753

39 396
409230 5
150

1 1.5 2 2,5 3

Exccution time ms ALOHA Roof OPS

(g) 3,18 ms (h) 3,18 ms

FIGURE 6. Pareto plot of accuracy vs latency for the design points in the last generation of one trial of evolutionary NAS targeting Jetson. Performance
evaluation exploits LUTs or ALOHA, Roofline, and OPS based estimation. b-d)Latency deviation distribution, among 5 trials, of NAS selection. Performance
evaluation based on the ALOHA, Roofline, and OPS models is compared to NAS selection obtained by performance evaluation based on LUTs.
e-g)Hypervolume comparison for Pareto fronts resulting from evolutionary NAS. Performance evaluation is based on LUTs, and on the evaluated
prediction methods. f-h)Hypervolume deviation of the Pareto fronts resulting from prediction methods, from the Pareto front produced in NAS exploiting

LUTs.

TABLE 9. Percentage of admissible design points evaluated in the last
generation of evolutionary NAS based on the examined estimation
methods, targeting NEURAghe with 10ms and 12.5ms latency constraint.

Constraint OPS Roofline ALOHA
10 ms 2.5% 3.6% 100%
12.5 ms 26.2% 33.7% 100%

NAS targeting Jetson. In the case of NAS targeting Jetson,
we selected a soft latency constraint equal to 3.18 ms, and a
more demanding one equal to 2 ms. Figure 6a and Figure 6¢
highlight that, although in general the ALOHA method is
less accurate on Jetson, the discrepancy between the selection
operated using LUTs and ALOHA is still reduced compared
to the alternatives. Figure 6b shows that this has been the
case in all the trials when considering the tightest constraint,
while Figure 6d shows that when the constraint is softened,
the inaccuracy in performance estimation has a lower impact.
Nevertheless, on average, the ALOHA method has produced
results clearly more aligned with what was produced by
LUTs. The comparison based on the Pareto fronts con rms
the same trend. Hypervolumes in Figure 6e and 6g show that
ALOHA nds Pareto-optimal points that better follow the
LUT’s Pareto front pro le, especially in the case of the 2ms
constraint. In this case, the ALOHA-driven Hypervolume
indicator differs from the LUT-driven one, in general, by less
than 10%, while, in their more favorable cases, the alter-
natives differ by at least 40%. The DoA metric reported
in Table 10 provides similar results since ALOHA reduces
deviation by at least a factor of 4. When the constraint is more
relaxed the bene ts are, as expectable, less visible. ALOHA

VOLUME 9, 2021

TABLE 10. Degree of approximation from the reference Pareto front of
the fronts resulting from evolutionary NAS based on the examined
estimation methods, targeting Jetson with 2ms and 3.18ms latency
constraint.

Constraint OPS DoA Roofline DoA ALOHA DoA
2 ms 0.3 0.32 0.07
3.18 ms 0.16 0.15 0.07

TABLE 11. Percentage of admissible design points evaluated in the last
generation of evolutionary NAS based on the examined estimation
methods, targeting Jetson with 2ms and 3.18ms latency constraint.

Constraint OPS Roofline ALOHA
10 ms 2.6% 2.1% 29.6%
12.5 ms 61.9% 61.9% 76 %

reduces DoA by 2 and Hypervolume deviation by around
3 , on average. Table 11 provides a view of the effects of
ALOHA, when exploring for Jetson, on predictability and
reliability. Considering the tightest constraint, when using
Roo ine and OPS, only around 3% of the architectures in
the last population are effectively legal. ALOHA, in this
case, is also selecting some inadmissible points, however,
the rate of legal points at the end of the process is one order
of magnitude higher. When the constraint is softer, nding
admissible points is easier for all the estimation methods,
however, ALOHA still proves to be slightly more reliable
(76% vs 62%).

D. IMPACT OF AGGREGATION ON PREDICTION
ACCURACY

Finally, in this section, we evaluate the impact of CNN met-
ric aggregation, proposed in Section VI, on the prediction

133305

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

500 I 60

400 28

300 30

200 A B 20

100 |10 A
0 0

(a) Sequential execution (b) Pipeline

FIGURE 7. Error distribution on predicted throughput for CNNs
distributed over heterogeneous processors of Jetson TX2.

accuracy of our proposed methodology. We perform an
experiment, where we use our proposed evaluation method
with different CNN execution con gurations, to estimate
the throughput of over 1700 common CNNSs, resulting from
NAS exploration described in Section VI1II-C. The structure
of these CNNs is summarized in Table 7. Experiments in
this section focus on the aggregation of throughput of the
CNNSs, executed on Jetson TX2 heterogeneous embedded
platform [28], with different ways of CNN execution, dis-
cussed in Section VII. In this experiment, we perform two
trials.

In Trial 1, we study the impact of CNN distribution over
platform processors, discussed in Section VIl on evaluation
of platform-aware metrics of CNNSs. In this trial, we esti-
mate throughput of the CNNs, when layers of every CNN
are executed sequentially (one-by-one) and are distributed
over a GPU and 4 ARM Cortex A-57 CPUs of the Jetson
TX2 platform, so that the computations within every layer
li Vop D convare of oaded on the platform GPU, and com-
putations within every layer I; V op ® convare performed
on the platform CPUs. We compare the CNN throughput
measured on the platform, with the throughput estimated by
the ALOHA method when the CNN execution con guration:
A) is unspeci ed; B) is speci ed as pipeline D falseand
ops_dist D f(conv;acceleratod; (gemmV CPU); (pool V
CPU)g. The results of this experiment are given in Figure 7a
using mean-and-error. The CNN throughput estimation is
very inaccurate when the layers distribution is not considered.
Error, on average, reaches 450% when using estimation A.
In B, considering the execution con guration, proposed in
our CNN metric aggregation (see Section VII), our method
takes into account heterogeneity and reduces error down
to 27%.

In Trial 2, we study the impact of pipeline parallelism
exploitation, discussed in Section VII on the evaluation of
platform-aware metrics of CNNSs. In this trial, we estimate
throughput of the CNNSs, when layers are distributed over
all processors in the platform exploiting pipeline parallelism.
We compare the error in CNN throughput estimation, with
respect to the throughput measured on hardware, when the
CNN execution con guration is speci ed as: A) pipeline D
falseand ops_distD ;; B) pipelineD trueand ops_distD ;.

133306

The results of this experiment are given in Figure 7b. The
CNN throughput estimation error, on average, reaches 48%
when using estimation A, unaware of the parallel execu-
tion, and 21% when using estimation B, which considers the
exploitation of pipeline.

IX. CONCLUSION

We proposed the ALOHA method, as a general and exible
instrument to provide accurate latency, energy, and through-
put estimations of a given CNN architecture executed on
a target hardware platform, by exploiting easy-to-use plat-
form and computational models, introducing platform aware-
ness without requiring access to on-hardware measurements.
We showed it allows for a reduction of 3x, up to 5x, of the
average layer-level latency estimation error affecting com-
mon alternative analytical methods and evaluated on two
different platforms: an FPGA-based accelerator, NEURAghe,
and a GPU-based platform, Jetson TX2. Moreover, the pro-
posed method allows to model execution on heterogeneous
platforms, considering different mappings and scheduling
schemes of the CNN computations on the platform’s process-
ing resources, and providing accurate system-level through-
put estimations. The accuracy in execution modeling and
latency estimation was also evaluated in its impact on the
energy consumption estimation, resulting in a 2x precision
improvement. Finally, we show that the high level of platform
awareness provided by detailed modeling through ALOHA
improves by a factor of 4x NAS output predictability, when
compared to the OPS count and Roo ine models, and leads
to select Pareto optimal points close to the ones evaluated in
measurement-based NAS.

ACKNOWLEGMENT
(Paola Busia and Svetlana Minakova are co- rst authors.)

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436 444, May 2015.

[2] M.Z.Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
B.C. VanEsesn, A. A. S. Awwal, and V. K. Asari, “The history began from
AlexNet: A comprehensive survey on deep learning approaches,” 2018,
arXiv:1803.01164. [Online]. Available: https://arxiv.org/abs/1803.01164

[3] T.-D.Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, “Real-time self-driving
car navigation using deep neural network,” in Proc. 4th Int. Conf. Green
Technol. Sustain. Develop. (GTSD), Nov. 2018, pp. 7 12.

[4] B. Savelli, A. Bria, M. Molinara, C. Marrocco, and F. Tortorella, “A multi-
context CNN ensemble for small lesion detection,” Artif. Intell. Med.,
vol. 103, Mar. 2020, Art. no. 101749.

[5] J. Ahn, J. Paek, and J. Ko, “Machine learning-based image classi cation
for wireless camera sensor networks,” in Proc. IEEE 22nd Int. Conf.
Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2016, p. 103.

[6] S. Branco, A. G. Ferreira, and J. Cabral, “Machine learning in resource-
scarce embedded systems, FPGAs, and end-devices: A survey,” Electron-
ics, vol. 8, no. 11, p. 1289, 2019.

[7]1 D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam, “Bringing Al
to edge: From deep learning’s perspective,” 2020, arXiv:2011.14808.
[Online]. Available: https://arxiv.org/abs/2011.14808

[8] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit., Jun. 2017,
pp. 1 12, doi: 10.1145/3079856.3080246.

VOLUME 9, 2021

http://dx.doi.org/10.1145/3079856.3080246

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable and
energy ef cient deep learning with smart memory cubes,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 2, pp. 420 434, Feb. 2018.

G. Desoli, N. Chawla, T. Boesch, S. P. Singh, E. Guidetti, F. D. Ambroggi,

T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal,
“14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI

28 nm for intelligent embedded systems,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2017,
pp. 238 239.

Movidius. (2020). Movidius Neural Compute Stick: Accelerate Deep
Learning Development at the Edge. [Online]. Available: https://developer.
movidius.com/

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-ef cient data ow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Seoul, South
Korea, Jun. 2016, pp. 367 379.

M. Tan and Q. V. Le, “Ef cientnet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105 6114.

C. Banbury, C. Zhou, |. Fedorov, R. Matas Navarro, U. Thakker,
D. Gope, V. Janapa Reddi, M. Mattina, and P. N. Whatmough, “MicroNets:
Neural network architectures for deploying TinyML applications on com-
modity microcontrollers,” 2020, arXiv:2010.11267. [Online]. Available:
http://arxiv.org/abs/2010.11267

A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang, and E. Choi,
“MorphNet: Fast & simple resource-constrained structure learning of deep
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogdiin. 2018,
pp. 1586 1595.

S. Williams, A. Waterman, and D. Patterson, “Roo ine: An insightful
visual performance model for oating point programs and multicore
architectures,” Commun. ACM, vol. 52, no. 2, pp.65 76, 2009, doi:
10.1145/1498765.1498785.

H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in Proc. Int. Conf. Learn.
Represent., 2019. [Online]. Available: https://openreview.net/forum?
id=HylVB3AqYm

L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, “Fast hardware-aware
neural architecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 2959 2967.

W. Jiang, L. Yang, E. Sha, Q. Zhuge, S. Gu, Y. Shi, and

J. Hu, “Hardware/software co-exploration of neural architectures,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4805 4815, Dec. 2020.

Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, “On neural architecture search
for resource-constrained hardware platforms,” 2019, arXiv:1911.00105.
[Online]. Available: http://arxiv.org/abs/1911.00105

C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-M. Hwu, and

D. Chen, “FPGA/DNN co-design: An ef cient design methodology for
10T intelligence on the edge,” in Proc. 56th Annu. Design Automat. Conf.,
New York, NY, USA, 2019, pp. 1 6, doi: 10.1145/3316781.3317829.

L. Yang, Z. Yan, M. Li, H. Kwon, W. Jiang, L. Lai, Y. Shi, T. Krishna, and

V. Chandra, “Co-exploration of neural architectures and heterogeneous
asic accelerator designs targeting multiple tasks,” in Proc. 57th ACM/IEEE
Design Automat. Conf. (DAC), Jul. 2020, pp. 1 6.

A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and
M. Sha que, “NASCaps: A framework for neural architecture search to
optimize the accuracy and hardware ef ciency of convolutional capsule
networks,” in Proc. 39th Int. Conf. Comput.-Aided Design, New York, NY,
USA, 2020, pp. 1 9, doi: 10.1145/3400302.3415731.

H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in Proc. 5th Int. Conf. Learn.
Represent. (ICLR), Toulon, France, 2017. [Online]. Available:
https://openreview.net/forum?id=SyVVJ85Ig

D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2018, pp. 3873 3882.

C.-C. Wang, Y.-C. Liao, M.-C. Kao, W.-Y. Liang, and S.-H. Hung,
“PerfNet: Platform-aware performance modeling for deep neural net-
works,” in Proc. Int. Conf. Res. Adapt. Convergent Syst., New York, NY,
USA, 2020, pp. 90 95, doi: 10.1145/3400286.3418245.

P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi,
L. Raffo, and L. Benini, “NEURAGHE: Exploiting CPU-FPGA synergies
foref cientand exible CNN inference acceleration on Zynq SoCs,” ACM
Trans. Recon gurable Technol. Syst., vol. 11, no. 3, p. 18, Dec. 2018, doi:
10.1145/3284357.

VOLUME 9, 2021

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

N. Corporation. Jetson TX2 Platform Technical Speci cation.
Accessed: Apr. 7, 2021. [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-tx2/

A. Krizhevsky. (2009). Learning Multiple Layers of Features From Tiny
Images. [Online]. Available: https://www.cs.toronto.edu/kriz/learning-
features TR.pdf

J. Czaja et al., “Applying the Roo ine model for deep learning per-
formance optimizations,” 2020, arXiv:2009.11224. [Online]. Available:
https://arxiv.org/abs/2009.11224

N. K. Jhaand S. Mittal, “Modeling data reuse in deep neural networks by
taking data-types into cognizance,” IEEE Trans. Comput., vol. 70, no. 9,
pp. 1526 1538, Sep. 2021.

X. Luo, D. Liu, H. Kong, and W. Liu, “EdgeNAS: Discovering ef cient
neural architectures for edge systems,” in Proc. IEEE 38th Int. Conf.
Comput. Design (ICCD), Oct. 2020, pp. 288 295.

C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y. Chen, W. Wei, and
S.-C. Chang, “MONAS: Multi-objective neural architecture search using
reinforcement learning,” 2018, arXiv:1806.10332. [Online]. Available:
https://arxiv.org/abs/1806.10332

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one
network and specialize it for ef cient deployment,” in Proc. 8th Int. Conf.
Learn. Represent. (ICLR), Addis Ababa, Ethiopia, Apr. 2020. [Online].
Available: https://openreview.net/forum?id=HyIXELIHKwS

B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,

P. Vajda, and Y. Jia, “FBNet: hardware-aware ef cient ConvNet design

via differentiable neural architecture search,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10726 10734.

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning,”

in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2015, pp. 564 576.

A. Paszke, Pytorch: An Imperative Style, High-Performance Deep
Learning Library. Red Hook, NY, USA: Curran Associates, 2019,
pp. 8024 8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-pe rformance-deep-learning-library.pdf

M. Abadi. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. [Online]. Available: http://tensor ow.org/

S. Wang, A. Pathania, and T. Mitra, “Neural network inference on mobile
SOCs,” IEEE Des. Test, vol. 37, no. 5, pp. 50 57, Oct. 2020.

S. Minakova, E. Tang, and T. Stefanov, “Combining task- and data-level
parallelism for high-throughput CNN inference on embedded CPUs-GPUs
MPSoCs,” in Embedded Computer Systems: Architectures, Modeling, and
Simulation, Samos, Greece. Springer, 2020, pp. 18 35.

C. Shea and T. Mohsenin, “Heterogeneous scheduling of deep neural net-
works for low-power real-time designs,” ACM J. Emerg. Technol. Comput.
Syst., vol. 15, no. 4, p. 36, 2019.

L. Lai, N. Suda, and V. Chandra, “Not all
equal!” CoRR, vol. abs/1801.04326, 2018.
http://arxiv.org/abs/1801.04326

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2815 2823.

C. Kyrkou, G. Plastiras, T. Theocharides, S. 1. Venieris, and
C.-S. Bouganis, “DroNet: Ef cient convolutional neural network
detector for real-time UAV applications,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 967 972.

H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware cost of
DNN data ow: A data-centric approach,” in Proc. 52nd Annu. IEEE/ACM
Int. Symp. Microarchitecture, New York, NY, USA, 2019, pp. 754 768,
doi: 10.1145/3352460.3358252.

A. Tools Community. Open Neural Network Exchange (ONNX).
Accessed: Apr. 7, 2021. [Online]. Available: https://onnx.ai/

N. Corporation. (2021). CUDA CCC Best Practices Guide.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDACBestPrac
ticesGuide.pdf

Xilinx. Xilinx Power Estimator. Accessed: Apr. 7, 2021. [Online].
Available: https://www.xilinx.com/products/technology/power/xpe.html

K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens. Drampower: Open-Source Dram
Power & Energy Estimation Tool. Accessed: Apr. 7, 2021. [Online].
Available: http://www.drampower.info

N. Corporation. Nvidia Tensorrt Deep Learning Library and
Inference Optimizer. Accessed: Apr. 7, 2021. [Online]. Available:
https://developer.nvidia.com/tensorrt

ops are created
[Online]. Available:

133307

http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/3316781.3317829
http://dx.doi.org/10.1145/3400302.3415731
http://dx.doi.org/10.1145/3400286.3418245
http://dx.doi.org/10.1145/3284357
http://dx.doi.org/10.1145/3352460.3358252

P. Busia et al.: ALOHA: Unified Platform-Aware Evaluation Method for CNNs Execution

[51] P. Meloni, D. Loi, G. Deriu, M. Carreras, F. Conti, A. Capotondi, and
D. Rossi, “Exploring NEURAghe: A customizable template for APSoC-

based CNN inference at the edge,” IEEE Embedded Syst. Lett., vol. 12,

no. 2, pp. 62 65, Jun. 2020.

[52] An531: Reducing Power With Hardware Accelerators, Intel, Santa Clara,

CA, USA, 2008.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. ICLR, San Diego,
CA, USA, 2015. [Online]. Available: https://iclr.cc/archive/www/
doku.php%3Fid=iclr2015:main.html#may_8_workshop_poster_session

[54] H. Benmeziane, K. EI Maghraoui, H. Ouarnoughi, S. Niar,
M. Wistuba, and N. Wang, “A comprehensive survey on hardware-
aware neural architecture search,” 2021, arXiv:2101.09336. [Online].
Available: http://arxiv.org/abs/2101.09336

[55] E. Dilettoso, S. Rizzo, and N. Salerno, “‘A weakly Pareto compliant quality
indicator,” Math. Comput. Appl., vol. 22, no. 1, p. 25, 2017.

[56] E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolution-
ary Algorithms: Empirical Results. vol. 8, no. 2. Cambridge, MA, USA:
MIT Press, 2000, doi: 10.1162/106365600568202.

PAOLA BUSIA received the B.S. and M.S.
degrees in electronics engineering from the Uni-
versity of Cagliari, Italy, in 2017 and 2019,
respectively, where she is currently pursuing the
Ph.D. degree in electronic and computer engineer-
ing. Her research interest includes optimization
and deployment of CNNs on resource-constrained
systems.

SVETLANA MINAKOVA received the B.Sc. and
M.Sc. degrees in computer science from Bau-
man Moscow State University, Moscow, Russia,
in 2015 and 2017, respectively. She is currently
pursuing the Ph.D. degree with the LIACS, Lei-
den University, The Netherlands. She performs
research and development in areas of deep learn-
ing (DL) and embedded systems and software.
Her research and developments activities are a part
of European project, called ALOHA a software
framework for runtime-adaptive and secure deep learning on heterogeneous
architectures.

TODOR STEFANOV (Member, IEEE) received
the Dipl.Ing. and M.S. degrees in computer
engineering from Technical University, So a,
Bulgaria, in 1998, and the Ph.D. degree
in computer science from Leiden University,
The Netherlands, in 2004. Currently, he is an
Associate Professor with Leiden Institute of
Advanced Computer Science, Leiden University,
and the Head of Leiden Embedded Research Cen-
ter (LERC) which is a medium-size research group
with a strong track record in the area of system-level modeling and synthesis,
programming, and implementation of heterogeneous embedded systems.
He coauthored more than 80 scienti c papers. His research interests include

133308

several aspects of embedded systems design, with particular emphasis on
system-level design automation, multiprocessor systems-on-chip design, and
hardware/software co-design. He was a recipient of the prestigious the
2009 IEEE TCAD Donald O. Pederson Best Paper Award for his jour-
nal article *“Systematic and Automated Multi-processor System Design,
Programming, and Implementation”” published in the IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD).

He is an Editorial Board Member of the Journal on Embedded Systems

(Springer). He has also been an Editorial Board Member of the International
Journal of Recon gurable Computirgnd a Guest Associate Editor of ACM

Transactions on Embedded Computing Systems, in 2013. He has been the

General Chair of ESTIMedia 2015 and the Local Organization Co-Chair
of ESWeek 2015. Moreover, he serves (has served) on the organizational
committees for several leading conferences, symposia, and workshops, such
as DATE, ACM/IEEE CODESCISSS, RTSS, IEEE ICCD, IEEE/IFIP VLSI-
SoC, ESTIMedia, SAMOS (as a TPC Member), and IEEE ESTIMedia and
ACM SCOPES (as the Program Chair).

LUIGI RAFFO has been a Full Professor of
electronics with the University of Cagliari, Italy,
since 2006. In 1994, he joined the Depart-
ment of Electrical and Electronic Engineering,
University of Cagliari. He teaches courses on sys-
tem design, digital and analog electronics design,
and processor architectures. Since 2012, he has
been the Rector’s Delegate for the international
research projects. He has been a Coordinator of
the Course of Studies in Biomedical Engineering,
from 2006 to 2012 and from 2017 to 2018. His research interests include
the study, design, development of systems and micro-systems for applica-
tion where high performance, high-ef ciency, and low-power are required.
Insuch a eld, he is the author of more than 200 scienti ¢ papers.

PAOLO MELONI (Member, IEEE) has been an
Assistant Professor at the University of Cagliari,
since 2012. His research activity is on the devel-
opment of advanced digital systems, on the
application-driven design and programming of
multi-core on-chip architectures, and FPGAs.
He is the author of a signi cant track of inter-
national research papers. He teaches advanced
embedded systems at the University of Cagliari.
He is currently a Scienti ¢ Coordinator of the
ALOHA (www.aloha-h2020.eu) H2020 project.

VOLUME 9, 2021

http://dx.doi.org/10.1162/106365600568202

