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Abstract—The use of Deep Learning (DL) algorithms is in­
creasingly evolving in many application domains. Despite the 
rapid growing of algorithm size and complexity, performing DL 
inference at the edge is becoming a clear trend to cope with 
low latency, privacy and bandwidth constraints. Nevertheless, 
traditional implementation on low-energy computing nodes often 
requires experience-based manual intervention and trial-and- 
error iterations to get to a functional and effective solution. 
This work presents a computer-aided design (CAD) support 
for effective implementation of DL algorithms on embedded 
systems, aiming at automating different design steps and reducing 
cost. The proposed tool flow comprises capabilities to consider 
architecture- and hardware-related variables at very early stages 
of the development process, from pre-training hyperparameter 
optimization and algorithm configuration to deployment, and 
to adequately address security, power efficiency and adaptivity 
requirements. This paper also presents some preliminary results 
obtained by the first implementation of the optimization tech­
niques supported by the tool flow.

I . I n t r o d u c t i o n

In recent years, Deep Learning (DL) algorithms have be­
come an extremely promising instrument in the machine learn­
ing and artificial intelligence landscape, empowering innova­
tion in a wide variety of application domains from computer 
vision to speech recognition and automotive systems [1].

Recent trends push towards deployment of DL algorithms 
on edge nodes as close as possible to the data sources. 
This approach helps overcoming limitations of cloud-based
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computing, when it comes to latency, communication band­
width, privacy, security and reliability. However, perform­
ing highly accurate and reliable inference tasks at the edge 
without compromising performance and energy consumption 
is still a challenge [2]. A wide landscape of novel very 
power- and performance-efficient parallel processing architec­
tures are emerging on the market and in literature to meet 
this need. They are often endowed with accelerators and 
specialized hardware for speeding-up the most computation­
intensive tasks and reducing power consumption, such as 
convolution layers in Convolutional Neural Networks (CNNs). 
Two successful examples are the Google Tensor Processing 
Unit [3] and the NVIDIA Deep Learning Accelerator [4], 
Other approaches rely on embedded heterogeneous system-on- 
chips (SoCs) integrating multi-core processor and using field- 
programmable gate arrays (FPGAs) optimized for low power 
operation, such as Xilinx Zynq [5] and Intel A m a 10 [6].

Unfortunately, programming these embedded computing 
architectures to perform inference task on the edge is highly 
time-consuming and requires expert developers. In traditional 
design flows, DL algorithms are in fact designed and trained to 
improve accuracy without considering the specific features of 
the processing platform in charge of executing the inference 
process. This determines the need for multiple design itera­
tions, potentially leading to long tuning phases. The designer 
skills and the deep knowledge of the target platform features 
determine the degree of success of the inference process. This 
limits the adoption of DL mainly to very big actors in the
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market that can afford the required development costs.
Thus, a computer-aided design tool capable of assisting 

software developers in implementing DL algorithms on het­
erogeneous low-energy processing platforms represents a con­
siderable advancement with respect to the state of the art.

In this paper, we propose a software framework capable of 
automating the selection of an optimal algorithm configuration 
and the optimization of its implementation according to the 
given hardware and architectural constraints. This work is 
part of the activities of the H2020 ALOHA European project, 
started in January 2018. The goal is to relief designers from 
the burden related to implementing inference on embedded 
systems, as well as open the access to DL also to small- 
medium enterprises and mid-range software development com­
panies, that may focus on the use-case-related problem at the 
application level rather than on tedious implementation and 
porting details. The rest of the paper is organized as follows. 
Section II presents an overview of the tool flow, providing 
a description of its main components and tools. Section HI 
describes the preliminary experiments performed.

II. T h e  ALOHA t o o l  f l o w

The ALOHA tool flow is specifically aimed to help software 
developers when facing the implementation of DL algorithms 
on modem heterogeneous platforms. It automates different 
time-consuming developments steps, including the selection 
of an optimal algorithm configuration, the optimization of 
its partitioning and mapping on a target processing platform, 
and the optimization of power and energy savings during its 
deployment.

The key inputs and outputs of the tool flow are shown 
in Figure 1. The tool flow receives a configuration file, 
application-related constraints involving accuracy, security, 
performance and power, initial DNN(s), a dataset and hard­
ware architecture/specification files as inputs. It generates as 
output a partitioned and mapped DNN configuration address­
ing architecture-awareness, ready to be ported on the target 
computing platform. The three main steps of the proposed 
tool flow are described in the following sections. Each step 
is composed of interacting components that influence each 
other by exchanging HTTP/REST APIs. The overall tool 
flow exploits a RESTM  Microservice architecture and will 
be integrated considering all requirements posed by Agile 
development methodologies.

A. Tailoring the algorithm to the architecture

Automation of the algorithm design process is the first 
step of the tool flow. This is done by exploiting a Design 
Space Exploration (DSE) engine and a set of evaluation and 
refinement tools, capable of generating the optimal algorithm 
configuration considering the target task, the constraints, and 
the target embedded system that will execute the inference 
task. The DSE engine requests evaluation and refinement of an 
initial DNN to the tools shown on the right-hand side of Figure 
1, with respect to different metrics (i.e. accuracy, security, 
power and performance). If no initial DNN is provided, by
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Fig. 1. General overview of the ALOHA tool flow.

default, the DSE engine generates a population of design 
points using random or minimum topologies. To reduce the 
number of evaluations to be performed, the DSE engine uses 
design-space pruning techniques. However exploration can 
require several iterations. At each iteration, the DSE creates 
a Pareto graph populated with design points corresponding to 
candidate algorithm configurations. When the exploration is 
finished, the DSE engine triggers the next step of the tool 
flow.

a) Accuracy evaluation tool: This tool evaluates the 
accuracy of a candidate algorithm configuration. It is based 
on a training engine able to support training from scratch or 
to apply transfer learning to reuse pre-trained networks in a 
different use-case. The output of the training engine comprises 
numerical values for the network parameters (weights and 
bias; hyper parameters) and some meta-information describing 
accuracy results.

b) Algorithm refinement tool: This tool tries to reduce 
the computing effort and the energetic cost of the execution 
of inference of a candidate design point. It applies quantization 
and pruning methods to the DNN model provided by the DSE. 
Quantization reduces data precision, using different numerical 
representation formats in activations and weights. This is 
needed to lower the data representation from the one used 
for the original floating-point training to one which allows for 
parsimonious inference on the target embedded device. Prun­
ing removes low-impact connections between network layers. 
It includes both iterative method [8] and INQ pruning [9]. 
The output of this tool is a modified algorithm description 
that gives the needed accuracy results while reducing the 
computational workloads.

c) Security evaluation tool: This tool receives as inputs 
the design point proposed by the DSE engine and the dataset. It
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then generates an adversarial perturbation that, when applied to 
the data point, maximizes its probability of being misclassified 
by the DNN model under evaluation [15]. The output of this 
tool is a measure of the DNN robustness to adversarial input 
perturbations, expressed as a security level which can be low, 
medium or high.

d) Performance/Power evaluation tool: This tool evalu­
ates the performance and the power consumption associated 
with the execution of the inference of a candidate design 
point on the target architecture. As shown in Figure 1, it 
receives as inputs one or several DNN models coming from the 
DSE engine, and the target architecture description. For every 
DNN model, the tool generates as output the DNN inference 
execution time in seconds (Performance), the DNN infer­
ence energy consumption in joules (Energy), the number of 
processing elements prospectively usable for DNN inference 
(Processors), and the memory required for DNN inference in 
bytes (Memory).

B. Identifying partitioning and mapping

The second step of the tool flow aims at automating a 
system-level design process, optimizing the partitioning and 
the mapping of the algorithm configuration generated by 
step 1 on the target processing platform. Similarly to the 
previous step, the design process is driven by a System-level 
DSE engine. This component controls the exploration of the 
design space exposed by different partitioning and mappings 
of the different inference software tasks, and creates a Pareto 
graph populated with design points corresponding to candidate 
system-level configurations. To populate the mentioned Pareto 
graph, the system-level DSE engine requests evaluation of 
the design points to two evaluation tools: Sesame [10] and 
Architecture Optimization Workbench (AOW) [11]. To find 
more efficient mappings of DNN actors to the underlying 
platform architecture and to optimize the usage of the avail­
able resources in the target architecture, the system-level 
DSE engine may also deploy transformations on the DNN 
algorithm graph by, for example, merging or splitting actors 
(i.e., increasing or decreasing the concurrency in the DNN 
algorithm). Alternatively, it may also invoke the post-training 
algorithm refinement for parsimonious inference to achieve 
a workload reduction by considering specific features of the 
target architecture.

a) Sesame and AOW evaluation tools: In Step 2, the 
synergy between Sesame and AOW is exploited. AOW ex­
plores the whole design space, subject to system requirements 
and resource constraints (e.g., serializing processing cores and 
communication buses) using coarse-grain models for computa­
tion and communication, while Sesame performs more precise 
simulation of both computation and communication over a 
more limited search space for better mapping.

b) Post-training algorithm refinement tool: This tool 
reduces the computation burden needed for implementing 
inference by performing a post-selection refinement of the 
candidate DNN. It is able to apply both a sophisticated 
on-line data-dependent kemel/component pruning mechanism

[14] and a conversion from static to dynamic computing graph 
to the underlying DNN model. If the process can converge to a 
solution that delivers a more parsimonious inference, retaining 
at the same time the accuracy of the initial model within 
specified margins, the post-training refinement tool generates 
as output a modified model, otherwise notifies the system-level 
DSE engine to proceed with the initial trained model.

C. Porting on the target architecture
The last step of the tool flow aims at automating the porting 

of the target inference application on the target architecture, 
translating mapping information in adequate calls to comput­
ing and communication primitives exposed by the architecture. 
This step exploits also the power- and performance-related 
knobs exposed by the platform (VFS, power and clock gating 
etc.).

I I I .  P r e l i m i n a r y  e x p e r i m e n t a l  r e s u l t s

A first set of preliminary experiments has been performed 
to illustrate the potential of the optimization techniques im­
plemented in the ALOHA components.

A. Selection o f algorithm parameters
As a first glimpse on ALOHA capabilities, we assessed the 

possibility of improving computing efficiency of an inference 
process by considering the specific features of a target archi­
tecture when selecting the algorithm-level parameters. To this 
aim we compare here the performance achievable when exe­
cuting the well known VGG-16 algorithm on the NEURAghe 
platform [7] with a custom VGG-like algorithm, modified 
increasing the number of convolution kernels executed in each 
layer to match the size of the multiply-and-accumulate (MAC) 
matrix inside the accelerator. As may me noticed in Table I the 
architecture-aware configuration better exploits the accelerator, 
allowing for accuracy improvement.

TABLE I
Or ig in a l  vs  c u s t o m  o v e r -d im e n s io n e d  VGG-16 a l g o r it h m

CONFIGURATION

Benchmark Performance (GOps/s) Accuracy (Top-1)
VGG16 172.67 88.4%

NEURAghe-aware VGG16 182.43 89.6%

Moreover, we report in Table II performance levels achiev­
able on the same architecture using iterative quantization/re- 
training to change the data format used to represent activation 
and weights. A first optimization can be achieved considering 
the possibility of NEURAghe to operate on 16 and 8 bits 
data formats. The accelerator uses the same MAC hardware 
actor executing 16 bits operation to execute two different 8 
bits operation. Thus this bring to a significant speed-up that 
can be captured by the toolflow and exploited when allowed 
by the specific use case (see third row). Quantization can 
be used when needed as a compression method, to reduce 
pressure on memory bandwidth, often stressed when weights 
are loaded from DDR to on-chip memory, as may be noticed
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when comparing the two configurations with 16-bit activations. 
The iterative re-training procedure after quantization was ca­
pable of reconstructing accuracy even for reduced precisions, 
stabilizing cumulative loss without significant degradation.

TABLE II
N E U R A g h e  p e r f o r m a n c e  o n  d if f e r e n t l y  q u a n t iz e d  VGG-16

CONFIGURATIONS

Quantization Performance
16-bit activations 16-bit weights 172 GOPs/s
16-bit activations 8-bit weights 175 GOPs/s
8-bit activations 8-bit weights 335 GOPs/s

TABLEm
Effects  of  a d v e r s a r ia l  t r a in in g  o n  t h e  CNN r o bu s tn e ss  to

NOISE-BASED ATTACKS

£
max

Classification accuracy
Without adversarial training With adversarial training

0 80% 80%
0.4 20% 75%
0.8 10% 60%

1 9% 45%

B. Evaluation o f  security against adversarial attacks
In this section we present an experiment related with 

evaluation and improvement of the security level of a deep 
network, taking into account handwritten digit classification as 
a use-case. For this experiment we used a task-specific CNN 
model of Keras library [12]. We trained the underlying model 
on the MNIST dataset, after normalizing all images in [0,1] by 
dividing the pixel values by 255, and manipulated 10,000 test 
samples using the Fast Gradient Sign Method (FGSM) attack 
algorithm [13]. This attack bounds the max-norm distance 
between a (legitimate) input x  and its adversarial counterpart 
x ' as ||x  — x ' H o o  <  e . Thus, every pixel p in the image x ' is 
manipulated independently in the interval \p — e,p + e\. An 
example of manipulated MNIST handwritten digit is shown 
in Figure 2. Note that, within this setting, the adversarial 
perturbation is almost imperceptible to the human eye, though 
still effective to mislead recognition.

We then applied a defense mechanisms, called adversarial 
training [13], by augmenting the training dataset with adver­
sarial examples and by re-training the neural network and 
repeating the FGSM attack for e € {0,0.4,0.8,1} against 
the robust network. The effect of the adversarial training 
is analyzed by gradually changing perturbation e. In both 
cases, as expectable, classification accuracy degrades under 
attacks characterized by an increasing perturbation. However, 
when using adversarial training it was possible to significantly 
increase resilience to attacks, as reported in Table III for 
different noise levels.

C o n c l u s io n s

In this paper, we have introduced a CAD tool flow to 
overcome the limits of traditional practices currently used to

True class: 9 True class: 9
Predicted class: 9 Predicted class: 4 Am plified noise

Fig. 2. An example of manipulated MNIST handwritten digits that mislead 
classification by a CNN, crafted with the FGSM attack algorithm [13] with 
e  =  0.05.

deploy deep learning algorithms at the edge. In contrast to 
previous approaches, we have focused on the possibility of 
automating the selection of an optimal algorithm configuration 
and the optimization of its implementation, considering the 
specific features of the processing platform executing the 
inference task during the whole development process. We 
have evaluated the potential of the optimization techniques 
implemented in the proposed tool flow and presented first 
results.
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