
2018 30th International Conference on Microelectronics (ICM)

Architecture-aware design and implementation o f
CNN algorithms for embedded inference:

the ALOHA project

Paolo M eloni*, D aniela Loi*, G ianfranco Deriu*, A ndy D. Pimentel*, D olly S a p ra i M aura P in tori, Battista Biggio*,
O scar Ripolles§, D avid Solans^, Francesco Conti^, Luca Benini^, Todor Stefanovll, Svetlana Minakovall,

B ernhard Moser**, N atalia Shepeleva**, M ichael Masin**, Francesca Palumbo**,
N ikos Fragoulisx and Ilias Theodorakopoulosx

* Department of Electrical and Electronic Engineering, University of Cagliari, Italy
* Institute of Informatics, University of Amsterdam, The Netherlands

* Pluribus One, Italy
§ CA Technologies, Spain

^ Integrated Systems Laboratory, ETH Zurich, Switzerland
II Institute of Advanced Computer Science, Leiden University, The Netherlands

** Software Competence Center Hagenberg, Austria
** IBM Research - Haifa, Israel

** IDEA Lab, University of Sassari, Italy
IRIDA Labs Computer Vision Systems, Greece

* Corresponding author: paolo.meloni@diee.unica.it

Abstract—The use of Deep Learning (DL) algorithms is in­
creasingly evolving in many application domains. Despite the
rapid growing of algorithm size and complexity, performing DL
inference at the edge is becoming a clear trend to cope with
low latency, privacy and bandwidth constraints. Nevertheless,
traditional implementation on low-energy computing nodes often
requires experience-based manual intervention and trial-and-
error iterations to get to a functional and effective solution.
This work presents a computer-aided design (CAD) support
for effective implementation of DL algorithms on embedded
systems, aiming at automating different design steps and reducing
cost. The proposed tool flow comprises capabilities to consider
architecture- and hardware-related variables at very early stages
of the development process, from pre-training hyperparameter
optimization and algorithm configuration to deployment, and
to adequately address security, power efficiency and adaptivity
requirements. This paper also presents some preliminary results
obtained by the first implementation of the optimization tech­
niques supported by the tool flow.

I . I n t r o d u c t i o n

In recent years, Deep Learning (DL) algorithms have be­
come an extremely promising instrument in the machine learn­
ing and artificial intelligence landscape, empowering innova­
tion in a wide variety of application domains from computer
vision to speech recognition and automotive systems [1].

Recent trends push towards deployment of DL algorithms
on edge nodes as close as possible to the data sources.
This approach helps overcoming limitations of cloud-based

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780788

computing, when it comes to latency, communication band­
width, privacy, security and reliability. However, perform­
ing highly accurate and reliable inference tasks at the edge
without compromising performance and energy consumption
is still a challenge [2]. A wide landscape of novel very
power- and performance-efficient parallel processing architec­
tures are emerging on the market and in literature to meet
this need. They are often endowed with accelerators and
specialized hardware for speeding-up the most computation­
intensive tasks and reducing power consumption, such as
convolution layers in Convolutional Neural Networks (CNNs).
Two successful examples are the Google Tensor Processing
Unit [3] and the NVIDIA Deep Learning Accelerator [4],
Other approaches rely on embedded heterogeneous system-on-
chips (SoCs) integrating multi-core processor and using field-
programmable gate arrays (FPGAs) optimized for low power
operation, such as Xilinx Zynq [5] and Intel A m a 10 [6].

Unfortunately, programming these embedded computing
architectures to perform inference task on the edge is highly
time-consuming and requires expert developers. In traditional
design flows, DL algorithms are in fact designed and trained to
improve accuracy without considering the specific features of
the processing platform in charge of executing the inference
process. This determines the need for multiple design itera­
tions, potentially leading to long tuning phases. The designer
skills and the deep knowledge of the target platform features
determine the degree of success of the inference process. This
limits the adoption of DL mainly to very big actors in the

978-1 -5386-8167-1/18/$31.00 ©2018 IEEE

52

2018 30th International Conference on Microelectronics (ICM)

market that can afford the required development costs.
Thus, a computer-aided design tool capable of assisting

software developers in implementing DL algorithms on het­
erogeneous low-energy processing platforms represents a con­
siderable advancement with respect to the state of the art.

In this paper, we propose a software framework capable of
automating the selection of an optimal algorithm configuration
and the optimization of its implementation according to the
given hardware and architectural constraints. This work is
part of the activities of the H2020 ALOHA European project,
started in January 2018. The goal is to relief designers from
the burden related to implementing inference on embedded
systems, as well as open the access to DL also to small-
medium enterprises and mid-range software development com­
panies, that may focus on the use-case-related problem at the
application level rather than on tedious implementation and
porting details. The rest of the paper is organized as follows.
Section II presents an overview of the tool flow, providing
a description of its main components and tools. Section HI
describes the preliminary experiments performed.

II. T h e ALOHA t o o l f l o w

The ALOHA tool flow is specifically aimed to help software
developers when facing the implementation of DL algorithms
on modem heterogeneous platforms. It automates different
time-consuming developments steps, including the selection
of an optimal algorithm configuration, the optimization of
its partitioning and mapping on a target processing platform,
and the optimization of power and energy savings during its
deployment.

The key inputs and outputs of the tool flow are shown
in Figure 1. The tool flow receives a configuration file,
application-related constraints involving accuracy, security,
performance and power, initial DNN(s), a dataset and hard­
ware architecture/specification files as inputs. It generates as
output a partitioned and mapped DNN configuration address­
ing architecture-awareness, ready to be ported on the target
computing platform. The three main steps of the proposed
tool flow are described in the following sections. Each step
is composed of interacting components that influence each
other by exchanging HTTP/REST APIs. The overall tool
flow exploits a RESTM Microservice architecture and will
be integrated considering all requirements posed by Agile
development methodologies.

A. Tailoring the algorithm to the architecture

Automation of the algorithm design process is the first
step of the tool flow. This is done by exploiting a Design
Space Exploration (DSE) engine and a set of evaluation and
refinement tools, capable of generating the optimal algorithm
configuration considering the target task, the constraints, and
the target embedded system that will execute the inference
task. The DSE engine requests evaluation and refinement of an
initial DNN to the tools shown on the right-hand side of Figure
1, with respect to different metrics (i.e. accuracy, security,
power and performance). If no initial DNN is provided, by

0 0 0 0 0
Configuration file Constraints Initial DNN Dataset Target

(meta-data describing (optional for (link to shared architecture
target task) transfer learning) storage) description

Fig. 1. General overview of the ALOHA tool flow.

default, the DSE engine generates a population of design
points using random or minimum topologies. To reduce the
number of evaluations to be performed, the DSE engine uses
design-space pruning techniques. However exploration can
require several iterations. At each iteration, the DSE creates
a Pareto graph populated with design points corresponding to
candidate algorithm configurations. When the exploration is
finished, the DSE engine triggers the next step of the tool
flow.

a) Accuracy evaluation tool: This tool evaluates the
accuracy of a candidate algorithm configuration. It is based
on a training engine able to support training from scratch or
to apply transfer learning to reuse pre-trained networks in a
different use-case. The output of the training engine comprises
numerical values for the network parameters (weights and
bias; hyper parameters) and some meta-information describing
accuracy results.

b) Algorithm refinement tool: This tool tries to reduce
the computing effort and the energetic cost of the execution
of inference of a candidate design point. It applies quantization
and pruning methods to the DNN model provided by the DSE.
Quantization reduces data precision, using different numerical
representation formats in activations and weights. This is
needed to lower the data representation from the one used
for the original floating-point training to one which allows for
parsimonious inference on the target embedded device. Prun­
ing removes low-impact connections between network layers.
It includes both iterative method [8] and INQ pruning [9].
The output of this tool is a modified algorithm description
that gives the needed accuracy results while reducing the
computational workloads.

c) Security evaluation tool: This tool receives as inputs
the design point proposed by the DSE engine and the dataset. It

53

2018 30th International Conference on Microelectronics (ICM)

then generates an adversarial perturbation that, when applied to
the data point, maximizes its probability of being misclassified
by the DNN model under evaluation [15]. The output of this
tool is a measure of the DNN robustness to adversarial input
perturbations, expressed as a security level which can be low,
medium or high.

d) Performance/Power evaluation tool: This tool evalu­
ates the performance and the power consumption associated
with the execution of the inference of a candidate design
point on the target architecture. As shown in Figure 1, it
receives as inputs one or several DNN models coming from the
DSE engine, and the target architecture description. For every
DNN model, the tool generates as output the DNN inference
execution time in seconds (Performance), the DNN infer­
ence energy consumption in joules (Energy), the number of
processing elements prospectively usable for DNN inference
(Processors), and the memory required for DNN inference in
bytes (Memory).

B. Identifying partitioning and mapping

The second step of the tool flow aims at automating a
system-level design process, optimizing the partitioning and
the mapping of the algorithm configuration generated by
step 1 on the target processing platform. Similarly to the
previous step, the design process is driven by a System-level
DSE engine. This component controls the exploration of the
design space exposed by different partitioning and mappings
of the different inference software tasks, and creates a Pareto
graph populated with design points corresponding to candidate
system-level configurations. To populate the mentioned Pareto
graph, the system-level DSE engine requests evaluation of
the design points to two evaluation tools: Sesame [10] and
Architecture Optimization Workbench (AOW) [11]. To find
more efficient mappings of DNN actors to the underlying
platform architecture and to optimize the usage of the avail­
able resources in the target architecture, the system-level
DSE engine may also deploy transformations on the DNN
algorithm graph by, for example, merging or splitting actors
(i.e., increasing or decreasing the concurrency in the DNN
algorithm). Alternatively, it may also invoke the post-training
algorithm refinement for parsimonious inference to achieve
a workload reduction by considering specific features of the
target architecture.

a) Sesame and AOW evaluation tools: In Step 2, the
synergy between Sesame and AOW is exploited. AOW ex­
plores the whole design space, subject to system requirements
and resource constraints (e.g., serializing processing cores and
communication buses) using coarse-grain models for computa­
tion and communication, while Sesame performs more precise
simulation of both computation and communication over a
more limited search space for better mapping.

b) Post-training algorithm refinement tool: This tool
reduces the computation burden needed for implementing
inference by performing a post-selection refinement of the
candidate DNN. It is able to apply both a sophisticated
on-line data-dependent kemel/component pruning mechanism

[14] and a conversion from static to dynamic computing graph
to the underlying DNN model. If the process can converge to a
solution that delivers a more parsimonious inference, retaining
at the same time the accuracy of the initial model within
specified margins, the post-training refinement tool generates
as output a modified model, otherwise notifies the system-level
DSE engine to proceed with the initial trained model.

C. Porting on the target architecture
The last step of the tool flow aims at automating the porting

of the target inference application on the target architecture,
translating mapping information in adequate calls to comput­
ing and communication primitives exposed by the architecture.
This step exploits also the power- and performance-related
knobs exposed by the platform (VFS, power and clock gating
etc.).

I I I . P r e l i m i n a r y e x p e r i m e n t a l r e s u l t s

A first set of preliminary experiments has been performed
to illustrate the potential of the optimization techniques im­
plemented in the ALOHA components.

A. Selection o f algorithm parameters
As a first glimpse on ALOHA capabilities, we assessed the

possibility of improving computing efficiency of an inference
process by considering the specific features of a target archi­
tecture when selecting the algorithm-level parameters. To this
aim we compare here the performance achievable when exe­
cuting the well known VGG-16 algorithm on the NEURAghe
platform [7] with a custom VGG-like algorithm, modified
increasing the number of convolution kernels executed in each
layer to match the size of the multiply-and-accumulate (MAC)
matrix inside the accelerator. As may me noticed in Table I the
architecture-aware configuration better exploits the accelerator,
allowing for accuracy improvement.

TABLE I
Or ig in a l vs c u s t o m o v e r -d im e n s io n e d VGG-16 a l g o r it h m

CONFIGURATION

Benchmark Performance (GOps/s) Accuracy (Top-1)
VGG16 172.67 88.4%

NEURAghe-aware VGG16 182.43 89.6%

Moreover, we report in Table II performance levels achiev­
able on the same architecture using iterative quantization/re-
training to change the data format used to represent activation
and weights. A first optimization can be achieved considering
the possibility of NEURAghe to operate on 16 and 8 bits
data formats. The accelerator uses the same MAC hardware
actor executing 16 bits operation to execute two different 8
bits operation. Thus this bring to a significant speed-up that
can be captured by the toolflow and exploited when allowed
by the specific use case (see third row). Quantization can
be used when needed as a compression method, to reduce
pressure on memory bandwidth, often stressed when weights
are loaded from DDR to on-chip memory, as may be noticed

54

2018 30th International Conference on Microelectronics (ICM)

when comparing the two configurations with 16-bit activations.
The iterative re-training procedure after quantization was ca­
pable of reconstructing accuracy even for reduced precisions,
stabilizing cumulative loss without significant degradation.

TABLE II
N E U R A g h e p e r f o r m a n c e o n d if f e r e n t l y q u a n t iz e d VGG-16

CONFIGURATIONS

Quantization Performance
16-bit activations 16-bit weights 172 GOPs/s
16-bit activations 8-bit weights 175 GOPs/s
8-bit activations 8-bit weights 335 GOPs/s

TABLEm
Effects of a d v e r s a r ia l t r a in in g o n t h e CNN r o bu s tn e ss to

NOISE-BASED ATTACKS

£
max

Classification accuracy
Without adversarial training With adversarial training

0 80% 80%
0.4 20% 75%
0.8 10% 60%

1 9% 45%

B. Evaluation o f security against adversarial attacks
In this section we present an experiment related with

evaluation and improvement of the security level of a deep
network, taking into account handwritten digit classification as
a use-case. For this experiment we used a task-specific CNN
model of Keras library [12]. We trained the underlying model
on the MNIST dataset, after normalizing all images in [0,1] by
dividing the pixel values by 255, and manipulated 10,000 test
samples using the Fast Gradient Sign Method (FGSM) attack
algorithm [13]. This attack bounds the max-norm distance
between a (legitimate) input x and its adversarial counterpart
x ' as ||x — x ' H o o < e . Thus, every pixel p in the image x ' is
manipulated independently in the interval \p — e,p + e\. An
example of manipulated MNIST handwritten digit is shown
in Figure 2. Note that, within this setting, the adversarial
perturbation is almost imperceptible to the human eye, though
still effective to mislead recognition.

We then applied a defense mechanisms, called adversarial
training [13], by augmenting the training dataset with adver­
sarial examples and by re-training the neural network and
repeating the FGSM attack for e € {0,0.4,0.8,1} against
the robust network. The effect of the adversarial training
is analyzed by gradually changing perturbation e. In both
cases, as expectable, classification accuracy degrades under
attacks characterized by an increasing perturbation. However,
when using adversarial training it was possible to significantly
increase resilience to attacks, as reported in Table III for
different noise levels.

C o n c l u s io n s

In this paper, we have introduced a CAD tool flow to
overcome the limits of traditional practices currently used to

True class: 9 True class: 9
Predicted class: 9 Predicted class: 4 Am plified noise

Fig. 2. An example of manipulated MNIST handwritten digits that mislead
classification by a CNN, crafted with the FGSM attack algorithm [13] with
e = 0.05.

deploy deep learning algorithms at the edge. In contrast to
previous approaches, we have focused on the possibility of
automating the selection of an optimal algorithm configuration
and the optimization of its implementation, considering the
specific features of the processing platform executing the
inference task during the whole development process. We
have evaluated the potential of the optimization techniques
implemented in the proposed tool flow and presented first
results.

Acknowledgments: The authors would like to thank all the partners
involved in the ALOHA project for their contribution.

R e f e r e n c e s

[1] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT
Press, 2016, http://www.deepleamingbook.org

[2] X. Xu, Y. Ding, S. Hu, M. Niemier, J. Cong, Y. Hu and Y. Shi, “Scaling
for edge inference of deep neural networks,” Nature Electronics, vol. 1,
pp. 216-222, April 2018.

[3] N. P. Jouppi et al. “In-Datacenter Performance Analysis o f a Tensor Pro­
cessing Unit,” Proceedings o f the 44th Annual International Symposium
on Computer Architecture, pp. 1-12, June 2017.

[4] Nvidia. 2018. NVIDIA Deep Learning Accelerator http://nvdla.org/
[5] Xilinx. 2018. Zynq-7000 SoC https://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.html
[6] Intel. 2018. Intel Arria 10 FPGAs and SoCs.

https://www.intel.com/content/www/us/en/products.html
[7] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L.

Raffo and L. Benini “NEURAghe: Exploiting CPU-FPGA Synergies
for Efficient and Flexible CNN Inference Acceleration on Zynq SoCs,”
2017, https://arxiv.org/abs/1712.00994

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio
“Quantized Neural Networks: Training Neural Networks with Low Pre­
cision Weights and Activations,” 2016, http://arxiv.org/abs/1609.07061

[9] A. Zhou, A. Yao, Y. Guo, L. Xu and Y.Chen “Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights,”
2017, https://arxiv.org/abs/1702.03044

[10] A. D. Pimentel, C. Erbas and S. Polstra “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Transactions on Computers, vol. 55, pp. 99-112, 2006.

[11] M. Masin, L. Limonad, A.Sela, D. Boaz, L. Greenberg, N. Mashkif
and R. Rinat. “Pluggable Analysis Viewpoints for Design Space Explo­
ration,” Procedia Computer Science, vol. 16, pp. 226-235, 2013.

[12] Keras. 2018.
https://github.com/keras-team/keras/blob/master/examples/mnistcnra.pj/

[13] I. J. Goodfellow, J. Shlens and C. Szegedy “Pluggable
Analysis Viewpoints for Design Space Exploration,” 2015,
https://arxiv.org/abs/1412.6572

[14] I. Theodorakopoulos, V. Pothos, D. Kastaniotis and N. Fragoulis
“Parsimonious Inference on Convolutional Neural Networks:
Learning and applying on-line kernel activation rules,” 2017,
https://arxiv.org/abs/1701.05221

[15] B. Biggio and F. Roli “Wild Patterns: Ten Years After the Rise of
Adversarial Machine Learning,” Pattern Recognition, vol. 84, 2018, pp.
317-331.

55

