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Abstract
In this paper we present and evaluate the SPADE (System level
Performance Analysis and Design space Exploration) methodol-
ogy through an illustrative case study. SPADE is a method and
tool for architecture exploration of heterogeneous signal process-
ing systems. In this case study we start from an M-JPEG ap-
plication and use SPADE to evaluate alternative multi-processor
architectures for implementing this application. SPADE follows
the Y-chart paradigm for system level design; application and ar-
chitecture are modeled separately and mapped onto each other
in an explicit design step. SPADE permits architectures to be
modeled at an abstract level using a library of generic building
blocks, thereby reducing the cost of model construction and sim-
ulation. The case study shows that SPADE supports efficient ex-
ploration of candidate architectures; models can be easily con-
structed, modified and simulated in order to quickly evaluate al-
ternative system implementations.
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1. Introduction
Modern signal processing systems are increasingly becoming

multi-functional multi-standard systems. For example, digital
televisions, set-top boxes, and mobile devices need to offer a va-
riety of functions and must support different standards for trans-
mission and coding of digital contents. In order to provide the re-
quired flexibility while satisfying performance requirements and
constraints on cost and power consumption, such systems will be
heterogeneous systems, i.e., systems composed of components in
the range from fully programmable to fully dedicated. As tech-
nology progresses, future heterogeneous Systems-on-Chip will
consist of tens of processor blocks connected by advanced com-
munication structures and on-chip memory.

In this paper we present design technology to support the defi-
nition of heterogeneous systems architectures that satisfy the de-
mands of a range of target applications. With the increasing sys-
tem complexity it is becoming increasingly difficult to evaluate
system level trade-offs using back-of-the-envelope calculations.
However, building a cycle-accurate model of a complete system
including the optimization and compilation of software compo-
nents is a huge effort. Moreover, when building such a model
a lot of details get fixed, leaving less room for optimizations.

Building multiple models at this level in order to evaluate mul-
tiple candidate architectures is too costly in terms of manpower
and simulation times. We therefore propose design technology
that permitssystem level trade-offsto be studied at a more ab-
stract level where design choices can be evaluated with less effort
while having a high impact.

SPADE (System level Performance Analysis and Design space
Exploration) [1] is a method and tool forarchitecture exploration
of heterogeneous signal processing systems. The positioning of
SPADE is illustrated in Figure 1. After initial back-of-the-envelope
calculations, SPADE supports the construction ofabstract exe-
cutable modelsfor the evaluation of alternative architectures. This
helps to narrow the design space before proceeding to the level
of cycle-accurate models.

In this paper we evaluate SPADE through a case study in which
we map an M-JPEG application onto alternative multi-processor
architectures. The objective of the case study is to validate the
basic principles of the SPADE methodology and to verify the pro-
totype tools and the associated library of architecture building
blocks. The case study must prove that SPADE is indeed an ef-
fective tool for architecture exploration that permits alternative
system implementations to be modeled and simulated efficiently.

In the next section we introduce the SPADE methodology. We
discuss related work in Section 3. In Sections 4 through 7 we
describe how the M-JPEG case study is modeled and executed
with SPADE. This explains in more detail the SPADE concepts
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Figure 1. The design pyramid: the design space is iteratively
narrowed by subsequent explorations at decreasing levels of
abstraction
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and how SPADE can be used in practice. In Section 8 we present
a number of experiments and associated results. Finally, we draw
conclusions based on our experiences with this case study.

2. The Spade Methodology
The SPADE methodology enables modeling and exploration of

heterogeneous signal processing systems. SPADE is based on
the Y-chart paradigm [2][3]. The Y-chart represents a general
scheme for the design of heterogeneous systems. In the Y-chart a
clear distinction is made betweenapplicationsandarchitectures,
which are related via an explicitmappingstep. The Y-chart ap-
proach permits multiple target applications to be mapped one af-
ter another onto candidate architectures in order to evaluate their
performance. The resulting performance numbers may inspire an
architecture designer to improve the architecture. He may also
decide to restructure the application(s) or to modify the mapping
of the application(s).

The distinction between applications and architectures can be
rephrased as the distinction betweenworkloadandresources. An
application imposes a workload onto the resources defined by an
architecture. A workload consists ofcomputation workloadand
communication workload; resources can beprocessing resources,
communication resources, andmemory resources. The explicit
mapping defines how the workload of an application is mapped
onto the resources of an architecture. The architecture design
process is concerned with the definition of an architecture that
can best handle the workloads imposed by target applications.

SPADE provides techniques for modeling applications and ar-
chitectures, as well as for capturing the mapping of application
models onto architecture models. Application models can be
used to verify the functional behavior of the application and to
measure the workload. To obtain performance numbers we need
to map such an application model onto an architecture model and
evaluate the combined model. SPADE employs atrace-driven
simulation technique to co-simulate an application model with
an architecture model in order to evaluate the performance of
the combined system. Trace-driven simulation techniques have
been applied extensively for memory system simulation in the
field of general-purpose processor design [4]. The workload of
an application is captured in one or moretraces. A trace con-
tains symbols, calledtrace entries, that represent the computa-
tion and communication operations performed by an application
upon processing a data set; data dependent behavior in the ap-
plication is thus captured by these traces. The resources in an
architecture accept these trace entries as the workload to be exe-
cuted. The traces drive the simulation of an architecture model.
The resources in an architecture model account time and report
performance data for the computation and communication work-
load in the traces. As we go through the case study in Sections 4
through 7 we present SPADE in more detail. For more informa-
tion on SPADE we also refer to [1].

3. Related Work
In the Polis [2] environment, an application is described as

a network of Codesign Finite State Machines (CFSMs). This
model is very well suited for reactive systems, but less suited for
signal processing applications, which is the application domain
targeted by SPADE.

VCC [5] has its roots in the Polis environment. It is targeted to-
wards IP based design, and includes support for reactive, control
dominated applications as well as for signal processing applica-
tions. It is also based on the Y-chart approach. VCC does not sup-
port hybrid modeling where abstract executable models can be
mixed with cycle-accurate processor models for co-simulation.
This is a key requirement for an IP based design environment in
which abstract models can be refined incrementally by including
off-the-shelf models for selected IP.

eArchitect [6] is another tool that follows the Y-chart approach.
It utilizes event-based performance simulation in order to eval-
uate system performance. Processing components are modeled
only with respect to throughput, response time, or latency, and
not with respect to their actual behavior. This is similar to archi-
tecture modeling in SPADE. However, simulations in SPADE are
fully functional simulations because of its application–architecture
co-simulation technique, whereas the performance simulations of
eArchitect are not fully functional.

Lahiri et al. [7] also use traces to capture the workload of appli-
cations. For performance analysis they use an analysis technique
that manipulates the traces to derive the timing behavior of the
system, whereas SPADE uses the traces to drive simulation of an
architecture model. They have limited their work to bus-based
communication architectures.

SystemC [8] is a C++ library and run-time environment for
modeling systems both at the RT level and at more abstract lev-
els. It has the advantage over HDLs that simulation of models is
faster, and that the refinement from abstract models down to RT
level models can be done in a single language and framework.
Although SystemC aims at providing an extensive API for mod-
eling at various levels of abstraction, this in itself does not yet
provide a methodology for system level design.

In the Ptolemy project [9] heterogeneous modeling, simulation,
and design of concurrent systems is studied, with a focus on em-
bedded systems. Although Ptolemy offers some support for code
generation, it does not offer a Y-chart approach to the definition
and evaluation of communication architectures of heterogeneous
systems.

4. Application

4.1 M-JPEG* Application
The application in the case study is a modified M-JPEG (Mo-

tion JPEG) encoder. We have chosen this application because
it is not too complicated, but has enough features to illustrate
the use and usefulness of SPADE. Like traditional M-JPEG en-
coders, the modified M-JPEG encoder compresses a sequence of
video frames, applying JPEG [10] compression to each frame in
the video sequence. M-JPEG is used for motion pictures com-
pression like MPEG [11] but without interframe predictive cod-
ing. Our modified M-JPEG encoder, which we further refer to
as M-JPEG*, differs from traditional M-JPEG encoders in three
aspects.

• M-JPEG* supports only lossy encoding, whereas M-JPEG typ-
ically supports both lossy encoding and lossless encoding.

• M-JPEG* can operate on video data in both 4:2:2 YUV and
RGB formats on a per-frame basis, whereas traditional M-JPEG
typically uses only YUV format.
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• M-JPEG* can process each incoming video frame with a dif-
ferent set of quantization and Huffman tables, depending on
the output bit-rate and the accumulated statistics from previous
video frames. Such dynamic change of the tables is typically
not performed by traditional M-JPEG encoders.

The last two points imply that the behavior of M-JPEG* is de-
pendent on the incoming video data. The M-JPEG* encoder ap-
plication is depicted as a block diagram in Figure 2.

RGB to YUV
Video stream

(YUV)
JPEG encoding

M-JPEG encoded

conversion
video stream

observed bitrate

(RGB or YUV)
Video stream

Figure 2. Block diagram of the M-JPEG* application.

4.2 Application Modeling in Spade
As we are going to map the application onto a multiprocessor

architecture, we have to expose task level parallelism and make
communication explicit. In SPADE, we use the Kahn Process Net-
works [12] model of computation for application modeling. In
the Kahn model, parallelprocessescommunicate via unbounded
FIFO channels. The Kahn model fits nicely with signal process-
ing applications as it conveniently modelsstream processingand
as it guarantees that no data is lost. Further, the execution of a
Kahn Process Network is deterministic, meaning that for a given
input always the same output is produced and the same workload
is generated, irrespective of the execution schedule.

Application modeling in SPADE is done using YAPI [13]. YAPI
is a simple API that can be used to structure C/C++ code as a
Kahn Process Network. Upon execution of an application model,
each process in the network produces a trace to capture the work-
load of that process. The following three API functions are pro-
vided1.

• A read function. This function is used to read data from a
channel via a process port. Furthermore, the function generates
a trace entryin the trace of the process by which it is invoked,
reporting on the execution of a read operation at the application
level.

• A write function. This function is used to write data to a chan-
nel via a process port. It also generates a trace entry, reporting
on the execution of a write operation.

• An execute function. This function performs no data process-
ing, but is used as an annotation of computations performed by
the process by which it is invoked. It generates a trace entry,
reporting on processing activities at the application level. The
execute function takes asymbolic instructionas an argument
in order to distinguish between different processing activities.
For example, such an instruction may correspond to a DCT
operation on an eight by eight image block.

The trace entries generated by theread andwrite functions rep-
resent thecommunication workloadof a process. The trace en-
tries generated by theexecute function represent thecomputa-
tion workloadof a process.
1Note that the YAPIselect function is not supported by SPADE.
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Figure 3. Structure of the M-JPEG* application model.

4.3 M-JPEG* Application Model
For modeling the M-JPEG* application we started from a pub-

lic domain JPEG codec implementation in C. First, we extracted
the encoder part from the implementation. Then we modified it
to match the M-JPEG* application. This involved the addition
of an RGB to YUV conversion and of the implementation of the
adaptation of the quantization and Huffman tables.

Next, we restructured this sequential implementation into a set
of parallel communicating processes using YAPI. This restructur-
ing involved, for example, removing global data structures, par-
titioning of the application, and insertion of calls to the YAPI
functionsread andwrite. The resulting Kahn Process Network
has the structure shown in Figure 3.

The network is composed of eight processes. TheVideo in,
DCT, Quantizer, VLE (Variable Length Encoding), andVideo out

processes together form the regular M-JPEG encoding algorithm.
RGB2YUV is an additional process such that the application also
accepts RGB frames as input data; theDMUX process is added
to route the incoming data either directly to theDCT process or
via theRGB2YUV process, depending on the incoming video for-
mat. TheOB Control process takes care of the quantization and
Huffman table adaptation; it receives statistics from theVLE pro-
cess and sends updated tables to both theQuantizer and theVLE

processes.
Finally, we annotated the computations of each process using

the YAPI execute function and symbolic instructions. For ex-
ample, theVLE process has twoexecute calls; one with an in-
structionop VLE, which represents all processing needed to per-
form the variable length encoding of an 8 by 8 block, and one
with an instructionop MakeStatistics, which represents the
calculation of image statistics that are used in the adaptation of
the quantization and Huffman tables.

4.4 Workload analysis
The M-JPEG* application model can be used for workload

analysis. When it is executed, the YAPI functionsread, write,
andexecute generate information on computation and commu-
nication workload of the application. For an input sequence of 8
RGB frames of size 720×576 pixels (PAL/SDTV), the workload
numbers obtained are partly shown in Tables 1 and 2. Consid-
ering that all block data tokens are blocks of 8 by 8 pixels, with



in: Proc. ICCAD’2001, November 4–8 2001, San Jose, CA

Table 1. Computation workload analysis results.
Process Instruction number of invocations
RGB2YUV op RGB2YUV 51 840
DCT op DCT 103 680
VLE op VLE 103 680

op MakeStatistics 103 680
. . . . . . . . .

Table 2. Communication workload analysis results.
Channel

from to data number of tokens
Video in DMUX block data 155 520
Video in DMUX header 8
VLE Video out bitstream 154 280
. . . . . . . . . . . .

each pixel represented by either one or two bytes, and that the
bitstream tokens are each one byte, we get an initial idea of the
bandwidth needed to accommodate this amount of communica-
tion.

5. Architecture

5.1 Case Study Architecture
In the case study we are mapping the M-JPEG* application

onto a heterogeneous multiprocessor architecture with central-
ized shared memory. The architecture is depicted in Figure 4. It
consists of five processing components which are all connected to
a bus and which are communicating via shared memory. For syn-
chronization there is also some direct communication between
the components; these links are not shown in this figure.

Two of the five processing components are DSPs. These DSPs
are used for the computation intensive tasks, namely one DSP
for the RGB to YUV conversion and the DCT transform, which
we refer to as theRGB2YUV/DCT processor, and another DSP for
the variable length encoding, which we refer to as theVLEP. A
general purpose microprocessor (mP) is used for the less compu-
tation intensive quantization and for the adaptation of the quanti-
zation and Huffman tables. For the input and output processing
we use two non-programmable components, which we refer to
as theVIP (Video In Processor) andVOP (Video Out Processor),
respectively. For the bus we initially take a 64 bit wide bus. The
memory we assume to be SRAM for reasons of speed.

5.2 Architecture Modeling in Spade
In order to efficiently explore different architectures, it is re-

quired that architecture models can be easily constructed and mod-
ified. In SPADE, functional behavior is described at the applica-
tion level. If this behavior is data dependent, the traces, which

(mP)

Memory

VIP VOP
DSP2
(VLEP)

DSP1
(RGB2YUV/DCT)

microProcessor

Figure 4. Abstract view of the architecture.

drive the operation of the architecture, also depend on the input
data. Therefore, we can use architecture models that do not need
to model the functional behavior, while maintaining correct data
dependent behavior. Such architecture models can be constructed
from generic building blocks. As the building blocks are generic,
we can provide a library of such blocks. The generic building
blocks need to model the different types of resources in an archi-
tecture, such as processing resources, communication resources,
and memory resources. Defining an architecture then becomes as
easy as instantiating building blocks from a library and intercon-
necting them.

The processing resources in the architecture model take the
traces generated by the application as an input. We have taken
a modular approach to allow the construction of a great variety
of processing resources from a small number of basic building
blocks. A processing resource is built from the following two
types of blocks.

• A trace driven execution unit (TDEU)which interprets trace
entries. The entries are interpreted in the order in which they
are put in the trace, thereby retaining the program order of the
application processes. A TDEU has a configurable number of
I/O ports. Communication via these I/O ports is based on a
generic protocol.

• A number ofinterfaceswhich connect the I/O ports of a TDEU
to a specific communication resource. An interface translates
the generic protocol into a communication resource specific
protocol, and may also include buffers to model input/output
buffering present in processing resources. Currently, we have
interfaces for point-to-point communication via a bus, and for
communication via a bus and shared memory, both buffered
and unbuffered. No interfaces are needed for communication
via a FIFO or an unbuffered direct link; these communication
blocks can be directly connected to the I/O ports of a TDEU.

The current library contains the TDEU and interface blocks de-
scribed above, a generic bus block, including a first-come-first-
serve arbiter, a FIFO block, an unbuffered direct link block, and
a generic memory block. All blocks are parameterized. For each
instantiated TDEU a list ofsymbolic instructionsand theirlaten-
cieshas to be given. This list specifies which instructions from
the traces can be executed by the processing resource and how
many cycles each instruction takes when executed on this pro-
cessing resource. These latencies can be obtained either from
a lower level model of the processing resource, from estima-
tion tools, or they can be estimated by an experienced designer;
they reflect the processing power of the selected programmable
or dedicated component. For instances of the FIFO and interface
blocks, buffer sizes can be given. For a bus instance, the bus
width, setup delay, and transfer delay can be specified.

An architecture is specified by means of a textual description
using an architecture description language. In this description
first the processors, buses, and FIFOs are defined. The user does
not need to define the exact interfaces; these are inserted auto-
matically when the architecture model is constructed. Only the
parameters, such as, latencies, buffer sizes, and bus width need
to be specified. The structure of the architecture is defined by
describing for each FIFO and each bus which processor ports are
connected to them. An example of an architecture description is
given in Figure 5.
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Architecture MJPEG_Arch;
// 1 unit of size = 1 byte = 8 bits; 1 cycle = 10ns

// Processor resources
Processor VIP {

InPorts { }
OutPorts {o1; o2;}
Instructions {op_ElaborateFrame = 20;}

}

Processor RGB2YUVDCT {
InPorts {i1; i2; i3; i4;}
OutPorts {o1;o2;}
Instructions {op_DCT = 1024; op_RGB2YUV = 192;}

}
:
:

// Communication resources
Bus B1 {width = 8; setup = 1; transfer = 2;}
Fifo F3 {number = 4; size = 1;}
Fifo F6 {number = 4; size = 64;}

:
:

// Connections
Structure {

Bus B1 {
VIP.o1 {number = 1; size = 7;};
VIP.o2 {number = 1; size = 64;};
RGB2YUVDCT.o1 {number = 1; size = 128;};

:
}
Fifo F3 {mP.o6 -> RGB2YUVDCT.i1;}
Fifo F6 {RGB2YUVDCT.o2 -> RGB2YUVDCT.i4;}

:
}

Figure 5. Fragment of the description of the architecture
model.

5.3 Case Study Architecture Model
We modeled the architecture as described above using the li-

brary of architecture components provided by SPADE. For each
processor a set oflatency valueshad to be defined for the sym-
bolic instructions used in the application processes mapped onto
that processor. In order to determine realistic values for these
latencies we assumed that both DSPs are Analog Devices ADSP-
21160 [14] and that the general purpose microprocessor is a MIPS
processor [15]. For the symbolic instructions of the processes
mapped onto these three processors, low-level instruction models
were constructed. Then we used the databooks of the processors
to determine the latency values. For the symbolic instructions of
the VIP andVOP we defined ranges of latency values to be ex-
plored.

The model was specified using the SPADE architecture descrip-
tion language. A fragment of the architecture description is shown
in Figure 5. In the architecture model we defined one simula-
tion cycle to be 10ns. We relate all times to this uniform time
unit, even though different components may run at different clock
speeds. All sizes in the architecture and the mapping description
are expressed in bytes. The architecture description consists of
three main parts. In the first part the processor resources are de-
scribed. For example, in lines 5 to 9 of Figure 5 theVIP is defined;
it has two output portso1 ando2, no input ports, and one sym-
bolic instructionop ElaborateFrame with a latency of 20 sim-
ulation cycles. In the second part the communication resources
are specified. First the bus is specified (line 20), followed by a
number of FIFO buffers which are used for synchronization. The
last part of the description specifies the structure of the architec-
ture. In this part the connections among the processor resources
and communication resources are described. For example, in line
29 it is specified that output porto1 of the VIP is connected to
busB1 via a buffer with a total size of 7 bytes, and in line 34 it is
specified that output porto6 of themP is connected to input port
i1 of theRGB2YUV/DCT processor via FIFOF3.

6. Mapping

6.1 M-JPEG* Mapping Specification
In Section 5.1 we already discussed the mapping of the pro-

cessing workload of the M-JPEG* application onto the process-
ing resources in the architecture. Also, we mentioned that most of
the communication is done via shared memory. Only some syn-
chronization and communication of status flags is mapped onto
direct channels between the processors.

6.2 Mapping in Spade
With SPADE, mapping of an application model onto an archi-

tecture model is performed as follows.

• Each process is mapped onto a TDEU. This mapping can be
many-to-one, in which case the trace entries of the processes
need to be scheduled by the TDEU. SPADE provides a default
round-robin scheduler and also provides an API for modeling
and using user-defined schedulers.

• Each process port is mapped one-to-one onto an I/O port. This
mapping also implicitly maps the channels onto a combination
of communication resources and memory resources.

If it appears that the functionality of a single process needs to
be distributed over more than one processing resource, then the
designer first has to rewrite the application such that this process
is partitioned into two or more processes.

Like the architecture, the mapping is specified by means of a
textual description using a mapping description language.

6.3 M-JPEG* Mapping Description
Using the SPADE mapping description language we have spec-

ified the mapping that we described in Section 6.1. A fragment of
the mapping description is shown in Figure 6; the mapping of the
processes onto the processors is also illustrated in Figure 7. The
first part of the description specifies the mapping of the processes
and their ports onto the processor components and their ports.
For instance, in lines 3 to 6 it is specified that processVideo in

is mapped onto theVIP and that the portsout HeaderInfo and
out BlockDataof theVideo in process are mapped onto the ports
o1 ando2 of the VIP, respectively. Next, for each application
channel atokensizeis specified. If the channel is mapped onto
a bus and the communication should take place via shared mem-
ory, then the number of places and the size of each place of the
buffers in shared memory are specified. For example, in lines 28
to 31 it is specified that the tokens that are transfered via channel
DCT Q BlockData have a size of 128 bytes, and that 4 buffers
of 128 bytes are allocated in shared memory for this channel.
The last part of the mapping description specifies the type of the
schedulers. In lines 37 and 38 it is specified that for both the mi-
croprocessor and theRGB2YUV/DCT processor the default sched-
uler is selected.

7. Simulation and Performance Evaluation
As we already described in Section 2, SPADE employs a trace

driven simulation technique to co-simulate an application model
with an architecture model. The simulation of the application
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Mapping MJPEG_Map (MJPEG_Appl, MJPEG_Arch);

Video_in : VIP {
out_HeaderInfo : o1;
out_BlockData : o2;

}

DCT : RGB2YUVDCT {
in_BlockData1 : i4;
in_BlockData2 : i3;
in_BlockType : i1;
out_BlockData : o1;

}

RGB2YUV : RGB2YUVDCT {
in_BlockData : i2;
out_BlockData : o2;

}
:
:

Channels {
Video_DMUX_Header {

tokensize = 7;
numbermembufs = 1; membufsize = 7;

};
RGB2YUV_DCT_BlockData {tokensize = 64;};
DCT_Q_BlockData {

tokensize = 128;
numbermembufs = 4; membufsize = 128;

};
:
:

}

Schedulers {
mP : default { };
RGB2YUVDCT : default { };

}

Figure 6. Fragment of the description of the mapping shown
in Figure 7

model is based on the Pamela [16] multi-threading environment,
where each Kahn process is executed in a separate thread. The
simulation of the architecture model is currently based on TSS
(Tool for System Simulation), which is a Philips in-house archi-
tecture modeling and simulation framework.

In order to evaluate a system, the SPADE library blocks from
which an architecture is built collect performance data during
simulation. From this dataperformance metrics, such as through-
put, frame rate, overall latency, and bus utilization, can be calcu-
lated. These metrics give an indication of the performance of the
system. For example, for a video processing system, such as the
M-JPEG* case study, we can collect the times at which a new
frame is output; from those times we can calculate the frame rate
of the system.

The following data is currently collected in the library blocks.
Each TDEU keeps track of the number of cycles it was busy with
computations, the number of cycles it was doing I/O, split out
into reads and writes, the number of cycles it was waiting either
for data or for room, and the number of cycles it had nothing to
do at all, i.e., was idle. In addition, each input and output port
counts the number of reads or writes that were performed, plus
the number of cycles no room or data was available. Each bus
counts the number of cycles it was in use and the amount of data
transported.

8. Experiments and Results
In this section we present some of the experiments we have

done and demonstrate that SPADE can be used effectively to eval-
uate the performance of alternative architectures.

In the experiments we look at thethroughputat the output of
the M-JPEG* system as the main performance metric. We mea-
sure this throughput inframes per second. The throughput de-
pends on the parameters of the architecture, the size of the in-
coming frames and the format, YUV or RGB, of the frames. We

Video in DMUX
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VLE Video out
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RGB2YUV

Memory

VIP VOP
DSP2
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Figure 7. Mapping of the M-JPEG* application onto the pro-
posed architecture.

study the effects of the following architecture parameters: the
number of processing components, the latencies of these com-
ponents, the speed of the bus, and the speed and size of shared
memory. We have performed the experiments with sequences of
RGB frames. For YUV frames the throughput will be at least
as good as the throughput for RGB frames, as no RGB to YUV
conversion needs to be performed.

The initial speed and width of the bus have been set to 100MHz
and 64 bits, respectively. For the shared memory we selected an
SRAM-type memory of size 64KB with read and write cycles of
10ns each.

We explore two different scenarios. The difference between the
two scenarios is the required throughput. For Scenario 1 the re-
quired throughput is 25 CIF frames (352×288 pixels) per second.
For Scenario 2 the required throughput is 25 PAL/SDTV frames
(720×576 pixels) per second.

Initial simulations showed that for the application, architecture,
and mapping as described in the previous sections the through-
put is 27 CIF frames or 6.5 PAL/SDTV frames per second. The
utilizations of the processing components are shown in Figure 8.
These results are used as the starting point for the two exploration
scenarios.

8.1 Scenario 1
In Scenario 1 the initial throughput of 27 CIF frames per sec-

ond is already better than the required throughput of 25 CIF frames
per second. Therefore we focus the exploration on improving
the performance–costratio of the system. This exploration in-
cludes finding and removing redundant components and excess
speed while still satisfying the required throughput. As the initial
throughput is just above the required 25 frames per second, we
can only improve the performance–cost ratio by a reduction in
terms of cost, e.g., silicon area or power consumption.

The performance numbers in Figure 8 suggest that the given
architecture has a poor load balance because themP and theVLEP

are not utilized very well. The DSP which we have chosen for
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Figure 8. Utilizations of the processing components of the
initial architecture. The bus utilization is 40%.
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Figure 9. Utilizations of the processing components after re-
moving the VLEP. The bus utilization is 12%.

theVLEP is too powerful for just theVLE process. That is why it
is waiting most of the time (69%). ThemP is executing and busy
with I/O only 55% of the time. Taking these observations into
account we conclude that we might not need a separate processor
component for the run length encoding and Huffman encoding.
We decide to remove theVLEP and to map theVLE process onto
the mP. We assume that theQuantizer andVLE processes can be
merged in such a way that there is no need to explicitly store
intermediate results in shared memory; this could, for example,
be accomplished by a fusion of the loops associated with the two
processes.

We simulated this modified architecture in order to see how the
performance has changed. Figure 9 presents the new performance
numbers. The throughput is still 27 CIF frames per second. This
means that removing theVLEP reduces the cost in terms of sili-
con area without a penalty on performance. The new simulation
results show that the bus is utilized only 12% instead of 40% in
the initial simulation. This reduction is a result of the assump-
tion that the data fromQuantizer to VLE does not need to go to
shared memory any more. The low bus utilization means that
the performance of the architecture is probably not very sensi-
tive to a decrease of the speed of the bus and the shared memory.
We observed through SPADE simulation that if we decrease the
speed of the bus and the memory five times, then the through-
put only drops to 26 CIF frames per second. The cost reduction
we achieve is in terms of silicon area, mainly as we now can use
DRAM instead of SRAM.

8.2 Scenario 2
In Scenario 2, the initial throughput of 6.5 SDTV frames per

second is well below the required throughput of 25 SDTV frames
per second. The focus of this scenario is thus on improving the
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Figure 10. Utilizations of the processing components after
decreasing the latency of the DCT transform operation on the
RGB2YUV/DCT processor. The bus utilization is 62%.
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Figure 11. Utilizations of the processing components after
decreasing the latency of the microprocessor. The bus utiliza-
tion is 81%.

performance.
The SPADE performance numbers in Figure 8 show that the

RGB2YUV/DCT processor is executing 95% of the time while the
other components execute less than 36% of the time. This sug-
gests that the throughput is very sensitive to the latency of the
RGB2YUV/DCT processor. We decrease the latency of the DCT
transform executed on this component five times; such a decrease
can be obtained by designing a dedicated component, in which
we exploit all parallelism present in the DCT algorithm. With
this improvedRGB2YUV/DCT processor the throughput becomes
10 SDTV frames per second. This still does not give us the re-
quired performance. The performance numbers obtained from
this simulation are shown in Figure 10. The results show that the
RGB2YUV/DCT processor is no longer the bottleneck. The results
also show that we can expect an increase of the throughput if we
decrease the latency of the microprocessor. We decreased the la-
tency of themP two times. For this case, we obtain a throughput
of 14 SDTV frames per second. The performance numbers are
given in Figure 11.

From this exploration we can see that the improvement of the
processing components, i.e., theRGB2YUV/DCT processor and the
microprocessor, results in a doubling of the throughput. How-
ever, it is still about a factor two below the required through-
put of 25 SDTV frames per second. Decreasing the latencies of
the components further is not an option, since such high perfor-
mance components cannot be implemented. Also, we do not ex-
pect a significant speedup of the architecture, because Figure 10
and Figure 11 show a significant increase of the time the proces-
sor components spend on performing I/O operations. The latter
means that the communication structure of the architecture be-
comes a bottleneck.
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According to the results of the exploration we conclude that
although our architecture consists of five fast processor compo-
nents working in parallel, we cannot achieve the required real-
time performance for SDTV frames.

9. Conclusions
We have presented a case study of an M-JPEG encoder applica-

tion mapped onto a shared memory multi-processor architecture.
We performed explorations of the initial application and architec-
ture at an abstract level using SPADE. By doing these experiments
we illustrated the use and usefulness of SPADE early in the pro-
cess of designing heterogeneous signal processing architectures.
It appears that SPADE gives a designer useful feedback on the
performance of a system, which helps him in improving the sys-
tem. This was illustrated by the scenarios in Section 8. More
specifically we conclude that:

• The Y-chart approach helps in separating application and ar-
chitecture concerns, which is crucial if multiple architectures
are to be evaluated, possibly for multiple applications.

• The Kahn Process Networks model is effective for application
modeling. Using a simple API, legacy C code can be trans-
formed into a parallel model.

• Thanks to the trace-driven simulation technique of SPADE, non-
functional architecture models can be used even for data depen-
dent applications. As a consequence we can use a library of
generic building blocks for architecture modeling. This turned
out to be a key feature for efficient architecture modeling.

• SPADE permits architecture models to be parameterized, which
helps in performing sensitivity analysis and tuning of architec-
ture parameters.

• SPADE supports efficient exploration. The simulations done
in the scenarios typically took a few minutes for an input se-
quence of several frames. Also, changes to the architecture and
mapping could be easily made to the textual descriptions.

• SPADE currently lacks feedback on other metrics than perfor-
mance metrics, such as silicon area and power dissipation.

An issue that will be subject of further research is the cou-
pling to more detailed abstraction levels. Since SPADE uses the
TSS cycle-driven simulation engine for architecture simulation,
we think it is very well possible to enable co-simulation of ab-
stract architecture models with detailed, cycle-accurate models,
thereby providing a path from abstract level simulation and ex-
ploration to detailed level simulation in a single framework. We
are also studying the use of SystemC for architecture modeling
in the SPADE methodology.
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