

D I S T R I B U T E D D N N
I N F E R E N C E AT T H E E D G E

xiaotian guo

Universiteit Leiden

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 463.
Copyright © 2024 Xiaotian Guo.

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, includ-
ing photocopy, recording, or any information storage and retrieval system,
without permission from the author.

Cover Design: from original art by Xiaotian Guo.
Thesis template: classicthesis by André Miede and Ivo Pletikosić.
Printed and bound by Proefschrift Specialist Printing
ISBN: 978-94-93391-89-5

D I S T R I B U T E D D N N
I N F E R E N C E AT T H E E D G E

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op woensdag 5 februari 2025, te 16:00 uur

door Xiaotian Guo
geboren te ANHUI

Promotiecommissie

Promotoren: Prof. dr. A.D. Pimentel Universiteit van Amsterdam

Dr. T.P. Stefanov Universiteit Leiden

Overige leden: Prof. dr. R.V. van Nieuwpoort Universiteit Leiden

Prof. dr. D. Müller-Gritschneder Technische Universität Wien

Prof. dr. ir. A. Iosup Vrije Universiteit Amsterdam

Prof. dr. P. Grosso Universiteit van Amsterdam

Dr. A. Pathania Universiteit van Amsterdam

Dr. D. Sapra Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This work is dedicated to my wife, parents, brother, sister-in-law, those I
love, and those who love me.

C O N T E N T S

1 introduction 1

1.1 AI Revolution 1

1.2 Edge Computing and Internet of Things 3

1.3 Deep Learning at the Edge 4

1.4 Why Distributed DNN Inference at the Edge? 6

1.5 Distributed DNN Inference at the Edge 8

1.6 Thesis Overview 13

1.6.1 Origins 15

1.7 Author Publications 16

1.8 Source Code 16

2 background 17

2.1 DNN Model 17

2.1.1 Convolutional Neural Network (CNN) 18

2.1.2 Transformer 20

2.2 Partitioning Methods 22

2.3 Design Space Exploration 24

2.3.1 Non-dominated Sorting Genetic Algorithm II 24

2.3.2 Chromosome 25

2.3.3 Fitness Function 26

2.4 Interoperability 31

i distributed dnn inference at the edge 33

3 chapter 3 35

3.1 Introduction 36

3.2 Related Work 39

3.3 The AutoDiCE tool 41

3.3.1 Overview 41

3.3.2 Interface 44

3.3.3 Front-end 46

3.3.4 Back-end 47

3.4 Framework Evaluation 51

3.4.1 Experimental Setup 51

3.4.2 Efficiency of AutoDiCE and DSE Results 53

vii

viii contents

3.4.3 Varying the Number of Edge Devices 56

3.5 Discussion 57

3.6 Conclusions 59

4 chapter 4 61

4.1 Introduction 62

4.2 Related work 63

4.3 Method 64

4.3.1 Fitness Functions 64

4.3.2 Multi-stage hierarchical DSE 64

4.4 Experimental Evaluation 67

4.4.1 Experimental setup 67

4.4.2 Experimental results 68

4.5 Conclusion 69

ii robustness for distributed inference 71

5 chapter 5 73

5.1 Introduction 74

5.2 Related Work 75

5.3 Background and Motivation 77

5.4 The RobustDiCE Method 79

5.4.1 Decentralized Computing Framework 80

5.4.2 Robust Partitioning 81

5.5 Evaluation of the RobustDiCE Method 85

5.5.1 Experimental Setup 85

5.5.2 Experimental Results 86

5.6 Conclusions 90

6 chapter 6 91

6.1 Introduction 91

6.2 Related work 94

6.3 Robust Model Splitting 97

6.3.1 Motivational Example 98

6.3.2 Robust Model Splitting 100

6.4 Problem Formulation 101

6.5 The EASTER method 102

6.5.1 Partial Split Method for Transformers 102

6.5.2 Design Space Exploration 104

6.5.3 Multi-node Intermediate Representation 108

6.6 Evaluation of the EASTER method 109

6.6.1 Experimental Setup 109

contents ix

6.6.2 DSE Results and Comparison 112

6.6.3 Robustness Verification Against Varying Failures 115

6.6.4 Distributed Inference 117

6.7 Conclusions 118

7 conclusion 121

7.1 Answers to Challenges 123

7.2 Future work 127

bibliography 129

summary 137

samenvatting 139

acknowledgements 141

A C R O N Y M S

AI Artificial Intelligence

CNN Convolutional Neural Network

DNN Deep Neural Network

CPU Central Processing Unit

CONV Convolution

CDC Coded Distributed Computing

DSE Design Space Exploration

EI Edge Intelligence

FC Fully Connected

GA Genetic Algorithm

GPU Graphical Processing Unit

HV Hypervolume

IR Intermediate Representation

IoT Internet of Things

IPS Images processed Per Second

LLM large Language Model

LP Layer Partitioning

MAC Multiply Accumulate (arithmatic) operation

MOO Multi-Objective Optimization

MOTPE Multi-Objective Tree-structured Parzen Estimator

x

acronyms xi

NSGA-II Non-dominated Sorting Genetic Algorithm II

ONNX Open Neural Network eXchange framework

PE Processing Element

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SPE Split Point Encoding

TPU Tensor Processing Unit

UCB Upper Confidence Bound

UCT Upper Confidence bounds applied to Trees

1
I N T R O D U C T I O N

1.1 ai revolution

The artificial intelligence (AI) revolution represents a significant chapter
in the evolution of computer science, transforming a broad range of sec-
tors with applications in image classification, natural language processing
(NLP), and more. The core of this transformative era is deep learning (DL),
a subset of AI that employs layered neural networks, enabling machines
to analyze and learn from extensive datasets with a level of sophistica-
tion previously unattainable. Recent breakthroughs in AI applications like
GPT-4, Copilot, etc., have demonstrated DL’s potential in real-world sce-
narios. In computer vision, AI now exceeds human capabilities in object
recognition and image classification. In NLP, AI achieves near-human com-
prehension and text generation, leading to advanced conversational agents.
AI’s application in autonomous systems, from self-driving cars to drones,
demonstrates its ability to interpret and navigate complex environments
autonomously. Additionally, the AI Index Report 2023 [1] highlights the
remarkable growth in global AI private investment, which reached 91.9 bil-
lion in 2022, indicating an 18-fold increase since 2013. This underscores the
escalating significance of AI across various sectors.

This revolution is characterized by exponential growth in AI research
publications and the size of complex deep learning models. As shown in
Figure 1.1, the last decade has seen an exponential increase in AI publi-
cations (red line), reflecting the burgeoning research activities in AI fields.
Specifically, deep neural networks (DNNs) are at the forefront of the revo-
lution in deep learning research, which draws inspiration from the neural
architecture of the human brain. Driven by both academic and industrial
sectors, the journey from simple perceptrons to Deep Neural Networks
(DNNs) has been marked by a significant expansion in model size. DNNs
have evolved from models with millions to billions of parameters. For in-

1

2 introduction

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

108

109

1010

1011

DN
N

M
od

el
 S

ize
 (P

ar
am

et
er

s)

AlexNet

VGG-19

ResNet-152Inception-v4

NASNet-A (Large)GPT

GPT-2

GPT-3 Jurassic-1

Gopher

PaLM
DNN Model Size (Parameters)
AI Research Publications (Thousands)

3 × 102

4 × 102

AI
 R

es
ea

rc
h

Pu
bl

ica
tio

ns
 (T

ho
us

an
ds

)

Figure 1.1: Growth of DNN Model Sizes and AI Research Publications (2013-2023)

stance, the shift from GPT-2 with 1.5 billion parameters in 2019 to Google’s
PaLM with 540 billion parameters in 2023 exemplifies the dramatic increase
in model complexity. This trend towards larger models with exponentially
growing parameters continues to push the boundaries of AI and deep learn-
ing research.

However, this rapid expansion brings a lot of challenges and opportu-
nities. On the one hand, the demand for more powerful computational
resources has never been higher. Training and deploying state-of-the-art
deep learning models require significant computational power, often neces-
sitating specialized hardware such as GPUs (Graphics Processing Units) or
TPUs (Tensor Processing Units). On the other hand, the proliferation of ad-
vanced AI models also accentuates the need for advancements in computa-
tional efficiency, model optimization, and energy consumption. As models
grow in size and complexity, the environmental impact of training these
models becomes a concern, sparking efforts to develop more sustainable
AI practices. Additionally, advanced AI in real-world applications often re-
quires navigating a delicate balance between computational resources and
user constraints, such as latency, memory, etc.

In essence, the AI revolution embodies a dynamic interplay between
rapid technological growth and the ensuing challenges and opportunities.
As the field continues to evolve, the urge for more efficient, powerful, and

1.2 edge computing and internet of things 3

sustainable AI systems remains at the forefront of technological innovation
and research.

1.2 edge computing and internet of things

Edge CloudData Source

Figure 1.2: The Edge-Cloud Paradigm

The expansion of AI necessitates more powerful computational resources
centralized in cloud computing infrastructures. As shown in Figure 1.2,
“Cloud computing” is defined as a centralized Internet-based computing
paradigm where large groups of centralized servers are networked in or-
der to allow the sharing of computing services or resources. Thus, cloud
computing is a largely centralized computing paradigm. The “Edge” here
generally refers to a variety of networked devices with computing capacity
placed anywhere along the path of data transmission between a data source
and the cloud. In contrast to cloud computing, edge computing is a dis-
tributed computing paradigm in which services and computing resources
are provided closer to the data sources and users.

The rapid growth of the Internet accelerates the expansion of the Internet
of Things (IoT) devices, encompassing a wide array of devices ranging from
sensors, laptops, and other software-equipped machines. These connected
devices are capable of exchanging data not only among themselves but
also with cloud systems. As highlighted by Toor et al. [2], it is expected
that the total number of IoT devices connected will reach up to 60 billion
by 2024. Billions of interconnected IoT devices generate significant volumes
of data, providing the foundational data for the development, training, and
refinement of AI models. IoT devices play a vital role in facilitating the
collection, transmission, and in some cases, the processing of data between
the cloud and various data sources.

While IoT devices offer massive data for training AI models within cloud
servers, the challenges posed by the centralized cloud infrastructure, includ-
ing latency, bandwidth limitations, and privacy concerns, intensify with the
IoT device expansion. The challenges arising from centralized cloud infras-
tructures highlight the essential need to process AI workloads and deep

4 introduction

learning models closer to data sources or users—directly at the Edge. For
instance, any delay in time-sensitive applications like autonomous vehicles
can lead to significant, sometimes critical, outcomes. By adopting edge com-
puting, issues such as latency, privacy concerns, and data storage pressures
are mitigated, reducing dependencies on cloud-based infrastructures.

In total, the shift towards edge computing is becoming increasingly cru-
cial for AI applications, and also provides a new landscape of AI deploy-
ment.

1.3 deep learning at the edge

Deep learning, a specialized branch of artificial intelligence (AI), has seen
remarkable development in research and industrial applications, including
computer vision, natural language processing, the Internet of Things (IoT),
autonomous systems, and other areas. Nowadays, deep neural networks
(DNNs) are the front-runners of deep learning algorithms, known for their
advanced capabilities, which enable machines to perform complex tasks
with unprecedented efficiency and accuracy.

Neuron

Input

Output
(Prediction)

Hidden Layers
a lot of layers ~ "deep learning"

Figure 1.3: DNN Structure

A DNN (Figure 1.3) is structured into three primary parts: the input
layer, hidden layers, and the output layer. The input layer processes ini-
tial raw data, such as image pixels or other data inputs, into input vectors.
The hidden layers are multiple interconnected layers of numerous units for
processing these input vectors. Ultimately, the output layer produces the
final results of the DNN, such as generated text or image processing re-

1.3 deep learning at the edge 5

sults. DNN models work in two main phases: training and inference. In
the training phase, DNNs determine the values of the coefficients (weights
and biases) within the hidden layers. This process involves learning from
training datasets through a method known as gradient descent, which oper-
ates by backpropagation [3]. The basic units within the hidden layers, called
neurons, contribute to the processing capability of its respective layer, and
each hidden layer produces output data for the subsequent interconnected
hidden layer. Each neuron in a DNN model executes a mathematical op-
eration, such as convolution, dot product, rectifier activation [4], among
others, leading to substantial computation and transformation within these
neurons. In the inference phase, DNNs leverage these neurons to generate
predictions based on input data. All coefficients are fixed and no longer
change. These neurons work together to process, extract, and produce both
high- and low-level representations or patterns from input data.

A key driver behind the advancement of DNNs is the substantial progress
in computational hardware. Modern processors and GPUs have evolved to
meet the demanding computational needs of DNNs, thereby accelerating
the evolution of DNN models. The massive Deep Neural Network (DNN)
computations can be executed through two main paradigms: cloud com-
puting and edge computing. Each offers distinct advantages and addresses
different requirements of user applications and the constraints of deploy-
ment environments.

Generally, the cloud server provides a powerful platform for perform-
ing DNN computations due to its huge computational resources, such as
powerful high-performance graphic processor units (GPUs). The state-of-
the-art DNNs typically contain hundreds or thousands of layers with nu-
merous neurons, requiring a large amount of hardware resources for their
training, deployment, or execution. DNN-based services are provided by
these cloud servers in a centralized manner. Users initiate this service by
sending requests, which include raw input data for the DNNs’ input layers,
to these cloud servers. Subsequently, the cloud servers allocate computa-
tional resources and data storage to handle these requests and return the
results of DNNs’ output layers (predictions) to the users. It is particularly
well-suited for the training phase of DNNs, which requires handling vast
datasets and performing extensive computations. Cloud servers enable the
parallel processing of data and the deployment of sophisticated algorithms
at a scale that would be impractical or prohibitively expensive for most lo-
cal or on-premise solutions. The centralized nature of cloud computing also

6 introduction

simplifies the management of models and datasets, providing an efficient
way to update, maintain, and scale AI applications.

However, relying solely on cloud servers for DNN computations can in-
troduce challenges, including increased latency due to data transmission
times between the client and the cloud, bandwidth constraints, and con-
cerns regarding data privacy and security. Additionally, the continuous re-
liance on internet connectivity can pose limitations for applications that re-
quire real-time or near-real-time responses. Edge Computing, on the other
hand, brings computation and data storage closer to the location where it
is needed, aiming to reduce latency and bandwidth use. This approach is
advantageous for deploying DNN models that require real-time inference,
such as those used in autonomous vehicles, IoT devices, and real-time mon-
itoring systems. By processing data locally on edge devices, response time
can be significantly improved, which is critical for applications requiring
immediate decision-making. Edge computing also enhances privacy and se-
curity, as sensitive data can be processed locally without being transmitted
to a central server. For example, a network of IoT devices in smart health-
care systems within a hospital or a home setting, such as wearable health
monitors, bedside monitors, and portable diagnostic devices, are equipped
with sensors to collect vital signs and patient data in real time. By deploy-
ing DNN models directly onto these devices, the system can locally analyze
data, make immediate health assessments, or predict medical events with-
out the need to send or store sensitive patient data in centralized cloud
servers, thus enhancing user privacy and data security.

In summary, edge intelligence (EI) combines edge computing with AI
to process data closer to users. It facilitates the operation of DNN models
in environments with limited or intermittent connectivity to the cloud. It
enables decentralized data processing, making it possible for devices to
reduce dependencies on cloud-based infrastructures. By doing so, issues
such as latency, privacy concerns, and data storage pressures are mitigated
in the DNN applications.

1.4 why distributed dnn inference at the edge?

While deploying Deep Neural Networks (DNNs) on edge devices offers
several benefits, it also presents challenges like limited computational re-
sources, high power consumption, and maintenance complexities. DNN in-
ference is notably resource-intensive, and edge devices typically lack the
requisite capabilities. These devices frequently have restricted processing

1.4 why distributed dnn inference at the edge? 7

"cat" : 60%

Multiple Edge
Devices

Single Edge Device

"cat" : 90%

Figure 1.4: Why Distributed Inference at the Edge?

power and memory, creating obstacles in executing complex DNN mod-
els and necessitating compromises in terms of accuracy or functionality.
Furthermore, the intensive computational demands of DNNs can rapidly
drain batteries, particularly in applications requiring continuous operation,
making power consumption a significant concern. Overcoming these lim-
itations is crucial for the effective deployment of DNNs on edge devices.
One approach is to use model compression methods such as pruning and
quantization, albeit with possible impacts on accuracy. These methods fo-
cus on reducing the size of DNNs while trying to maintain their accuracy.
Pruning and knowledge distillation help decrease memory and computa-
tional requirements, thus tailoring DNNs more suitably for edge devices.
Quantization, by reducing numerical precision, further shrinks the model
size and accelerates inference. As shown on the upper part of Figure 1.4,
the model compression methods create a smaller DNN model appropriate
for a single edge device. However, they incur significant retraining costs
and would result in a potential accuracy drop. An alternative approach to
address the challenge is to leverage all available resources along multiple
edge devices to deploy and execute a large DNN by properly partitioning
the DNN model and running each DNN partition on a separate edge device.
The size of each DNN partition should match the limited energy, memory,

8 introduction

and compute resources of the edge device the partition runs on. Such an
approach not only makes it possible to deploy large DNN models with-
out the need of model compression, respectively without loss of accuracy,
but it also resolves the aforementioned responsiveness and privacy issues
because a cloud server is not involved in the DNN inference.

This thesis focuses on formulating strategies for the distributed deploy-
ment of Deep Neural Networks (DNNs) exclusively on edge devices. It
aims to achieve an ideal equilibrium among throughput, energy consump-
tion, and model accuracy while addressing the deployment limitations over
distributed edge devices.

1.5 distributed dnn inference at the edge

In a distributed DNN inference scenario, each edge device is assigned a
part of the DNN model to process. These devices either concurrently or se-
quentially perform their computations, adhering to the DNN’s original op-
erational sequence. The intermediate results from each device are collabora-
tively aggregated to produce the final output. This output is subsequently
delivered back to the users, effectively leveraging the computational power
and memory resources of multiple edge devices. However, implementing
such distributed DNN computations across edge devices also presents a
set of challenges, such as ensuring efficient coordination and communica-
tion between multiple devices, managing data consistency and synchroniza-
tion, and minimizing the overhead associated with splitting and integrating
model partitions.

The DNN distribution involves representing a DNN model into a compu-
tation graph and splitting the graph into a number of subgraphs/partitions.
This process distributes DNN layers across different devices or divides the
neurons within DNN layers among multiple devices. The subgraphs/parti-
tions contain all neurons from the original graph and adhere to the compu-
tational graph’s topological order.

Typically, a layer in a subgraph contains a portion of neurons from the
original layer if that layer is distributed across multiple devices. To main-
tain the integrity of data flows within the computational graph and ensure
alignment with the original DNN computation graph, the partitioned layer
in the subgraph must be integrated with mechanisms for communication
and synchronization. This is crucial for preserving the consistency and ac-
curacy of the distributed inference process.

This problem leads us to our first research challenge:

1.5 distributed dnn inference at the edge 9

CHL1: How to flexibly and efficiently offload DNN models over multiple edge
devices?

Addressing this first challenge of distributing DNN models across mul-
tiple edge devices requires a comprehensive strategy that encompasses
model parsing, partitioning, mapping, device management, and more. There-
fore, we have developed AutoDiCE, a novel framework, detailed in Chap-
ter 3, designed for efficiently exploring and automatically implementing
a wide range of DNN partitions and mappings on multiple edge devices.
This facilitates distributed DNN inference at the Edge. AutoDiCE starts
with parsing and partitioning the DNN computational graph into smaller,
manageable subgraphs. Following partitioning, AutoDiCE addresses the
challenge of maintaining operational sequence and data integrity through
its DNN mapping approach, which outlines the data flow between sub-
graphs. This process is distinct from single-device inference frameworks, as
our framework supports distributed inference across multiple edge devices.

In AutoDiCE, we have introduced a method for parsing Deep Neural Net-
work (DNN) models into a unified computational graph using the widely-
used ONNX format, thereby enabling seamless connection with the Py-
Torch and TensorFlow frameworks used for training. In addition, AutoDiCE
leverages dynamically generated C++ code, tailored for various hardware
environments, to facilitate efficient model inference. The management of
device resources, decentralized data communication, and systematic con-
sistency checks ensure orderly execution and optimal data flow. Finally,
AutoDiCE generates executable C++ files, thus enabling a cooperative com-
putational execution for edge devices.

While Chapter 3 focuses on distributing DNN models at the Edge, it
does not delve into the optimal distribution strategy. For instance, consider-
ing memory usage objectives may require evenly partitioned and balanced
DNN weights across devices. Constraints on specific hardware with lim-
ited resources necessitate careful weight allocation to ensure successful ex-
ecution. Finding an optimal distribution strategy that considers hardware
constraints on edge devices is paramount.

Considering the heterogeneous computing architectures and varied avail-
able resources on each device, coupled with the complexity of a DNN
model that can include hundreds of computational layers, each with dif-
ferent weight sizes, the design space of possible distributions of a DNN

10 introduction

model becomes exceedingly complex. For instance, distributing a DNN
model with 100 layers across four devices introduces a staggering 4100

potential distribution strategies. This enormity of the design space under-
scores the substantial challenge in searching for an optimal distribution
strategy that can efficiently accommodate the heterogeneity of devices. Bal-
ancing memory usage, energy consumption, and inference latency turns
this into a multi-objective optimization problem. Efficient Design Space Ex-
ploration (DSE) methods are essential for navigating this vast design space,
leading to our second research challenge:

CHL2: How to perform an efficient DSE process to find optimal distribution
strategies of DNN models at the Edge while considering multiple optimization
objectives?

To address the challenge of optimally distributing DNN models across
heterogeneous devices, Chapter 4 introduces a novel multi-stage DSE method
aimed at identifying Pareto optimal design points for the distribution of
DNN models, particularly Convolutional Neural Networks (CNNs) that
contain hundreds of layers. Given the vastness of potential distributions—for
example, the myriad ways to distribute a CNN model’s layers across multi-
ple devices—finding an optimal solution within a limited number of search
trials necessitates a tailored DSE approach. This DSE process is especially
critical when considering various constraints such as memory usage, energy
consumption, and inference throughput, where trade-offs among these ob-
jectives make it challenging to pinpoint a singular best solution, guiding
the search towards identifying a Pareto front instead.

Typically, for Multi-Objective Optimization (MOO) problems, methods
like Non-dominated Sorting Genetic Algorithm II (NSGA-II) [5] are em-
ployed for DSE. However, given the enormity of the search space in DNN
distribution scenarios, NSGA-II would easily get stuck in local optima. To
circumvent this limitation, we propose a NSGA-II-based DSE method that
is specifically designed to overcome such pitfalls. This enhanced method
leverages prior knowledge specific to distributed inference in a pipeline
way to navigate the complex design space more effectively. Through this
method, we aim to strike a balance between competing objectives, such
as reducing memory and energy consumption while maximizing inference
throughput, thus enabling efficient and effective deployment of distributed
DNN inference systems.

1.5 distributed dnn inference at the edge 11

It is crucial to acknowledge that all our aforementioned approaches and
methods to address challenges CHL1 and CHL2 assume uninterrupted
availability of edge devices, a condition that cannot always be guaranteed.
Edge devices, especially those that are mobile or rely on low-power, short-
distance communication technologies, may become temporarily inaccessi-
ble or suffer from failures, such as battery depletion. Given the inherent un-
reliability of such edge devices, that can easily change location and thereby
disrupt availability, failure-resilient execution of distributed DNN-based ap-
plications throughout their active lifespan becomes essential. The transient
unavailability of one or more edge devices during the distributed execu-
tion of DNN inference could lead to corrupted or inaccurate results, posing
significant risks to user applications and potentially leading to severe con-
sequences, such as automotive accidents or failures in smart care systems.
This leads to our third research challenge:

CHL3: How to ensure the robustness of DNN inference across multiple edge
devices against possible failures or transient unavailability?

To address this challenge, an insight that different neurons within each
DNN layer contribute differently to the DNN inference accuracy has led
us to the development of a novel method, called RobustDiCE, described
in Chapter 5, for robust distribute DNN inference at the Edge. This method
is inspired by the fact that every neuron within each layer of a DNN model
has a different importance to the inference accuracy. By evaluating the im-
portance of every neuron, neurons can be allocated across multiple devices
in a manner that not only balances the computational load but also repli-
cates critically important neurons. Such a strategy ensures that, despite po-
tential device failures, the most crucially important neurons remain oper-
ational to the greatest possible extent, thereby enhancing the robustness
of distributed DNN inference. In brief, RobustDiCE emphasizes two main
aspects of robustness: system robustness, ensuring the continuity of DNN
inference even when one or more edge devices malfunction, and model ro-
bustness, which aims at maintaining the DNN model inference accuracy
despite the loss of some intermediate results due to device failures.

It is important to note that in RobustDiCE, a higher ratio of neuron
replication correlates with increased DNN model inference accuracy in the
face of potential device failures. However, this comes with the trade-off of

12 introduction

larger memory usage and more computational load per device due to the
additional replicated neurons. With a DNN model potentially comprising
hundreds of layers, determining an optimal replication ratio for each layer
introduces the complex challenge of navigating through hundreds of possi-
ble ratio values for model distribution. Excessive replication contradicts the
goal of minimizing the memory usage per device and reducing the energy
consumption per device. Thus, it becomes crucial to identify an optimal set
of replication ratios for each layer within the DNN model. The objective is
to keep the replication ratio as low as possible (thereby ensuring that the
memory usage and energy consumption on each device do not significantly
increase due to neuron replication) while also providing a sufficient level
of robustness against device failures. This leads us to our fourth and final
research challenge:

CHL4: How to determine an optimal set of neuron replication ratios for each
layer within a distributed DNN model that maximizes inference accuracy in the
face of potential edge device failures, while minimizing the impact on memory
usage and computational load per device, thereby ensuring efficiency in terms
of energy consumption and overall system performance?

To address the outlined research challenge, we present a novel DSE method
named EASTER in Chapter 6, specifically tailored for determining the op-
timal set of replication ratios. As similar replication ratio sets yield com-
parable design spaces, EASTER first divides the entire design space into
smaller, manageable sub-spaces. Within each of these sub-spaces, EASTER
estimates the expected reward for each optimization objective based on pre-
viously evaluated design points. This allows us identify and focus on the
most promising or potentially promising sub-spaces for generating new
design points. By concentrating the search and sampling efforts on these se-
lected sub-spaces, EASTER significantly improves its search efficiency. This
method strikes a balance between exploration of new possibilities and ex-
ploitation of known promising areas, effectively avoiding the common issue
of getting trapped in local optima. Ultimately, the Pareto optimal points
or solutions identified through this process represent a superior compro-
mise between maintaining robustness to device failures and achieving op-
erational efficiency in terms of computation efficiency and memory usage.

1.6 thesis overview 13

1.6 thesis overview

Figure 1.5 visualizes how this thesis is organized. Chapter 2 provides
the basic background knowledge for the topics discussed throughout the
rest of the thesis. This chapter introduces the basics of DNN models, the
design space exploration methods applied in the distribution problem of
DNN neurons across multiple devices, and interoperability requirements
for DNN deployment at the Edge.

Following the background chapter, this thesis is organized into two major
parts. The first part, consisting of two chapters, is focused on distributed
inference at the Edge. Chapter 3 introduces a new fully automated tool for
distributed deployment of CNN models over multiple resource-constrained
devices at the Edge. It automates the splitting of a CNN model into a set
of sub-models and automates code generation for distributed and collabo-
rative execution of these sub-models on multiple, possibly heterogeneous,
edge devices. Chapter 4 dives deeper into the optimal distribution strate-
gies for the distributed deployment of CNN models, with a focus on op-
timizing the performance, memory usage, and energy consumption of the
involved edge devices. It proposes an advanced DSE method with a new ge-
netic encoding method for efficiently exploring the pipe-lined distributions
of CNN models at the Edge to improve (i.e., reduce) per-device energy
consumption, reduce per-device memory usage, and improve system infer-
ence throughput (under certain conditions) as well. This chapter depends
heavily on the AutoDiCE framework presented in Chapter 3, to derive ac-
tual implementations of the resulting Pareto solutions considering the three
aforementioned optimization objectives.

The second part of the thesis contains two chapters and is focused on
the robustness of distributed DNN inference. The work presented in both
of these chapters builds upon the implementation of the AutoDiCE frame-
work (the first part of the thesis). However, the work in the two chapters in
the first part assumes continuous availability of all involved edge devices,
which cannot be guaranteed at all times because an edge device could fail
or become temporarily unreachable, e.g., due to an unstable connection, a
depleted battery, etc. Thus, Chapter 5 proposes the RobustDiCE method to
enhance the robustness of distributed inference against possible device fail-
ures by using a balanced dispersion of critical neurons over various devices
by assessing the importance of neurons within DNN layers.

The RobustDiCE method in Chapter 5 replicates crucial neurons across
multiple devices to allow for robust distributed DNN inference. However,

14 introduction

Ch1: Introduction

Ch2: Background
DNN deployment, Design space exploration

Ch3: AutoDiCE
 Distributed framework,

Code generation

Ch4: Multi-stage DSE
Split-point Encoding,
 Multi-stages Search

Ch7: Conclusion

Part I: Distributed Inference at the Edge

 Fast and Flexible
Deployment

 Objectives: Memory,
Energy, Throughput

CHL1：How to offload DNN models across
distributed edge devices？

CHL2：How to search optimal DNN distributions for
different on-device objectives?

Ch5: RobustDiCE
Importance Evaluation,

Groupping & Distribution

Ch6: EASTER
Learning to split design space

Part II: Robustness for Distributed Inference

Robust Distribution
for CNNs

DSE method for
Robust Distribution of
Transformer Models

CHL3：How to ensure the robustness of DNN inference
across multiple edge devices against possible failures?

CHL4：How to balance the replication ratio of neurons in DNN
model and on-device memory usage for robust distributed
inference?

Figure 1.5: Thesis Organisation, including chapters, keywords, and research ques-
tions

the actual determination of the appropriate replication proportion of neu-
rons within DNN layers is left open and remains unaddressed. To tackle

1.6 thesis overview 15

this challenge, Chapter 6 introduces the EASTER method to efficiently search
for optimal replication ratios for each layer in the DNN models designated
for distribution, aiming to identify the most effective replication strategy
against device failures that maintains the model performance of distributed
inference while optimizing resource utilization. More specifically, the type
of DNN models studied in Chapter 6 are the popular but very large trans-
former models known from tools like ChatGPT and Copilot.

These four research chapters contain our core contributions to distributed
inference at the Edge. In the final chapter of the thesis, Chapter 7, we reflect
on the research challenges and present some ideas for future work.

1.6.1 Origins

Listed below are the author’s contributions and papers on which each of
the research chapters is based. The next section enumerates the full list of
the author’s publications.

PART I

ch.3: "Automated exploration and implementation of distributed CNN inference
at the Edge" [P1]

ch.4: "Hierarchical design space exploration for distributed CNN inference at the
Edge" [P2]

PART II

ch.5 "RobustDiCE: Robust and Distributed CNN Inference at the Edge" [P3]

ch.6 "EASTER: learning to split transformers robustly at the Edge" [P4, P5]

For papers [P1–P5], the author of this thesis is the principal author and
performed all of the data analysis, software development, experimental set-
up, validation, and writing of the original draft.

16 introduction

1.7 author publications

[P1] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. “Automated
Exploration and Implementation of Distributed CNN Inference at the
Edge.” In: IEEE Internet of Things Journal 10.7 (2023), pp. 5843–5858.
doi: 10.1109/JIOT.2023.3237572.

[P2] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. “Hierarchical
design space exploration for distributed CNN inference at the edge.”
In: 3rd Workshop on IoT, Edge and Mobile for Embedded Machine Learning
(ITEM 2022), part of the Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2022, pp. 545–556. doi:
10.1007/978-3-031-23618-1_36.

[P3] Xiaotian Guo, Quan Jiang, Andy D. Pimentel, and Todor Stefanov.
“RobustDiCE: Robust and Distributed CNN Inference at the Edge.”
In: 2024 29th Asia and South Pacific Design Automation Conference (ASP-
DAC). 2024, pp. 26–31. doi: 10.1109/ASP-DAC58780.2024.10473970.

[P4] Xiaotian Guo, Quan Jiang, Andy D. Pimentel, and Todor Stefanov.
“Model and System Robustness in Distributed CNN Inference at the
Edge.” In: Integration, the VLSI Journal. doi: 10.1016/j.vlsi.2024.
102299.

[P5] Xiaotian Guo, Quan Jiang, Yixian Shen, Andy D. Pimentel, and Todor
Stefanov. “EASTER: learning to split transformers robustly at the
Edge.” In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD) (2024). doi: 10.1109/TCAD.2024.3438995.

1.8 source code

• The AutoDiCE implementation and the hierarchical DSE script is avail-
able at: https://github.com/parrotsky/AutoDiCE

• The RobustDiCE implementation as described in Chapter 5 is avail-
able at: https://github.com/parrotsky/RobustDiCE

• The EASTER implementation script for the DSE process in Chapter 6

is available at: https://github.com/parrotsky/EASTER

https://doi.org/10.1109/JIOT.2023.3237572
https://doi.org/10.1007/978-3-031-23618-1_36
https://doi.org/10.1109/ASP-DAC58780.2024.10473970
https://doi.org/10.1016/j.vlsi.2024.102299
https://doi.org/10.1016/j.vlsi.2024.102299
https://doi.org/10.1109/TCAD.2024.3438995

2
B A C K G R O U N D

In this chapter, we provide an overview of essential background knowledge
for this thesis, covering several core areas: basics of DNNs, design space ex-
ploration (DSE), and interoperability requirements for DNN deployment
at the Edge. By discussing these key terminologies and fundamental meth-
ods, we set the stage for deeper discussions and explorations of specialized
topics in subsequent chapters.

2.1 dnn model

A typical DNN contains numerous neurons, leading to a significant number
of parameters, collectively known as model weights or coefficients. These
coefficients are determined during the model’s training phase through ex-
posure to training data, utilizing the back-propagation algorithm and gra-
dient descent technique [3]. Assuming the correct output labels for each
input are known, the training process starts with a forward pass through
all layers in the DNN model to produce a predicted output. This output is
then utilized to calculate the error, which is the discrepancy between the
predicted output and the actual output, followed by computing the gradi-
ents of this error for each weight in the neural network. These gradients are
propagated backward from the output layer towards the input layer of the
network. This backward movement ensures that each weight in the network
is adjusted in a way that minimizes the overall error. This gradient descent
technique allows for precise weight updates, improving the model’s accu-
racy and performance with each iteration of training.

Once a neural network is adequately trained with sufficient data after
enough iterations, it can be utilized for inference. During the inference
phase, the pre-trained model applies its learned coefficients to new input
data and makes predictions or decisions for its designated tasks, such as
image classification, object detection, etc.

17

18 background

Next, we will discuss two commonly used DNNs: CNN [6] and Trans-
former [7], along with the operations within their layers.

2.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a fundamental class of deep
neural networks renowned for their effectiveness in handling vision-related
tasks such as image classification, object recognition, and detection. A CNN
model consists of various layers including convolution layers, pooling lay-
ers, non-linear activation layers, and fully connected layers, etc. Typically,
the convolution layers and fully connected layers are the most computa-
tionally and memory-intensive parts of a CNN model. In Figure 2.1, we
illustrate the computation of a convolution layer and fully connected layer
in a uniform way from a neuron perspective by considering four neurons
per layer as an example.

Neurons

OutputInputH

W

Figure 2.1: Neuron Computation

Convolution Layers: Neurons in convolution layers specialize in captur-
ing spatial hierarchies and textures by applying convolution operations to
the input images. After the convolution operations, neurons typically ap-
ply a non-linear activation function, such as ReLU [4], to introduce non-
linearity into the model. This allows the CNN model to learn more complex
patterns and relationships within the data while also helping to mitigate the
vanishing gradient problem during back-propagation [4]. Figure 2.1 shows
how each neuron performs a basic convolution operation as a filter (also
called kernel). In this particular example of a convolution layer, each of the

2.1 dnn model 19

four neurons corresponds to a unique convolutional filter (depicted as the
small cubes in Figure 2.1). These filters contain their own sets of weights,
structured in a k× k×Cin format, where k represents the filter’s size, and
Cin denotes the number of input channels that the filter processes.

During the convolution operation, each filter moves systematically over
the input data — such as an image — applying its weights through a dot
product operation at every position it covers. This process effectively ex-
tracts features from the input by highlighting specific patterns or textures,
depending on the filter’s weights.

The movement of each filter is governed by a stride value, S, which dic-
tates how many units the filter moves to the right after each operation. Once
the filter reaches the end of the input width, it returns to the leftmost po-
sition and moves down by one stride, after which it continues the process
until the entire input has been covered. Padding is utilized to ensure that
the filters can be applied to the edges of the input. We use P to represent
the padding size. By adding P zeros (or other values) around the borders
of the input, padding allows the filters to operate on the edges without
reducing the size of the output. This process is crucial for maintaining the
dimensional consistency of the output across different inputs.

The convolutional filters are designed to operate on all input channels
(Cin), where each channel is a separate layer of height H and width W

within the input data (represented as the large gray cube in Figure 2.1). As
each filter slides over the input data, it aggregates information across the
height and width dimensions to produce a new output channel or feature
map. Thus, the number of output channels (Cout) in the resultant feature
map is equivalent to the number of convolutional filters used in the layer.
In this example, with four filters, the output feature map (Cout) will also
have four channels, each channel representing the output from one of the
convolutional filters.

Fully Connected Layers: Each neuron in a fully connected layer is con-
nected to all inputs from the previous layer, integrating the learned features
comprehensively. A fully connected layer could be seen as a special case of
a convolution layer where each filter has the same shape as the shape of the
input, i.e., k× k×Cin = H×W ×Cin. For the fully connected layers after
the first fully connected layer in a CNN, the following relation holds k = H

= W = 1. Every filter/neuron produces only one value, thus if the number
of filters/neurons is Cout then the output has the shape 1× 1×Cout.

As each filter/neuron has a distinct set of weight values, corresponding
to the number of inputs, this leads to a significant total number of parame-

20 background

ters (Cin×Cout) within the layer. Due to the number of parameters and the
heavy computational complexity in fully connected layers, modern CNN
models, such as ResNet [8], MobileNet [9], and YoLo [10], have evolved to
reduce or eliminate fully connected layers. This makes the neural networks
more efficient and beneficial for deployment on devices with limited com-
putational capabilities, facilitating faster and more resource-efficient model
execution without compromising accuracy.

2.1.2 Transformer

Following the introduction of the CNN model, it is crucial to discuss an-
other significant model in the realm of deep learning: the Transformer
model [7]. This model has gained substantial recognition, particularly for
its groundbreaking successes in both computer vision (CV) [11] and natural
language processing (NLP) [12].

At the beginning of a Transformer model, the input sequence is generated
by mapping the raw input data — whether words in text or other types of
data features — into a dense, fixed-size (L× dmodel) vector representation.
The length of the input sequence L is determined by the total number of to-
kens it contains. In the context of natural language processing (NLP), each
token typically corresponds to a word or a subword unit. In image pro-
cessing tasks, on the other hand, a token may represent a specific block of
pixels. The size of this fixed vector is defined by the model dimensionality
dmodel, which determines the capacity of the model to learn and represent
information. A larger model dimensionality can increase the model’s ability
to capture complex patterns but also raises the computational requirements
and model complexity. Every token in the input sequence is represented by
a vector of this fixed dimensionality, ensuring uniformity in the input layer
that feeds into subsequent modules of the model, like positional encoding
and the encoder layers, etc.

As illustrated in Figure 2.2, the Transformer model structure is designed
to transform one input sequence into another using two main components:
an encoder and a decoder. The encoder is on the left and the decoder is
on the right side of Figure 2.2. Denoted by "N×" in the figure, the encoder,
and decoder are composed of N stacked transformer modules. Position-
based encoding is another critical feature of the Transformer model, adding
unique positional information to the input sequence to preserve the order
of the sequence. Unlike recurrent neural networks (RNNs) [13], that process
data sequentially and thus inherently understand the order of tokens in the

2.1 dnn model 21

Figure 2.2: Transformer Model Structure By Vaswani et al. [7]

input sequence, Transformers add information about the order of tokens
(words or the location of input image pixels), ensuring that the token’s
order contributes to the interpretation of the sequence. This enables the
model to perform tasks like language translation, image recognition, or
other tasks.

The encoder takes the input sequence and converts it into a continuous
representation that retains all the information needed to generate the out-
put. This representation is often thought of as a set of n-dimensional vec-
tors (L× dmodel), where each vector corresponds to a token in the input

22 background

sequence but encapsulates information from the entire sequence. The de-
coder then takes this dense representation and step-by-step generates the
outputs. This process starts with a first start-of-sequence (<sos>) token as
the ’Outputs’. The decoder, through its layers, processes this token while
also referencing the encoder’s outputs to make context-aware predictions
for the next output token in the sequence. The output from the decoder’s
last layer for each token is a probability distribution over all possible tokens
in the model’s vocabulary. From this distribution, the token with the high-
est probability is typically chosen (or sampled, depending on the specific
application and settings), and this token is then used as the next input to
the decoder. This process of generating a token and then feeding it back
into the decoder continues until the decoder produces an end-of-sequence
(<eos>) token, which indicates that the generation process should stop.

The encoder and decoder consist mainly of Multi-Head Attention and
Feed Forward network modules. The Multi-Head Attention in the encoder
lets each position in the encoder attend to all positions in the previous layer
of the encoder. This self-attention mechanism helps the encoder look at
other words or image pixels in the input sentence to better understand the
context and meaning of each token. However, the Multi-Head Attention in
the decoder is masked to ensure that the position can only attend to earlier
positions in the output. This prevents the decoder from seeing future tokens
in the sequence it is generating. For the second Encoder-Decoder multi-
head attention, each position in the decoder can attend to all positions in the
encoder, allowing the decoder to access the complete input sequence. This
is crucial for tasks like translation, where understanding the entire input
is necessary to generate the correct output. The Feed Forward network
consists of two linear transformations with a ReLU activation in between,
introducing non-linear capabilities to the model, and allowing it to learn
more complex representations.

The combination of Multi-Head Attention and Feed Forward network
allows Transformers to perform very well across a range of tasks, from lan-
guage translation and text generalization to image processing and beyond,
leveraging their ability to capture and utilize complex patterns in data.

2.2 partitioning methods

Partitioning a DNN model, particularly when targeting inference with a
batch size of one, involves dividing the model into smaller, more man-
ageable segments. These segments can then be distributed and processed

2.2 partitioning methods 23

Output

Conv1

Conv1 Conv2 Pool1 FC1

Conv1

Conv2

Conv2

Pool1

Pool1

FC1

FC1

Output

Output

(a) Vertical Partitioning

(b) Horizontal Partitioning

1 2

1

2

Figure 2.3: Partitioning Methods

across multiple devices, thereby optimizing resource usage and enhancing
computational efficiency at the Edge. To achieve these distribution bene-
fits of DNN deployment, two common approaches are typically utilized:
vertical and horizontal partitioning.

Vertical partitioning (e.g., [14–16]), illustrated in Figure 2.3(a), involves
dividing the entire model into several segments that can be executed on
different devices. For example, the initial layers of a DNN model (Conv1

and Conv2) could be run on one device, while the deeper layers (Pool1
and FC1) are processed on another. This approach not only balances the
computational load across multiple devices but also enhances the system
throughput compared to processing large models on a single device.

Horizontal partitioning (e.g., [17–22]), illustrated in Figure 2.3(b), distributes
the workload of one or all DNN layers among multiple edge devices in a
layer-wise manner. This distribution strategy takes into account the vary-
ing computational demands of different layers within the DNN, allocat-
ing them across the devices strategically. For example, more computational-
intensive convolution layers or more memory-intensive fully connected lay-
ers might be distributed across multiple edge devices to leverage combined
computational resources. Less demanding layers, such as pooling layers,
can be managed effectively by individual devices. These layers can be repli-
cated across multiple devices for redundancy and faster access, but they do
not require partitioning across different devices due to their lower compu-
tational or memory demands.

Although the discussed partitioning methods are exemplified through
CNN models, they are equally applicable to other models like Transformers.

24 background

For example, fully connected layers in Transformers can also be partitioned
either vertically or horizontally.

In summary, all of the aforementioned partitioning methods reduce the
required memory, energy consumption, or computation resources per de-
vice when a DNN model is deployed for distributed inference on multiple
devices [23]. At the same time, these methods may slow down the inference
due to communication and synchronization overheads that are inevitable in
distributed DNN inference across multiple devices. By enabling distributed
inference, these methods help to overcome the limitations of individual
devices, ensuring that even resource-constrained devices at the Edge can
participate in complex computational tasks. This not only improves the effi-
ciency and scalability of DNN deployments but also broadens the applica-
bility of deep learning technologies across various sectors.

2.3 design space exploration

Identifying optimal distribution solutions for Deep Neural Network (DNN)
models, particularly for their deployment across multiple edge devices, is
crucial for enhancing computational efficiency, reducing memory usage, or
saving energy consumption in resource-constrained environments. Central
to this effort is Design Space Exploration (DSE), which systematically evalu-
ates various distribution configurations to identify solutions that effectively
balance computational efficiency, power consumption, memory usage, and
latency. Among the various methods [24] used in DSE, the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) is particularly noteworthy. This par-
ticular Genetic Algorithm (GA) is extensively used to adeptly manage the
trade-offs between the aforementioned objectives (i.e., power consumption,
memory usage, latency, etc.), exploring a wide array of potential solutions
to find the most efficient and practical distributions.

2.3.1 Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [5] is a well-known
heuristic method recognized for its effectiveness in multi-objective opti-
mization (MOO). NSGA-II operates by evolving a population of candidate
solutions towards higher quality solutions, leveraging its unique compo-
nents: the chromosome and the fitness function.

The evolution process in NSGA-II is iterative and repeats for a predeter-
mined number of generations or until a convergence criterion is satisfied.

2.3 design space exploration 25

It initializes a random population of candidate solutions, represented as
chromosomes. These chromosomes are evaluated using fitness functions to
obtain the target objectives (memory, energy, latency, etc.). The NSGA-II al-
gorithm utilizes non-dominated sorting to categorize the population into
different fronts based on Pareto dominance. The first front, known as the
Pareto front, contains a set of non-dominated solutions in multi-objective
optimization that are considered optimal because improving one objective
would require worsening another. Then, it selects individuals based on their
performance (objective values) and how well they are spread out (crowding
distance [25]) within their front. This ensures that the selected population is
both high-performing and diverse. Genetic operators such as mutation and
crossover are then applied to the selected parents to produce offspring. The
resulting pool of parents and offspring is then sorted by non-dominated
sorting and crowding distance. The top solutions are selected and used in
the next iteration of the NSGA-II-based search. This cycle of generation and
selection is continuously repeated until the termination condition is met.

Through this structured generation and selection approach, NSGA-II is
highly effective in navigating complex solution spaces, proving essential for
our search for optimal DNN distribution solutions.

2.3.2 Chromosome

In NSGA-II, a chromosome is the genetic representation of a solution, typ-
ically represented as a series of parameters known as genes. In distributed
DNN inference scenarios, each chromosome corresponds to a potential
DNN mapping solution that specifies the distribution of DNN layers or
computations across multiple edge devices. A simple mapping chromo-
some for an eight-layer DNN model is visualized in Figure 2.4(a), where
the chromosome consists of eight genes, each specifying which processing
element is responsible for the computations of a particular layer. For ex-
ample, the first gene in the chromosome means that layer l1 is mapped
on processing element PE1, which could, e.g., be a CPU or GPU processor
inside a particular edge device.

Once the most promising chromosomes are selected, the next iteration
of the NSGA-II-based search creates its new population through genetic
operators, namely recombination (or crossover) and mutation. During re-
combination, segments of chromosomes from two parents are exchanged to
form new chromosomes, while mutations involve random changes to genes
within a chromosome to maintain genetic diversity within the population.

26 background

l1 l2 l3 l4 l5 l6 l7 l8

8 layers CNN, 4 Processing Elements (PEs)

PE1 PE1 PE2 PE3 PE4PE4 PE4PE2

PE4 PE4 PE2 PE1 PE4PE4 PE4PE1

PE1 PE1 PE3 PE3 PE4PE4 PE4PE2
Mutation

PE1 PE1 PE2 PE2 PE4PE4 PE4PE1 Cross-Over PE1 PE1 PE2 PE1 PE4PE4 PE4PE1

PE4 PE4 PE2 PE2 PE4PE4 PE4PE1

Cross Point

PE1 PE1 PE2 PE3 PE4PE4 PE4PE2

Chromosome

Mapping
(a)

(b)

(c)

Figure 2.4: Chromosome & Genetic Operators

In this thesis, we use a standard two-parent crossover and a single-gene
mutation as proposed in [26]. These operations are depicted in Figure 2.4(b)
and (c). For instance, a mutation in the fourth gene of a chromosome from
PE2 to PE3 introduces variability. Each chromosome is assigned a random
mutation probability. Similarly, the single-point crossover operation shown
in Figure 2.4(c) combines segments of chromosomes from two elite-selected
parents at a random crossover point, potentially creating superior offspring
by mixing their genetic material.

2.3.3 Fitness Function

The fitness function, another crucial component of NSGA-II, evaluates the
performance or specific objectives of different solutions represented by chro-
mosomes. By evaluating the fitness of each solution, the NSGA-II search
algorithm can effectively steer toward solutions that optimize specific ob-
jectives. In our work, two approaches are employed to assess the fitness of
solutions: the use of analytical models and the direct evaluation via mea-
surements of actual physical systems.

2.3.3.1 Analytical Model-based Fitness Function

The first approach involves using analytical models to approximate the sys-
tem throughput, memory usage, and energy consumption for a given DNN
mapping. In the below discussion, we assume a vertical partitioning of a
DNN. Furthermore, we use tlj , Mlj , Elj to represent the execution time, the
memory usage, and the energy consumption of layer lj in a DNN model,
respectively. A vertically partitioned mapping x of a DNN model is denoted
as x = [x1, x2, · · · , xL], where L is the number of layers in the DNN model

2.3 design space exploration 27

and xj = PEi means that layer lj is mapped on processing element PEi,
which could, e.g., be a CPU or GPU inside an edge device. For a given
mapping x, the three objectives of the distributed system can be computed
as follows.

System Throughput: The overall system throughput Tsystem is defined
as the images processed per second (IPS) over multiple PEs:

Tsystem =
1

max1⩽i⩽N (ti)
; ti = ticomp + ticomm ; ticomp =

∑
∀j:1⩽j⩽L∧xj=PEi

tlj

where ti is the time to process one image on PEi, N is the total number
of deployed PEs in the distributed system. Specifically, ticomp and ticomm

are the time needed for computation and data communication related to
PEi, respectively. We assume that the size of input images is already deter-
mined and the input and output tensors of every DNN layer are also fixed.
Then, we can estimate the total number of operations in every layer and the
total size of communicated data related to PEi. The execution time tlj is
estimated through the number of multiply-accumulate operations (MACs)
and the processor frequency of PEi. Assuming the processor executes one
MAC operation per nc number of cycles, the execution time tlj (in seconds)
of DNN layer lj on processor PEi can be calculated as:

tlj =
MAClj

FreqPEi

×nc

where MAClj is the total number of MAC operations performed in lj and
FreqPEi

is the clock frequency of PEi. The total number of MAC operations
in a layer depends on the type of the layer. As an example, we give the
MACs calculation of three specific types of CNN layers, namely convolu-
tion, fully connected, and pooling layers, that are essential for understand-
ing the computational complexity of different CNN layers.

MACconv = Hout ×Wout × k2 ×Cin ×Cout

MACfc = Cin ×Cout

MACpool = Hout ×Wout × k2 ×Cout

where k is the kernel/filter size, Cin is the number of input channels, Cout

is the number of output channels, Hout and Wout are the width and height
of output tensors of the layer. Additionally, the proper approximation for
communication time ticomm of PEi depends on data movements and in-
volves intra-node shared memory communication, intra-node communica-
tion between CPU and GPU, or inter-node communication over the net-
work. For instance, by adding the total memory size of the communication

28 background

buffers involved and dividing it by the communication bandwidth between
PEs, we can calculate the estimated time for communication ticomm.

Memory: Every PEi allocates memory Mi which consists of three parts,
namely memory for DNN coefficients (i.e. weights, bias, and parameters),
memory for output buffers to store intermediate results of layers, and mem-
ory for input buffers of some layers to receive data from other PEs:

Mi =
∑

∀j:1⩽j⩽L∧xj=PEi

(Mj
coeffs +M

j
outbuffs +M

j
inbuffs)

where M
j
coeffs, Mj

outbuffs, and M
j
inbuffs denote the sizes of the aforemen-

tioned memory parts associated with layer lj mapped on PEi. These sizes
(in number of elements) are approximated based on the type of DNN layer
lj. If input data for layer lj is simply the stored output from a previous
layer on the same PE, we set the input buffer memory M

j
inbuffs to zero.

This prevents redundant memory calculations and optimizes overall mem-
ory usage. As an example, we give the formulas for the memory usage of
three specific types of CNN layers (i.e., convolution, fully connected, and
pooling).
Convolution layer:

M
j
coeffs = k2 ×Cin ×Cout +Cout

M
j
inbuffs = Hin ×Win ×Cin

M
j
outbuffs = Hout ×Wout ×Cout

Hout =

⌊
Hin + 2P− k

S
+ 1

⌋
; Wout =

⌊
Win + 2P− k

S
+ 1

⌋
where Hin and Win are the input height and width, k is the kernel/filter
size, Cin is the number of input channels, Cout is the number of output
channels, S is the stride size, and P is the padding size around the borders
of the input. Hout and Wout are the width and height of output tensors of
layer lj.
Fully connected layer:

M
j
coeffs = Cin ×Cout ; M

j
inbuffs = Cin ; M

j
outbuffs = Cout

Pooling layer:

M
j
inbuffs = Hin ×Win ×Cin

M
j
outbuffs = Hout ×Wout ×Cout

2.3 design space exploration 29

Hout =

⌊
Hin − k

S
+ 1

⌋
; Wout =

⌊
Win − k

S
+ 1

⌋
where Hin and Win are the input height and width, Hout and Wout are the
output height and width, k is the size of the pooling window, S is the stride
of the pooling operation. Cin = Cout is the number of input and output
channels. Here, Mj

coeffs = 0, as pooling layers do not include coefficients.
Energy Consumption: Every PEi consumes energy Ei to execute the

DNN layers mapped on PEi. In our energy consumption analytical model,
Ei includes the energy consumed for inference computation and data com-
munication with other PEs:

Ei =
∑

∀j:1⩽j⩽L∧xj=PEi

Ej
comp +

∑
∀j:1⩽j⩽L∧xj=PEi

Ej
comm

where E
j
comp and E

j
comm denote the computation and communication en-

ergy consumption for layer lj, respectively. Here, Ej
comm is non-zero only

when data produced or consumed by layer lj actually has to be communi-
cated with another PE. We calculate E

j
comp and E

j
comm as follows:

Ej
comp =

∫tjcomp

0

Pj
comp (t)dt; Ej

comm =

∫tjcomm

0

Pj
comm (t)dt

where P
j
comp(t) is the power consumption during the execution of layer

lj, and P
j
comm(t) is the power consumption during data communication

of layer lj with another PE. Pj
comp(t) and P

j
comm(t) can be acquired by

measurements during DNN layer profiling on an edge device.
Developing accurate analytical models to capture these objectives poses

significant challenges. The complexity of creating these models stems from
the necessity to precisely capture the intricate interactions and behaviors of
various system components. Any misrepresentations or oversimplifications
in these models can lead to substantial discrepancies between predicted
and actual performance, thereby reducing the reliability of the estimation
results.

2.3.3.2 Real Measurement System-based Fitness Function

Evaluating design solutions directly on physical systems offers the most
accurate insights, as it mirrors real-world operational conditions without
the distortions of analytical modeling. In our research, we focus on assess-
ing various distribution configurations of DNN models at the Edge. To

30 background

facilitate this evaluation, we utilize the NVIDIA Jetson Xavier NX Devel-
oper Kit [27] as our primary testing platform in our thesis. Our evaluation
system for distributed DNN inference includes eight Jetson NX devices in-
terconnected over a network switch, forming an edge cluster. This setup
allows us to mimic a distributed edge computing environment where mul-
tiple devices work collaboratively to handle diverse computational tasks.
With this cluster, we can effectively test and validate our designs under re-
alistic conditions that closely replicate the intended deployment scenarios
for edge computing applications.

The NVIDIA Jetson Xavier NX device is exemplary for computational-
demanding and AI tasks, particularly within embedded and edge systems.
A simplified description of the device’s technical specifications is presented
in Table 2.1. It is equipped with an array of specialized hardware com-
ponents such as 384 NVIDIA CUDA® Cores, 48 Tensor Cores, a 6-core
Carmel ARM CPU, and two NVIDIA Deep Learning Accelerators (NVDLA)
engines. These components collectively deliver up to 21 TOPS (Tera Oper-
ations Per Second), ensuring efficient processing of complex DNNs and
high-resolution data from various sensors. The Jetson Xavier NX features
16 GBytes of LDDR4 DRAM as its main memory, accessible to all proces-
sors. It is crucial for storing the input data from sensors, and coefficients of
DNN models for inference.

Table 2.1: Jetson Xavier NX 16GB Technical Specifications

AI Performance 21 TOPS (INT8)

GPU 384-core NVIDIA Volta™ GPU

CPU 6-core NVIDIA Carmel ARM®v8.2 CPU

Cache 6MB L2 + 4MB L3

Memory 16 GB 128-bit LPDDR4x

Storage 16 GB eMMC 5.1

Power 10W | 15W | 20W

Display 2x DP 1.4/eDP 1.4/HDMI 2.0

DL Accelerator 2x NVDLA

Vision Accelerator 2x PVA

Networking 10/100/1000 BASE-T Ethernet

2.4 interoperability 31

Using a fitness function based on measurements taken from a real sys-
tem offers a direct approach to evaluating the performance of distributed
DNN inference in practical scenarios. However, this introduces significant
challenges, primarily due to the extensive time required to conduct exper-
iments and the engineering efforts to implement various designs. Physi-
cally setting up and executing each design solution involves a substantial
amount of engineering work and time. Without adequate automation, re-
lying on a real-system fitness function for evaluation becomes impractical
due to these constraints.

In this thesis, we demonstrate that with adequate automation in place, it
is feasible to use this approach effectively during Design Space Exploration
(DSE). By automating the setup, execution, and measurement processes, we
can streamline the evaluation of design solutions, thereby reducing the time
and effort required. This approach not only makes it practical to employ
real-system metrics in assessing fitness but also enhances the efficiency and
accuracy of the DSE process, allowing for a more rapid search for potential
solutions.

2.4 interoperability

Interoperability is a critical aspect of deploying Deep Neural Networks
(DNNs) across various edge computing platforms. The challenge lies in
the diverse landscape of deployment frameworks, deep learning toolsets,
and the varying hardware capabilities of each device. This diversity can
create significant barriers to seamless interaction and functionality across
different platforms.

In environments from cloud servers to edge devices, and from CPUs to
GPUs, each piece of hardware has its own set of characteristics and capa-
bilities. This variation in computational resources across different edge de-
vices underscores the critical need for interoperability, which can effectively
bridge these disparities. Implementing interoperability allows for the flex-
ible and efficient utilization of these diverse resources, particularly in the
context of distributed DNN inference. Achieving interoperability involves
the below two aspects:

Framework Compatibility ensures that DNN models can be deployed
across different deep learning frameworks (like TensorFlow [28], PyTorch [29],
etc.) without significant modifications. To address this challenge, develop-
ers can utilize tools like ONNX (Open Neural Network Exchange), which
provides an open-source format for AI models. ONNX enables models to

32 background

be portable across different frameworks and hardware, thus promoting in-
teroperability. Additionally, leveraging APIs that abstract away hardware-
specific details can help developers focus on optimizing the DNN’s perfor-
mance without tying the model to one specific type of hardware. By con-
verting models to ONNX, they can run directly on a variety of platforms
and devices using ONNX Runtime [30]. This simplifies the deployment
process, allowing DNN models to be executed seamlessly across different
edge devices without the need for extensive optimization for each combina-
tion of framework and hardware. However, while ONNX addresses many
interoperability challenges, ongoing efforts are needed to improve model
conversion tools and ensure broader adoption of open standards to create
a more integrated and flexible edge computing ecosystem. By integrating
ONNX format support into our AutoDiCE framework, we tackle the inter-
operability issues related to the distributed deployment of DNN models,
ensuring that DNNs can be effectively and efficiently integrated across di-
verse edge devices in practical deployment scenarios.

Standardized Communication between various components in distributed
computing environments, such as those required for deploying deep neu-
ral networks across diverse platforms, can be effectively managed using
the Message Passing Interface (MPI) [31]. The Message Passing Interface
(MPI) is a standardized and portable message-passing system designed to
function on a wide variety of parallel computing architectures. This proto-
col is commonly used for programming parallel computers, both in high-
performance computing (HPC) and in the broader field of distributed com-
puting. By using MPI, developers can ensure that data and model param-
eters are effectively communicated across different nodes in the network,
supporting the synchronization required for training and inference in dis-
tributed DNNs. In our work, MPI provides a standardized communication
protocol that enhances the interoperability and performance of DNN de-
ployments at the Edge.

Part I

D I S T R I B U T E D D N N I N F E R E N C E AT T H E E D G E

The first part of the thesis focuses on the flexible and efficient
DNN deployment across multiple edge devices. We delve into
the innovative AutoDiCE framework in detail, which is designed
to facilitate the flexible and fast distributed DNN deployment at
the edge. Based on AutoDiCE, we propose an advanced two-
stage Design Space Exploration (DSE) method, based on the
NSGA-II algorithm introduces in Chapter 2, to explore efficient
DNN mappings for DNN distribution.

Chapter 3 introduces AutoDiCE, an innovative, fully automated
tool tailored for the distributed deployment of Convolutional
Neural Network (CNN) models on multiple resource-constrained
edge devices. This tool automates the process of splitting a CNN
model into sub-models and facilitates the code generation needed
for their distributed and collaborative execution across multiple,
potentially heterogeneous, resource-constrained edge devices.

Chapter 4 introduces our advanced DSE methodology, incorpo-
rating a novel genetic encoding method to efficiently explore
pipelined distributions of CNN models. The goal is to improve
overall system inference throughput, reduce per-device energy
and memory demands, and achieve optimal or near-optimal so-
lutions that consider these three objectives, leveraging the Au-
toDiCE framework developed in Chapter 3.

3
C H A P T E R 3

This chapter presents the proposed AutoDiCE framework in detail, for the auto-
mated splitting of a CNN model into a set of sub-models and automated code gen-
eration for distributed and collaborative execution of these sub-models on multiple,
possibly heterogeneous, edge devices, while supporting the exploitation of paral-
lelism among and within the edge devices. Our experimental results show that
AutoDiCE can deliver distributed CNN inference with reduced energy consump-
tion and memory usage per edge device and may in certain cases improve system
throughput.

This Chapter is based on the journal article:

• Xiaotian, Guo, Andy D. Pimentel, and Todor Stefanov. "Automated Explo-
ration and Implementation of Distributed CNN Inference at the Edge" [32], in
IEEE Internet of Things Journal, 10.7 (2023): 5843-5858.

35

36 chapter 3

3.1 introduction

Deep Learning (DL) [33] has become a popular method in AI-based ap-
plications in various fields, including computer vision, natural language
processing, automotive, and many more. Especially, DL approaches based
on convolutional neural networks (CNNs) [34] have been extensively uti-
lized because of their huge success in image classification [35] and speech
recognition applications [36].

Due to the high complexity of state-of-the-art CNN models, the train-
ing of these models is performed mainly on high-performance platforms,
while the model inference is usually provided as a cloud service [37], al-
lowing less powerful Internet-of-Things (IoT) devices at the Edge to easily
use such services. Realizing CNN inference on edge devices using cloud
services, however, requires users to communicate a substantial amount of
data between an edge device and a cloud server. Such data communication
may cause data privacy concerns as well as low device responsiveness due
to data transmission delays or temporal unavailability of cloud services.
Evidently, this is highly undesirable for those CNN-based applications that
are particularly sensitive to compute response delays or the privacy of the
processed data. For example, CNN-based navigation in self-driving cars
[38] cannot tolerate variable and large response delays occurring due to
the communication between the car and a cloud server. Or, applications in
healthcare [39] using CNNs on IoT devices dealing with patient data cannot
send their data to the cloud because this could lead to leakages of private
data and violation of patients’ privacy rights. The aforementioned concerns
motivate the shift of the CNN inference from the Cloud to the Edge. When
entirely executed at the Edge, a CNN is deployed close to the source of
data, and data communication with a cloud server is not required, thereby
ensuring high application responsiveness and reducing the risk of private
data leakage.

Unfortunately, deploying and inferring a large CNN, which is typically
memory/power-hungry and compute-intensive, on an IoT edge device is
challenging because many edge devices have limited energy budgets and
compute and memory resources. One approach to address this challenge is
to construct a lightweight CNN model from a large CNN model by utilizing
model compression techniques (e.g., pruning [40], quantization [41], knowl-
edge distillation [42]), thereby reducing the CNN model size to a degree
that allows the CNN to be deployed and efficiently executed on a resource-
constrained edge device. However, the accuracy of the compressed CNN

3.1 introduction 37

model is significantly decreased if high compression rates are required. An-
other approach is to infer only part of a large CNN model on the edge
device and the rest on the cloud by efficiently partitioning the model and
distributing the partitions along the edge-cloud continuum [14]. However,
the aforementioned edge device responsiveness and private data leakage is-
sues are still inevitable in such partitioned CNN inference due to the partial
involvement of the cloud. Finally, a third approach to address the challenge
is to leverage all available resources along multiple, possibly heterogeneous,
edge devices to deploy and execute a large CNN by properly partitioning
the CNN model and running each CNN partition on a separate edge device.
The size of each CNN partition should match the limited energy, memory,
and compute resources of the edge device the partition runs on. Such an
approach not only makes it possible to deploy large CNN models without
the need of model compression, respectively without loss of accuracy, but it
also resolves the aforementioned responsiveness and privacy issues because
a cloud server is not involved in the CNN inference. Thus, in this chapter,
we focus on this last approach, i.e., entirely distributing and executing a
large CNN model at the Edge.

Although there are several approaches (e.g., [17–20]) that address dis-
tributed CNN inference on multiple edge devices, these efforts mostly fo-
cus on performance optimization through partitioning, scheduling, and ex-
ploiting parallelism. However, they typically do not address the actual par-
titioning itself as well as the deployment of the partitioned CNNs on the
edge devices (i.e., collaborative inference), which still requires a significant
manual design and programming effort. More specifically, it typically in-
volves advanced skills in CNN model design, embedded systems program-
ming, and parallel programming for (heterogeneous) distributed systems.
At this moment, no design and programming framework exists that takes
a trained ONNX model, together with a CNN partitioning specification,
and fully automates the CNN model splitting and deployment on multiple
edge devices to facilitate distributed CNN inference at the Edge. There-
fore, in this chapter, we propose a framework, called AutoDiCE, for the
automated splitting of a CNN model into a set of sub-models and auto-
mated code generation for distributed and collaborative execution of these
sub-models on multiple, possibly heterogeneous, edge devices, while sup-
porting the exploitation of parallelism among and within the edge devices.
As such, our framework is complementary to the aforementioned, existing
approaches because it targets the actual automation of splitting, code gen-
eration, and model deployment for distributed CNN inference at the Edge.

38 chapter 3

To the best of our knowledge, this is the first framework that offers the
following features:

• A tool, called AutoDiCE, featuring the automated splitting of a CNN
model into a set of sub-models and automated code generation for
distributed and collaborative execution of these sub-models on multi-
ple, possibly heterogeneous, edge devices. AutoDiCE is the first fully
automated tool for distributed CNN inference over multiple resource-
constrained devices at the Edge. It is open-source and available at [43];

• A hybrid MPI and OpenMP code generation approach in AutoDiCE
to support the exploitation of parallelism among and within the edge
devices, i.e., the latter exploiting multi-core execution;

• A highly flexible AutoDiCE implementation that facilitates easy speci-
fication and reuse of existing CNNs (via the ONNX format [44]), and
can target a range of (heterogeneous) edge devices via a custom in-
ference engine library which supports a variety of CPUs (x86, ARM),
GPUs (NVIDIA, Mali, AMDRX) and GPU APIs (VULKAN, CUDA);

• A range of experiments in which we show that our framework Au-
toDiCE can rapidly realize a wide variety of distributed CNN infer-
ence implementations on multiple edge devices, achieving improved
(i.e., reduced) per-device energy consumption and per-device mem-
ory usage, and under certain conditions, improved system (inference)
throughput as well.

The remainder of the chapter is organized as follows. Section 3.2 dis-
cusses related work, after which Section 3.3 presents our AutoDiCE tool.
In Section 3.4, we describe a range of experiments, demonstrating that our
framework can rapidly explore and realize a wide variety of distributed
CNN inference implementations with diverse trade-offs regarding energy
consumption, memory usage, and system throughput. Section 3.5 provides
a discussion on the current version of our framework and how it could be
further improved in the future. Moreover, we further clarify, with examples,
why distributed CNN inference using our novel framework is beneficial in
real-world application scenarios when the CNN memory footprint and en-
ergy consumption are a concern. Finally, Section 3.6 concludes the chapter.

3.2 related work 39

3.2 related work

Today’s convolutional neural network (CNN) models for computer vision
tasks are becoming increasingly complex. For example, the CNN-based
model CoAtNet-7 [45] reaching Top-1 accuracy of 90.88% for the ImageNet
dataset has 2.44 billion parameters (weights and biases) which values have
to be determined during the training and stored/used during the infer-
ence. To train and deploy such large CNN models, parallel or distributed
computing is often required. For model training, a common approach to ac-
celerate the training process is to exploit pipeline parallelism. For example,
GPipe [46] applies pipeline parallelism by splitting a mini-batch of train-
ing data into smaller micro-batches, where different GPUs train on differ-
ent micro-batches. Another example is PipeDream [47] which partitions the
CNN model for multiple GPUs such that each GPU trains a different part of
the model. An alternative distributed training approach, motivated by pri-
vacy concerns among multiple devices/machines, is federated learning (FL)
[48, 49]. FL aims at training a global centralized model with multiple, local
datasets on distributed devices or data centers, thereby preserving local
data privacy and improving learning efficiency. All of the aforementioned
approaches target efficient, distributed training of large CNN models. In
contrast, our work presented in this chapter focuses on efficient, distributed
inference of large CNNs.

Unlike CNN training, the inference of large CNN models often needs
to take multiple requirements into account, such as latency, throughput,
resource usage, power/energy consumption, etc. To satisfy these require-
ments for CNN inference on edge devices, CNN models are typically dis-
tributed along the cloud-edge continuum, or fully at the Edge.

CNN inference along the cloud-edge continuum (e.g., [14–16]) deploys the
CNN computations on the cloud and the Edge. Such an approach maxi-
mizes the utilization of computing resources on edge devices, reduces the
computation workload on the cloud, and usually improves the CNN infer-
ence throughput. The most common idea in this approach is to obtain a
specific small sub-model from or an early-exit branch of the initial large
CNN model that runs on the edge device. Only if the inference result of
the deployed sub-model/early-exit branch on the edge device is below a
certain confidence threshold, the device has to upload its data to the cloud
and the CNN inference has to continue on the cloud. Vertical distribution
along the cloud-edge continuum still relies on the quality and stability of
network connections between the edge device and the cloud server. This

40 chapter 3

not only suffers from high communication latency but also there is a risk of
information leakage. In contrast, our framework achieves lower inference
latency by deploying a large CNN model over edge devices without the
cloud, and therefore also preserves both data and model privacy.

CNN inference (e.g., [17–20]) fully at the Edge distributes the workload of
a large CNN across multiple edge devices without the cloud. That is, all
CNN computations are collaboratively executed at the Edge and there is
no dependency on the cloud. Data partitioning and model partitioning are
two common methods. Model partitioning includes horizontal partitioning
and vertical partitioning which are discussed in detail in Chapter 2.. Data
partitioning exploits data parallelism among multiple devices by splitting
the input/output data to/from CNN layers into several parts while each
device executes all layers of a CNN model using only some parts of the
data. For example, DeepThings [18] uses the Fused Tile Partitioning (FTP)
method for splitting input data frames of CNN layers in a grid fashion to
reduce the CNN memory usage. The main drawback of the data partition-
ing method is that an edge device should still be capable of executing all
layers of a CNN model which implies that the Edge device should be able
to store the weights and biases of the entire CNN model. Alternatively, the
model partitioning method splits the CNN layers and/or connections of a
large CNN model horizontally or vertically, thereby creating several smaller
sub-models (model partitions) where each sub-model is executed on a dif-
ferent edge device [19]. For example, MoDNN [17] splits convolution layers
and fully connected layers in the VGG-16 model. In [20], CNN layer connec-
tions are split and each CNN layer is treated as a sub-task. These sub-tasks
are then mapped to edge devices through a balanced processing pipeline
approach.

The model partitioning methods for distributed inference focus on perfor-
mance optimization through partitioning, scheduling, and exploiting paral-
lelism. Complementary to these efforts, our work focuses on the actual au-
tomation of the splitting of and code generation for a CNN model, together
with the actual model deployment on distributed devices at the Edge. As
will be demonstrated in Chapter 4, this facilitates, e.g., very accurate design
space exploration (DSE). That is, our framework is designed to be flexible
enough for users to accurately and easily explore different design objec-
tives of distributed CNN inference at the Edge such as reducing memory
usage and energy consumption per edge device in order to find an efficient
distribution and deployment of a CNN model.

3.3 the autodice tool 41

3.3 the autodice tool

In this section, we present our AutoDiCE tool, which is designed for the
efficient and flexible deployment of distributed CNN inference implemen-
tations at the Edge. To this end, we describe AutoDiCE as a design flow
and explain the main steps in the flow with the help of an illustrative exam-
ple. First, we provide a high-level overview of the AutoDiCE design flow.
Second, we describe AutoDiCE’s unified user interface. Next, we explain in
detail the main steps in the front-end of the AutoDiCE design flow. Finally,
we do the same for the back-end of the flow.

3.3.1 Overview

AutoDiCE is a flexible tool that facilitates distributed inference of a CNN
model, embedded in an AI application, at the Edge. More specifically, it
allows designers and programmers of such CNN-based AI applications to
perform, in a fully automated manner, CNN model partitioning, deployment,
and execution on multiple resource-constrained edge devices. Figure 3.1
shows the AutoDiCE user interface and design flow where the main steps
in the flow are divided into two modules: front-end and back-end.

The interface is composed of three specifications, namely Pre-trained
CNN Model provided as an .onnx file, Mapping Specification provided
as a .json file, and Platform Specification provided as a .txt file.

The Pre-trained CNN Model specification includes the CNN topology
description with all layers and connections among layers as well as the
weights/biases that are associated with the layers and obtained by training
on a specific dataset using deep learning frameworks like PyTorch, Tensor-
Flow, etc. Many such CNN model specifications in ONNX format [44] are
readily available in open-access libraries and can be directly used as an
input to AutoDiCE.

The Platform Specification lists all available edge devices together with
their computational hardware resources and specific software libraries as-
sociated with these resources. This specification is simple to draw up and
can be generated by external tools that query the network connecting the
edge devices or provided manually by the user.

The Mapping Specification is a simple list of key-value pairs in JSON
format that explicitly shows how all layers described in the Pre-trained
CNN Model specification are mapped onto the computational hardware re-
sources listed in the Platform Specification. Every unique key corresponds

42 chapter 3

Mapping Specification

.json

Frontend

Backend

Pre-trained CNN Model

.onnx

.onnx (models)

Platform Specification

.txt

Model Splitting

Model 1 … Model NModel 0 Comm 0

Config & Communication
Generation

Comm 1 … Comm N

MPI

Comm

 Library

CNN

Inference

 Library

Code
Generation

.json (tables)

.txt (mpi rankfile)
.cpp (code)

…
.cpp

Model N

Rankfile

.cpp

Model 0

Rankfile

.cpp

Model 1

Rankfile

Interface

Package 1Package 0 Package N

Package
Generation

Figure 3.1: The AutoDiCE design flow and its user interface

to an edge device with a selection of its hardware resources to be used
for computation. Every value corresponds to a set of CNN layers to be de-
ployed and executed on the edge device resources. Such a Mapping Spec-
ification can be provided manually by the user or, like will be discussed
in Chapter 4, generated by a system-level design-space exploration (DSE)
tool.

The three aforementioned specifications are given as an input to the front-
end module as shown in Figure 3.1. Two main steps are performed in
this module: Model Splitting and Config & Communication Generation. The
Model Splitting takes as an input the Pre-trained CNN Model and Map-
ping specifications, splits the input CNN model into multiple sub-models,
and generates these sub-models in ONNX format. The number of generated
sub-models is equal to the number of unique key-value pairs in the Map-
ping Specification. Each sub-model contains input buffers, output buffers,

3.3 the autodice tool 43

Model template Mapping template

{

“edge01_arm123”: [

 “MaxPool1”,

 “Add1”

],

“edge01_gpu”: [

 “FC1”

],

“edge04_gpu”: [

 “Conv1”,

 “Relu1”

]

}

Platform template

edge01, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge02, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge03, arm, slots=0-5, gpu=NVIDIAVolta (CUDA)

edge04, x86, slots=0-11, gpu=AMDRX6800 (VULKAN)

edge05, arm, slots=0-3, gpu=ArmMali-G610 (VULKAN)

Conv1

MaxPool1

Input

Output

FC1

Add1

Relu1

MaxPool1

Input Buff1

Buff3

FC1

Buff2

Buff4

Add1

Buff3

Buff1

edge01_arm123

Model 0

Conv1

Buff1

Output

Relu1

Buff4

Buff2

edge01_gpu

Model 1

edge04_gpu

Model 2

// rankfile.txt

rank 0=edge01 slots=1,2,3

rank 1=edge01 slots=0

rank 2=edge04 slots=0

// receiver.json

{ "0": {“Buff2”: [“2”], “Buff3”: [“1”]},

 “1”: {“Buff1”: [“0”]},

 “2”: {“Buff1”: [“0”], “Buff4”: [“0”]}

}

// 0,1,2 indicate MPI process ID

// sender.json

{ “0": {"Buff1": [“1”,“2”], “Buff4”: [“2”]},

 “1”: {“Buff3”: [“0”]},

 “2”: {"Buff2": [“0”]} }Comm 0

Comm 1
Comm 2

Rankfile

Model
splitting

Config
generation

Communication
generation

Code
generation

1 if (rank_id==0){

2 Read Input Image;

3 Register Recv & Send Functions;

4 Execute MaxPool1;

5 Send Buff1;

6 Wait Buff2 & Buff3 Recv;

7 Execute Add1;

8 Send Buff4;

9 Wait Buff1 Send;

10 Wait Buff4 Send;

11 }

12 if (rank_id==1){

13 Register Recv & Send Functions;

14 Wait Buff1 Recv;

15 Execute FC1;

16 Send Buff3;

17 Wait Buff3 Send;

18 }

19 if (rank_id==2){

20 Register Recv & Send Functions;

21 Wait Buff1 Recv;

22 Execute Conv1;

23 Send Buff2;

24 Wait Buff4 Recv;

25 Execute Relu1;

26 Return Output;

27 Wait Buff2 Send;

28 }

Figure 3.2: AutoDiCE in action: a detailed example

and the set of CNN layers, specified in the corresponding key-value pair.
The Config & Communication Generation step takes all three specification
files as an input and generates specific tables in JSON format containing
information needed to realize proper communication and synchronization
among the sub-models using the well-known MPI interface. In addition, a
configuration text file (MPI rankfile) is generated to initialize and run the
sub-models as different MPI processes.

As shown in Figure 3.1, the generated configuration file, sub-models, and
tables are used in the back-end module for code and deployment package
generation. During the Code Generation step in this module, efficient C++
code is generated for every edge device based on the input sub-models and
tables. In the generated code, primitives from the standard MPI library are
used for data communication and synchronization among sub-models as
well as primitives from our customized CNN Inference Library are used
for implementation of the CNN layers belonging to every sub-model. Both
libraries enable the generation of cross-platform code that can be compiled
for and executed on multiple heterogeneous edge devices. Finally, the Pack-
age Generation step packs the generated cross-platform C++ code, the MPI
rankfile, and a sub-model together to generate a specific deployment pack-
age for every edge device. All packages contain the same C++ code and the
same MPI rankfile but different sub-models. When a package is compiled,
deployed, and executed on an edge device, the specific sub-model in the
package will be loaded and only the part of the code that corresponds to
the loaded sub-model will run as an MPI process as specified in the MPI
configuration rankfile.

44 chapter 3

In the following subsections, the interface and the main steps of the Au-
toDiCE design flow, introduced above, are explained in more detail with
the example in Figure 3.2.

3.3.2 Interface

In the left-most part of Figure 3.2, we show three templates (examples)
representing the three specifications of the user interface introduced in Sec-
tion 3.3.1. By using these example templates, we comprehensively reveal
and explain the flexibility of and heterogeneity support in AutoDiCE.

In general, the Platform Specification lists all available edge devices with
their computational resources. Every line in the list specifies the name of the
edge device, the CPU architecture, the number of CPU cores, and (option-
ally) a GPU device with its architecture and programming library. For in-
stance, the first line of the Platform template in Figure 3.2 specifies that the
name of the device is "edge01" with an ARM processor architecture includ-
ing six cores in total (slots=0-5) and one GPU device with NVIDIA Volta
architecture supported by the CUDA library. Through the Platform Spec-
ification, a user can easily and flexibly specify alternative heterogeneous
hardware platforms including different numbers of edge devices and types
of resources. As shown in Figure 3.2, the user can select different CPU ar-
chitectures per edge device such as ARM, x86, etc. with different numbers
of cores as well as different GPU architectures per edge device such as
NVIDIA, Mali, AMDRX, etc. with different GPU programming APIs such
as CUDA, VULKAN, etc.

The Model template in Figure 3.2 is an example of a part of a Pre-
trained CNN Model specification that visualizes the CNN model topology
only. It contains an input layer, five hidden layers (i.e., MaxPool1, Conv1,
FC1, Add1, and Relu1), and an output layer. Every hidden layer stores its
own parameters (such as weights, bias, etc.) that are not shown in Fig-
ure 3.2. We adopt ONNX as the standard format to represent/specify a
pre-trained CNN model in the AutoDiCE interface for framework interop-
erability. The choice of ONNX allows users to provide a CNN model de-
signed, trained, and verified in well-known and widely-used frameworks
such as TensorFlow [28], PyTorch [29], etc. A large variety of trained CNN
models are already available in ONNX format that can be readily utilized
by AutoDiCE, allowing easy deployment of these models over multiple
edge devices. In addition, the use of the ONNX interface facilitates repro-
ducibility in terms of CNN designs (e.g., CNN topology, used parameters,

3.3 the autodice tool 45

etc.) and in CNN evaluations (for CNN model accuracy and non-functional
characteristics). For example, in experimental evaluations, users can confi-
dently and reliably compare CNN model characteristics such as accuracy,
memory usage, performance, and power/energy consumption, obtained by
AutoDiCE, with the same characteristics obtained by other frameworks and
approaches, applied to exactly the same CNNs.

As mentioned in Section 3.3.1, the Mapping specification lists several dif-
ferent key-value pairs to describe a distribution of the layers in a CNN
model over different computational platform resources. The Mapping tem-
plate in Figure 3.2 is an example of such specification. It lists three different
key-value pairs. For example, the unique key "edge01_arm123" specifies that
three ARM CPU cores (i.e., cores 1, 2, and 3) of device edge01, described in
the Platform specification, are allocated for CNN layers execution. The cor-
responding value ["MaxPool1", "Add1"] specifies that layers MaxPool1 and
Add1, described in the Pre-trained CNN model specification, are executed
on the allocated three cores. All valid keys must be generated from the
Platform Specification to ensure the availability of chosen computational
resources. CNN layers can be bound to a single GPU, a single CPU core,
or multiple CPU cores. Specifically, if all keys use computational resources
of the same device, the distributed inference turns into a multi-threaded
execution on a single device. All valid values must be selected from layers
of the Pre-trained CNN model, and all CNN layers in that model should be
assigned to at least one hardware processing unit (CPU or GPU) to ensure
the mapping consistency. The mapping example in Figure 3.2 is a vertical
partitioning (Figure 2.3), which means that every CNN layer is mapped to
a single unique key (device). If a CNN layer is mapped to multiple unique
keys, then the layer will be horizontally distributed over multiple compu-
tational resources. Users can realize different approaches for splitting (and
parallel execution of) a CNN model, namely vertical, horizontal, and using
data parallelism (the latter two are not shown in Figure 3.2). This is done
by changing the layer distribution in the Mapping Specification. It is easy
and flexible for users (or DSE and other tools, for that matter) to change
the CNN model partitioning as well as the mapping of partitions to edge
devices through selecting different combinations of key-value pairs in the
Mapping Specification.

46 chapter 3

3.3.3 Front-end

The front-end module is designed to parse, check, and pre-process all user
specifications through its two main steps: Model Splitting and Config &
Communication Generation. Model Splitting splits the input CNN model
according to the mapping specification and generates several CNN sub-
models. Each sub-model will be implemented and executed as an MPI
process. Config & Communication Generation generates an MPI-specific
configuration file and communication tables based on the three input spec-
ification files. At the top center of Figure 3.2, the model splitting step is
illustrated. Based on the three key-value pairs in the Mapping template
(specification), the CNN model template is vertically partitioned into three
sub-models (Model 0, Model 1, and Model 2). The layers of the CNN model
mapped on the same edge device resource will be grouped into a single
sub-model. For example, the two layers MaxPool1 and Add1 are grouped
together to form sub-model Model 0.

The output of a CNN layer in the initial Model template is the input of its
next connected CNN layers. If two connected CNN layers are mapped onto
different edge devices or different compute resources (CPU or GPU) within
an edge device, i.e., the two layers belong to two different sub-models, the
direct connection between these two layers is replaced by one output buffer
belonging to one of the sub-models and one input buffer belonging to the
other sub-model. These two buffers are used to store and communicate
intermediate results between the two CNN layers. For example, the di-
rectly connected CNN layers MaxPool1 and Conv1 of the Model template
in Figure 3.2 are mapped onto two different edge devices according to the
Mapping template. Thus, layer MaxPool1 belongs to sub-model Model 0 and
layer Conv1 belongs to sub-model Model 2. As a consequence, the direct
connection between MaxPool1 and Conv1 is replaced by output buffer Buff1
in Model 0 and input buffer Buff1 in Model 2.

The Config Generation step is illustrated in the bottom center of Fig-
ure 3.2. It generates an MPI-specific Rankfile which provides detailed in-
formation about how the individual MPI processes, corresponding to the
generated sub-models, should be mapped onto edge devices, and to which
processor/core(s) of an edge device an MPI process should be bound. In
the example in Figure 3.2, we have three sub-models Model 0, Model 1, and
Model 2 that will be implemented and executed as three different MPI pro-
cesses 0, 1, and 2, respectively. Based on the Mapping template, the example
Rankfile in Figure 3.2 specifies that the MPI processes 0 and 1 should be

3.3 the autodice tool 47

mapped onto edge device edge01 and the MPI process 2 should be mapped
onto edge device edge04. In addition, each line of the Rankfile specifies the
physical processors/cores allocated to the corresponding MPI process. In
our example Rankfile, the first line specifies that MPI process 0 should be
mapped on edge device edge01 and slots 1, 2, and 3 are allocated to this
process on this device. This means that this process will run on three ARM
CPU cores (i.e., core 1, 2, and 3) of device edge01.

The Communication Generation step is illustrated in the center of Fig-
ure 3.2. It generates a sender table and a receiver table as .json files. These
two communication tables specify the necessary communications between
individual MPI processes to ensure that the input/output buffers of the
corresponding sub-models are synchronized through the MPI interface. For
example, the first line in the sender table specifies that MPI process 0 needs
to send the contents of Buff1 to MPI processes 1 and 2, and the contents
of Buff4 to MPI process 2. Correspondingly, the third line in the receiver
table specifies that MPI process 2 needs to receive the contents of Buff1 and
Buff4, both from MPI process 0. The communication and synchronization
information in the sender and receiver tables ensure that the initial input
CNN model is correctly executed after the model splitting.

3.3.4 Back-end

The back-end module constitutes AutoDiCE’s final stage to create a CNN-
based application for deployment over multiple edge devices. It contains
two main steps: Code Generation and Package Generation.

The first step, Code Generation, turns all intermediately generated files
(all sub-models and communication tables) by the front-end module into
efficient C++ code. The output of this step is a single .cpp file which has
a very specific and well-defined code structure, making calls to specific
primitives and functions located in two libraries: a standard MPI Library
and our customized CNN Inference Library. The code structure contains
several code blocks. Each code block is surrounded by an if statement and
implements one CNN sub-model. The sub-models are executed as individ-
ual MPI processes mapped on different edge device resources, meaning
that every MPI process runs only the code block implementing the corre-
sponding sub-model. The code block is uniquely identified by a rank ID
checked in the if statements surrounding the code blocks. Unique rank IDs
are assigned according to the Rankfile, explained in Section 3.3.3, during the
MPI initialization stage. The pseudo-code template in the right-most part of

48 chapter 3

Figure 3.2 illustrates the specific code structure of the generated .cpp file. It
contains three code blocks, i.e., Lines 1-11, Lines 12-18, and Lines 19-28, that
implement sub-models Model 0, Model 1, and Model 2, respectively. Model 0,
Model 1, and Model 2 will be executed as three MPI processes 0, 1, and 2,
respectively. Every MPI process contains the aforementioned code template
but the MPI process 0 corresponding to sub-model Model 0 will run only
the code block between lines 1 and 11. Similarly, the MPI process 1 will run
only the code block between lines 12 and 18, etc.

The code blocks themselves all have a similar, well-defined structure start-
ing with code that registers all MPI send and receive primitives (e.g., lines
3, 13, and 20 in Figure 3.2) followed by MPI_Wait primitives that block the
code execution until the necessary data to be processed by CNN layers is
received (e.g., lines 6, 14, 21, and 24). Then, code implementing the CNN
layers is executed followed by MPI_Send primitives that communicate the
output data from a layer to other layers executing in different MPI pro-
cesses mapped on different edge devices/resources (e.g., lines 7-8, 15-16,
22-23). Finally, MPI_Wait primitives are used to block the code execution
until the sent data arrives at the destination (e.g., lines 9, 10, 17, and 27).

Some code blocks have to implement and execute more than one CNN
layer because the corresponding CNN sub-models contain multiple CNN
layers. Every code block implementing multiple CNN layers has to execute
the layers in the order specified by the data dependencies in the input CNN
Model template to preserve the functional correctness of the distributed
CNN model. For example, the CNN sub-model Model 0 in Figure 3.2 is
implemented by the code block between lines 1 and 11 in Figure 3.2. Line
2 reads an image file to prepare the input data for the CNN model. The
code in line 3 registers all non-blocking MPI send and receive primitive
calls according to the first lines in the sender and receiver tables, explained
in Section 3.3.3. In lines 4 and 7, the MaxPool1 and Add1 layers are exe-
cuted one after the other, thereby preserving the order specified in the CNN
Model template given in Figure 3.2. After executing each layer, they store
their output data in Buff1 and Buff4, respectively. Line 5 sends the content
of Buff1 to MPI process 1 and MPI process 2 according to the sender table.
To allow for overlapping communication with computation, the generated
code uses non-blocking MPI_Send primitives that return immediately and
will not block the execution. A layer within a code block is executed once
its input data is available, i.e., layers are executed in a data-driven fash-
ion. For those layers that read their input data from communication buffers
(i.e., data generated by another sub-model, possibly running on a different

3.3 the autodice tool 49

edge device), MPI synchronization (wait) primitives enforce that layers can-
not start execution before their input data is available. For example, this
data-driven based execution of layers enforces that the Add1 layer in Model
0 can only be executed after the input data in Buff2 and Buff3 is available.
Such synchronization is realized by the MPI_Wait primitives in line 6 of Fig-
ure 3.2. Line 8 uses the non-blocking MPI_Send primitive again to transfer
the content of Buff4 to MPI process 2. Finally, at the end of the code block,
in lines 9-10, two synchronization MPI_Wait primitives are called that are
associated with the two asynchronous send requests in lines 5 and 8. All
such synchronization primitives are always called at the end of a code block
in order to stop the code execution until the corresponding send requests
(in this example the requests to send the contents of Buff1 and Buff4) are
completed.

In every code block, the implementation and execution of the CNN lay-
ers is realized by calling functions and primitives located in our customized
CNN Inference Library. By encapsulating the NCNN [50] and Darknet [51]
neural network engines into a uniform wrapper, our custom inference li-
brary supports CNN layer implementation and execution on a variety of
hardware platforms (e.g., Raspberry Pi with a quad-core ARM v8 SoC,
NVIDIA Jetson AGX Xavier series, etc.).

The used MPI primitives in the code blocks are part of the Open MPI
library [31], which is an open-source implementation of the standard MPI
interface for high performance message passing. It enables parallel execu-
tion on both homogeneous and heterogeneous platforms without drastic
modifications to the device-specific code.

Besides facilitating the C++ code generation and distributed execution of
CNN models (using MPI), our customized CNN Inference Library also in-
tegrates and provides OpenMP support. This means that if a CNN layer is
mapped onto multiple CPU cores in an edge device, the actual execution of
such layer will be multi-threaded using OpenMP in order to efficiently uti-
lize the multiple CPU cores by exploiting data parallelism available within
the layer. For example, the MaxPool1 layer in Figure 3.2 is implemented and
executed as multiple threads within MPI process 0 which is mapped onto
the three ARM CPU cores 1, 2 and 3 in edge device edge01. More specifi-
cally, in Figure 3.3, we show some details about how the multiple threads
bound to the three CPU cores 1, 2 and 3 are executed within MPI process 0.
A thread number variable, called num_threads, is set to 3 in the code block
implementing MPI process 0 during the code generation step. In our cus-
tomized CNN Inference Library, this variable is used in the implementation

50 chapter 3

OpenMP

MPI Process 0

threads

Hardware Device 0

memory

31 2

// rankfile.txt
rank 0=edge01 slots=1,2,3

// .cpp

1 if (rank_id == 0){

2 opt.num_threads = 3;
3 …

4 }

// pooling.cpp in CNN inference library

if (pooling_type == MAX_POOL){

 #pragma omp parallel for num_threads(opt.num_threads)
 for (int q = 0; q < channels; q++)

 {

 …;

 }

}

CNN Inference
 Library

cores

Figure 3.3: MPI process 0 with OpenMP

code of all types of layers (i.e., convolution, pooling, etc.), and it configures
the OpenMP macro line #pragma omp parallel for shown in Figure 3.3. This
macro line spawns a group of multiple threads and divides the loop iter-
ations (the for loop in Figure 3.3) that follow this macro line between the
spawned threads during the execution. So, during the execution, layer Max-
Pool1 is executed as three threads running on CPU cores 1, 2, and 3.

The above discussion on the first step (Code Generation) of the back-end
module clearly indicates that AutoDiCE employs a hybrid MPI+OpenMP
programming model. OpenMP is used for parallel execution of a CNN
layer within an edge device and MPI is used for communication and syn-
chronization among CNN sub-models running on different edge devices or
on different compute resources (e.g., CPUs and GPUs) within an edge de-
vice. By doing so, AutoDiCE provides extreme flexibility in terms of many
alternative ways to distribute the CNN inference within and across edge de-
vices by treating every CPU core or GPU unit in edge devices as a separate
entity with its own address space. This allows AutoDiCE to be used in very
complex IoT scenarios that may contain a lot of heterogeneous devices.

The second step of the back-end module, i.e. Package Generation, packs
the generated .cpp code, sub-models, and Rankfile together into a deploy-
ment package for every edge device utilized in the distributed CNN in-
ference. As it is essential to identify the individual MPI process running
on an edge device, this step must put the Rankfile in every package. The
Rankfile provides detailed information about the MPI processes’ binding,
which constrains each MPI process to run on specific compute resources of

3.4 framework evaluation 51

different edge devices. The executable binary (to be deployed on an edge
device) will be generated when the corresponding .cpp code in a package
is compiled together with the aforementioned customized CNN Inference
Library we have developed. As all packages contain the same .cpp code
(i.e., we use the Single Program Multiple Data paradigm in this sense), the
same binary can be deployed and executed on the same type of edge de-
vices where each edge device will load the corresponding CNN sub-model
from its own package before the execution of the binary. For different types
of edge devices, we can generate an executable binary for every type.

3.4 framework evaluation

In this section, we present an evaluation of our AutoDiCE framework. First,
we describe the setup for our experiments in Section 3.4.1. Then, in Sec-
tion 3.4.2, we evaluate the execution time of our framework to show its effi-
ciency. Moreover, we also present a range of experimental results for three
representative CNNs to demonstrate that our novel framework can rapidly
realize a wide variety of distributed CNN inference implementations with
diverse trade-offs regarding energy consumption per device, memory us-
age per device, and overall system throughput. Finally, in Section 3.4.3,
we analyze the effects on the energy consumption per device, the mem-
ory usage per device and the overall system throughput when scaling the
distributed CNN inference to a varying number of deployed edge devices.

3.4.1 Experimental Setup

The goal of our experiments is to demonstrate that, thanks to our novel
contributions presented in this chapter, our framework can rapidly explore
and automatically implement CNN partitions over multiple edge devices
to realize distributed CNN inference. Moreover, it can do so with lower per-
device energy consumption, with smaller per-device memory usage, and
under certain conditions, with the same or higher CNN inference through-
put, as compared to CNN execution on a single edge device. Since state-
of-the-art CNNs have deep architectures with many layers, this leads to
an immense variety of different CNN mappings on multiple edge devices,
each having different characteristics in terms of energy consumption per
device, CNN inference throughput, and memory usage per device. There-
fore, we have designed a design-space exploration (DSE) experiment (de-
tails in Chapter 4) to find Pareto-optimal CNN mappings with respect to

52 chapter 3

CNN inference throughput, energy consumption per device, and memory
usage per device.

In the DSE experiment in this chapter, we use three real-world CNNs,
namely VGG-19 [52], Resnet-101 [53], and Densenet-121 [54], from the ONNX
models zoo [55] that take images as input for CNN inference. Since these
CNNs are diverse in terms of types and number of layers, and memory
requirements to store parameters (weights and biases), we believe that they
are representative and good targets for our evaluations to demonstrate the
merits of our framework. The first four columns in Table 3.1 list the details
of the used CNN models.

The aforementioned CNN models are mapped and executed on our edge
cluster introduced in Section 2.3.3.2. For a given CNN mapping specifica-
tion, we apply our AutoDiCE framework to generate and distribute a de-
ployment package for every Jetson device. For every generated implemen-
tation, we measure and collect the energy consumption per device, CNN
inference throughput, and memory usage per device, as an average value
over 20 CNN inference executions. As we target embedded devices, the
batch size of CNN inference is 1. The inference throughput (measured by
instrumenting the code with appropriate timers) and the memory usage
per device are reported directly by the code itself during the CNN execu-
tion. To measure the energy consumption per device, a special sampling
program reads power values from the integrated power monitors on each
NVIDIA Jetson board during the CNN execution period, where the power
consumption involves the whole board including CPUs, GPU, SoC, etc.

As discussed in Chapter 2, to actually explore the different CNN map-
pings, while optimizing for the three target objectives (i.e., system through-
put, energy consumption per device, and memory usage per device), we ap-
ply the well-known NSGA-II [5]. The chromosomes in our NSGA-II multi-
objective GA implementation encode how a CNN is split into different seg-
ments and how these segments are mapped onto the various edge devices
and resources within them. To evaluate the fitness of the encoded CNN
mappings using our AutoDiCE framework, the chromosomes are translated
to the framework’s mapping format described in Section 3.3.2. In our DSE
experiment, every CNN layer can be mapped either onto a single CPU core,
onto six CPU cores, or onto a GPU inside an edge device. The GA is ex-
ecuted with a population size of 100 individuals, a mutation probability
of 0.1, a crossover probability of 0.5, and performs 400 search generations.
For all experiments with the three CNNs, the original data precision (i.e.,
float32) is utilized to preserve the original model accuracy of classification.

3.4 framework evaluation 53

Table 3.1: Used CNN models and AutoDiCE execution time breakdown

Network Total # Total # Memory for AutoDiCE Execution Time (seconds)

Layers Parameters Parameters (MB) Front-end Back-end Package deployment

DenseNet-121 [54] 910 8.06 million 32 1.93 0.3 21.3

ResNet-101 [56] 344 44.6 million 171 7.30 0.1 23.3

VGG-19 [52] 47 143 million 549 21.50 0.4 26.9

3.4.2 Efficiency of AutoDiCE and DSE Results

We start with evaluating the execution time of AutoDiCE itself, to provide
insight on how long this tool generally takes to split a CNN model (front-
end), to generate the code for the distributed CNN execution (back-end),
and to deploy the generated packages to the edge devices for actual exe-
cution. To this end, we have measured the required time for each of these
phases using the ’worst-case scenario’ in the scope of our experiments: us-
ing the maximum number of splits in our CNNs to generate sub-models
(24 splits/sub-models of a CNN in our experiments), and mapping and
deploying the generated sub-models to the maximum number of edge de-
vices (8 in our experiments). These measurements were done on a system
equipped with an Intel Core i7-9850H processor, running Ubuntu 20.04.3
LTS. The last three columns in Table 3.1 provide a breakdown of the execu-
tion time (in seconds) of AutoDiCE for the three CNNs in these worst-case
scenarios. From the results in Table 3.1, we can see that AutoDiCE is able
to produce executable, distributed CNNs and deploy them on the various
edge devices in a relatively short time frame, i.e., in less than a minute for
any of the three used CNNs in our worst-case scenario. The comparatively
larger execution time of the front-end for VGG-19 is due to the high number
of parameters in this model, and the resulting overheads in AutoDiCE of
copying these parameters to the large number of sub-models. In any case,
these results demonstrate that AutoDiCE allows for rapidly splitting CNNs
and deploying them for distributed execution on multiple edge devices.

Our DSE experiments explore a wide range of different CNN mappings
and these experiments result in a Pareto front with several Pareto-optimal
mappings. In such a set of Pareto-optimal mappings, none of the targeted
objectives (energy consumption, throughput, and memory usage) can be
further improved without worsening some of the other objectives. More
specifically, we consider the maximum energy consumption per device, maxi-
mum memory usage per device, and total system (CNN inference) through-

54 chapter 3

put as our target objectives. Figures 3.4a, 3.4b, and 3.4c show the Pareto-
optimal CNN mappings found by our DSE for DenseNet-121, ResNet-101,
and VGG-19, respectively. To better illustrate (the diversity of) these Pareto-
optimal mappings, Table 3.2 shows more details about a selection of these
mappings (points A to I in Figure 3.4) for comparison. As a reference, the
table also includes the mapping results when using a single edge device
with 6 CPUs or 1 GPU.

Moreover, to provide a feeling of how the distributed CNN execution
on resource-constrained edge devices compares to CNN execution on a
(centralized) powerful server, Table 3.2 also includes throughput and GPU
memory results from an experiment on an NVIDIA GeForce RTX2080 Ti
card (4352 NVIDIA CUDA cores and 544 Tensor cores, with a theoretical
maximum performance of 13.45 TFLOPS) with Pytorch to mimic a cloud
server based execution of the CNNs. Here, we would like to stress that
the mimicked cloud server results do not include any latencies required
for sending data to and from the cloud server, which would be the case in
reality. To make a fair comparison with our experimental edge devices, the
inference batch size when using the aforementioned NVIDIA GPU card is
also set to 1. We note that it is not possible to precisely measure the energy
consumption of the GPU card, thus its energy consumption is not given
in Table 3.2. However, its energy consumption is definitely much higher
compared to our experimental edge devices. For memory usage, we have
taken the peak memory usage of the GPU card because it is influenced by
the CNN model and its execution.

Columns 3 and 5 in Table 3.2 show the maximum energy consumption
per device (in Joules per image) and maximum memory usage per device
(in MegaBytes) for a specific CNN mapping, respectively. Column 4 shows
the overall system throughput (in images per second). Columns 6, 7 and 8

show the hardware configurations of the selected CNN mappings, consist-
ing of the number of deployed edge devices, and total of CPU cores and
GPUs used in these devices, respectively.

From Figure 3.4 and Table 3.2, we can see that our novel framework al-
lows for easily and rapidly realizing a wide variety of distributed CNN
inference implementations with diverse trade-offs regarding per-device en-
ergy consumption, per-device memory usage, and overall system through-
put. Taking point A as an example, a distributed execution of DenseNet-
121 on four devices utilizing only GPUs can reduce the maximum energy
consumption per device by 52.5% and 33.8% as compared to the 1-Device
CPU and 1-Device GPU hardware configurations, respectively. The sys-

3.4 framework evaluation 55

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2 5
1 0

1 5
2 0

2 5
3 0

3 0

6 0

9 0

1 2 0

1 5 0

1 8 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(a) DenseNet-121 (910 layers)

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0 0

8

1 6

2 4

3 2
1 0 0

2 0 0

3 0 0

4 0 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(b) ResNet-101 (344 layers)

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

1 . 2 5 5

1 0

1 5

2 0

2 5
4 5 0

6 0 0

7 5 0

9 0 0

T h r o u g h p u t (i m g / s e c)

M e m o r y U s a g e (M B)

E n e r g y C o n s u m p t i o n (J / i m g)

(c) VGG-19 (47 layers)

Figure 3.4: Pareto-optimal CNN mappings from our DSE experiment with three
CNNs.

Table 3.2: Selected Pareto-optimal Mappings (points) from Figure 3.4
Network Points Max. per-device System Max. per-device # Devices # CPU cores # GPUs

Energy (J/img) FPS (img/sec) Memory (MB)

NVIDIA GTX 2080ti - 21.339 286.854 - - 1

1-Device CPU 0.905 7.987 129.984 1 6 0

1-Device GPU 0.650 12.807 251.172 1 0 1

DenseNet-121 A 0.430 27.941 152.336 4 0 4

B 0.408 23.551 149.941 6 6 5

C 0.977 7.546 51.066 8 38 0

NVIDIA GTX 2080ti - 30.823 437.446 - - 1

1-Device CPU 1.635 5.786 656.527 1 6 0

1-Device GPU 1.031 21.767 955.012 1 0 1

ResNet-101 D 0.425 26.406 360.766 7 0 7

E 0.488 30.048 329.641 7 12 5

F 0.886 12.123 127.883 8 48 0

NVIDIA GTX 2080ti - 166.820 822.902 - - 1

1-Device CPU 1.471 7.273 1310.91 1 6 0

1-Device GPU 1.523 11.664 1666.418 1 0 1

VGG-19 G 0.680 11.651 998.273 6 0 6

H 0.791 17.385 868.496 6 6 5

I 1.035 7.194 604.504 7 30 2

tem throughput of DenseNet-121 on four devices achieves a 3.5x and 2.2x
performance improvement compared to the 1-Device CPU and 1-Device
GPU configurations, respectively. In terms of per-device memory usage,
the CNN mapping A with four devices consumes 39.3% less memory than
the 1-Device GPU implementation, but consumes 17.2% more memory as
compared to the 1-Device CPU configuration. Moreover, the distributed
CNN inference results in Table 3.2 show that for the CNNs with many lay-
ers (DenseNet-121 and ResNet-101) comparable performance (throughput)

56 chapter 3

can be obtained as the mimicked powerful cloud server (NVIDIA GeForce
RTX2080).

An observation that can be made in general from our DSE results is that
by increasing the number of utilized devices, the per-device memory usage
is not always reduced if GPUs are deployed within (some of) the devices.
In Table 3.2, this is clearly illustrated by, for example, CNN mappings A
and B. These mappings have even higher per-device memory usage when
distributing the CNN over, respectively, four and six devices as compared
to a 1-Device CPU configuration. The higher memory usage when deploy-
ing GPUs is due to the fact that an NVIDIA Jetson Xavier NX device has
8GB memory that is shared between CPU and GPU programs. During the
loading phase of CNN models, there will typically be at least two copies of
the CNN weights when using the GPU: those from the original model file
in the host memory, and those initialized as part of the GPU engine.

3.4.3 Varying the Number of Edge Devices

In Figure 3.5, we show the effects on the maximum per-device energy con-
sumption, maximum per-device memory usage, and system throughput
when scaling the number of deployed edge devices in the distributed CNN
execution. Every bar in Figure 3.5 reflects the best value (energy consump-
tion, memory usage, or throughput) found among all the evaluated map-
pings, during our DSE experiment, with a specific number of deployed edge
devices. This implies that the value reflected by each bar may come from
a different Pareto-optimal mapping. For better visualization, all results in
Figure 3.5 have been normalized, where the results for a configuration with
one edge device are taken as the reference (i.e., these represent the results
of the best-found mappings when targeting a single edge device).

From Figure 3.5, we can see that, in general, both the per-device energy
consumption and the per-device memory usage can be improved (i.e., re-
duced) when increasing the number of deployed edge devices. Evidently,
this is due to the fact that the workload (the size and/or the number of ex-
ecuted sub-models) on each participating edge device is reduced when in-
creasing the number of edge devices. Moreover, in some cases, the improve-
ment can be significant. For example, for ResNet-101, the maximum per-
device energy consumption and maximum memory usage are reduced by
around 40% and 80%, respectively, when distributing the CNN over eight
edge devices as compared to execution on a single device. Furthermore, the
results in Figure 3.5 show that the system (CNN inference) throughput can

3.5 discussion 57

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
DenseNet-121

Max Energy per device
System Throughput
Max Memory per device

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2
ResNet-101

1 Device 2 Devices 4 Devices 8 Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2
VGG-19

Figure 3.5: System throughput and max energy/memory per device when varying
the number of edge devices for three CNNs.

also be improved by means of distributed CNN execution. This is because
of the exploitation of pipeline parallelism in the distributed CNN execu-
tion. For example, for DenseNet-121, ResNet-101, and VGG-19, the infer-
ence throughput increases by up to 38%, 18%, and 18%, respectively when
executing the CNN inference on up to four edge devices as compared to
a single device. However, the inter-device data communication overheads
involved in distributed CNN execution may prevent any further through-
put gains, or even cause a slowdown, when scaling the CNN execution to a
larger number of edge devices. For example, for all three CNNs, DenseNet-
121, ResNet-101, and VGG-19, we see a slowdown in system throughput
when scaling the CNN inference from four to eight edge devices.

3.5 discussion

In our experiments, we have used edge devices that are interconnected us-
ing a Gigabit network switch. Evidently, in more realistic edge/IoT settings
the connectivity between edge devices might have a lower bandwidth, e.g.
using WiFi or other wireless protocols. This would have a detrimental ef-
fect on the system throughput objective of distributed CNN inference im-
plementations, possibly leading to more or even purely slowdowns when
distributing the inference of a CNN on multiple edge devices. However, we
would like to stress that this will not have any impact on the positive ef-
fects on (i.e., the reduction of) the per-device energy consumption and per-
device memory usage that can always be achieved by distributing CNNs
over multiple edge devices.

Additionally, since the Jetson NX boards with 16GB of memory used as
edge devices in our experiments are sufficiently equipped for executing

58 chapter 3

complete CNNs, one could question why distributed execution would be
needed. However, in real-world application scenarios, there are often other
running application tasks, besides the CNN execution, on an edge device.
In such scenarios, the device memory cannot be fully utilized for the CNN
execution, and therefore the available memory may be insufficient for CNN-
based applications. If CNN models cannot be mapped on a single device
because of memory limitations (either due to memory usage of other ap-
plication tasks on the device or the fact that the device is less capable than
the one we used in our experiments and simply has not enough physical
memory), then we have to split the CNN model and execute it on multiple
collaborative edge/IoT devices.

Another important reason for distributing CNN execution over multi-
ple edge/IoT devices, even if CNN execution on a single edge/IoT de-
vice would be feasible, is when the consumed energy by a single (battery-
operated) device does not provide enough ‘lifetime’ for the application mis-
sion to be performed. For example, consider an application scenario where
a swarm of eight collaborating battery-operated mobile robots has to per-
form a surveillance mission for 20 hours without recharging the batteries.
One of the tasks, among several mission tasks the swarm has to perform, is
a continuous on-board CNN-based image processing of a camera-captured
video stream using the ResNet-101 CNN model. Every mobile robot in the
swarm is equipped with a Jetson NX board (edge device) used for robot
control/navigation and for running tasks related to the mission. Let us as-
sume that the Jetson NX board is powered by a battery with a capacity of
18000 mAh and an output voltage of 19 V. On the one hand, if the CNN-
based image processing task of the swarm is assigned to and performed by
only one of the robots then, with the aforementioned battery capacity, the
execution of the ResNet-101 model on the robot’s Jetson NX edge device
can last only for 15.24 hours, thus the swarm will not be able to accomplish
the 20-hour mission without battery recharging. This is because the energy
consumption per image of ResNet-101 executed on Jetson NX is 1.031 J,
and after processing 1194181 images with a processing time of 45.94 ms
per image, the aforementioned battery will be completely discharged. On
the other hand, if the CNN-based image processing task of the swarm is
assigned to and performed collaboratively by four out of the eight robots
in the swarm, i.e., distributing the ResNet-101 CNN model on four Jetson
NX edge devices, then the 20-hour mission of the swarm without battery
recharging could be accomplished. This is because, according to our results
shown in Figure 3.5 for ResNet-101, the distributed ResNet-101 execution

3.6 conclusions 59

on four edge devices will reduce the energy consumption per device by
around 35%, thereby increasing the ‘lifetime’ of ResNet-101 on a single bat-
tery charge with 1.54x to about 23.45 hours.

The real-world application scenarios and example, discussed above, clearly
demonstrate the benefits of reducing the per-device memory usage and
per-device energy consumption that could be achieved by using our novel
framework for distributed CNN inference at the Edge.

3.6 conclusions

In this chapter, we have presented AutoDiCE, the first fully automated
framework for distributed CNN inference over multiple resource-constrained
devices at the Edge. The framework features a unified and flexible user in-
terface, fast CNN model partitioning and code generation, and easy deploy-
ment of the CNN partitions on edge devices. By applying the design flow
on three representative CNNs, we have evaluated AutoDiCE in terms of effi-
ciency and usefulness in facilitating fast and accurate DSE. The results show
that AutoDiCE can easily and rapidly realize a wide variety of distributed
CNN implementations on multiple edge devices, achieving improved (i.e.,
reduced) per-device energy consumption and per-device memory usage. It
is worth noting that these improvements are achieved without losing the
initial CNN model accuracy because the steps in our framework change
neither the CNN layers and their data dependencies nor the values and
precision of the CNN parameters.

4
C H A P T E R 4

Design Space Exploration (DSE) methods are becoming essential to find a set of
optimal CNN mappings subject to one or more design requirements, as the number
of different CNN mapping possibilities when deploying a CNN model on multiple
edge devices is vast. To facilitate this DSE process, we present an efficient DSE
method to find (near-)optimal CNN mappings for distributed inference at the Edge.
To deal with the vast design space of different CNN mappings, we accelerate the
searching process by proposing and utilizing a multi-stage hierarchical DSE ap-
proach together with a tailored Genetic Algorithm as the underlying search engine.

This Chapter is based on the workshop paper:

• Xiaotian, Guo, Andy D. Pimentel, and Todor Stefanov. "Hierarchical design
space exploration for distributed CNN inference at the Edge" [57], in 3rd Workshop
on IoT, Edge and Mobile for Embedded Machine Learning (ITEM 2022), part of
the Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, © Springer.

61

62 chapter 4

4.1 introduction

As discussed in Chapter 1, deploying large CNN models on edge devices
collaboratively presents challenges due to the limited resources of these de-
vices, often requiring reliance on cloud services which can introduce issues
of data privacy and latency. To address these challenges, collaboratively
performing the CNN inference across multiple edge devices has been pro-
posed in Chapter 3. However, such distributed execution of the CNN model
inference often needs to take multiple requirements into account, like la-
tency, throughput, resource usage, power/energy consumption, etc. Here,
the way how the different CNN layers are distributed and mapped onto the
edge devices plays a key role in optimizing/satisfying these requirements.
For example, using model-parallelism techniques and mapping CNN lay-
ers in a balanced way may reduce the maximum per-device memory foot-
print or energy consumption. Or, some CNN mappings may generate a bal-
anced data processing pipeline, thereby improving the overall throughput.
As CNN models for modern applications are becoming increasingly deep
and complex, the number of different CNN mapping possibilities when
deploying multiple edge devices, and the various compute resources in
each of them, is vast. Efficient Design Space Exploration (DSE) methods are
therefore essential to find a set of (near-)optimal CNN mappings subject to
one or more design requirements (i.e., objectives).

In this chapter, we present an efficient DSE method to find optimal CNN
mappings for distributed inference at the Edge. To this end, we leverage
our AutoDiCE framework [32] discussed in Chapter 3 to assess the quality
(in terms of inference throughput, memory footprint, and energy consump-
tion) of a particular CNN mapping. To deal with the vast design space of
different CNN mappings, we accelerate the searching process by using a
multi-stage hierarchical DSE approach together with a tailored Genetic Al-
gorithm (GA) as the underlying search engine. At every stage, we perform
DSE at two hierarchical levels. In the first level, we use analytical mod-
els inside the GA to approximate each objective function (i.e., throughput,
memory, and energy consumption) to avoid relatively long evaluation times
through real on-device (i.e., on-board) measurements using our AutoDiCE
framework. The near-optimal solutions found in the first level together with
Pareto-optimal solutions from a previous DSE stage are utilized as the par-
ents for the second level DSE. In this second level, we evaluate each design
point using real measurements taken from AutoDiCE-generated CNN in-
ference implementations to determine the Pareto front for a next DSE stage.

4.2 related work 63

The output of the last DSE stage provides the final Pareto-optimal solutions.
Our contributions can be summarized as follows:

• We accelerate the DSE convergence by performing the DSE process in
multiple stages where, at each DSE stage, we consider only a specific
part of the design space and use as input Pareto-optimal solutions
from the previous DSE stage in order to find Pareto-optimal solutions
for the next DSE stage;

• We improve the searching efficiency with a tailored chromosome en-
coding method, thereby scaling down the search space.

4.2 related work

To perform CNN inference on a fully distributed system at the Edge, with-
out any cloud involvement, data partitioning [18] or model partitioning [19]
is often required. Meanwhile, researchers try to optimize the CNN map-
ping to improve the inference performance. For example, the methodolo-
gies in [58–60] propose efficient algorithms to determine partitioning poli-
cies that generate efficient CNN mappings in order to improve the perfor-
mance of cooperative inference over multiple edge devices. However, these
methodologies optimize and evaluate CNN mappings based on analytical
models only and consider a limited number of objectives. In contrast, our
DSE method optimizes more objectives, and besides analytical models, it
uses AutoDiCE to evaluate mappings by real on-device measurements.

Distributed inference of large CNN models typically needs to consider
a range of different design requirements, such as latency, throughput, re-
source usage, power/energy consumption, etc. These requirements/objec-
tives can be conflicting, implying that there usually does not exist a single
optimal CNN mapping that satisfies all requirements. Typically multiple
solutions, so-called Pareto optimal solutions, co-exist, and the set of all op-
timal solutions is called the Pareto front. Finding these Pareto-optimal CNN
mappings for a given number of edge devices to perform distributed CNN
inference under several requirements is the topic of study in this chapter.
As discussed in Chapter 2, NSGA-II [5] is a popular approach to perform
such a search for Pareto-optimal solutions. For instance, [61, 62] use the
NSGA-II to explore the design space to find improved neural network ar-
chitectures for CNN-based applications. Our DSE method also employs
NSGA-II to explore the Pareto-optimal CNN mapping solutions with re-
spect to throughput, maximum memory usage per device, and maximum

64 chapter 4

energy consumption per device. However, NSGA-II can easily get stuck in
so-called dominance resistant solutions [63], that are far away from the true
Pareto front. How to search the optimal CNN mappings for distributed
inference using NSGA-II, and efficiently find the Pareto front in the huge
search space, are the main challenges we try to tackle in this chapter.

4.3 method

Our DSE method utilizes a Genetic Algorithm (GA), namely the NSGA-II
algorithm [5] introduced in Section 2.3.1, to search for optimal mappings
of (complete) CNN layers to different, distributed edge devices. We assume
that each edge device contains a number of internal compute resources
(i.e., PEs), like a CPU and GPU, and we map CNN layers directly to these
specific PEs within an edge device.

4.3.1 Fitness Functions

We use two different fitness functions for the evaluation of the three objec-
tives at every stage in our two-level DSE. The first level DSE applies the an-
alytical models, discussed in Section 2.3.3.1, to approximate the objectives.
The second level uses our AutoDiCE framework, introduced in Chapter 3,
to evaluate the objectives of distributed CNN inference by real implemen-
tations and measurements on the Jetson Xavier NX hardware devices de-
scribed in Section 2.3.3.2. The first level allows for a rapid DSE search using
approximate evaluations based on the analytical models, while the second
level facilitates a more detailed and accurate assessment of CNN mappings
based on the AutoDiCE framework.

4.3.2 Multi-stage hierarchical DSE

Given a trained CNN model with L layers, a layer lj performs a computa-
tion operation in the CNN model such as a convolution (Conv), a matrix
multiplication (FC), etc. A mapping x of the CNN layers onto a total of
N PEs is denoted as x = [x1, x2, · · · , xL]. As explained in Section 2.3, such
mapping notation x is typically encoded with the GA’s chromosome where
PEi, i ∈ [1..N] define the gene types in the chromosome. An example of
such encoding, called Naive Encoding (NE), is shown in Figure 4.1. The GA
chromosome [PE1,PE1,PE2,PE2,PE3,PE4,PE4,PE4] encodes an 8-layer CNN
(L = 8) mapped onto four PEs (N = 4), where layers l1 and l2 are mapped

4.3 method 65

NSGA-II

Previous solutions +
 Random Population

Final
Pareto Front

On-Board
Evaluation

Previous solutions +
 Random Population

NSGA-II

Analytical Model

Near-optimal Pareto

 Pareto front
for next stage

(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs

PE1 PE1 PE2 PE3 PE4PE4 PE4 40 2 5

Stage 1

Stage 2

Stage 3

Stage K

Pareto front
from previous stage

K-1

PE2

Figure 4.1: Two Chromosome Encoding Methods

on PE1, l3 and l4 on PE2, l5 on PE3, and l6, l7, l8 on PE4. Such naive en-
coding for CNN mappings is simple and intuitive but it may require explo-
ration of a huge design space because the space size depends exponentially
on the number of layers L in a CNN model and L is typically large. There-
fore, in our DSE method, we propose and utilize a tailored chromosome
encoding method, called Split Point Encoding (SPE). It encodes points in a
CNN model that partition the model into N groups of CNN layers, where
each group consists of consecutive layers and is mapped on one PE. In Fig-
ure 4.1, the Split Point Encoding example encodes the same mapping as the
Naive Encoding example. It can be seen that the 8-layer CNN has four split
points, visualized with the vertical dashed lines, at positions 0, 2, 4, and 5

determined by the layer index j. Therefore, the GA chromosome using our
SPE method is [0, 2, 4, 5] and it encodes four groups of layers each mapped
on one PE as follows: 1) for j ∈ (0..2], lj is mapped on PE1; 2) for j ∈ (2..4],
lj is mapped on PE2; 3) for j ∈ (4..5], lj is mapped on PE3; 4) for j > 5,
lj is mapped on PE4. The length of our SPE chromosome is equal to the
number of PEs which is N, thus SPE requires exploration of a design space
which size depends exponentially on N. Since N is typically much smaller
than the number of CNN layers L, our SPE method largely scales down
the design space and improves the search efficiency compared to the NE
method.

Given a trained CNN model and all edge devices within total N PEs, our
DSE method searches for Pareto CNN mappings to optimize the three objec-
tives, i.e. maximum memory usage per device, maximum energy consump-
tion per device, and overall system throughput. In Figure 4.2, we present
the general structure of our multi-stage hierarchical DSE method. On the
left, the K stages in our DSE workflow are depicted, and on the right, a
zoomed-in view of each stage is provided with the two rectangular boxes
showing the two hierarchical levels per stage. We accelerate our DSE pro-

66 chapter 4

NSGA-II

Previous solutions +
 Random Population

Final
Pareto Front

On-Board
Evaluation

Previous solutions +
 Random Population

NSGA-II

Analytical Model

Near-optimal Pareto

 Pareto front
for next stage

PE2

(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs

PE1 PE1 PE2 PE3 PE4PE4 PE4 40 2 5

Stage 1

Stage 2

Stage 3

Stage K

Pareto front
from previous stage

K-1

Figure 4.2: The DSE method workflow

cess by splitting it into K different stages, where K is the ceiling value of
log2(N). At each stage, we perform a two-level DSE. At both levels, the
NSGA-II GA is deployed to evolve a population of CNN mappings over
multiple generations to search for a Pareto front in terms of the targeted ob-
jectives. In the first DSE level, we use the analytical models, introduced in
Section 2.3.3.1, inside the GA to approximate each objective function. In the
second DSE level, we use real distributed CNN inference implementations
generated by AutoDiCE (see Figure 3.1) for evaluation, thereby producing
more accurate Pareto solutions as they are based on real (on-board) mea-
surements.

At every DSE stage k ∈ [1..K− 1], we search for optimal CNN mappings
on 2k target PEs. Figure 4.2 shows that to initialize the GA population at
stage k, with k > 1, the Pareto optimal results found by the previous stage
k− 1 are used. By doing so, we can retain the information of Pareto CNN
mappings in previous stages to improve the DSE convergence. Moreover,
the second level DSE at each stage also uses the results from the first level
of DSE to initialize its population. Finally, the output of the last DSE stage
(k = K) provides the final Pareto-optimal solutions for N PEs.

4.4 experimental evaluation 67

4.4 experimental evaluation

In this section, we evaluate the search efficiency of our multi-stage hierar-
chical DSE method by conducting three DSE experiments and comparing
the obtained experimental results in terms of the quality of the found solu-
tions and how this quality changes over time during the DSE process (i.e.,
the search).

4.4.1 Experimental setup

In our three DSE experiments, we search for Pareto-optimal mappings of
the popular ResNet-101 [56] CNN model onto a cluster of four edge de-
vices. ResNet-101 has 344 layers with diverse types leading to an immense
number of different CNN mappings, i.e., we have to perform the search in
a vast design space. Therefore, ResNet-101 is a sufficiently representative
model to apply our DSE method on and to demonstrate its merits. We use
four NVIDIA Jetson Xavier NX development boards [27] in our cluster (Sec-
tion 2.3.3.2). As each board has a 6-core CPU (NVIDIA Carmel ARMv8) and
a GPU, we have 8 PEs in total in our edge cluster (4 boards with 1 CPU and
1 GPU per board) for the experimental setup. The On-Board Evaluation step
in the second level of our DSE method (see Figure 4.2) measures and col-
lects the CNN inference throughput, memory usage per device, and energy
consumption per device over 20 CNN inference executions and represents
them as average values over these 20 executions.

In the first DSE experiment, referred as 3s-2l-SPE, we utilize our multi-
stage hierarchical DSE method as presented in Section 4.3 with 3 stages, 2

levels per stage, and the chromosome is encoded using our SPE method. In
the second experiment, referred as 1s-non-SPE, we utilize a classical 1-stage,
non-hierarchical DSE method based on the NSGA-II algorithm with our On-
Board Evaluation as the fitness function and our SPE as the chromosome
encoding method. In the third experiment, referred as 1s-non-NE, we utilize
the same DSE method as in the second experiment but we replace SPE with
the NE method mentioned in Section 4.3. In all experiments, every CNN
layer can be mapped either onto a 6-core CPU or a GPU present in any of
the aforementioned four boards. The NSGA-II algorithm is executed with
a population size of 100 individuals, a mutation probability of 0.2, and a
crossover probability of 0.5. In each DSE experiment, we run the search for
optimal mappings for 70 hours and compare the quality of solutions found
within these 70 hours.

68 chapter 4

20

25

30

35

40
System Throughput

(img/sec)

6

7

8

9
Max Energy Consumption

 Per Device (J/img)

0 10 20 30 40 50 60 70
time (h)

0.35

0.40

0.45

0.50

0.55

0 10 20 30 40 50 60 70
time (h)

0.2
0.4
0.6
0.8
1.0
1.2

0 10 20 30 40 50 60 70
time (h)

200

300

400

500

600

700

800

900

Max Memory Usage
 Per Device (MB)

3s-2l-SPE
1s-non-SPE
1s-non-NE

Figure 4.3: Quality of found mappings during the three DSE experiments.

4.4.2 Experimental results

Figure 4.3 shows how the quality of the found mappings in terms of the
three targeted objectives improves during the search in the three DSE ex-
periments. The results for each objective are plotted in a separate chart
where the X-axis represents the search time in hours and the Y-axis rep-
resents the objective value in images per second (img/sec) for the CNN
inference throughput, in megabytes (MB) for the maximum memory usage
per edge device, and in joules per image (J/img) for the maximum energy
consumption per edge device. Every point in a chart represents the best-
found mapping with respect to the objective at a given point in time.

The results in Figure 4.3 clearly indicate that the 1s-non-NE DSE gets
easily stuck in dominance resistant solutions, which means that such DSE
cannot find high-quality mappings even after hundreds of generations. In
contrast, by replacing the common NE encoding method with our tailored
SPE method, the search efficiency is significantly improved as shown in
Figure 4.3 where the 1s-non-SPE DSE delivers high-quality mappings for
the three objectives after 20 hours. This is because our SPE method ensures
that only consecutive CNN layers will be mapped on a PE, thereby scaling
down significantly the design space and allowing only exploration of map-
pings with reduced data communication among PEs. Such mappings are
better than less restricted mappings allowed by the NE method.

Finally, comparing the 1s-non-SPE and 3s-2l-SPE results shown in Fig-
ure 4.3, we see that by introducing multiple stages and hierarchy in the
DSE process, it further accelerates the finding of high-quality mappings.

4.5 conclusion 69

For example, after 40 hours of search time, our 3s-2l-SPE DSE delivers bet-
ter mappings for the three objectives than the 1s-non-SPE DSE.

4.5 conclusion

We have presented a novel multi-stage hierarchical DSE method for dis-
tributed CNN inference at the Edge. To accelerate the DSE process and im-
prove its efficiency, our DSE method combines analytical models with real
on-board measurements to speedup the evaluations of individual design
points and utilizes a tailored chromosome encoding method to effectively
scale down the explored design space. The method has been experimentally
evaluated by searching for optimal distributed mappings of the ResNet-101

CNN model onto an edge cluster of four NVIDIA Jetson Xavier boards. The
experimental results show that our multi-stage hierarchical DSE method
has significantly improved search efficiency in comparison to a classical one-
stage, non-hierarchical DSE method which employs the commonly used,
naive chromosome encoding method.

Part II

R O B U S T N E S S F O R D I S T R I B U T E D I N F E R E N C E

The second part of the thesis delves into the robustness of dis-
tributed Deep Neural Network (DNN) inference, presenting two
pivotal chapters that build upon the AutoDiCE framework dis-
cussed in the first part of the thesis. This part addresses a critical
challenge inherent to distributed systems, particularly in edge
computing environments: the potential unavailability of devices
due to failures or unreliable connections.

Chapter 5 introduces the RobustDiCE method, which enhances
the robustness of distributed DNN inference by strategically
replicating critical neurons across multiple devices. This method
ensures continuous and reliable inference even when some de-
vices fail or are temporarily unreachable, focusing on maintain-
ing system performance through balanced neuron dispersion.

Chapter 6 presents the EASTER method, designed to optimize
replication strategies for DNNs, particularly large transformer
models. EASTER methodically searches for optimal neuron repli-
cation ratios within each layer to balance the robustness against
device failures with resource utilization and performance, aim-
ing to achieve robust, efficient, and effective distributed infer-
ence.

5
C H A P T E R 5

Distributing the computations and coefficients of CNN models over multiple edge
devices collaboratively has been well studied but these existing works generally do
not consider the presence of device failures (e.g., due to temporary connectivity is-
sues, overload, discharged battery, etc. of edge devices). Such unpredictable failures
can compromise the reliability of edge devices, inhibiting the proper execution of
distributed CNN inference. Therefore, in this Chapter, we present a novel parti-
tioning method, called RobustDiCE, for robust distribution and inference of CNN
models over multiple edge devices. Our method can tolerate intermittent and per-
manent device failures in a distributed system at the Edge, offering a tunable trade-
off between robustness (i.e., retaining model accuracy after failures) and resource
utilization. We evaluate RobustDiCE using the ImageNet-1K dataset on several
representative CNN models under various device failure scenarios and compare it
with several state-of-the-art partitioning methods as well as an optimal robustness
approach (i.e., full neuron replication). In addition, we demonstrate RobustDiCE’s
advantages in terms of memory usage, and energy consumption per device, and
system throughput for various system set-ups with different device counts.

This Chapter is based on the conference paper and the journal article:

• Xiaotian, Guo, Quan Jiang, Andy D. Pimentel, and Todor Stefanov. "Robust-
DiCE: Robust and Distributed CNN Inference at the Edge" [64], in 29th Asia and
South Pacific Design Automation Conference (ASP-DAC 2024)

• Xiaotian, Guo, Quan Jiang, Andy D. Pimentel, and Todor Stefanov. "Model
and System Robustness in Distributed CNN Inference at the Edge" [65], in Inte-
gration, the VLSI Journal

73

74 chapter 5

5.1 introduction

As Artificial Intelligence (AI) continues its rapid evolution, convolutional
neural networks (CNNs) are becoming increasingly prevalent across a va-
riety of applications [66]. The surge of Internet-of-Things (IoT) devices has
also elevated the deployment requirements of CNNs at the Edge. How-
ever, the growing complexity and size of CNN models, such as VGG-16 [6],
and CoAtNet-6 [45], pose a significant challenge in terms of computing re-
sources for resource-constrained edge devices. As discussed in Chapter 3

and Chapter 4, distributed CNN inference is a desired approach to alleviate
the discrepancy between the constrained resources of edge devices and the
huge requirements of deploying large CNN models.

However, current partitioning methods assume continuous availability of
all involved edge devices that cannot be always guaranteed because an edge
device could be temporarily unreachable (especially when edge devices are
mobile and use low-power short distance radios for communication) or a
device could experience a temporary failure (e.g., due to a discharged bat-
tery). Therefore, it is imperative to devise and utilize partitioning methods
for distributed CNN inference with robustness in mind.

In this chapter, we present a novel partitioning method, called Robust-
DiCE, for robust distribution and inference of CNN models over multiple
edge devices. RobustDiCE features both system robustness, i.e., CNN infer-
ence can continue execution even if one or more edge devices fail to func-
tion properly, and model robustness, i.e. preserving the inference accuracy of
the CNN model as much as possible when some of the intermediate CNN
inference results are lost due to failed devices. We improve the system ro-
bustness by implementing a decentralized architecture that incorporates
a robust fault handler for reliable execution. The fault handler’s internal
timeout mechanism, regulated by periodic heartbeats [67], prevents system
deadlocks and improves resilience against potential device failures or net-
work disruptions. Moreover, we address the model robustness challenge by
evaluating the relative importance of each neuron in the CNN model and
then partitioning these different neurons of each CNN layer into different
groups (to be mapped to the various edge devices) as ’evenly’ as possible.
Our main novel contributions can be summarized as follows:

• Based on the importance criterion of different neurons in each CNN
layer, a new partitioning method is proposed to preserve the model ac-
curacy as much as possible against device failures. This new method
combines partial neuron replication and importance-aware neuron clus-

5.2 related work 75

tering to achieve CNN model robustness. It also provides a tunable
trade-off between robustness (i.e., retaining model accuracy after fail-
ures) and resource utilization.

• We evaluate our novel partitioning method using the ImageNet-1K
dataset on several representative CNN models under pessimistic de-
vice failure scenarios. We compare it with a number of state-of-the-art
(partitioning) approaches, including the CDC method [68] leveraging
neuron replication to increase robustness and an ideal robustness ap-
proach utilizing full neuron replication.

• We demonstrate our method’s superiority in terms of memory usage
and energy consumption per device, and system throughput under
different system configurations.

5.2 related work

Processing the input data collaboratively by utilizing multiple edge devices
helps to mitigate the resource limitations of a single edge device in terms
of available memory, energy budget, etc. Model partitioning [21] and data
partitioning [18] mentioned in Chapter 3 are two common methods for im-
plementing distributed CNN inference. Studies [18–23, 69] try to optimize
the CNN partitioning to improve inference performance under different
conditions such as network bandwidth, neural network topology, and hard-
ware specifications [23].

However, all these methods assume that the involved computing edge
devices and communication links between them are always available and
work properly in a long-running CNN inference task (e.g., in a continuous
stream of input data). They are not designed to be robust against temporary
or permanent unavailability/failures of devices/links.

System robustness in distributed CNN inference refers to the ability of
a system to continue functioning correctly, or to provide graceful degra-
dation, even in the presence of hardware or software failures (such as the
unavailability of system resources, communication failures, invalid or ex-
cessive input data, etc.) [70]. The majority of studies on robust comput-
ing focus on replication [71–73], redundancy [74, 75], error correction [68,
76], checkpoint recovery [77], and fault tolerance techniques [78]. For ex-
ample, [71–73] keep the results of multiple computing nodes up to date
and consistent through replication. [74, 75] replicate computing nodes of
the distributed system to provide multiple identical instances as backups

76 chapter 5

in case of a node failure. However, full replication of input data and CNN
layers (with their vast numbers of weights/biases) for CNN inference is
not feasible for resource-constrained edge devices. Moreover, the usage of
many redundant hardware devices is expensive and not suitable in all cases.
[76] uses error correcting codes (ECCs) to protect the weights from pertur-
bations while [68] applies a coded distributed computing (CDC) method
for fast recovery of output results from a certain number of node failures.
However, error correction methods introduce extra computations on the
edge devices which may be difficult to facilitate given the limited available
resources. [77] provides a checkpoint recovery mechanism for “continued
execution” where the deep learning implementation continues to execute
by utilizing the remaining set of computing nodes. However, the recovery
method increases the physical memory usage, and the recovery time is lim-
ited to the filesystem I/O bottleneck of the edge devices. Unlike the previ-
ous works, our work focuses on robust, distributed CNN inference with the
goal of reducing the computational and memory resource usage per edge
device to better match the limited resources of edge devices.

Model robustness of distributed CNN inference concerns the property
of a model of being resilient in terms of inference accuracy to the failure
of physical computing nodes due to power outages, unstable inter-node
connections, other hardware/software failures, etc. In distributed CNN in-
ference, the missing neurons on those failed nodes may result in a signif-
icant accuracy drop [68] of a CNN model. To alleviate the influence of
node failures on the CNN inference accuracy, several failure-aware retrain-
ing methods [79–84] for CNNs have been developed. For example, if layer
connections of CNN models are split, the forward process of the CNN in-
ference cannot continue because of the presence of failed nodes. DeepFog-
Guard [85] establishes skip hyperconnections to skip certain failed physical
nodes during the retraining process. ResiliNet [82] introduces failout to sim-
ulate physical node failure conditions during retraining. [81] retrains CNN
models to be resilient to packet loss in a lossy IoT network. The retraining
process adds dropout on certain CNN layers but this cannot guarantee that
the model accuracy is preserved. When the dropout rate is too high, thereby
simulating a high percentage of node failures, the retraining model may re-
sult in under-learning which causes a significant decrease in its accuracy.
In addition, all these retrained models are designed to be aware of only
specific failures such as communication failures between two CNN layers,
certain node failures in a pipeline multi-node inference, etc. Moreover, CNN
retraining requires a large amount of data that may not be always accessible

5.3 background and motivation 77

for an end user of a pre-trained CNN model to perform retraining before
the deployment in an unreliable environment. As most state-of-the-art pre-
trained models directly available to an end user for deployment are not
failure-aware, our RobustDiCE method can be easily applied to partition
these pre-trained models to achieve system and model robustness without
any retraining, without assuming specific types of failures, and without suf-
fering from accuracy degradation due to parameter changes (e.g., by adding
dropout on CNN layers) in the neural networks. Moreover, our robustness
method can be seen as complementary to these retraining approaches, i.e.,
if we would apply our method to the aforementioned retrained models, we
can further improve their robustness against node failures.

To summarize, performing robust inference on distributed edge devices
is vital. Existing robustness methods suffer from extra computing resource
requirements, time-consuming retraining, accuracy degradation, etc. In con-
trast, our method RobustDiCE is designed to guarantee robustness under
limited resources of edge devices. In addition, our method is a post-training
technique that provides robustness without the need for CNN model re-
training. Furthermore, we have implemented and tested our robust dis-
tributed CNN inference on real physical edge devices. Both system robust-
ness and model robustness are provided by our method and verified via
experimental results.

5.3 background and motivation

In this section, we provide some specific background information and a
motivational example to understand our novel CNN partitioning method
for robustness.

Generally, state-of-the-art partitioning methods, such as discussed in [21],
do not consider robustness as they do not consider the fact that different
neurons/filters in CNN layers have different importance, thereby causing
various effects on the inference accuracy of a CNN model, particularly those
neurons with larger values [86]. The relative importance of a neuron in a
CNN layer can be measured by calculating metrics such as the l1-norm [87],
l2-norm [88], etc. To partition a CNN layer with robustness in mind, it is
essential to find an effective way to group and distribute its neurons/filters
over computing nodes as evenly as possible in terms of importance.

To clarify this statement, we use the simple example, shown in Figure 5.1,
where we consider a convolution layer with five filters/neurons denoted as
n1 to n5. We want to partition these neurons over three computing nodes.

78 chapter 5

a.

b.

c.

Grouping MethodsFilter Partitioning Neurons

Figure 5.1: Typical vs. Robust Partitioning

In this example, the importance score sj of each neuron nj is measured
by calculating the l1-norm, i.e., taking the filter corresponding to neuron
nj with shape Cin × k × k (where k denotes the kernel size of the filter
and Cin the number of input channels), we calculate the sum of absolute
values of all the weights in the filter and its bias. In the middle and the right
part of Figure 5.1, we visualize the importance sj of each neuron nj by the
size of the circle representing the neuron, i.e., neuron n5 has the highest
importance whereas n1 and n2 have the lowest importance.

As shown in Figure 5.1(a), a partitioning method without robustness in
mind (i.e., no consideration of the neurons’ importance sj) splits the five
neurons into three groups (visualized by the three colors in Figure 5.1) and
the groups are distributed over the three nodes. Such distribution reduces
computational resources per node because the layer workload is split over
the nodes. However, this distribution is not robust at all because if, for
example, the third node fails, which runs the most important neuron n5,
then the inference accuracy will decrease significantly.

To maximize the robustness, well-known modular redundancy methods
can be applied as shown in Figure 5.1(b). Here, we replicate all neurons over
the three nodes, thereby achieving maximum robustness against failures
because even if one or two nodes fail then the remaining available node will
run all the neurons without a decrease in inference accuracy. However, this
significantly increases the resource requirements (e.g., memory and energy
consumption) for each node. Moreover, this full replication approach might
be infeasible for resource-constrained nodes due to the limitations with

5.4 the robustdice method 79

respect to their computational or memory resources and the possible energy
budget of an edge device.

The two example scenarios, illustrated in Figure 5.1(a) and (b), clearly
show that using existing, robustness-unaware partitioning methods or mod-
ular redundancy methods in isolation cannot provide efficient, robust dis-
tributed CNN inference on multiple resource-constrained edge devices. For
this reason, in this chapter, we propose a novel method, explained in detail
in Section 5.4, which combines replication and importance-aware partitioning
to achieve high and tunable robustness in an efficient way for distributed
CNN inference. The result of applying our method to our simple example
is illustrated in Figure 5.1(c). The basic idea is that some (not all) neurons
in a CNN layer are replicated and all neurons (initial and replicas) are par-
titioned into groups and distributed evenly over the nodes based on their
importance.

The advantage of this partitioning method is that if either the first or third
node fails, the remaining nodes can still run all the neurons, thereby pre-
serving inference accuracy. If the second node fails, the critical neuron n5

still remains, limiting the accuracy degradation. Therefore, we can achieve
comparable robustness to the scenario in Figure 5.1(b), but with reduced
computational resource requirements, as not all neurons are replicated or
run on each node.

5.4 the robustdice method

Our method RobustDiCE features both system robustness, i.e., CNN infer-
ence can continue to execute or recover even if one or more computing
nodes and/or communication links between them fail to function properly
and model robustness, i.e., when some of the CNN neurons and/or their
input/output data are lost due to the failed nodes/links, the inference ac-
curacy of the CNN model is preserved as much as possible. In Section 5.4.1,
we briefly outline our decentralized computing framework for CNN infer-
ence that supports system robustness. We support the model robustness
by applying the new partitioning method, presented in Section 5.4.2, that
combines partial neuron replication and importance-aware neuron group-
ing and distribution over multiple nodes.

80 chapter 5

inter-process

node 1 node 2 node n

timeout

5 1

2 4

3

Event Handler Event Handler Event Handler

Inference
Engine 1

Inference
Engine 2

Inference
Engine 3

1

mesh

node 1

node 2

node 3
5 1
2 4
1 3
✔ X

5 1
2 4
0 0

node 2
node 3

Update active nodes

node 1

Figure 5.2: Our Decentralized Computing Framework

5.4.1 Decentralized Computing Framework

We have devised and implemented a decentralized framework for distributed
computing and communication. Such an infrastructure is crucial to ensure
that the distributed CNN inference can be executed collaboratively and
properly, even in the case of node/link failures. A very high-level overview
of our decentralized computing framework for distributed CNN inference
is shown in Figure 5.2. In this framework, all nodes are interconnected in
a peer-to-peer fashion through an N-to-N mesh topology. On each com-
puting node, there are two running processes: inference engine and event
handler. The inference engine mainly takes care of the CNN computations,
whereas the event handler is responsible for handling events such as in-
terconnections, heartbeat and data synchronization between nodes, node
failures, node management, etc. The two processes communicate with each
other directly through the inter-process communication mechanism.

In the N-to-N mesh topology, each node acts as both a client and a server,
thereby allowing for direct communication between nodes without central-
ized servers or coordinators. The client on each node connects with a set
of servers on other nodes, and the server on each node is capable of replac-
ing other servers if necessary. This design ensures that a failure of a node
or communication link will not disrupt the entire system. The client in the

5.4 the robustdice method 81

event handler of each node continuously sends regular messages, known
as heartbeats, to servers on other nodes to confirm their operational sta-
tus. As shown in the Figure 5.2, we typically set a relatively large value
for the timeout to ensure that the data synchronization between the event
handlers of these nodes is completed before reaching the timeout. Once
data synchronization is completed, the event handler will activate the infer-
ence engine to proceed with the corresponding computations. However, if a
node fails to send out a heartbeat within a predefined timeout, other nodes
assume the unresponsive node has failed. Then the server would remove
the inactive or failed nodes and update its list of active nodes.

For example, when all nodes have completed their assigned computa-
tions, the partial results, illustrated as values in green boxes on each node,
need to be synchronized. If communication proceeds without any failures,
all nodes will receive the correct full results, as shown in the 2x3 green box
configuration. However, if node 1 encounters a failure and cannot send its
partial results (values 1 and 3) to the other nodes, these nodes will end up
waiting for Node 1. If Node 1 is unable to send a heartbeat within the pre-
defined timeout period due to its failure, the event handlers on the other
nodes will detect this failure and disconnect from Node 1.

Subsequently, all nodes, except Node 1, will proceed to zero out the vec-
tor content related to node 1’s contributions, indicated by the red box. Al-
though the data synchronization results on these nodes will be incorrect
without node 1’s input, they will still proceed to activate the inference en-
gine to continue processing tasks. This setup allows each node to manage
failures independently, ensuring that both computation and communica-
tion persist without significant disruption, even in the event of a node fail-
ure.

By enabling each node to perform its computation and communication
independently, our decentralized framework offers robust and scalable com-
putation and communication for distributed CNN inference. This approach
ensures that the system remains functional and efficient even in the face of
individual node or link failures.

5.4.2 Robust Partitioning

In this section, we present our new partitioning method which achieves
CNN model robustness by combining importance-aware neuron clustering
and grouping with partial neuron replication in order to evenly distribute
the neurons in a CNN model over multiple nodes. The partitioning method

82 chapter 5

is applied layer-wise on every layer until the whole CNN model is parti-
tioned. The general layer-wise partitioning procedure is outlined in Algo-
rithm 1. It accepts as inputs a set of computational layers L from the CNN
model and their coefficients W as well as the total number of computing
nodes ND across which the CNN model will be distributed. Additionally, a
set T of threshold values corresponding to layers in L is provided as another
input. The threshold values serve as specific criteria for identifying similar
neurons in terms of importance and subsequently making neuron group-
ing decisions based on the similarity. The output of Algorithm 1 is set P of
neuron partitions. Every partition Pi = {p1, ...,pND} ∈ P determines how
the neurons in layer li ∈ L are distributed across the specified number of
computing nodes ND.

The goal of Algorithm 1 is to evenly distribute the neurons nj of every
layer li ∈ L over ND nodes (i.e., devices) in terms of importance. For ex-
ample, applying Algorithm 1 (Lines 3–31) to the convolution layer with the
five neurons n1 to n5 shown in Figure 5.1 and setting ND = 3, the output
P of the algorithm is the partition illustrated in Figure 5.1(c). Algorithm 1

consists of three main steps performed on each layer li ∈ L.
In Step 1 (Lines 4–10), we first include each neuron nj ∈ li into a separate

group Gj which is stored in the set of groups G (Line 6). Then, we calculate
three importance scores for nj from three different perspectives. The first
score s1j (Line 8) is the l1-norm [87] which is a magnitude-based approach,
widely used in CNN pruning techniques, to compute neuron importance
based on the sum of its absolute weights and bias. The second importance
score s2j (Line 9) of nj is computed by summing the sensitivity scores of
all its connections with other neurons. We use the Taylor expansion ap-
proach [89] to obtain the connection sensitivity scores through the gradient
in the propagation process [90]. The third score s3j (Line 10) assesses the
neuron importance by employing the Jensen-Shannon divergence [91] de-
noted as JSD. A larger change in the CNN output probability distributions
y, induced by removing neuron nj ∈ li, indicates that nj is more important.
Instead of using a single importance score only, set Sj = {s1j , s2j , s3j } of the
three different scores enables a more comprehensive evaluation of the neu-
ron importance because it performs a three-dimensional assessment of the
importance, thereby facilitating a more effective clustering of neurons (as
will be demonstrated in our experiments).

In Step 2 (Lines 11–21), Algorithm 1 takes the initial set of groups G

created in Line 6, where each group contains only one neuron nj ∈ li,
and clusters these 1-neuron groups into a new set of groups G where any

5.4 the robustdice method 83

Algorithm 1: Robust Partitioning

1

Input : Set of layers L; Number of nodes ND;
Set of layer coefficients W = {W1, ...,W|L|};
Set of threshold values T = {t1, ..., t|L|};

Output : Set of neuron partitions P = {P1, ...,P|L|};
2 P ← ∅
3 for li ∈ L do

// Step 1: neuron importance scores

4 G← ∅
5 for nj ∈ li do
6 Create Gj; Gj ← Gj +nj; G← G+Gj

7 Create Sj = {s1j , s2j , s3j }
8 s1j =

∑kh

h=1

∑kw

w=1

∑Cin

c=1 |W
c,h,w
j |+ |bj|

9 s2j =
∑kh

h=1

∑kw

w=1

∑Cin

c=1 |
∂y

∂Wc,h,w
j

·Wc,h,w
j |+ |

∂y
∂bj
· bj|

10 s3j =JSD(ycomplete || yremoving neuron nj
)

// Step 2: neuron clustering

11 for Gz ∈ G do
12 for Gq ∈ G−Gz do
13 dmax = 0

14 for nj ∈ Gz do
15 for no ∈ Gq do

16 d(nj,no) =
√∑3

a=1 (s
a
j − sao)

2

17 if d(nj,no) > dmax then
18 dmax = d(nj,no)

19 if dmax < ti then
20 Gz ← Gz +Gq

21 G← G−Gq

// Step 3: round-robin distribution

22 Create Pi = {p1, ...,pND}; p1 ← ∅, ...,pND ← ∅
23 for Go ∈ G do
24 if (|Go| mod ND) ̸= 0 then
25 for j ∈ [1,ND− (|Go| mod ND)] do
26 Create n|Go|+j = REPLICA(nj ∈ Go)
27 Go ← Go +n|Go|+j

28 for nj ∈ Go do
29 r = (j mod ND) + 1; pr ← pr +nj

30 P ← P+ Pi

31 return P

group may contain multiple neurons with similar importance. To this end,
the following two actions are performed iteratively for every two groups
Gz ∈ G and Gq ∈ G − Gz. First, the largest distance dmax between the

84 chapter 5

neurons in Gz and Gq is determined in Lines 13–17. Initially, dmax is set to
zero. Then, for every pair of neurons nj ∈ Gz and no ∈ Gq, the Euclidean
distance d(nj,no) between nj and no in the three-dimensional importance
score space (s1, s2, s3) is computed in Line 16. If d(nj,no) is greater than
dmax, then dmax is updated with d(nj,no) in Line 18.

Second, if dmax is below a given threshold value ti ∈ T then the neurons
in Gz and Gq are merged (Line 20) into one group Gz because they are con-
sidered similar in terms of importance, and group Gq is removed from set
G in Line 21. The threshold value ti affects the result of the neurons clus-
tering in Step 2. For example, a small ti would result in set G having many
groups with a few neurons per group. If ti is too small then every group
in G will contain only one neuron, thereby "forcing" the following Step 3

in Algorithm 1 to perform full replication of all neurons, thus maximizing
the robustness at the expense of high resource requirements per node in
the distributed system. In contrast, a large ti would result in a few groups
with many neurons per group. If ti is too large then all neurons would be
clustered into one group, thereby "forcing" Step 3 to perform very limited
or no replication of neurons which could lead to a significant reduction of
the robustness. Recall that a set T of threshold values ti is given as an input
to Algorithm 1, thus an optimal set of such values could be determined by
integrating Algorithm 1 in a design space exploration (DSE) procedure with
multiple optimization objectives including distributed CNN inference accu-
racy, energy and resource requirements per node in the distributed system,
and system performance.

Finally, in Step 3 (Lines 22–30), Algorithm 1 distributes all neurons nj in
every group Go ∈ G across a number of nodes ND in a round-robin fashion
(Lines 28–29). If the number of neurons in group Go is not a multiple of
the number of nodes ND then some neurons in the group are replicated
(Lines 24–27) in order to increase the neuron number to the closest multiple
of the number of nodes before the round-robin distribution. Such round-
robin distribution can guarantee that every node runs the same number of
similarly important neurons from a group, thereby providing CNN model
robustness by reducing the CNN inference accuracy degradation in the
event of failures in the distributed system.

5.5 evaluation of the robustdice method 85

5.5 evaluation of the robustdice method

In this section, we present a range of experiments demonstrating the merits
of RobustDiCE in terms of achieved robustness and resource utilization per
node/device in a distributed system performing CNN inference.

5.5.1 Experimental Setup

We implement RobustDiCE and apply it to the following distributed system
configurations and real-world CNNs, and considering the following device
failure scenarios.

CNNs and System Configurations: We experimented with three CNNs,
namely AlexNet [92], VGG16-BN [6], and ConvNext-Tiny [93], taken from
the TorchVision library. Given their widespread use in image classification
and their diversity in layer types, operation counts, and memory require-
ments for weights, we consider these CNNs to be representative targets
to demonstrate the merits of our method. By applying RobustDiCE, every
CNN is distributed for inference on three system configurations: one with
four edge devices (SysConf4D), one with three devices (SysConf3D), and
one with two devices (SysConf2D). Our evaluation cluster contains eight
NVIDIA Jetson Xavier NX boards described in Section 2.3.3.2.

Device Failure Scenarios: For each of the aforementioned CNNs, we con-
sider three scenarios.
Scenario A: The CNN is distributed for inference on system configuration
SysConf4D where 1 device fails (1D-Fail), 2 devices fail (2D-Fail), or 3 de-
vices fail (3D-Fail).
Scenario B: CNN on SysConf3D where 1D-Fail or 2D-Fail.
Scenario C: CNN on SysConf2D where 1D-Fail.
Under every scenario with a different number of failing devices, we eval-
uate the preserved Top-1 accuracy on the ImageNet-1K test dataset when
the CNN is distributed using our RobustDiCE method. We compare Ro-
bustDiCE to state-of-the-art robustness-unaware partitioning that performs
filter and layer output partitioning, referred to as LOP [21], as well as
the robustness-aware CDC method from [68]. In addition, we also show
the Top-1 CNN accuracy results under an ideal scenario, called Optimal.
This Optimal scenario assumes that in system configurations SysConf4D,
SysConf3D, and SysConf2D no devices fail or all CNN neurons are repli-
cated on every device in order to have quadruple (QMR), triple (TMR), and
dual (DMR) modular redundancy, thus achieving maximum robustness.

86 chapter 5

Table 5.1: Top-1 accuracy (1D-Fail case in SysConf4D)

TABLE III
ACCURACY ABLATION STUDY: 1D-FAIL IN SYSCONF4D

Importance Scores AlexNet (%) VGG16 BN (%) ConvNext Tiny (%)

s1 43.718 60.426 76.618
s2 43.642 58.920 75.904
s3 43.432 59.942 76.134

s1 + s2 51.268 69.152 76.678
s1 + s3 51.658 71.736 76.580
s2 + s3 51.250 67.360 76.572

s1 + s2 + s3 52.396 72.500 76.820

TABLE IV
ZERO-SHOT PERFORMANCE OF THE VICUNA-7B

Models Memory (reduction ratio) Latency ARC-c ARC-e WinoGrande HellaSwag OBQA PIQA BoolQ

Vicuna-7b 26 GB(-) 67 41.21 67.55 67.40 70.64 40.80 77.75 76.57
Vicuna-7b 26 GB(-5%) 67 37.37 65.11 63.69 52.06 29.40 76.88 56.54
Vicuna-7b 26 GB(-35%) 58.920 26.28 49.12 53.20 37.06 19.80 67.14 56.39
Vicuna-7b 26 GB(-65%) 59.942 20.90 29.63 52.09 28.32 16.00 57.07 45.17
ViT-block -/1 69.152 76.678 43.718 60.426 76.618 76.618 43.718 76.618
ViT-block -/2 69.152 76.678 43.718 60.426 76.618 76.618 43.718 76.618
ViT-block -/4 69.152 76.678 43.718 60.426 76.618 76.618 43.718 76.618

GPT2-block -/1 76.618 71.736 43.718 60.426 76.618 76.618 43.718 76.580
GPT2-block -/2 76.618 67.360 43.718 60.426 76.618 76.618 43.718 76.572
GPT2-block -/4 76.618 71.736 43.718 60.426 76.618 76.618 43.718 76.580
Llama-block -/1 76.618 67.360 43.718 60.426 76.618 76.618 43.718 76.572
Llama-block -/2 69.152 76.678 43.718 60.426 76.618 76.618 43.718 76.618
Llama-block -/4 76.618 71.736 43.718 60.426 76.618 76.618 43.718 76.580
Llama-block -/8 76.618 67.360 43.718 60.426 76.618 76.618 43.718 76.572

TABLE V
USED CNN MODELS AND EXECUTION TIME BREAKDOWN

Model AlexNet VGG16 BN ConvNext Tiny
Configurations 1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 3D-Fail

s1 43.718 60.426 76.618
s2 43.642 58.920 72.670
s3 43.432 59.942 72.670

s1 + s2 51.268 69.152 75.142
s1 + s3 51.658 71.736 74.470
s2 + s3 51.250 67.360 73.268

s1 + s2 + s3 52.396 72.500 77.692

predicted class labels. The overall accuracy of the distributed
model was calculated by aggregating the outputs from all the
devices and comparing the predicted labels with the ground
truth labels.

a) Evaluation and Analysis: The accuracy results ob-
tained from the varying device failure scenarios were analyzed
to assess the model robustness of the distributed CNN models.
We compared the accuracy under each failure scenario (1, 2,
or 3 device failures) with the baseline accuracy obtained when
all four devices functioned correctly. This evaluation allowed
us to examine the impact of device failures on the model’s
performance and gauge the robustness of the CNN models
when deployed in distributed edge computing environments.

The results of the model accuracy validation under device
failures were analyzed to examine the impact of device failures
on the performance of the distributed CNN models. We com-
pared the accuracy of the models under each failure scenario

(1, 2, or 3 device failures) with the baseline accuracy obtained
when all 4 devices were functioning correctly.

This analysis allowed us to assess the resilience and ro-
bustness of the distributed CNN models under different levels
of device failure. Additionally, it provided insights into the
fault tolerance of the models, which is crucial for real-world
deployments in edge computing environments where devices
may be subjected to various hardware and software failures.

1) Performance, Energy, and Memory Metrics: For each
CNN model, the following metrics were measured and com-
pared across the Jetson Xavier NX devices:

Performance: The inference time per image and throughput
(images per second) were recorded for each device to assess
the model’s performance.

Energy consumption:
Memory usage: The memory utilization of each device

during the deployment of the neural networks was measured

By continuously providing 1000 images as an input data stream for the
distributed CNN inference, we measure the system performance in im-
ages (frames) per second (FPS), memory usage per device in megabytes
(MB), and energy consumption per device in joules per image (J/img) of
the distributed CNN inference for the different system configurations. We
measure the overall latency in processing the 1000 images and compute
averaged FPS as throughput. The energy consumption per device, includ-
ing CPUs, GPU, communication cost, etc., is obtained through a sampling
thread reading power values from the INA3221 monitor on the NVIDIA
Jetson Xavier NX board. The memory usage per device is reported directly
by the executed CNN code itself during the CNN inference.

5.5.2 Experimental Results

Ablation Study of Importance Scores: To substantiate the efficacy of us-
ing multi-dimensional importance evaluation for neuron clustering in Al-
gorithm 1, we carried out an ablation study with various combinations of
importance scores (s1, s2, s3). We list the Top-1 accuracy of the 1D-Fail
case for the SysConf4D system configuration in Table 5.1 and the other fail-
ure scenarios show similar results. It is clear that the combination of all
three scores preserves the Top-1 accuracy (model robustness) the best un-
der the 1D-fail scenario for all three models: 52.396% (AlexNet), 72.500%
(VGG16_BN), and 76.820% (ConvNext_Tiny). These findings confirm the
potential for enhancing model robustness in distributed CNN inference us-
ing the combination of multiple importance scores.

Model Robustness Comparison: The results, obtained with the exper-
imental setup described in Section 5.5.1, are presented in Figure 5.3 and

5.5 evaluation of the robustdice method 87

1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 1D-Fail

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (\

%
)

SysConf4D SysConf3D SysConf2D

56.554
Optimal
ROBUST
LOP [21]
CDC [68]

(a) AlexNet

1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 1D-Fail

10

20

30

40

50

60

70

To
p-

1
Ac

cu
ra

cy
 (\

%
)

SysConf4D SysConf3D SysConf2D

73.37
Optimal
ROBUST
LOP [21]
CDC [68]

(b) VGG16-BN

1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 1D-Fail

10

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy
 (\

%
)

SysConf4D SysConf3D SysConf2D

82.496
Optimal
ROBUST
LOP [21]
CDC [68]

(c) ConvNext-Tiny

Figure 5.3: CNN Model Robustness under different Device Failure Scenarios

88 chapter 5

Table 5.2. For every CNN model, we show a graph where the X-axis rep-
resents the considered scenarios with a different number of failing devices,
and the Y-axis indicates the evaluated Top-1 CNN model accuracy. For ev-
ery scenario and number of failing devices, we plot a bar for the Robust-
DiCE results (blue bar), LOP results (orange bar), and CDC results (green
bar). In addition, the horizontal dashed (red) line shows the accuracy under
the Optimal scenario.

Looking at the blue and orange bars in Figure 5.3, we observe that Ro-
bustDiCE consistently delivers higher Top-1 accuracy compared to the state-
of-the-art but robustness-unaware LOP partitioning method. This clearly
demonstrates the superiority of our method in terms of CNN model ro-
bustness. Taking Figure 5.3(a) as an example, the Top-1 accuracy of AlexNet
under the Optimal scenario is 56.55% which is our reference point. When a
system configuration experiences device failures as in Scenario A, our Ro-
bustDiCE method delivers a Top-1 accuracy of 52.40%, 45.28%, and 28.93%
for cases 1D-Fail, 2D-Fail, and 3D-Fail, respectively. In contrast, the LOP
method exhibits more significant drop in accuracy, namely 41.07%, 23.50%,
and 6.42% for the same device failure cases. A similar trend can be observed
for VGG-16BN and ConvNext-Tiny in Figure 5.3(b) and (c), respectively.
Here, it is important to note that we have used an optimistic device failure
scenario for LOP, i.e., devices with the least important groups of neurons
fail.

Comparing our RobustDiCE method (orange bars) with the CDC method
(green bars), we see that CDC is capable of perfectly handling a single de-
vice failure due to its approach of using actor replication and a spare node.
However, the CDC method cannot handle multiple device failures, result-
ing in very low accuracy (much lower than RobustDiCE) or even complete
failure (0% accuracy) when all but one devices fail.

Looking at Figure 5.3 and comparing the Top-1 accuracy delivered by
RobustDiCE with the reference accuracy under the Optimal scenario, we
observe that our method does not maintain the reference accuracy level
in the event of device failures. The reason is that, in this experiment, we
set threshold values ti ∈ T discussed in Section 5.4 to be greater than 0

with our prior experience. Because of this, our method does not replicate
all CNN neurons on every device, thereby trading off CNN model robust-
ness (loss of Top-1 accuracy) for reduced system resource utilization. This
tradeoff could be tuned by changing the ti values. Moreover, if all ti val-
ues are set to 0 then our method will maintain Top-1 accuracy at the same
level as under the Optimal scenario. Under this scenario, all CNN neurons

5.5 evaluation of the robustdice method 89

Table 5.2: System performance and resource utilization

TABLE I
COMPARISON OF THE MAXIMUM PER-DEVICE ENERGY CONSUMPTION,

SYSTEM THROUGHPUT, AND MAXIMUM PER-DEVICE MEMORY USAGE FOR
THREE CNNS UNDER FOUR DIFFERENT CONFIGURATIONS

Network System Max. per-device System Max. per-device
Configuration Energy (J/img) Throughput (FPS) Memory (MB)

QMR/TMR/DMR 0.179 46.255 150.914
CDC-SysConf3D 0.165 43.670 94.117

AlexNet CDC-SysConf4D 0.157 45.587 78.852
Robust-SysConf2D 0.159 48.214 99.254
Robust-SysConf3D 0.148 50.045 80.777
Robust-SysConf4D 0.142 51.219 72.801

QMR/TMR/DMR 0.850 10.744 429.215
CDC-SysConf3D 0.809 10.634 313.688

VGG16-BN CDC-SysConf4D 0.799 10.485 272.293
Robust-SysConf2D 0.826 10.761 328.426
Robust-SysConf3D 0.799 10.993 295.086
Robust-SysConf4D 0.779 11.078 267.395

QMR/TMR/DMR 0.308 28.223 88.895
CDC-SysConf3D 0.307 27.107 69.129

ConvNext-Tiny CDC-SysConf4D 0.297 28.248 59.961
Robust-SysConf2D 0.301 28.044 76.465
Robust-SysConf3D 0.296 28.415 65.203
Robust-SysConf4D 0.288 29.034 58.090

We compared the accuracy under each failure scenario (1, 2,
or 3 device failures) with the baseline accuracy obtained when
all four devices functioned correctly. This evaluation allowed
us to examine the impact of device failures on the model’s
performance and gauge the robustness of the CNN models
when deployed in distributed edge computing environments.

The results of the model accuracy validation under device
failures were analyzed to examine the impact of device failures
on the performance of the distributed CNN models. We com-
pared the accuracy of the models under each failure scenario
(1, 2, or 3 device failures) with the baseline accuracy obtained
when all 4 devices were functioning correctly.

This analysis allowed us to assess the resilience and ro-
bustness of the distributed CNN models under different levels
of device failure. Additionally, it provided insights into the
fault tolerance of the models, which is crucial for real-world
deployments in edge computing environments where devices
may be subjected to various hardware and software failures.

1) Performance, Energy, and Memory Metrics: For each
CNN model, the following metrics were measured and com-
pared across the Jetson Xavier NX devices:

Performance: The inference time per image and throughput
(images per second) were recorded for each device to assess
the model’s performance.

Energy consumption:
Memory usage: The memory utilization of each device

during the deployment of the neural networks was measured
using system profiling tools. This allowed for a comparison of
memory usage across the different CNN models and devices.

The experimental results were then analyzed to determine
the efficiency and effectiveness of the three CNN models on
the Jetson Xavier NX devices. The insights gained from this
evaluation can be applied to further optimize and tailor the

neural networks for deployment in edge computing environ-
ments.

We randomly sample a batch of images from the validation
dataset, The goal of our experiments is to demonstrate that,
thanks to our novel contributions presented in this paper, our
framework can rapidly explore and automatically implement
CNN partitions over multiple edge devices to realize dis-
tributed CNN inference. Moreover, it can do so with lower per-
device energy consumption, with smaller per-device memory
usage, and under certain conditions, with the same or higher
CNN inference throughput, as compared to CNN execution on
a single edge device. We introduce the experimental setup for
this DSE experiment in three steps. First, we explain the three
CNNs as well as the hardware platforms used in our experi-
ments. Second, we describe the evaluation process of the three
different objectives for a given CNN mapping. Finally, we
describe the actual DSE process, which is based on the well-
known Non-dominated Sorting Genetic Algorithm (NSGA-II)
[?] to generate different CNN mapping specifications and find
the Pareto-optimal solutions.

We select NVIDIA Jetson Xavier NX as our experimental
hardware platform because it is a well-known and easy-to-
use embedded platform. We can easily and accurately acquire
the needed inference throughput and energy consumption data
of each processor by setting timers within the executed code
and by sampling the integrated onboard power monitors,
respectively.

As explained in Section ??, the second level in our DSE
methodology uses to evaluate CNN mappings. This means
that for the CNN mapping specifications in that DSE level,
we apply to generate and distribute a deployment package
for every Jetson Xavier NX device. Subsequently, we measure

are replicated on every device in order to have quadruple (QMR), triple
(TMR), or dual (DMR) modular redundancy, thus achieving maximum ro-
bustness. However, achieving this maximum robustness is at the expense of
higher memory usage and energy consumption per device compared to the
resource utilization, imposed by our method, when trading off robustness
against utilization. This statement is supported by the resource utilization
results in Table 5.2. In this table, for every CNN, we show the maximum
per-device memory usage (Column 5), the maximum per device energy con-
sumption (Column 3), and the overall system throughput (Column 4) for
the three system configurations SysConf4D, SysConf3D, and SysConf2D
with our RobustDiCE method and the CDC method as well as for the QMR
/ TMR / DMR configuration associated with the Optimal scenario.

System Performance: Considering the memory usage numbers for AlexNet,
shown in Column 5, we see that the replication of all neurons on every de-
vice in system configuration QMR / TMR / DMR requires about 150 MB
of memory per device. In contrast, our RobustDiCE method significantly
reduces the required memory per device, i.e., with 51.76% for system con-
figuration SysConf4D, with 46.47% for SysConf3D, and with 34.23% for
SysConf2D. Significant memory reduction trends can be observed in Col-
umn 5 for VGG16-BN and ConvNext-Tiny as well. The memory usage

90 chapter 5

numbers for CDC show that this method reduces the memory footprint
in comparison to the all-neuron replication method (QMR / TMR / DMR)
but still has higher memory usage compared to RobustDiCE.

The energy consumption per device is also reduced by RobustDiCE as
compared to applying all-neuron replication to achieve CNN model robust-
ness. For example, Column 3 in Table 5.2 shows that our method applied on
SysConf4D achieves an effective energy reduction over the all-neuron repli-
cation method (QMR / TMR / DMR), i.e., 20.67% reduction for AlexNet,
8.35% for VGG16-BN, and 6.49% for ConvNext-Tiny. The CDC energy re-
sults again show an improved behavior compared to QMR / TMR / DMR
but are inferior to the results from RobustDiCE.

Finally, as shown in Column 4 of Table 5.2, RobustDiCE slightly improves
the system throughput for almost all CNNs and system configurations as
compared to QMR / TMR / DMR (except for SysConf2D on ConvNext-
Tiny). For CDC, on the other hand, the system throughput is generally
lower than QMR / TMR / DMR and RobustDiCE.

We note, however, that the system throughput of distributed CNN in-
ference is highly dependent on the quality of the network interconnect-
ing the devices in the system. In our experiments, we have used a Giga-
bit network switch. Evidently, in other Edge/IoT settings, the connectivity
between devices may have a lower bandwidth, e.g., using WiFi or other
wireless protocols. Thus, our RobustDiCE method cannot always guaran-
tee system throughput improvements but it can guarantee memory usage
and energy consumption reductions per device.

5.6 conclusions

This chapter presented RobustDiCE, a robust partitioning method for dis-
tributed CNN inference at the Edge that preserves the model accuracy as
much as possible against device/link failures. Several CNN experiments
demonstrated that RobustDiCE can retain the CNN model accuracy after
failures much better as compared to the state-of-the-art partitioning meth-
ods. We have also shown the advantages of our RobustDiCE method over
the optimal robustness approach and CDC method in terms of memory
usage per device, energy consumption per device, and system throughput.

6
C H A P T E R 6

Prevalent large deep learning models, particularly large transformer models, present
significant computational challenges for resource-constrained devices at the Edge.
While distributing the workload of deep learning models across multiple edge de-
vices has been extensively studied, these works typically overlook the impact of
failures of edge devices. Unpredictable failures, due to, e.g., connectivity issues or
discharged batteries, can compromise the reliability of inference serving at the Edge.
In this chapter, we introduce a novel method, called EASTER, designed to learn
robust distribution strategies for transformer models against device failures that
consider the trade-off between robustness (i.e., maintaining model functionality
against failures) and resource utilization (considering memory usage and computa-
tions). We evaluate EASTER with three representative transformers – ViT, GPT-2,
and Vicuna – under device failures. Our results demonstrate EASTER’s efficiency
in memory usage, and possible end-to-end latency improvement for inference across
multiple edge devices while preserving model accuracy as much as possible under
device failures.

This Chapter is based on:

• Xiaotian, Guo, Quan Jiang, Yixian Shen, Andy D. Pimentel, and Todor Ste-
fanov. "EASTER: learning to split transformers robustly at the Edge" [94], in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2024

6.1 introduction

As Artificial Intelligence (AI) continues to evolve rapidly, transformer mod-
els are increasingly prevalent in various applications [95]. Advanced pre-
trained models such as BERT and GPT-4 [96] have spurred a range of novel

91

92 chapter 6

tools, including Copilot and ChatGPT. Typically, these models are executed
on high-performance clusters with hundreds of GPUs, available as cloud
services. However, the rise of Internet-of-Things (IoT) devices has driven
a demand for deploying transformer-based tools at the Edge. Deploying
these tools on edge or IoT devices offers significant advantages in terms of
privacy, local processing requirements, and energy efficiency. For example,
a network of IoT devices in smart healthcare systems [97] within a hospi-
tal or a home setting such as wearable health monitors, bedside monitors,
and portable diagnostic devices are equipped with sensors to collect vital
signs and patient data in real time. By deploying deep neural networks, like
transformer models, directly onto these devices, the system can locally an-
alyze data, make immediate health assessments, or predict medical events
without the need to send or store sensitive patient data in centralized cloud
servers, thus enhancing user privacy and data security. This approach not
only enhances the patient privacy by keeping their data within the local
devices but also allows for faster, potentially life-saving decisions by reduc-
ing the latency associated with data being sent to the cloud and the cloud
processing of the data. Moreover, it ensures continuous patient monitoring
and real-time feedback even in the event of long-range network failures,
making healthcare more resilient and accessible, especially in remote or
underserved areas.

However, deploying transformer-based tools at the Edge presents a signif-
icant challenge for edge or IoT devices due to the intensive computational
and memory requirements of transformer models. For instance, the Vicuna-
13B chatbot [98] requires 26 GB of memory for the model parameters and
substantial computational resources for inference. As discussed in Chap-
ter 3, distribution methods[21, 58] for distributed DNN inference have been
explored to bridge the gap between limited edge device resources and the
demands of large DNN models. However, these methods generally assume
continuous availability of all participating devices, which is often unrealis-
tic due to potential device unavailability or failures.

Addressing this issue, our study emphasizes the need for robust par-
titioning methods for distributed transformer inference. Distributed infer-
ence across multiple devices offers a promising solution for handling large
transformer models (e.g., Llama[99]) that exceed the memory capacities of
individual devices, such as IoT devices, smart surveillance cameras, user
laptops, etc. Existing frameworks, like Alpa [100] and DeepSpeed [101], ef-
fectively support distributed Large Language Model (LLM) training through
data and model parallelism, but do not address at all robust distributed in-

6.1 introduction 93

ference on edge devices and do not cater for resource heterogeneity in edge
systems or IoT settings.

Therefore, this chapter introduces a novel method, called EASTER, de-
signed to learn robust distribution strategies for LLMs (transformers) that
ensure functional inference and maintain close-to-original results under po-
tential device failures. Learning such optimal strategies to distribute mil-
lions of neurons is challenging because a vast and complex design space
needs to be explored. As shown in Figure 2.2, typical transformer-based
models consist of several encoder and decoder blocks stacked together.
The embedding dimension within each block, which represents the size
of vectors used to encode images, words, or tokens, usually exceeds 1000.
For example, if the embedded dimension of an encoder block is 768 [11],
and we consider each dimension-related connection as a neuron, then the
encoder block has 768 neurons. If we want to distribute these 768 neu-
rons over four devices evenly, the exact number of possible distributions
is

(
768
192

)
×

(
576
192

)
×

(
384
192

)
. The vast number of potential possibilities to dis-

tribute just one encoder block across multiple devices is almost unimagin-
able, let alone when considering the distribution of multiple blocks in large
transformer models. There is a critical need to explore this extensive design
space efficiently to identify a neuron distribution strategy that maintains
performance against potential device failures to ensure the robustness and
reliability of the distributed system.

To this end, we have developed a variant of the Upper Confidence bounds
applied to Trees (UCT) algorithm [102] to efficiently narrow down the de-
sign space by considering the neuron importance in the transformer lay-
ers, enabling robust and memory-efficient splitting of transformer models
across multiple devices. For different splitting strategies (design points) in
the search space, our algorithm is designed to efficiently explore and iden-
tify optimal design points in the vast space, aiming to enhance splitting
and prioritizing sub-spaces with the highest potential for robustness. It
achieves this by adaptively and recursively splitting the design space into
several sub-spaces and learning the expected rewards associated with dif-
ferent sub-spaces, effectively tackling the challenge posed by the extensive
search space. By navigating and sampling the most and potential promising
sub-spaces rather than the entire vast space, our approach enhances search
efficiency, while balancing exploration and exploitation to avoid the pitfalls
of local optima. The final Pareto points/solutions offer an optimal blend
of robustness against device failures and operational efficiency regarding
computation and memory.

94 chapter 6

We also automate the process of dividing transformer models for dis-
tributed computing by converting them into a unified neural network in-
termediate representation (IR). This step is followed by automated code
generation and the subsequent deployment of the models across multiple
edge devices. Our experimental results demonstrate that the system con-
figurations identified as Pareto optimal points through the aforementioned
design space exploration (DSE) method not only maintain system robust-
ness but also achieve a notable reduction in memory usage. Furthermore,
these configurations reduce the end-to-end inference latency for very large
transformer models, demonstrating the effectiveness of our approach in op-
timizing both the performance and efficiency of distributed deep learning
systems.

Our main novel contributions are summarized as follows:

• A novel UCT-based design space exploration algorithm is proposed
that efficiently narrows down the vast design space, facilitating the
discovery of effective model partitioning strategies for robust trans-
former distribution that balance performance and resource usage.

• By empirical validation, we demonstrate the efficacy of our EASTER
method using typical transformers like ViT-16 [11], GPT2-Large [103],
and Vicuna-7B [98], showcasing resilient model performance in image
and common reasoning tasks.

• We provide the first implementation of an end-to-end tool for splitting
transformer models, and also validate the advantages of distributed
inference in terms of end-to-end inference latency and memory uti-
lization compared to single-device inference.

6.2 related work

The proliferation of transformer models in various applications has neces-
sitated their adaptation beyond the confines of powerful cloud computing
resources, directing significant research interest toward edge deployments.
This section reviews pertinent literature across three main themes relevant
to our work on EASTER: 1) adaptation of large transformer models for
resource-constrained edge devices, 2) resilience against device failures, and
3) efficiency in design space exploration.

1) Adaptation of Transformer Models for Edge Constraints. The push
towards deploying AI capabilities at the Edge, driven by privacy concerns,
latency reduction, and energy efficiency, has seen approaches like model

6.2 related work 95

compression [104–106] and neural architecture search [107–110] gain promi-
nence. Such approaches can compress original transformer models to smaller
models for resource-constrained devices. However, they typically require it-
erative retraining and may result in accuracy loss. Another approach is
to deploy the original models onto distributed edge computing platforms
such as health care systems [111], smart home systems [112], etc., in or-
der to leverage all available resources collaboratively. Traditional layer and
data partitioning methods like [21, 113] are applied to fully distribute
the workload of a large Convolution Neural Network or a transformer-
based model among multiple edge devices, thereby reducing the required
computation resources of edge devices [23]. It involves breaking down a
model’s computational graph into smaller, manageable parts that can be
processed in parallel across multiple devices. This is particularly challeng-
ing in edge computing due to the heterogeneous nature of devices and
their limited computational capabilities. Model parallelism techniques like
AlpaServe[100] developed for homogeneous data center clusters are targets
for multi-batch inference which would perform poorly for single batches
in heterogeneous edge environments. PipeEdge [113] partitions a neural
network model into multiple pipeline stages and applies a dynamic pro-
gramming (DP) algorithm to determine the optimal partition scheduling
strategy for heterogeneous computation and communication. However, all
of the aforementioned approaches and methods assume that the involved
edge computing devices and communication links between them are al-
ways available and work properly. In contrast, our partitioning approach
not only aims at maintaining computational efficiency but also considers
the resilience of the system against possible temporary or permanent fail-
ures of devices, an aspect often overlooked in conventional partitioning
strategies.
2) Resilience against Edge Failures. Resilience against device failures at

the Edge concerns the property of a model being resilient in terms of in-
ference accuracy to the failure of physical computing devices due to power
outages, unstable inter-device connections, other hardware/software fail-
ures, etc. In distributed inference settings, the missing neurons mapped
on those failed devices may result in a significant accuracy drop of CNN
or transformer models (Figure 6.1(b)). Existing approaches and methods
to mitigate this risk introduce various strategies. ElasticDL, introduced by
Jun et al. [114], represents a significant advancement by integrating fault
tolerance and elastic scheduling within a Kubernetes-native deep learning
framework. While ElasticDL enhances system resilience and adaptability,

96 chapter 6

its practical deployment on edge devices is hampered by Kubernetes’ com-
plexity and the limited computational resources of edge environments.

Further contributions by Zhou et al. [58] and Li et al. [115] explore adap-
tive mechanisms to sustain operational continuity amidst device disrup-
tions. Zhou et al. focus on adaptive computation offloading and dynamic
resource allocation by proposing a versatile yet complex strategy for real-
time adaptation. On the other hand, Li et al. propose the AR-MDI algo-
rithm which facilitates resilient model distribution to minimize inference
times on extensive datasets. However, these solutions often face challenges
in scalability and efficiency, particularly when dealing with large models or
a highly diverse network of edge devices, which may exacerbate coordina-
tion and data exchange overheads. DeepFogGuard [85] adopts a distinct ap-
proach by incorporating hyperconnections in the distributed inference pro-
cess, enabling the system to bypass failed nodes. While this method demon-
strates resilience to specific types of failures, such as inter-layer communica-
tion breakdowns or node failures within a multi-node inference pipeline, it
remains limited to predetermined failure scenarios and requires extensive
retraining to be implemented effectively.

In contrast to the aforementioned approaches, our method EASTER in-
troduces a comprehensive solution designed to enhance the resilience of
transformer models in the face of the unpredictable and dynamic nature of
edge computing environments. Unlike previous methods that often rely on
additional hardware resources, complex orchestration, or prior knowledge
of potential failure types, EASTER employs a novel partitioning strategy
that inherently accommodates multiple device failures without necessitat-
ing extra devices or computational redundancy. Our approach leverages
advanced machine learning techniques to adaptively distribute model com-
putations across edge devices, optimizing for both resilience and resource
efficiency. By intelligently partitioning the model in a manner that antici-
pates and mitigates the impact of device failures, EASTER ensures robust
inference accuracy under a wide range of failure conditions without the
limitations imposed by specific assumptions or the need for supplementary
computational overhead.
3) Efficiency in Design Space Exploration (DSE). In the context of De-

sign Space Exploration (DSE), the original UCT algorithm [102], known
for its efficacy in balancing the exploration-exploitation trade-off in single-
objective optimization problems, is ingeniously adapted to the multi-objective
optimization landscape in our work. This adaptation involves selecting
promising parts of the search space by not only leveraging the UCT’s inher-

6.3 robust model splitting 97

ent strengths but also enhancing it with traditional machine learning tech-
niques for more efficient splitting and exploration of the design space. Such
an integration significantly augments the UCT framework, enabling it to
navigate complex, multi-dimensional optimization problems with greater
precision and efficiency.

Existing DSE methods such as the Multi-Objective Tree-structured Parzen
Estimator (MOTPE) [116] and the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II discussed in Section 2.3.1) are well-known for their ef-
ficiency in multi-objective optimization. MOTPE is renowned for its sam-
ple efficiency and capability to handle high-dimensional spaces through its
Bayesian optimization framework, which is particularly beneficial in scenar-
ios with limited evaluation budgets. NSGA-II, on the other hand, excels in
finding a diverse set of solutions across the Pareto front through its evolu-
tionary algorithm, effectively managing the trade-offs between conflicting
objectives. However, existing methods fall short in adapting to our specific
scenario, which requires robust splitting of the transformer model block
by block while simultaneously optimizing memory usage and inference
latency. These methods lack customization for navigating the vast design
space of our scenario.

To address this gap, we enhance the UCT algorithm with machine learn-
ing techniques to combine the UCT’s exploration-exploitation mechanism
with the predictive and generalization capabilities of machine learning. This
not only provides an efficient method to identify and explore promising
spaces but also enhances the algorithm’s ability to adaptively refine its
search strategy based on learned insights. Our enhanced UCT approach,
when compared to methods like MOTPE and NSGA-II, offers a complemen-
tary strategy ideally suited for scenarios where understanding and lever-
aging the structure of the search space is crucial. This tailored approach
significantly boosts our search efficiency and the quality of outcomes, mak-
ing it a particularly effective solution for our specific robustness needs for
splitting transformer models.

6.3 robust model splitting

In this section, we provide an example to illustrate why splitting a trans-
former model robustly is needed and why DSE matters in this context.
Moreover, we describe how transformers can be splitted in a robust fash-
ion.

98 chapter 6

Block 2

Block N-1

Block 1 Block 1

Block 2

Device 2

Block N

Transformer
Model

Device 1

Block 2

Block 1

Block 2

Block 1

Failure

(a) Layer Partitioning Method [21]

1 2 3 4 5 6 7 8 9 10 11 12
The Number of Distributed Encoder Blocks

 (1 Device Fail out of 2 Devices)

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Top-1 Accuracy
Memory Reduction Ratio

0.1

0.2

0.3

0.4

0.5

M
em

or
y

Re
du

ct
io

n
Ra

tio

(b) The Top-1 Accuracy vs Memory Reduction Ratio

Figure 6.1: Comparative analysis of layer partitioning and its impact on memory
reduction and accuracy.

6.3.1 Motivational Example

The process of splitting a transformer model for distributed inference across
edge devices is crucial for running large models in environments with lim-

6.3 robust model splitting 99

ited resources. Although some frameworks like PipeEdge [113] could dis-
tribute transformer models across multiple IoT devices using vertical parti-
tioning and the accompanying orchestration, the crux of the problem lies in
the robustness of the pipeline paradigm they utilize: a single failure within
the pipeline can compromise the entire computation process. Thus, our dis-
cussion focuses on an alternative paradigm, namely partitioning the layers
themselves within a deep learning model across multiple devices [21] (i.e.,
horizontal partitioning). A transformer model, composed of N encoder or
decoder blocks, is designed for various tasks such as classification or text
generation. As illustrated in Figure 6.1(a), by dividing blocks in the trans-
former model into two parts evenly, specifically on a block-by-block basis,
we can distribute its workload across two devices. Each device then pro-
cesses its allocated half blocks, necessitating periodic synchronization of
their intermediate results to maintain consistency throughout the computa-
tion process. However, such a distribution strategy still introduces a vulner-
ability: should one of the two devices fail (as illustrated on the right-hand
side of Figure 6.1(a)), it results in the loss of half the blocks’ processing
capability, thereby significantly impacting the model’s overall performance
and reliability. This scenario underlines the need for a robust distribution
strategy that can minimize the risk and impact of device failures.

Taking the ViT-16 transformer model [11] as an example, it contains 12 en-
coder blocks stacked one by one. The significant impact of a device failure
on the model performance is highlighted in Figure 6.1(b). When splitting
and distributing the model’s blocks across two devices, a device failure
leads to a substantial drop in Top-1 accuracy, as critical block information
is lost. This scenario is graphically represented with Top-1 accuracy (red
line) and memory reduction ratio per device (blue line) against the num-
ber of distributed blocks (x-axis), demonstrating that as more blocks are
distributed instead of fully replicated, the memory efficiency on the oper-
ational device improves, but at the cost of reduced accuracy due to the
potential loss of computational resources during a device failure. For in-
stance, when distributing all 12 encoder blocks of the ViT model across two
devices, should one device fail due to a power outage or disconnection, half
of the weights and intermediate results would be lost. In such a scenario,
the Top-1 accuracy could drop to 20.95%, significantly impairing the model
performance of distributed inference.

This trade-off between memory reduction per device and model accu-
racy underlines the challenge of finding a method to split encoder/decoder
blocks that maximizes model accuracy retention while achieving optimal

100 chapter 6

memory efficiency. The goal is to develop a strategy that ensures even if
one or more devices fail, the distributed model can maintain as much of
its original performance as possible. As mentioned in Section 6.1, given the
vast design space for distributing neurons in each encoder/decoder block,
it is crucial to employ Design Space Exploration (DSE) to identify the most
efficient distribution pattern, aiming to minimize accuracy loss while opti-
mizing model deployment in distributed environments.

6.3.2 Robust Model Splitting

In the context of a transformer model containing N encoder or decoder
blocks, we introduce an innovative uneven splitting method, called Partial
Split, for distributing these blocks across multiple devices with robustness
in mind. This method particularly aims at enhancing the model’s resilience
to device failures while reducing the memory usage on each device.

As illustrated in Figure 6.2(a) for example, evenly distributing a trans-
former block among four edge devices poses a significant risk, namely the
model functionality is severely compromised, for example, when three out
of these four devices fail or lose connection, as only a minimal fraction
of attention connections remains operational for inference. To address this
vulnerability, our method diverges from this conventional even splitting
approach.

Instead, our method illustrated in Figure 6.2(b) employs a strategic repli-
cation of a certain fraction r of critical connections (the yellow box) across
multiple devices, based on their weight importance. The remaining, less
critical connections (the large green box), constituting a (1− r) fraction, are
then evenly distributed. This selective replication ensures that even in the
event of multiple device failures, the most vital connections within each
transformer block are retained, thereby preserving the model functionality
and inference capabilities to a large extent. During runtime, the device ini-
tiating an inference request for image classification or text generation tasks
loads both the replicated part (the yellow box) and its split part (the small
green box) of the model. The other devices in the network load only their re-
spective split parts. Notably, the replicated part remains unloaded on these
devices (the dotted yellow boxes). This runtime loading strategy ensures
that extra replicas are not redundantly loaded on other devices, thereby
optimizing resource utilization and enhancing overall system efficiency.

6.4 problem formulation 101

Block N

Block 1

r

Target: Search for N blocks

(a) even split (b) partial split

Block N

Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3

Block N

Transformers

Device 4

Figure 6.2: Partial Split

6.4 problem formulation

The aforementioned uneven splitting method facilitates robust distribution
of the computational workload of a transformer model across edge devices.
However, the limited memory capacities of edge devices introduce chal-
lenges in determining the optimal fraction r for each transformer block
that could preserve the model functionality and inference capabilities to a
large extent. A large fraction r would require high memory usage per de-
vice, potentially exceeding the memory capacity of resource-limited edge
devices. Conversely, a very small fraction r might compromise the proper
model functionality in case multiple devices fail. Thus, an important trade-
off emerges between the memory usage per device and the model func-
tionality that is dependent on the fraction r of critical connections that are
replicated for each block.

For a transformer model with N blocks, we define a parameter set R =

{r1, r2, . . . , rN}, where ri ∈ [0..1] represents the fraction of replicated connec-
tions for block i. Each set of parameter values R corresponds to different
memory usage mj per device Dj ∈ D and different model functionality in
case some devices fail at runtime when a transformer model is distributed
over a set of edge devices D. Therefore, our objective is to find an optimal
set of parameter values Ropt which maximizes the model accuracy or per-
formance score in case of failing devices with possible minimum memory
usage (m1,m2, . . . ,m|D|). Given the typically large value of N for prevalent
transformer models and the continuous range of r ∈ [0..1], a vast and com-
plex design space needs to be explored in order to find an optimal solution.

102 chapter 6

 Attention

Multi-Head
Attention

Feed
Forward

attention score

Intermediate Out

Feed-ForwardPartial SplitTransformer

Allreduce

Q

Intermediate Out

Hidden States

Hidden States
vital

less-vital

Allgather

K V

Figure 6.3: Transformer Partitioning

6.5 the easter method

In this section, we present our novel method designed to learn robust dis-
tribution strategies for transformer models against device failures that con-
sider the trade-off between robustness (i.e., maintaining model functional-
ity against failures) and resource utilization (including memory usage and
computations). First, we provide more details about our robust partial split
method introduced in Section 6.3. Next, we present our design space ex-
ploration (DSE) approach to solve the optimization problem, formulated in
Section 6.4, that is required to achieve an efficient and robust partial split
and distribution of transformer models on multiple edge devices. Finally,
we introduce the end-to-end tool we have developed to automate our robust
partial split method and distributed deployment of transformer models.

6.5.1 Partial Split Method for Transformers

In this section, we explain how the transformer model is split according to a
parameter set R. Consider the example shown in Figure 6.3 where Block N

in a transformer model is distributed across two devices and the obtained
fraction rN ∈ R for this example is 0.25. The vital part of connections in the
attention and feed-forward blocks is represented by the two yellow boxes
that are both replicated across the two devices. The remaining, less-vital

6.5 the easter method 103

part of connections for each block is split in two (the green boxes) and
distributed evenly across the two devices.

To determine the vital part of connections, we calculate and use an im-
portance score for each connection. For example, taking a general linear
transformation in the feed-forward block, we first calculate the importance
of connections corresponding to this linear transformation using the Taylor
score [117] as follows:

IWk = |∆L| = |LWk −LWk=0| ≈
∣∣∣∣ ∂L

∂Wk
Wk

∣∣∣∣ (1)

where IWk represents the importance score of the kth connection/weights
associated with the linear transformation, and |∆L| represents the loss changes
when we remove this connection from the layer. After ranking the connec-
tions based on their importance score, we select the top 25%(r = 0.25)
of them to form the vital part of connections. Below, we provide details
on how our partial split method is further tailored for the attention and
feed-forward blocks within the transformer architecture to efficiently re-
duce computational workload and memory usage when the transformer is
distributed across different edge devices.

6.5.1.1 Attention Block

As depicted in Figure 6.3, the hidden states Hi−1 coming from the pre-
vious transformer block are transformed into queries (Q), keys (K), and
values (V) using the weight matrices Wq, Wk, and Wv. Our method splits
these matrices along their column dimensions (denoted by Wc

q, Wc
k, and

Wc
v) and distributes them across devices. Consequently, each device gen-

erates the corresponding segments of Q, K, and V (denoted by the yellow
and green boxes), necessitating an all-gather communication operation to
concatenate the corresponding segments into complete Q, K, and V tensors.
Taking the linear transformation with Wq weights (Figure 6.3) in the atten-
tion block as an example, the query matrix Q is generated by Wq. If the
embedded dimension of the input tensor Hi is dmodel, we compute the
dmodel importance scores for query Q using Equation 1. Once the repli-
cation factor ri is determined, we rank and split the Wq weights along its
column dimensions based on the rank indices derived from the dmodel

scores. We choose to replicate the top r% of weight Wq and allocate the re-
maining (1− r)% to multiple devices. For the small portion of Wq on each
device, we replace the original matrix multiplication (matmul) operation
with a small matmul operation containing its corresponding different part

104 chapter 6

of weight Wq. To maintain output accuracy, a communication operation for
gathering the partial Q output is added after the small matmul. After the
attention block multiplies the attention scores with values (V), the linear
transformation with weight matrix Wo maps the multiplication result to
match the dimension size of the intermediate output. In our method, we
also split Wo into segments along the column dimension. Each segment of
Wc

o produces a partial part of the intermediate output. Similarly, an extra
all-gather communication operation is added to collect the segments and
ensure the correctness.

Apart from these layers, the embedding layer follows a similar strategy
for its matmul operation. However, we abstain from applying our partial
split method to layernorm layers due to their relatively minimal weight
and computational demand. Importantly, the full replication of layernorm
weights on each device is prioritized to ensure model stability, given their
significant role [118].

6.5.1.2 Feed-Forward Block

This block within a transformer block involves two linear transformations
with weight matrices W1 and W2 to process the intermediate output and
generate the hidden states Hi going to the subsequent transformer block.
The first weight matrix is split along the column dimension (denoted as Wc

1

in Figure 6.3). The second weight matrix is split along the row dimension
(denoted as Wr

2). The partial output tensors (the yellow and green boxes)
produced by Wc

1 can directly go through the non-linear activation and serve
as the input for the second linear transformation which is also split and de-
noted as Wr

2. This design eliminates the need for an all-gather operation
to concatenate the partial outputs produced by the first linear transforma-
tion, thereby reducing both the computational workload per device and the
inter-device communication overhead. Finally, a collective all-reduce opera-
tion is applied to sum the partial output from all devices to form the correct
hidden states output Hi.

6.5.2 Design Space Exploration

To solve the optimization problem formulated in Section 6.4, we have de-
vised a DSE approach that effectively navigates in the vast and complex
design space mentioned in Section 6.4. Our DSE approach leverages su-
pervised learning techniques to progressively concentrate the search for an
optimal solution within increasingly smaller and more promising spaces,

6.5 the easter method 105

Figure 6.4: Our DSE approach

thereby enhancing search efficiency. As depicted in Figure 6.4, the approach
starts by randomly generating several design points R = {R1,R2, · · · ,Rp}

(blue points), and evaluate the objectives F(R) using the fitness function
F for each design point Ri ∈ R to form an initial learnable space D =

(R, F(R)). Here, Ri = {ri1, ri2, . . . , riN} is a set of fractions corresponding to
a specific partial split strategy for all N blocks in a transformer model. The
fitness function F concerns various conflicting objectives such as memory
usage, performance, etc. F can be implemented by users, including analyti-
cal models, real measurements of distributed inference on multiple devices
(as is done in this chapter), etc. Then, our DSE approach recursively splits
the design space D and obtains a set of split boundaries. Subsequently, we
apply these learned boundaries to generate new design points within spe-
cific promising design spaces to improve the search efficiency.

We apply the Upper Confidence Bound value [102] to identify which
area within R is most likely to contain optimal design points and then
concentrate our search on this smaller, promising area, denoted as D∗

P and
shown in the middle of Figure 6.4. However, an early decision about the
promising area might inadvertently overlook other areas that could contain
optimal points as well. To mitigate this, while the majority of our design
points are generated within the currently perceived promising area D∗

P,
we also allocate a smaller portion of design points to generate from other
spaces, represented by D∗

S. This approach iteratively learns the entire space
R and allows us to more accurately identify the most promising regions for
optimal points.

Algorithm 2 describes, in more detail, the aforementioned DSE approach
illustrated in Figure 6.4. The algorithm consists of two main steps and takes
as an input the maximum search trials Trmax, the number of new ran-
dom design points np for updating the search space D, a lower bound

106 chapter 6

Algorithm 2: Design Space Exploration

1

Input : Maximum trials Trmax; Population size np; lower bound lb, exploration factor α;
Output : Space DP with Pareto points;

2 Initialize randomly D with points (R, FR): D← {(R1, Fitness(R1)), · · · , (Rnp , Fitness(Rnp))}

3 while |D| ⩽ Trmax do
// Step 1: Narrow Down Search Space

4 foreach (Ri, FRi
) ∈ D do

5 if FRi
is nondominated then

6 DP ← DP ∪ (Ri, FRi
)

7 DS ← D \DP; CLP ← ∅; CLS ← ∅
8 D∗

P, CLP = NarrowDown(DP, CLP)

9 D∗
S, CLS = NarrowDown(DS, CLS)

// Step 2: Add New Random Points,

// Evaluate and Update D

10 RP = NewPoints((1−α) ∗np, CLP)

11 RS = NewPoints(α ∗np, CLS)

12 foreach Ri ∈ (RP ∪RS) do
13 D← D∪ (Ri, Fitness(Ri))

14 return DP

15 Function NarrowDown(D, CL):
16 foreach (Ri, FRi

) ∈ D do
17 RD ← RD ∪ Ri

18 (RD1
, RD2

) = KMeansTwoClustersOn(RD)

19 DL = (RD1
, 1)∪ (RD2

,−1)

20 CL,D1,D2 = SVMTrainedOn(DL)

21 if (|D| < lb)∨ (CL(D1) = CL(D2) then
22 return D, CL

23 else

24 UCB(RDi
) = F(RDi

) +α

√
log |RD|

|RDi
|

: i = 1, 2

25 RD∗ = argmax
RDi

UCB(RDi
); D∗ = (RD∗ , F(RD∗))

26 CL← CL∪CL
27 return NarrowDown(D∗, CL)

28 Function NewPoints(N, CL):
29 R← ∅
30 while |R| < N do
31 R = RandomPoint;
32 R← R∪ R
33 foreach CLi ∈ CL do
34 if CLi(R) = −1 then
35 R← R \ R

36 break

37 return R

(lb) to determine the maximum number of design points in an unsplittable
area, and the exploration factor α which determines the degree of explo-
ration. A higher value for α encourages more exploration in the search
space. The output of Algorithm 2 is space DP = {(R1, FR1

), ..., (R|P|, FR|P|
)} of

6.5 the easter method 107

Pareto-optimal solutions where every solution Ri = {ri1, ri2, . . . , riN} is a set
of fractions corresponding to a Pareto-optimal partial split strategy for all
N blocks in a transformer model.

In line 2, we first randomly initialize a number of design points and eval-
uate their objectives using the fitness function, yielding an initial learnable
search space D.

In Step 1 (lines 4-9), the algorithm narrows down the space via Support
Vector Machine (SVM) classifiers and generates a series of SVM boundaries.
In lines 4-7, we select the non-dominated points from D to create a new
primary space marked as DP, and the rest of the points are put into a new
secondary space marked as DS. In lines 8-9, the NarrowDown function is
applied to recursively split DP and DS into smaller spaces D∗

P and D∗
S.

Concurrently, all involved splitting SVM boundaries are aggregated into
the boundary sets CLP and CLS.

In Step 2 (lines 10-13), we generate new design points and evaluate
these new design points using the fitness function Fitness. To balance the
exploration-exploitation trade-off, 80% of these new points (RP) are derived
from D∗

P in line 10, while the remaining 20% (i.e., for α = 0.2) of the new de-
sign points (RS) are derived from D∗

S in line 11. This ratio, while adjustable,
typically requires experimental trials for better search efficiency. Then, we
apply the fitness function to evaluate the objective values for these new
points and add them to the search space D in line 13. This iterative process
is repeated until the maximum number of trials T is reached (see line 3). Ul-
timately, the Pareto-optimal points comprising space DP found by this DSE
process represent the optimal solutions that balance the memory usage and
the model functionality.

In lines 15-27, the NarrowDown function recursively splits the search
space D and obtains a series of learned split boundaries CL. In line 18,
we initially employ the K-means clustering method to categorize/divide
the design points within RD into two distinct clusters RD1

, RD2
. Following

this clustering, we calculate the average objective values for each cluster.
The cluster with the higher average objective values is considered to be
situated in a more favorable space. Consequently, in line 19, we assign a
label of 1 to the design points in this more promising cluster, while de-
sign points in the less favorable cluster are labeled as -1, and we put all
labeled points in a new set DL. In line 20, we train the SVM classifier CL

with the new set of labeled points DL and split DL into two spaces D1 and
D2. In lines 21-22, if the number of design points in D is below the lower
bound lb or if the SVM classifier CL predicts only a single category, both

108 chapter 6

Torch.compile

Linearx

w bias

Pytorch
 Model

ATen IR
 (single node)

Torch.fx

ATen IR
 (Multi node)

On-Device
Deployment

Multi-node commLinear

biasw

x

c c

Figure 6.5: Multi-node IR conversion tool

indicating that space D is non-divisible, the recursive function NarrowDown
terminates and returns the set of classifiers CL. Otherwise, in lines 24-27,
we mark the space with the larger UCB value [102], calculated in line 24, as
the more promising design space D∗, and add the SVM classifier CL into
the recursive splitting set CL.

In lines 28-37, the NewPoints function randomly generates N new design
points using the input set of SVM classifiers CL. In line 31, a random design
point R is generated and added to the set of new points R. Then, point R is
classified using the set of trained SVM classifiers CL in lines 33-36. That is,
if all SVMs in CL classify point R to belong to the class with label 1 then
point R remains in the set, otherwise it is removed (line 35). Finally, in line
37 the new set of random points R is returned.

6.5.3 Multi-node Intermediate Representation

We have developed an end-to-end tool that facilitates automated model
partitioning and its distributed deployment, in line with one of the Pareto-
optimal partial split strategies Ri ∈ DP found by our DSE Algorithm 2 pre-
sented in Section 6.5.2. In general, traditional frameworks for deep learning
(DL) model deployment on edge devices, such as TVM [119], IREE [120],
and others, do not sufficiently support distributed inference. Therefore,
our end-to-end tool is specifically implemented to transform Convolutional
Neural Networks or transformer models from Huggingface [121] into op-
timized multi-node computation graphs, thereby making them suitable for
efficient deployment across multiple devices. Our tool is versatile enough
to support both CNNs and transformer models but in this chapter we focus
on its application to transformer models.

6.6 evaluation of the easter method 109

As illustrated in Figure 6.5, our tool begins by utilizing the existing
‘torch.compile‘ method [122] to convert an initial PyTorch transformer model
into the low-level ATen Intermediate Representation (IR) for a single node.
Subsequently, an automated conversion process is employed to replace the
single-node ATen IR into a multi-node variant. For instance, in handling
linear transformations, the tool splits the associated coefficients and rede-
fines new Linear transformations that are adapted to the altered shapes of
coefficients or inputs as illustrated by the red boxes in Figure 6.5. Modifi-
cations to these operations are facilitated using ‘torch.fx‘ [123], accommo-
dating the new coefficient dimensions. Our own customized multi-node
communication operations such as GatherByIndex, AllReduceByIndex, All-
ConcatByIndex, etc., are integrated after the modified operation (see red
box "Linear" in Figure 6.5) to ensure the calculation correctness. To enhance
the tool’s versatility, we implement these communication operations in C++
such that they can be integrated into other inference engines. We have also
developed a compatible interface that enables the conversion of this multi-
node IR into formats supported by various other inference engines (e.g.,
NCNN [50], IREE, etc.). Its compatibility and ease of integration with these
existing edge frameworks enhance both usability and scalability.

6.6 evaluation of the easter method

In this section, we evaluate our EASTER method empirically to demonstrate
its efficacy on typical transformer models and showcase resilient models’
performance. We describe our experimental setup followed by presenting
and discussing some experimental results obtained during automated DSE
experiments, we have performed using Algorithm 2 and the end-to-end tool
introduced in Section 6.5.3.

6.6.1 Experimental Setup

To evaluate EASTER, we perform experiments with three typical trans-
former models, namely ViT-16 [11], GPT2-Large [103], and Vicuna-7B [98]
representing three different kinds of transformer architectures, taken from
the Huggingface open-source community [121]. Given their widespread use
in image and text tasks, and their diversity in transformer blocks, operation
counts, and memory requirements, we consider these transformers to be
representative targets to demonstrate the merits of our method. We com-
pare the searching efficiency of our Algorithm 2 on these models with two

110 chapter 6

state-of-the-art multi-objective optimization algorithms, namely the NSGA-
II Genetic Algorithm [5] and MOTPE [116]. The task of our DSE exper-
iments is to simultaneously minimize the maximum memory usage per
device and the model performance score (loss) under severe device failures.
To ensure a fair comparison with NSGA-II and MOTPE, we set the max-
imum number of search iterations to 1000 for each DSE experiment. The
search time for the three methods are quite similar, with most of the time
being consumed by the objective evaluations. For the first objective (maxi-
mum memory usage per device), we assess the peak memory usage during
the program runtime. We normalize its value range to [0, 1] by dividing
the memory usage mj(Ri) by the total memory usage on a single device
Dj. Lower values indicate reduced replication and more balanced model
distribution. To evaluate the second objective (performance score S) of the
models, we employ distinct techniques tailored to each model’s specific
domain. For the ViT-16 model, we measure the Top-1 error score on the
ImageNet-1k dataset for image tasks. A lower error represents higher im-
age classification capabilities, and the lower the error the better. For the two
Large Language Models (LLMs) - GPT2-Large and Vicuna-7B - we utilize
zero-shot perplexity (PPL) analysis on the WikiText2 and PTB datasets to
assess the models’ language understanding and generalization capabilities.
A lower PPL score, especially in a zero-shot context, means a better ability
to handle unseen data.

To validate the performance of Pareto-optimal points from the DSE pro-
cess using Algorithm 2, we apply the split fractions Ri, found by the algo-
rithm, to the two LLMs by distributing each LLM across four devices, i.e.,
four GPU units in our experiments. We disable three GPU units to simulate
severe device failure scenarios in order to assess the models’ robustness.
We apply a separate and more diverse collection of reasoning and genera-
tive datasets [124] to test the models’ performance (robustness) against se-
vere failures in practical reasoning tasks, namely ARC-easy, ARC-challenge,
WinoGrande, HellaSwag, BoolQ, PIQA, and OpenbookQA. These diverse
datasets provide a comprehensive platform for testing the models’ reason-
ing and generative capabilities.

To evaluate the resilience of our methods under varying failure condi-
tions, we deployed three models across four edge devices and examined
model performance in scenarios where 1 (1D-Fail), 2 (2D-Fail), or 3 de-
vices (3D-Fail) experience failures. We take the state-of-art layer partition-
ing method (LP) [21] from the domain of distributed CNN inference as
the inspiration to implement a similar method for linear operations within

6.6 evaluation of the easter method 111

encoder/decoder blocks of transformer models, which does not entail im-
portance consideration. Subsequently, we benchmark our approach against
this LP-based partitioning method for transformer models in terms of ro-
bustness.

For the three transformer models, we assess the robustness of our method
using different sets of R values for the partial split strategy, allowing for a
comprehensive comparison of how well each method retains model perfor-
mance against device failures.

We use the experimental test-bed described in Section 2.3.3.2 to test dis-
tributed inference for transformers. We demonstrate the functionality of
our multi-node implementation, generated by our end-to-end tool intro-
duced in Section 6.5.3, and the advantages of distributing large transformer
models over multiple edge devices/boards by conducting a series of bench-
marks on the aforementioned edge test-bed using the three representative
transformer models ViT-16, GPT2-Large, and Vicuna-7B under four differ-
ent distributed system configurations: single device, two devices, four de-
vices, and eight devices. In all experiments, transformer blocks were evenly
distributed across the devices. We mainly evaluate two metrics: overall end-
to-end inference latency and memory reduction with different distribution
configurations.

The end-to-end latency (T) of a model is measured from the time a user in-
put is received until the time the complete output is generated. For the ViT-
16 model, user inputs are images with dimensions (3x224x224), whereas for
the two LLMs (GPT2-Large and Vicuna-7B), user inputs are sequences of
128 tokens. The reported latency is computed by averaging time T for 100

user inputs. To measure T and break it down to computation time (Tcal)
and communication/synchronization overhead (Tcomm) in our distributed
inference execution, we employ a specific adjustment of the timeout pa-
rameter values in our multi-node communication operations introduced
in Section 6.5.3. More specifically, setting the timeout values to zero per-
mits each device to function independently, i.e., without inter-device data
communication and synchronization delays, thereby enabling the measure-
ment of the pure computation time Tcal. Altering the timeout values to one
second activates inter-device communication and synchronization actions
besides the pure computations, thereby facilitating the measurement of the
total end-to-end inference latency T . We then determine the communica-
tion/synchronizaton overhead Tcomm by calculating the difference T −Tcal,
thereby effectively quantifying the additional time needed for inter-device
data communication and synchronization.

112 chapter 6

Table 6.1: Zero-shot performance (max. per-device memory usage and accuracy-%)
with three out of four edge devices failing

Models Memory (reduction ratio) ARC-c ARC-e WinoGrande HellaSwag OBQA PIQA BoolQ

Vicuna-7B (R=1) 27.00 GB(baseline) 43.17 75.63 69.46 56.48 33.00 77.31 80.98

Vicuna-7B (A) 11.27 GB(-58.25%) 28.41 46.00 56.51 34.58 20.60 63.93 62.26

Vicuna-7B (B) 9.18 GB(-66.00%) 20.90 29.63 52.09 28.32 16.00 57.07 45.17

GPT2-Large (R=1) 3.20 GB/(baseline) 21.67 53.16 55.33 36.40 19.40 70.35 60.49

GPT2-Large (A) 1.50 GB/(-53%) 17.92 31.02 49.64 26.67 13.40 57.78 54.22

GPT2-Large (B) 1.12 GB/(-65%) 17.75 30.18 50.36 26.47 13.80 55.93 54.22

To determine the aforementioned memory reduction, we continuously
monitor the peak memory usage of each device in our edge test-bed during
runtime for every distributed system configuration.

6.6.2 DSE Results and Comparison

We have performed three distinct DSE experiments for the ViT-16, GPT2-
Large, and Vicuna-7B models by employing our EASTER method and Al-
gorithm 2 along with the NSGA-II and MOTPE algorithms for compari-
son purposes. The Pareto-optimal points found by each of these three algo-
rithms are separately plotted in Figure 6.6. The yellow triangles represent
the points found by MOTPE, the blue crosses represent NSGA-II points,
and the red dots correspond to points found by our Algorithm 2 within
EASTER. The x-axis in Figure 6.6(a), (b), and (c) represents the normal-
ized maximum memory usage per device explained in Section 6.6.1. The
y-axis represents the Top-1 error for ViT-16 and the PPL for GPT2-Large
and Vivcuna-7B. The rationale behind using the Top-1 error and PPL is
explained in Section 6.6.1.

To quantitatively assess the effectiveness of EASTER, NSGA-II, and MOTPE,
as well as to compare them, we calculate the well-known and widely-used
hypervolume metric (hv), based on the Pareto-optimal points plotted in
Figure 6.6, that serves as an indicator of the search space coverage in DSE.
As shown in Figure 6.6, our EASTER method and algorithm demonstrate
superior performance because of the higher hypervolume value hv, indicat-
ing more effective search space coverage of EASTER compared to NSGA-II
and MOTPE. For example, the Pareto-optimal points found by EASTER for
Vicuna-7B and shown in Figure 6.6(c) dominate those found by NSGA-II
and MOTPE, resulting in higher hypervolume value of 2.82 and highlight-
ing the EASTER effectiveness in identifying optimal solutions.

6.6 evaluation of the easter method 113

0.3
0.4

0.5
0.6

0.7
0.8

0.9
Norm

alized M
axim

um
 M

em
ory Usage Per Device

 (a) ViT-16

20 30 40 50 60 70 80 90

100

Top-1 Error (%)

M
OTPE (hv=28.93)

NSGA II (hv=27.3)
EASTER (hv=36.84)

(a)
V

iT-
1

6

0.25
0.30

0.35
0.40

0.45
0.50

0.55
0.60

Norm
alized M

axim
um

 M
em

ory Usage Per Device
 (b) GPT2-Large

6.5

7.0

7.5

8.0

8.5

log(PPL)

A

B

M
OTPE (hv=2.18)

NSGA II (hv=2.11)
EASTER (hv=2.55)

(b)
G

PT
2-Large

0.35
0.40

0.45
0.50

0.55
0.60

0.65
Norm

alized M
axim

um
 M

em
ory Usage Per Device

 (c) Vicuna-7B

6.0

6.5

7.0

7.5

8.0

8.5

log(PPL)

B

A

M
OTPE (hv=2.21)

NSGA II (hv=2.13)
EASTER (hv=2.82)

(c)
V

icuna-
7B

Figure
6.

6:C
om

parison
of

D
SE

results
delivered

by
EA

STER
,N

SG
A

-II,and
M

O
TPE

for
V

iT-
1

6,G
PT

2-Large,and
V

icuna-
7B

1D-Fail
2D-Fail

3D-Fail
(a)ViT-16

0 20 40 60 80

100

Top-1 Error (%)

Baseline
LP [21]
EA

STER
 (R

=
0.33)

EA
STER

 (R
=

0.49)

1D-Fail
2D-Fail

3D-Fail
(b)GPT2-Large

0 2 4 6 8Log(PPL)

Baseline
LP [21]
EA

STER
 (R

=
0.33)

EA
STER

 (R
=

0.47)

1D-Fail
2D-Fail

3D-Fail
(c)Vicuna-7B

0 2 4 6 8 10

Log(PPL)

Baseline
LP [21]
EA

STER
 (R

=
0.33)

EA
STER

 (R
=

0.43)

Figure
6.

7:R
obustness

com
parison

of
EA

STER
w

ith
Layer-w

ise
Partitioning

across
four

devices

114 chapter 6

As explained in Section 6.6.1, we apply the split fractions Ri, found by
Algorithm 2, to the models by distributing each model across four devices.
Moreover, we disable three of the four devices in order to simulate severe
device failure scenarios to assess the models’ robustness. The results for
the LLMs (GPT2-Large and Vicuna-7B) are shown in Table 6.1.

The first column specifies two different Ri settings, named A and B, for
each of the two LLMs together with the baseline setting, named R=1. The
baseline setting R=1 for each LLM is the original model fully replicated
over the four devices with no loss of model weights/connections due to
failures. Note that the evaluation metrics associated with settings A and B
are also shown in Figure 6.6(b) and (c) - see the red dots marked with A and
B. The second column in Table 6.1 shows the maximum memory usage per
device under the aforementioned settings. The remaining columns show
the evaluation accuracy (in %) of the operational part of the model, i.e. the
part still running on the non-failing device, across several zero-shot open-
ended tasks on widely recognized common sense reasoning datasets [124]:
ARC-e(asy), ARC-c(hallenge), WinoGrande, HellaSwag, BoolQ, PIQA, and
OpenBookQA.

Analyzing the results in the second column of Table 6.1, we observe that
the memory reduction for settings A and B compared to the baseline set-
ting clearly confirms the efficacy of our EASTER method. For example, the
Vicuna-7B model experiences a significant memory reduction of up to 66%
(from 27.00 GB to 9.18 GB), although this comes with certain accuracy trade-
offs across the evaluated tasks. Here, task ARC-c shows the highest accu-
racy sensitivity to memory reduction, i.e., a decrease of 46% in accuracy.
The GPT2-Large model in setting B with a memory reduction of 65% shows
a relatively minor performance decline in terms of accuracy for datasets
like WinoGrande and BoolQ. This resilience, especially when the memory
is decreased from 3.20 GB to 1.12 GB, suggests a difference in inherent ro-
bustness between GPT2-Large and Vicuna-7B, with the former displaying
greater robustness. However, it is important to note that our DSE method
and algorithm prioritize the optimization for general PPL scores, rather
than tailoring the search to enhance specific task scores. Overall, both mod-
els demonstrate a notable degree of performance resilience under extreme
failure scenarios, indicating their potential for effective deployment in envi-
ronments with memory constraints, such as edge devices.

6.6 evaluation of the easter method 115

6.6.3 Robustness Verification Against Varying Failures

To deepen our understanding of EASTER’s robustness, we performed a
comparative study against the conventional layer-wise partitioning approach,
specifically under scenarios involving various numbers of device failures.
To maintain a fair comparison, we designated the transformer model to be
distributed across four devices in both methodologies.

In the context of the layer-wise (LP) partitioning method, our experi-
mental setup involved randomly failing devices for the 1D-Fail, 2D-Fail,
and 3D-Fail scenarios, subsequently averaging the model’s performance to
represent its expected behavior across different failure conditions. This ap-
proach allowed us to obtain the average performance under diverse device
failure circumstances for the LP method. For our EASTER method, we sim-
ilarly averaged the model’s performance across the same failure scenarios,
allowing for a balanced and insightful comparison.

As depicted in Figure 6.7, the x-axis categorizes the failure scenarios (1D-
Fail, 2D-Fail, or 3D-Fail), whereas the y-axis quantifies model performance,
measured by the Top-1 accuracy on the ImageNet-1k validation dataset or
perplexity (PPL) value. Please note the logarithmic scale for the PPL scores.
The graphical representation uses blue bars to indicate the performance of
the traditional layer-wise partitioning (LP) method in the face of device fail-
ures, while orange bars illustrate the performance of our EASTER method.
To assess the impact of redundancy, we examine two distinct R values, ana-
lyzing their influence on device failure resilience.

For instance, in a 2D-fail scenario, the Top-1 error of the LP method
reaches 94.742%, in contrast to our method, which significantly lowers the
error rate to 54.626%. By adjusting the R value from 0.33 to 0.49, we ob-
serve a further reduction in the Top-1 error to 38.792%. Similarly, with the
Vicuna7B model, the logarithmic value of perplexity (PPL) observed using
the LP method under a 2D-Fail condition is 8.29. In contrast, our method
achieves a log(PPL) of 5.50 with an R value of 0.33. Further refining the R
value to 0.43 results in an even lower log(PPL) of 5.05.

These results clearly demonstrate that our EASTER method significantly
outperforms the LP method in maintaining model performance against de-
vice failures. Moreover, increasing the R value, which dictates the degree of
neuron replication, can further improve model robustness.

116 chapter 6

1 device
2 devices

4 devices
8 devices

(a) ViT-16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Inference Latency (s)

1 device
2 devices

4 devices
8 devices

(b) GPT2-Large
0 10 20 30 40 50 60

Inference Latency (s)

Com
putation Tim

e
Com

m
unication Tim

e

1 device
2 devices

4 devices
8 devices

(c) Vicuna-7B
0 20 40 60 80

100

Inference Latency (s)

Com
putation Tim

e
Com

m
unication Tim

e

Figure
6.

8:Inference
Latency

and
C

om
m

unication
Tim

e
for

D
ifferent

M
odels

A
cross

D
evice

C
onfigurations

1 device
2 devices

4 devices
8 devices

(a) ViT-16
0 25 50 75

100

125

150

175

200

Memory Usage (MB)

M
em

ory Usage

1 device
2 devices

4 devices
8 devices

(b) GPT2-Large
0

500

1000

1500

2000

2500

3000

3500

Memory Usage (MB)

M
em

ory Usage

1 device
2 devices

4 devices
8 devices

(c) Vicuna-7B
0 5 10 15 20 25

Memory Usage (GB)

M
em

ory Usage

Figure
6.

9:M
em

ory
U

sage
for

D
ifferent

M
odels

A
cross

D
evice

C
onfigurations

6.6 evaluation of the easter method 117

6.6.4 Distributed Inference

In this section, we evaluate our end-to-end tool that facilitates automated
model partitioning and its deployment on distributed edge devices. Our
tool is specifically implemented to convert standard PyTorch transformer
models into optimized multi-node implementations following our EASTER
method, making the models suitable for efficient distributed deployment on
edge devices. We present empirical results, obtained by using our edge test-
bed described in Section 2.3.3.2, in order to demonstrate the advantages of
EASTER in terms of overall end-to-end inference latency and maximum
memory usage per device in a distributed system running transformer
models. Here, in all experiments, transformer blocks are evenly distributed
across the devices. In Figure 6.8, the light blue bars represent the compu-
tation time Tcal of the distributed inference process, the grey blue bars in-
dicate the communication/synchronization overhead Tcomm, whereas the
orange bars in Figure 6.9 denote the maximum memory usage per device.
The data is presented for different numbers of collaborating edge devices
across the three models.

As shown in Figure 6.8, in most cases, the overall end-to-end inference
latency improves when increasing the number of edge devices. As the num-
ber of devices increases, in all cases, computation time Tcal (light blue bars)
reduces correspondingly. Only in the case of ViT-16 (Figure 6.8(a)), this ad-
vantage is counterbalanced by a rise in the communication overhead (gray
bars), which, in an eight-device setup, surpasses the computational sav-
ings, leading to an overall increase in the inference latency. Conversely, for
GPT2-Large, the communication overhead, while increasing with more de-
vices, still remains a smaller fraction compared to the computation time.
This results in a near-linear acceleration, with an overall inference latency
decrease from 58.00 seconds using one device to 7.62 seconds using eight
devices. The increase in communication overhead therefore seems more
pronounced in smaller transformer models like ViT-16, that represents a
fundamental trade-off between computation and communication.

The results shown in Figure 6.9 clearly indicate that with an increasing
number of devices (from 1 to 8 devices), there also is a noticeable decrease
in memory usage per device. For instance, the maximum on-device mem-
ory usage for ViT-16 decreases from 193.8 MB in a single-device configu-
ration to 48.1 MB in an eight-device configuration. Similarly, GPT2-Large
exhibits a significant memory reduction from 3.6 GB on a single device to
556.3 MB across eight devices. A significant reduction in memory usage per

118 chapter 6

device from 27.6 GB on a single-device configuration to 4.6 GB on an eight-
device configuration is observed for Vicuna-7B as shown in Figure 6.8(c).
Such reduction enables the models to run the complete float32 version at
the Edge without the need for extra swap space or model quantization,
highlighting EASTER’s effectiveness in memory savings per device.

Finally, if the reduction in computation time due to distributed inference
is outweighed by the increase in communication time, the overall end-to-
end latency increases. To manage this, we apply the timeout mechanism
discussed in Section 5.4.1 within the distributed inference implementation,
allowing us to adjust time thresholds to ensure that the communication
overhead does not overshadow the computational benefits. If communica-
tion delays exceed the set timeout, the system is configured to continue
processing without completing the communication. This approach helps
prevent the communication overhead from becoming excessively burden-
some.

The above findings validate the efficiency of EASTER in optimizing mem-
ory usage per device in distributed transformer inference, particularly in
edge computing environments where resource constraints are a critical fac-
tor.

6.7 conclusions

This chapter introduces EASTER, a novel method designed to robustly par-
tition transformer models across edge devices, effectively addressing the
challenge of potential device failures at the Edge. The EASTER method
navigates the vast design space of splitting strategies by learning the ex-
pectations of different design sub-spaces. It also outperforms traditional
state-of-the-art DSE methods in searching efficiency for our distribution
problem. Through extensive experimentation, EASTER has been proven to
identify Pareto solutions within a limited number of experimental trials
efficiently.

Utilizing our developed end-to-end tool, we have the capability to eval-
uate the distributed implementation on actual hardware boards, which al-
lows us to confirm the advantages in memory usage and inference latency
that distributed inference brings. Moreover, our findings substantiate that
partial splitting significantly enhances model robustness in the face of de-
vice failures. This approach not only minimizes memory consumption on
each device but also has the potential to reduce overall end-to-end latency,

6.7 conclusions 119

presenting a valuable opportunity for deploying large-scale transformer
models within edge computing environments.

7
C O N C L U S I O N

This PhD thesis investigates the efficient and robust distributed deployment
of deep neural network (DNN) models on resource-constrained edge de-
vices. As DNNs, particularly large language models, continue to grow in
complexity and size, they trigger an escalating demand for resources such
as computation power, memory, and energy. When deployed at the Edge,
these resources are often severely limited due to the nature of edge devices,
that are typically limited hardware with limited battery life.

Despite these constraints, deploying DNNs on edge devices offers several
advantages over cloud-based services. Centralized cloud servers pose sig-
nificant privacy risks and often cannot meet the low-latency requirements
of time-sensitive applications. By deploying DNNs closer to the data source
— at the Edge — these issues can be substantially mitigated.

To deploy DNNs at the Edge, model compression techniques like prun-
ing and quantization are applied to reduce the size of DNNs, making them
more suitable for the limited computational capabilities of edge devices.
However, such compression can sometimes impact the accuracy of the mod-
els and require extensive retraining iterations. An alternative strategy for
deploying DNNs at the Edge involves leveraging all available resources
across multiple devices. This approach entails partitioning a large DNN
model and distributing the partitions to run on separate edge devices. Im-
plementing this strategy requires efforts to appropriately split and manage
the DNN partitions across different devices, ensuring that each partition
functions correctly and efficiently in collaboration with others. In addition,
this approach maintains the accuracy of the original DNN and utilizes the
collective computing resources of multiple devices at the Edge, thereby re-
solving limitations posed by single-device deployments.

In this thesis, we explore and address the challenges (Chapter 1) asso-
ciated with distributed DNN inference, dividing the study into two parts.
The first part of the thesis focuses on the distribution strategies of DNNs
across multiple edge devices. This part involves the development of sys-

121

122 conclusion

tems and tools designed to enable the rapid and efficient deployment of
DNNs for distributed inference. It also includes exploring optimal configu-
ration solutions for distributing DNNs across multiple devices, to optimize
memory usage, energy consumption, and throughput. The second part of
the thesis is dedicated to enhancing the robustness of the distributed in-
ference system, particularly its resilience against device failures or unstable
connections. This involves creating fault-tolerant mechanisms that maintain
the functionality of the distributed DNN execution and ensure the correct-
ness of inference results, even in the face of device failures or connectivity
disruptions. The main contributions of this thesis, in terms of overcoming
the challenges, are summarized below:

• AutoDiCE: a framework designed for the distributed deployment of
CNN models across resource-constrained edge devices. It automates
the partitioning of CNN models into sub-models, facilitates the gener-
ation of C++ code for their distributed execution, and ensures efficient
communication across multiple resource-constrained edge devices via
the MPI protocol.

• Advanced Design Space Exploration (DSE) Method: this DSE method
incorporates a novel genetic encoding technique to explore efficient
distribution strategies of CNN models. It aims to enhance system
inference throughput while minimizing the energy and memory re-
quirements on each device. In addition, it employs a multi-stage hi-
erarchical DSE process by leveraging both analytical models and real
measurements through the AutoDiCE framework to search for opti-
mal or near-optimal distribution solutions efficiently.

• RobustDiCE: this method improves the robustness of distributed DNN
inference by grouping and distributing neurons evenly across multi-
ple devices according to their neuron importance scores. It ensures
that the DNNs continue functioning effectively, even if some devices
become temporarily unavailable, thus maintaining consistent system
performance.

• EASTER: a method that involves a novel DSE process to determine
a series of neuron replication ratios within each layer of DNNs, par-
ticularly in large transformer models. It strategically balances robust-
ness against device failures with resource utilization and performance
goals, facilitating efficient and effective distributed inference.

7.1 answers to challenges 123

7.1 answers to challenges

In this section, we reflect on the challenges set forth in Chapter 1 and dis-
cuss how this thesis addressed them.

CHL1: How to flexibly and efficiently offload DNN models over multiple edge
devices?

To address this challenge, we developed AutoDiCE, the first fully auto-
mated framework for distributing CNN models across multiple resource-
constrained devices at the Edge. This framework seamlessly manages the
entire workflow, from splitting a trained CNN model based on a CNN parti-
tioning specification to deploying it on multiple edge devices. To this end, it
automates the splitting of a CNN model into a set of sub-models and code
generation for distributed and collaborative execution of these sub-models.

At the core of AutoDiCE is the model splitting process, where its user
interface interprets the pre-trained CNN model using the ONNX format
for compatibility with major deep learning frameworks like PyTorch and
TensorFlow. Following this, the model is divided into several sub-models
according to the provided mapping specifications. Subsequently, the back-
end of AutoDiCE undertakes the generation of optimized C++ code for
each sub-model tailored to the specific hardware configurations of the edge
devices involved. This includes using MPI (Message Passing Interface) for
data communication and synchronization among the sub-models, crucial
for exploiting parallelism within and among edge devices. Moreover, Au-
toDiCE generates necessary configuration files and setups such as MPI rank
files to ensure that each sub-model operates synchronously and efficiently
across the distributed network. In the final phase, AutoDiCE packages the
generated code, configuration files, and sub-models into tailored deploy-
ment packages for each device. These packages contain all the necessary
components to execute the sub-models as independent MPI processes on
the edge devices.

Further details of AutoDiCE are discussed in Chapter 3, where a com-
prehensive example illustrates all steps in action. This example describes
the platform specification, which specifies the computational and software
resources available on the edge devices. Additionally, it outlines a mapping
specification that details how each CNN layer is distributed across the speci-
fied hardware resources, using JSON format for clarity. This in-action exam-

124 conclusion

ple provides insights into the operational steps of AutoDiCE and showcases
its practical application in distributing CNN models for edge computing.

Using three representative CNN models from the ONNX model zoo, Au-
toDiCE has been thoroughly tested to demonstrate its capabilities. The out-
comes from the distributed execution of these models on multiple devices
have shown substantial reductions in energy consumption per device and
optimized memory usage compared to single-device configurations. Over-
all, AutoDiCE offers a sophisticated solution to the first challenge that dra-
matically simplifies and automates the process of deploying distributed
CNN inference across edge devices, addressing key challenges such as ef-
ficient model splitting, automated code generation, and optimal resource
utilization.

CHL2: How to perform an efficient DSE process to find optimal distribution
strategies of DNN models at the edge while considering multiple optimization
objectives?

To determine the optimal distribution strategy for DNN models at the
Edge, in Chapter 4 we introduced a multi-stage hierarchical Design Space
Exploration (DSE) method, utilizing a custom-tailored NSGA-II method as
the search engine. Our DSE method begins with a novel chromosome en-
coding method called Split Point Encoding (SPE). This method reduces the
large search space by partitioning the CNN model into N groups of consec-
utive layers so that only consecutive CNN layers are mapped onto a single
processing element, minimizing unnecessary data communication between
processing elements. Furthermore, the multi-stage design in our DSE pro-
cess enhances the convergence of the DSE process by retaining information
from the Pareto points of DNN distributions from previous stages. For in-
stance, inspired by the SPE encoding method, Pareto distribution solutions
for two devices may include a split point that can be utilized for dividing
DNNs for four devices. By leveraging Pareto-optimal solutions from earlier
stages as the basis for subsequent levels of DSE, we accelerate our search by
focusing on specific parts of the design space, building on the best solutions
identified in earlier stages.

To further accelerate the DSE process, we also employ a two-level hi-
erarchical search within each stage. The first level uses analytical models
within an NSGA-II engine to approximate each objective function — such

7.1 answers to challenges 125

as throughput, memory, and energy consumption — thus avoiding time-
consuming real on-device evaluations. Near-optimal solutions from this
level, combined with Pareto-optimal solutions from a previous stage, serve
as the first-generation parents for the second-level DSE. In this second level,
real measurements from AutoDiCE-generated CNN inference implementa-
tions are utilized to establish the Pareto front for the subsequent DSE stage.
The outcomes of the final DSE stage provide the definitive Pareto-optimal
solutions.

In Chapter 4, we rigorously evaluated our multi-stage hierarchical DSE
method through extensive experiments. The results reveal that traditional
encoding methods frequently get stuck in dominance-resistant solutions,
failing to discover high-quality mappings even after extensive iterations.
In contrast, our SPE encoding method significantly enhances both the effi-
ciency and quality of the search, achieving superior mappings within just
20 hours of search time.

By incorporating multiple stages and hierarchical layers into the DSE
process, we further improve the discovery of high-quality mappings. For
example, after 40 hours of search time, our SPE-based DSE outperforms
the performance of a basic DSE approach across all objectives. This demon-
strates the substantial advantages of our method in effectively navigating
the complex design space of CNN distributions for edge deployments, pro-
viding more efficient and optimal mappings compared to the conventional
DSE method.

CHL3 : How to ensure the robustness of DNN inference across multiple edge
devices against possible failures or transient unavailability?

To address this challenge, we have developed a method named Robust-
DiCE, detailed in Chapter 5, aimed at robust distributed DNN inference at
the Edge. RobustDiCE strategically evaluates the importance of each neu-
ron within DNN layers to assess their criticality to ensure maintained in-
ference accuracy in scenarios of potential device failures. By employing a
combination of partial neuron replication and importance-aware neuron
clustering, RobustDiCE distributes neurons across multiple devices in an
even and robust way. This distribution not only balances the computational
load but also ensures that critical neurons remain functional, thus enhanc-
ing both system and model robustness.

126 conclusion

The core strategy, the partial replication of essential neurons, mitigates
the impact of device failures. This strategy ensures that the remaining de-
vices can continue operating important neurons, allowing the system to
maintain an inference accuracy level comparable to full-replication where
no neurons are lost, but with substantially lower computational resource
demands.

We tested our novel partitioning method using the ImageNet-1K dataset
across several representative CNN models under pessimistic device fail-
ure scenarios. We compare with the state-of-the-art methods and demon-
strate the effectiveness of RobustDiCE in delivering efficient and robust dis-
tributed CNN inference against device failures. Our method not only opti-
mizes resource utilization (memory usage, energy consumption per device,
and system throughput) but also ensures comparable inference accuracy
against failures.

CHL4 : How to determine an optimal set of neuron replication ratios for each
layer within a distributed DNN model that maximizes inference accuracy in the
face of potential edge device failures, while minimizing the impact on memory
usage and computational load per device, thereby ensuring efficiency in terms
of energy consumption and overall system performance?

To address our fourth research challenge, we introduced EASTER, a novel
Design Space Exploration (DSE) method outlined in Chapter 6. EASTER is
designed to determine optimal replication ratios for DNN layers, based on
the assumption that minor adjustments to these ratios minimally impact
the final objective values of fitness functions. This method splits the design
space into smaller, manageable sub-spaces based on these objective values,
thereby largely accelerating the DSE process.

For different distribution strategies (design points) of transformer mod-
els, which involve a vast design space, our algorithm is designed to effi-
ciently and quickly explore and identify optimal design points, enabling ro-
bust and memory-efficient splitting of transformer models across multiple
devices. We first efficiently narrow down the design space by considering
the neuron importance in the transformer layers, as this assessment allows
us to group neurons within each layer, significantly reducing their distri-
bution complexity. Further, we achieve this by adaptively and recursively
splitting the design space into several sub-spaces and learning the expected

7.2 future work 127

rewards associated with different sub-spaces, effectively tackling the chal-
lenge posed by the extensive search space. We have developed a variant of
the Upper Confidence bounds applied to Trees (UCT) algorithm [102], aiming to
enhance splitting and prioritizing sub-spaces with the highest potential for
robustness. By recursively navigating and sampling the most potentially
promising sub-spaces rather than the entire vast space, our approach en-
hances search efficiency, while balancing exploration and exploitation to
avoid the pitfalls of local optima. The final Pareto points/solutions offer
an optimal blend of robustness against device failures and operational effi-
ciency regarding computation and memory.

Our evaluation with three transformer models (ViT, GPT-2, and Vicuna)
demonstrates EASTER’s ability to reduce memory usage and improve end-
to-end latency for inference while maintaining model accuracy and perfor-
mance, especially under device failure conditions. Additionally, we auto-
mate the process of distributing transformer models by converting them
into a unified neural network intermediate representation (IR), followed
by automated code generation and deployment with the AutoDiCE frame-
work. Our end-to-end implementation enables the evaluation of transformer
models on actual hardware, making it an effective strategy for deploying
large-scale transformer models in user applications at the Edge.

7.2 future work

Given the discussions in and contributions of this thesis, several areas could
be fruitful for future research work to extend the methodologies and in-
sights developed in the thesis:

1. Cross-Device Optimization: A promising topic for future research
involves developing advanced algorithms to optimize network traf-
fic and data flow between devices in distributed networks, aiming to
minimize latency and maximize throughput. This optimization might
include using reinforcement learning to select and quantize specific
layers of neural networks, reducing the on-device computations and
communications between devices. By distributing these partially com-
pressed layers across multiple computing devices, communication over-
head can be decreased due to quantization. However, this selective
compression strategy requires careful balance to optimize data flow
without sacrificing model accuracy. The exploration process includes
determining which layers to compress and to what extent, to maintain
the model’s accuracy and meet latency requirements. While compress-

128 conclusion

ing more layers can reduce communication overhead and computa-
tional demands, it could also adversely affect the model’s accuracy.
Thus, a critical challenge is to quantify the trade-offs between reduc-
ing latency and preserving model performance integrity.

2. Management of Distributed Systems: There is a significant oppor-
tunity to exploit scalable runtime deployment strategies that dynam-
ically adjust to the fluctuating number and capabilities of edge de-
vices in heterogeneous environments. This research could also ex-
plore methods for automatic recovery and reconfiguration of neural
network tasks in response to hardware failures or unexpected de-
vice downtimes. Developing systems that can adapt to changing net-
work conditions and device availabilities without human intervention
could dramatically increase the resilience and flexibility of distributed
neural networks.

3. Security and Privacy: As distributed neural networks often operate in
environments where edge devices process sensitive data, enhancing
the security and privacy of these systems is crucial. Future research
could focus on developing robust encryption methods and privacy-
preserving algorithms that protect data without compromising the
operational efficiency of the neural network. For instance, distribut-
ing DNNs increases the number of potential entry points for attackers.
Considering several smartphones and IoT devices are performing real-
time analytics, each device, if compromised or attacked, could allow
unauthorized access to the entire network. This vulnerability is exac-
erbated by the frequent data synchronization among devices, where
each transmission can potentially be intercepted or manipulated. Con-
sequently, there is a pressing need for research into advanced crypto-
graphic techniques and intrusion detection systems that can secure
these data exchanges without degrading the network’s performance.

These future research directions not only aim to address the existing chal-
lenges but also push the boundaries of what distributed neural networks
can achieve, making them more efficient, secure, and resilient in dynamic
and diverse environments.

B I B L I O G R A P H Y

[1] Nestor Maslej et al. Artificial Intelligence Index Report 2023. 2023. arXiv: 2310.03715
[cs.AI].

[2] Waqas Tariq Toor, Maira Alvi, and Mamta Agiwal. “Combined access barring scheme
for IoT devices using Bayesian estimation.” In: Electronics 9.12 (2020), p. 2191.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.
arXiv: 1412.6980 [cs.LG].

[4] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural net-
works.” In: Proceedings of the fourteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 315–323.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective
genetic algorithm: NSGA-II.” In: IEEE Transactions on Evolutionary Computation 6.2
(2002), pp. 182–197. doi: 10.1109/4235.996017.

[6] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition.” In: (2014). arXiv: 1409.1556 [cs.CV].

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need.” In: Ad-
vances in neural information processing systems 30 (2017).

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition.” In: (2015). arXiv: 1512.03385 [cs.CV].

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. “Mobilenets: Efficient con-
volutional neural networks for mobile vision applications.” In: (2017). arXiv: 1704.
04861 [cs.CV].

[10] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look
once: Unified, real-time object detection.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 779–788.

[11] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” In: ICLR. 2020.

[12] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
et al. “Gpt-4 technical report.” In: (2023). arXiv: 2303.08774 [cs.CL].

[13] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks.” In:
IEEE transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[14] Yiping Kang et al. “Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge.” In: ACM SIGARCH Computer Architecture News 45.1 (2017), pp. 615–
629.

129

https://arxiv.org/abs/2310.03715
https://arxiv.org/abs/2310.03715
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/4235.996017
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2303.08774

130 bibliography

[15] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. “Distributed
deep neural networks over the cloud, the edge and end devices.” In: 2017 IEEE 37th
international conference on distributed computing systems (ICDCS). IEEE. 2017, pp. 328–
339.

[16] En Li, Zhi Zhou, and Xu Chen. “Edge intelligence: On-demand deep learning model
co-inference with device-edge synergy.” In: Proceedings of the 2018 workshop on mobile
edge communications. 2018, pp. 31–36.

[17] Jiachen Mao, Xiang Chen, Kent W. Nixon, Christopher Krieger, and Yiran Chen.
“Modnn: Local distributed mobile computing system for deep neural network.” In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017,
pp. 1396–1401.

[18] Zhuoran Zhao et al. “DeepThings: Distributed Adaptive Deep Learning Inference
on Resource-Constrained IoT Edge Clusters.” en. In: IEEE TCAD 37.11 (Nov. 2018),
pp. 2348–2359. issn: 0278-0070, 1937-4151. doi: 10.1109/TCAD.2018.2858384. (Vis-
ited on 04/20/2021).

[19] Rafael Stahl, Zhuoran Zhao, Daniel Mueller-Gritschneder, Andreas Gerstlauer, and
Ulf Schlichtmann. “Fully distributed deep learning inference on resource-constrained
edge devices.” In: International Conference on Embedded Computer Systems. Springer,
2019, pp. 77–90.

[20] Ramyad Hadidi, Jiashen Cao, Michael S. Ryoo, and Hyesoon Kim. “Toward Collab-
orative Inferencing of Deep Neural Networks on Internet-of-Things Devices.” en.
In: IEEE Internet of Things Journal 7.6 (June 2020), pp. 4950–4960. issn: 2327-4662,
2372-2541. doi: 10.1109/JIOT.2020.2972000. (Visited on 11/15/2021).

[21] Rafael Stahl et al. “DeeperThings: Fully Distributed CNN Inference on Resource-
Constrained Edge Devices.” In: International Journal of Parallel Programming 49.4 (2021),
pp. 600–624.

[22] Erqian Tang and Todor Stefanov. “Low-Memory and High-Performance CNN Infer-
ence on Distributed Systems at the Edge.” In: Proc. of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC). ACM, 2021, pp. 1–8.

[23] Xiaotian Guo, Andy D Pimentel, and Todor Stefanov. “Automated Exploration and
Implementation of Distributed CNN Inference at the Edge.” In: IEEE IoT Journal 10.7
(2023).

[24] Andy D. Pimentel. “Methodologies for Design Space Exploration.” In: Handbook of
Computer Architecture. Ed. by Anupam Chattopadhyay. Singapore: Springer Nature
Singapore, 2022, pp. 1–31. isbn: 978-981-15-6401-7. doi: 10.1007/978-981-15-6401-
7_23-1. url: https://doi.org/10.1007/978-981-15-6401-7_23-1.

[25] Carlo R Raquel and Prospero C Naval Jr. “An effective use of crowding distance in
multiobjective particle swarm optimization.” In: Proceedings of the 7th Annual confer-
ence on Genetic and Evolutionary Computation. 2005, pp. 257–264.

[26] SN Sivanandam, SN Deepa, SN Sivanandam, and SN Deepa. Genetic algorithms.
Springer, 2008.

[27] NVIDIA Jetson Xavier NX. 2020. url: https://developer.nvidia.com/embedded/
jetson-xavier-nx.

https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/JIOT.2020.2972000
https://doi.org/10.1007/978-981-15-6401-7_23-1
https://doi.org/10.1007/978-981-15-6401-7_23-1
https://doi.org/10.1007/978-981-15-6401-7_23-1
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://developer.nvidia.com/embedded/jetson-xavier-nx

bibliography 131

[28] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[29] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library.” In: Advances in Neural Information Processing Systems 32. Ed. by H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035.

[30] Microsoft. ONNX Runtime. 2018. url: https://github.com/microsoft/onnxruntime.

[31] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation.” In: Proceedings, 11th European PVM/MPI Users’ Group Meeting.
Budapest, Hungary, 2004, pp. 97–104.

[32] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. “Automated Exploration and
Implementation of Distributed CNN Inference at the Edge.” In: IEEE Internet of
Things Journal 10.7 (2023), pp. 5843–5858. doi: 10.1109/JIOT.2023.3237572.

[33] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: nature
521.7553 (2015), pp. 436–444.

[34] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. “A survey on
deep learning: Algorithms, techniques, and applications.” In: ACM Computing Sur-
veys (CSUR) 51.5 (2018), pp. 1–36.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information process-
ing systems 25 (2012), pp. 1097–1105.

[36] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael
Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, et al. “Recent advances in deep
learning for speech research at Microsoft.” In: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 8604–8608.

[37] Tharam Dillon, Chen Wu, and Elizabeth Chang. “Cloud Computing: Issues and
Challenges.” In: 2010 24th IEEE International Conference on Advanced Information Net-
working and Applications. 2010, pp. 27–33. doi: 10.1109/AINA.2010.187.

[38] Kanil Patel, Kilian Rambach, Tristan Visentin, Daniel Rusev, Michael Pfeiffer, and
Bin Yang. “Deep Learning-based Object Classification on Automotive Radar Spec-
tra.” In: 2019 IEEE Radar Conference (RadarConf). 2019, pp. 1–6. doi: 10.1109/RADAR.
2019.8835775.

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation.” In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. Springer. 2015, pp. 234–241.

[40] Russell Reed. “Pruning algorithms-a survey.” In: IEEE transactions on Neural Net-
works 4.5 (1993), pp. 740–747.

[41] Yunhui Guo. “A survey on methods and theories of quantized neural networks.” In:
(2018). url: https://arxiv.org/abs/1808.04752.

[42] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network.” In: arXiv preprint arXiv:1503.02531 (2015).

https://www.tensorflow.org/
https://github.com/microsoft/onnxruntime
https://doi.org/10.1109/JIOT.2023.3237572
https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1109/RADAR.2019.8835775
https://doi.org/10.1109/RADAR.2019.8835775
https://arxiv.org/abs/1808.04752

132 bibliography

[43] AutoDiCE. https://github.com/parrotsky/AutoDiCE. 2022.

[44] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network Exchange. 2019.
url: https://github.com/onnx/onnx.

[45] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. “CoAtNet: Marrying Con-
volution and Attention for All Data Sizes.” In: (2021). arXiv: 2106.04803 [cs.CV].

[46] Yanping Huang et al. “Gpipe: Efficient training of giant neural networks using
pipeline parallelism.” In: Advances in neural information processing systems 32 (2019).

[47] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. “PipeDream:
Generalized Pipeline Parallelism for DNN Training.” In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles. SOSP ’19. New York, NY, USA: Associ-
ation for Computing Machinery, 2019, 1–15. isbn: 9781450368735. doi: 10.1145/
3341301.3359646.

[48] Wei Yang Bryan Lim et al. “Federated Learning in Mobile Edge Networks: A Com-
prehensive Survey.” In: IEEE Communications Surveys Tutorials 22.3 (2020), pp. 2031–
2063. doi: 10.1109/COMST.2020.2986024.

[49] Xuefei Yin, Yanming Zhu, and Jiankun Hu. “A Comprehensive Survey of Privacy-
Preserving Federated Learning: A Taxonomy, Review, and Future Directions.” In:
ACM Comput. Surv. 54.6 (2021). issn: 0360-0300. doi: 10.1145/3460427.

[50] Lihui Tencent. NCNN. 2017. url: https://github.com/Tencent/ncnn.

[51] Joseph Redmon. Darknet: Open Source Neural Networks in C. 2013–2016. url: http:
//pjreddie.com/darknet/.

[52] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” In: International Conference on Learning Representa-
tions. 2015.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition.” In: (2015). arXiv: 1512.03385 [cs.CV].

[54] Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van Der Maaten, and Kilian Wein-
berger. “Convolutional Networks with Dense Connectivity.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2019).

[55] ONNX. ONNX model zoo. 2022. url: https://github.com/onnx/models.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[57] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. “Hierarchical design space
exploration for distributed CNN inference at the edge.” In: 3rd Workshop on IoT,
Edge and Mobile for Embedded Machine Learning (ITEM 2022), part of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer. 2022,
pp. 545–556. doi: 10.1007/978-3-031-23618-1_36.

[58] Li Zhou, Mohammad Hossein Samavatian, Anys Bacha, Saikat Majumdar, and Radu
Teodorescu. “Adaptive parallel execution of deep neural networks on heterogeneous
edge devices.” In: SEC. 2019, pp. 195–208.

https://github.com/onnx/onnx
https://arxiv.org/abs/2106.04803
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1145/3460427
https://github.com/Tencent/ncnn
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1512.03385
https://github.com/onnx/models
https://doi.org/10.1007/978-3-031-23618-1_36

bibliography 133

[59] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. “Coedge: Coop-
erative dnn inference with adaptive workload partitioning over heterogeneous edge
devices.” In: IEEE/ACM Transactions on Networking 29.2 (2020), pp. 595–608.

[60] Xueyu Hou, Yongjie Guan, Tao Han, and Ning Zhang. “DistrEdge: Speeding up con-
volutional neural network inference on distributed edge devices.” In: 2022 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2022, pp. 1097–
1107.

[61] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and Mikael Sjödin.
“DeepMaker: A multi-objective optimization framework for deep neural networks in
embedded systems.” In: Microprocessors and Microsystems 73 (2020), p. 102989.

[62] Svetlana Minakova, Dolly Sapra, Todor Stefanov, and Andy D Pimentel. “Scenario
Based Run-Time Switching for Adaptive CNN-Based Applications at the Edge.” In:
ACM Transactions on Embedded Computing Systems (TECS) 21.2 (2022), pp. 1–33.

[63] Lie Meng Pang, Hisao Ishibuchi, and Ke Shang. “NSGA-II with simple modification
works well on a wide variety of many-objective problems.” In: IEEE Access 8 (2020).

[64] RobustDiCE Software implementation. 2022. url: https://anonymous.4open.science/
r/RobustDiCE-4C09.

[65] Xiaotian Guo, Quan Jiang, Andy D. Pimentel, and Todor Stefanov. “Model and
System Robustness in Distributed CNN Inference at the Edge.” In: Integration, the
VLSI Journal (Submitted).

[66] Jia Deng et al. “ImageNet: A large-scale hierarchical image database.” In: 2009 IEEE
Conference on CVPR. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[67] Zonghao Hou et al. “Design and implementation of heartbeat in multi-machine
environment.” In: 17th International Conference on Advanced Information Networking
and Applications, 2003. AINA 2003. IEEE. 2003, pp. 583–586.

[68] Ramyad Hadidi, Jiashen Cao, Bahar Asgari, and Hyesoon Kim. “Creating Robust
Deep Neural Networks With Coded Distributed Computing for IoT.” In: IEEE Inter-
national Conference on Edge Computing and Communications. 2023.

[69] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen.
“Modnn: Local distributed mobile computing system for deep neural network.” In:
IEEE DATE. 2017, pp. 1396–1401.

[70] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. “A systematic review on soft-
ware robustness assessment.” In: ACM Computing Surveys (CSUR) 54.4 (2021), pp. 1–
65.

[71] Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Luís Fabrício W Góes, and
William Voorsluys. “On the efficacy, efficiency and emergent behavior of task repli-
cation in large distributed systems.” In: Parallel Computing 33.3 (2007), pp. 213–234.

[72] John Paul Walters and Vipin Chaudhary. “Replication-based fault tolerance for MPI
applications.” In: IEEE Transactions on Parallel and Distributed Systems 20.7 (2008),
pp. 997–1010.

[73] Harumasa Tada, Makoto Imase, and Masayuki Murata. “On the robustness of the
soft state for task scheduling in large-scale distributed computing environment.”
In: 2008 International Multiconference on Computer Science and Information Technology.
IEEE. 2008, pp. 475–480.

https://anonymous.4open.science/r/RobustDiCE-4C09
https://anonymous.4open.science/r/RobustDiCE-4C09
https://doi.org/10.1109/CVPR.2009.5206848

134 bibliography

[74] Shashank Rajput et al. “DETOX: A redundancy-based framework for faster and
more robust gradient aggregation.” In: Advances in Neural Information Processing Sys-
tems 32 (2019).

[75] Nicholas Cheney, Martin Schrimpf, and Gabriel Kreiman. “On the robustness of
convolutional neural networks to internal architecture and weight perturbations.”
In: arXiv preprint arXiv:1703.08245 (2017).

[76] Kunping Huang, Paul H Siegel, and Anxiao Jiang. “Functional error correction for
robust neural networks.” In: IEEE Journal on Selected Areas in Information Theory 1.1
(2020), pp. 267–276.

[77] Vinay Amatya, Abhinav Vishnu, Charles Siegel, and Jeff Daily. “What does fault
tolerant deep learning need from mpi?” In: Proceedings of the 24th European MPI
Users’ Group Meeting. 2017, pp. 1–11.

[78] Cheng Liu et al. “Fault-Tolerant Deep Learning: A Hierarchical Perspective.” In:
(2022). url: https://arxiv.org/abs/2204.01942.

[79] Cesar Torres-Huitzil and Bernard Girau. “Fault and error tolerance in neural net-
works: A review.” In: IEEE Access 5 (2017), pp. 17322–17341.

[80] Zeinab Hakimi. “Collaborative Inference for Distributed Camera System.” MA the-
sis. The Pennsylvania State University, 2019.

[81] Sohei Itahara, Takayuki Nishio, and Koji Yamamoto. “Packet-loss-tolerant split infer-
ence for delay-sensitive deep learning in lossy wireless networks.” In: IEEE GLOBE-
COM. 2021, pp. 1–6.

[82] Ashkan Yousefpour et al. “Resilinet: Failure-resilient inference in distributed neural
networks.” In: arXiv preprint arXiv:2002.07386 (2020).

[83] Jani Boutellier, Bo Tan, and Jari Nurmi. “Fault-Tolerant Collaborative Inference through
the Edge-PRUNE Framework.” In: (2022). url: https: //arxiv .org /abs/ 2206.

08152.

[84] Xin He et al. “AxTrain: Hardware-oriented neural network training for approximate
inference.” In: Proceedings of the international symposium on low power electronics and
design. 2018, pp. 1–6.

[85] Ashkan Yousefpour et al. “Guardians of the deep fog: Failure-resilient DNN in-
ference from edge to cloud.” In: Workshop on challenges in artificial intelligence and
machine learning for IoT. 2019, pp. 25–31.

[86] Jose Luis Bernier, Julio Ortega, E Ros, Ignacio Rojas, and Alberto Prieto. “A quanti-
tative study of fault tolerance, noise immunity, and generalization ability of MLPs.”
In: Neural Computation 12.12 (2000), pp. 2941–2964.

[87] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. “Pruning
filters for efficient convnets.” In: arXiv (2016). url: https://arxiv.org/abs/1608.
08710.

[88] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. “Soft filter pruning
for accelerating deep convolutional neural networks.” In: (2018). arXiv: 1808.06866
[cs.CV].

[89] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. “Snip: Single-shot
network pruning based on connection sensitivity.” In: (2018). arXiv: 1810.02340
[cs.CV].

https://arxiv.org/abs/2204.01942
https://arxiv.org/abs/2206.08152
https://arxiv.org/abs/2206.08152
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1808.06866
https://arxiv.org/abs/1808.06866
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340

bibliography 135

[90] Seul-Ki Yeom et al. “Pruning by explaining: A novel criterion for deep neural net-
work pruning.” In: Pattern Recognition 115 (2021), p. 107899.

[91] Bent Fuglede and Flemming Topsoe. “Jensen-Shannon divergence and Hilbert space
embedding.” In: Int. symposium on Information theory. 2004, p. 31.

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In: Comm. of the ACM 60.6 (2017), pp. 84–
90.

[93] Zhuang Liu et al. “A ConvNet for the 2020s.” In: CVPR (2022).

[94] Xiaotian Guo, Quan Jiang, Yixian Shen, Andy D. Pimentel, and Todor Stefanov.
“EASTER: learning to split transformers robustly at the Edge.” In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2024). doi:
10.1109/TCAD.2024.3438995.

[95] Yihan Cao et al. “A comprehensive survey of ai-generated content (aigc): A history
of generative ai from gan to chatgpt.” In: arXiv:2303.04226 (2023).

[96] OpenAI. “GPT-4 Technical Report.” In: (2023). arXiv: 2303.08774 [cs.CV].

[97] Mahantesh N Birje and Savita S Hanji. “Internet of things based distributed health-
care systems: a review.” In: Journal of Data, Information and Management 2 (2020),
pp. 149–165.

[98] Lianmin Zheng et al. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena. 2023.

[99] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models.” In:
arXiv preprint arXiv:2307.09288 (2023).

[100] Zhuohan Li et al. “AlpaServe: Statistical Multiplexing with Model Parallelism for
Deep Learning Serving.” In: OSDI 23). 2023, pp. 663–679.

[101] Jeff Rasley et al. “Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters.” In: Proceedings of the 26th ACM SIGKDD.
2020, pp. 3505–3506.

[102] Levente Kocsis et al. “Bandit based monte-carlo planning.” In: European conference
on machine learning. Springer. 2006, pp. 282–293.

[103] Alec Radford et al. “Language models are unsupervised multitask learners.” In:
OpenAI blog 1.8 (2019), p. 9.

[104] Mohammad Wali Ur Rahman et al. “Quantized transformer language model imple-
mentations on edge devices.” In: arXiv:2310.03971 (2023).

[105] Yelysei Bondarenko et al. “Understanding and overcoming the challenges of efficient
transformer quantization.” In: arXiv:2109.12948 (2021).

[106] Zhikai Li et al. “I-ViT: integer-only quantization for efficient vision transformer in-
ference.” In: ICCV. 2023, pp. 17065–17075.

[107] Chengyue Gong et al. “Nasvit: Neural architecture search for efficient vision trans-
formers with gradient conflict aware supernet training.” In: ICLR. 2021.

[108] Krishna Teja Chitty-Venkata et al. “Neural architecture search for transformers: A
survey.” In: IEEE Access 10 (2022), pp. 108374–108412.

[109] Yong Guo et al. “Nat: Neural architecture transformer for accurate and compact
architectures.” In: NeurIPS 32 (2019).

https://doi.org/10.1109/TCAD.2024.3438995
https://arxiv.org/abs/2303.08774

136 bibliography

[110] Sheng Li et al. “Hyperscale Hardware Optimized Neural Architecture Search.” In:
ASPLOS. 2023, pp. 343–358.

[111] Sita Rani et al. “IoT equipped intelligent distributed framework for smart healthcare
systems.” In: Towards the Integration of IoT, Cloud and Big Data: Services, Applications
and Standards. Springer, 2023, pp. 97–114.

[112] Biljana L Risteska Stojkoska et al. “A review of Internet of Things for smart home:
Challenges and solutions.” In: Journal of cleaner production 140 (2017), pp. 1454–1464.

[113] Yang Hu et al. “Pipeedge: Pipeline parallelism for large-scale model inference on
heterogeneous edge devices.” In: 2022 25th Euromicro Conference on Digital System
Design (DSD). IEEE. 2022, pp. 298–307.

[114] Jun Zhou et al. “ElasticDL: A Kubernetes-native Deep Learning Framework with
Fault-tolerance and Elastic Scheduling.” In: Proceedings of the Sixteenth ACM Interna-
tional Conference on Web Search and Data Mining. 2023, pp. 1148–1151.

[115] Pengzhen Li et al. “Adaptive and Resilient Model-Distributed Inference in Edge
Computing Systems.” In: IEEE Open Journal of the Communications Society (2023).

[116] Yoshihiko Ozaki et al. “Multiobjective Tree-Structured Parzen Estimator.” In: Journal
of Artificial Intelligence Research 73 (2022), pp. 1209–1250.

[117] Xinyin Ma et al. “LLM-Pruner: On the Structural Pruning of Large Language Mod-
els.” In: NIPS (2023).

[118] Ruibin Xiong et al. “On layer normalization in the transformer architecture.” In:
International Conference on Machine Learning. PMLR. 2020, pp. 10524–10533.

[119] Tianqi Chen et al. “TVM: An automated End-to-End optimizing compiler for deep
learning.” In: OSDI 18. 2018, pp. 578–594.

[120] Vanik Ben et al. IREE: An MLIR-based compiler and runtime for ML models from multiple
frameworks. 2019. url: https://iree.dev/.

[121] Thomas Wolf et al. “Huggingface’s transformers: State-of-the-art natural language
processing.” In: arXiv preprint arXiv:1910.03771 (2019).

[122] Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation.” In: ASPLOS (2024).

[123] James Reed et al. “torch. fx: Practical program capture and transformation for deep
learning in python.” In: Proceedings of Machine Learning and Systems 4 (2022), pp. 638–
651.

[124] Leo Gao et al. A framework for few-shot language model evaluation. Version v0.0.1. Sept.
2021. doi: 10.5281/zenodo.5371628.

https://iree.dev/
https://doi.org/10.5281/zenodo.5371628

S U M M A RY

As deep neural networks (DNNs), especially large language models, be-
come increasingly complex and huge, their computational demands esca-
late. DNN-based applications, typically are provided as services on cloud
servers equipped with numerous GPUs. Due to the rapid expansion of In-
ternet of Things (IoT) networks, characterized by their numerous connected
devices, this development has necessitated a paradigm shift towards pro-
cessing data closer to the source rather than in centralized cloud systems. It
fosters a keen interest in deploying deep learning models at the edge. The
term "edge" here refers to a variety of networked devices with computing
capacity placed anywhere along the path of data transmission between a
data source and the cloud.

Deploying DNNs at the edge offers enhanced privacy, security, and re-
liability, rendering this approach attractive yet challenging for user appli-
cations. The main challenge arises from the intensive computational de-
mands of neural networks while edge devices usually have limited avail-
able resources. This discrepancy necessitates innovative solutions such as
model compression, distillation, etc. to effectively run complex DNN mod-
els within the constraints of edge environments. However, these methods
may introduce iterative retraining costs for specific user applications and
potential accuracy drops in certain image or natural language processing
tasks.

This thesis focuses on the collaborative execution of large DNNs across
multiple edge devices, investigating strategies for efficient and robust model
deployment on resource-constrained edge devices. The thesis is divided
into two main parts:

The first part focuses on solving the challenges raised by the limited com-
putational resources of edge devices. It involves developing systems and
tools that facilitate the rapid and efficient distributed deployment of DNN
models across multiple edge devices. We design the AutoDiCE framework
for automating the distribution process. This framework simplifies the par-
titioning of models, automates code generation for distributed execution,
and optimizes inter-device communication. Additionally, we also explore

137

138 summary

optimal distribution configurations of DNN models for different objectives.
An advanced Design Space Exploration (DSE) technique, which employs
novel genetic encoding, efficiently searches for optimal distribution strate-
gies of CNN models to minimize energy and memory usage while maxi-
mizing system throughput.

Furthermore, the second part concentrates on enhancing the robustness
of the distributed inference system against the possible unavailability of
edge devices. This involves developing fault-tolerant mechanisms that en-
sure the system remains operational and that inference processes produce
accurate results even in the face of device failures or connectivity issues.
The main work in this part presents RobustDiCE, a strategy that improves
the robustness of distributed inference at the edge. RobustDiCE evaluates
the importance of all neurons and evenly distributes critical neurons across
multiple devices, ensuring that the model maintains comparable accuracy
even in the face of potential device failures. By partially replicating only the
most important neurons, instead of full replication, RobustDiCE ensures
that these critically important neurons remain operational to the greatest
possible extent in the event of device failures. Lastly, the thesis explores
EASTER, a similar partitioning method designed for large language mod-
els to balance resource utilization and model robustness against device fail-
ures.

To conclude, this thesis presents efficient and robust solutions for deploy-
ing advanced DNN models at the edge. These methods optimize resource
utilization by minimizing memory usage per device, reducing energy con-
sumption, and potentially improving overall system throughput. They also
enhance the reliability and robustness of deployments in the face of device
failures or connectivity issues, ensuring that the system continues to oper-
ate reliably and retains the accuracy of distributed inference. Each method
developed and presented in this thesis contributes to the more widespread
adoption of intelligent, distributed edge AI in resource-constrained envi-
ronments.

S A M E N VAT T I N G

Naarmate diep neurale netwerken (DNN’s), vooral grote taalmodellen, steeds
complexer en omvangrijker worden, nemen hun rekenbehoeften toe. DNN-
gebaseerde applicaties worden doorgaans als diensten aangeboden op cloud-
servers die zijn uitgerust met talrijke GPU’s. Door de snelle uitbreiding
van Internet of Things (IoT)-netwerken, gekenmerkt door hun talrijke ver-
bonden apparaten, heeft deze ontwikkeling een paradigmaverschuiving
noodzakelijk gemaakt naar het verwerken van gegevens dichter bij de bron
in plaats van in gecentraliseerde clouds. Dit bevordert een grote interesse
in het implementeren van diepe leermodellen aan de edge. De term "edge"
verwijst hier naar een verscheidenheid aan genetwerkte apparaten met ,
geplaatst ergens langs het pad van gegevensoverdracht tussen een gegevens-
bron en de cloud.

Het implementeren van DNN’s aan de edge biedt verbeterde privacy,
veiligheid en betrouwbaarheid, waardoor deze aanpak aantrekkelijk maar
uitdagend is voor gebruikerstoepassingen. De belangrijkste uitdaging komt
voort uit de intensieve rekenbehoeften van neurale netwerken, terwijl edge-
apparaten meestal beperkte beschikbare bronnen hebben. Dit verschil vereist
innovatieve oplossingen zoals modelcompressie, destillatie, enz. om com-
plexe DNN-modellen effectief binnen de beperkingen van edge-omgevingen
uit te voeren. Deze methoden kunnen echter iteratieve retrainingskosten in-
troduceren voor specifieke gebruikerstoepassingen en potentiële in bepaalde
beeld of natuurlijke taalverwerkingstaken.

Deze scriptie richt zich op de gezamenlijke uitvoering van grote DNN’s
over meerdere edge-apparaten, waarbij strategieën worden onderzocht voor
efficiënte en robuuste modelimplementatie op bronbeperkte edge-apparaten.
De scriptie is verdeeld in twee hoofdonderdelen:

Het eerste deel richt zich op het oplossen van de uitdagingen die wor-
den opgeworpen door de beperkte rekenbronnen van edge-apparaten. Het
omvat het ontwikkelen van systemen en hulpmiddelen die de snelle en ef-
ficiënte gedistribueerde implementatie van DNN-modellen over meerdere
edge-apparaten vergemakkelijken. We ontwerpen het AutoDiCE-framework
voor het automatiseren van het distributieproces. Dit framework vereen-

139

140 samenvatting

voudigt de partitionering van modellen, automatiseert codegeneratie voor
gedistribueerde uitvoering en optimaliseert inter-apparaatcommunicatie. D-
aarnaast verkennen we ook optimale distributieconfiguraties van DNN-
modellen voor verschillende doelstellingen. Een geavanceerde techniek voor
het verkennen van ontwerpruimte (DSE), die gebruik maakt van nieuwe
genetische codering, zoekt efficiënt naar optimale distributiestrategieën van
om energie- en geheugengebruik te minimaliseren en tegelijkertijd de sys-
teemdoorvoer te maximaliseren.

Verder concentreert het tweede deel zich op het versterken van de robu-
ustheid van het gedistribueerde inferentiesysteem tegen de mogelijke niet-
beschikbaarheid van edge-apparaten. Dit omvat het ontwikkelen van fout-
tolerante mechanismen die ervoor zorgen dat het systeem operationeel blijft
en dat de inferentieprocessen nauwkeurige resultaten blijven produceren,
zelfs in het geval van apparaatstoringen of connectiviteitsproblemen. Het
belangrijkste werk in dit deel presenteert RobustDiCE, een strategie die de
robuustheid van gedistribueerde inferentie aan de edge verbetert. Robust-
DiCE evalueert het belang van alle neuronen en verdeelt kritieke neuro-
nen gelijkmatig over meerdere apparaten, zodat het model vergelijkbare
nauwkeurigheid behoudt, zelfs in het geval van mogelijke apparaatstorin-
gen. Door alleen de belangrijkste neuronen gedeeltelijk te repliceren, in
plaats van volledige replicatie, zorgt RobustDiCE ervoor dat deze kritisch
belangrijke neuronen in de grootst mogelijke mate operationeel blijven bij
apparaatstoringen. Ten slotte verkent de scriptie EASTER, een vergelijkbare
partitioneringsmethode ontworpen voor grote taalmodellen om resourcege-
bruik en modelrobustheid tegen apparaatstoringen in balans te brengen.

Samengevat presenteert deze scriptie efficiënte en robuuste oplossingen
voor het implementeren van geavanceerde DNN-modellen aan de edge.
Deze methoden optimaliseren het gebruik van bronnen door het geheugenge-
bruik per apparaat te minimaliseren, het energieverbruik te verlagen en
mogelijk de algehele systeemdoorvoer te verbeteren. Ze verbeteren ook de
betrouwbaarheid en robuustheid van implementaties in het geval van appa-
raatstoringen of connectiviteitsproblemen, waardoor het systeem betrouw-
baar blijft werken en de nauwkeurigheid van gedistribueerde inferentie be-
houdt. Elk ontwikkelde en gepresenteerde methode in deze scriptie draagt
bij aan de bredere adoptie van intelligente, gedistribueerde edge AI in bron-
beperkte omgevingen.

"To live intensely and richly, merely to exist, that depends on ourselves."

— Born to Win

A C K N O W L E D G M E N T S

The boldest decision I made in recent years was to live abroad independently and pursue
a PhD in the Netherlands. I had not anticipated the COVID pandemic, which engulfed
Europe just under two months after I started my PhD in 2020. Pursuing a PhD was not
merely a commitment of time; it was an adventure. This process is challenging for many,
but ’effort’ conquers all—not erratic or misdirected effort, but consistent, dedicated effort.
These efforts helped me to overcome loneliness, frustration, and the discouragement of
unsuccessful submissions. Even now, I am amazed that I have completed my PhD journey.

First of all, my most sincere gratitude goes to my supervisors, Professor A.D. Pimentel
and Dr T.P. Stefanov, for taking me on this long journey. Andy, a distinguished academic
in computer systems, is renowned for his wisdom and passion. He granted me enough
freedom to explore and the patience necessary for rigorous research, profoundly inspiring
my work. His communication skills and mastery of project management have provided
meaningful benefits to me. Todor is an expert in embedded systems, renowned for his
lifelong dedication to learning new knowledge. His comprehensive guidance on writing
and his foresight in anticipating potential challenges in my research have been invaluable,
particularly in shaping the narrative of my research. Coming from a background devoid of
academic writing experience, I had to learn the ropes and revise my articles from scratch.
Andy and Todor have demonstrated remarkable patience with me throughout the writing
of academic articles and my Ph.D. thesis. They meticulously revised my work sentence by
sentence, paragraph by paragraph, and section by section, engaging in fruitful discussions
along the way. They not only taught me the essentials of scientific and accurate writing,
but also how to maintain consistency and fluency in my scientific expressions, ensuring
logical coherence. Their efficiency in revising drafts is exceptionally high, often aiding me
in meeting submission deadlines during late nights or weekends. I am deeply moved and
grateful for their dedication; without their genuine support and infectious enthusiasm for
academia, defending my thesis on time would have been mission impossible.

It is my lifelong honor that Prof. R.V. van Nieuwpoort, Prof. D. Müller-Gritschneder,
Prof. ir. A. Iosup, Prof. P. Grosso, Dr. A. Pathania, and Dr. D. Sapra accepted the invitation
to become my Ph.D.committee member. I would like to extend my gratitude to them for
reading this thesis and providing their invaluable feedback.

Thanks to Juriaan (LIACS), Simon, and Martin for their assistance in both daily work and
personal matters, such as managing computing clusters, purchasing working items, guiding
me in Dutch, etc. Chatting with them in the office is always a relaxing and enjoyable experi-
ence. Additionally, I would like to thank our secretaries— Nusa (LIACS), Grace, Petra, and
Nicole — for their efficiency and helpfulness in managing academic affairs, extending con-
tracts, and processing visa applications. Additionally, I would like to thank my colleagues
in the PCS research group, for all the social events, coffees, presentations, and discussions.

141

142 acknowledgements

Especially to Ana O, Ana V, Andrés, Anuj, Benny, Benny, Clemens, Daphne, Dolly, Ehsan,
Francesco, Jelle, Julius, Jun, Lukas, Marco, Marius, Pooya, Saeedeh, Shaoshuai, Sudaksh,
Sudam, Uraz, and Yixian. I was also lucky to work in the LIACS. A big thanks to Svetlana
and Erqian for their help, and also for the shared time, discussions, and project-related pro-
gramming experiences. I will always enjoy having fun in many casual conversations with
Abolfazi, Faezeh, Fatemeh, Peng Wang, Roozbeh, Sobhan, and Sumiran.

Special thanks to my brilliant friend, Qi Wang. I am fortunate to know Qi and to learn
from him. Without Qi, my research might have remained mired in engineering, neglecting
the importance of narrative storytelling. Qi inspired me to develop research topics focused
on scenario-based problems and solutions driven by algorithms, rather than relying heavily
on extensive engineering efforts.

Particularly, I would like to extend my heartfelt thanks to Kexin Wang, QianQian Jia,
Jiangyun Hou, Shang Shi, Kena Zheng, Weijian Liu, and Zhong Li for companying and for
helping me during my difficult time. Thanks to Danru Xu, Gaosheng Liu, Kexin Liang, Ming
Li, Shiqi Liu, Tao Hu, Wei Wang, Weijie Wei, Xiaofei Yu, Xiaoyu Tong, Xiayu Zhang, Yahui
Zhang, Yongtuo Liu, Yue Chen, Zenglin Shi. I cherish the time spent with them playing
board games, enjoying Chinese food, and sharing leisure moments. Thanks to Biwen Wang,
Chao Xu, Cong Liu, Di Wu, Hui Chang, Hui Feng, Jian Dong, Ji He, Jiayi Shen, Jiayang
Shi, Jie Liu, Jingwen Jia-Zhang, Jingwen Liao, Jun Xiao, Lin Zhang, Li Xu, Lu Zhang, lvqi
Liu, Menglin Wu, Na Li, Pengwan Yang, Puzhong Zhang, Qi Bi, Qianru Zuo, Qinyu Chen,
Renjie Lv, Ruihong Yin, Ruyue Xin, Shenghao Qiu, Shirley, Shuang Su, Shuangyi Zhao,
Siyu Li, Tonghui Yin, Weijia Zhang, Weikang Weng, Wenyang Wu, Wenzhe Yin, Xiaojian
Du, Xiaoyan Xing, Xinlu Chen, Xinwei Liu, Xinyu Zhang, Yachen Liu, Yaozu Han, Ye Liu,
Yingjun Du, Yuandou Wang, Yuxuan Zhao, Yue Li, Yue Song, Yunlu Chen, Zehao Xiao,
Zhangyu Xiao, Zeshun Shi, Zhao Yang, Ziyuan Wang, Zong Fan and many other friends
for engaging in academic discussions, sharing life stories, playing basketball, and enjoying
funny moments together.

Finally, I must express profound gratitude to my parents, brother, and sister-in-law for
their support. Throughout my childhood and many challenges in life, you have always
allowed me to be myself. The COVID pandemic prevented us from celebrating traditional
Chinese festivals together, but distance cannot keep our hearts apart. I am deeply grateful to
know my wife, Zhang Jia. I treasure every moment with you and I look forward to spending
the rest of my life with you.

There have been many people who have supported me over the past few years, and
despite my best efforts to list everyone’s names, I may have missed some! I apologize if
your name should have been mentioned; I remain grateful for your help and support. This
essay is also dedicated to all of you.

	Dedication
	Contents
	Acronyms
	1 Introduction
	1.1 AI Revolution
	1.2 Edge Computing and Internet of Things
	1.3 Deep Learning at the Edge
	1.4 Why Distributed DNN Inference at the Edge?
	1.5 Distributed DNN Inference at the Edge
	1.6 Thesis Overview
	1.6.1 Origins

	1.7 Author Publications
	1.8 Source Code

	2 Background
	2.1 DNN Model
	2.1.1 Convolutional Neural Network (CNN)
	2.1.2 Transformer

	2.2 Partitioning Methods
	2.3 Design Space Exploration
	2.3.1 Non-dominated Sorting Genetic Algorithm II
	2.3.2 Chromosome
	2.3.3 Fitness Function

	2.4 Interoperability

	Distributed DNN inference at the Edge
	3 chapter 3
	3.1 Introduction
	3.2 Related Work
	3.3 The AutoDiCE tool
	3.3.1 Overview
	3.3.2 Interface
	3.3.3 Front-end
	3.3.4 Back-end

	3.4 Framework Evaluation
	3.4.1 Experimental Setup
	3.4.2 Efficiency of AutoDiCE and DSE Results
	3.4.3 Varying the Number of Edge Devices

	3.5 Discussion
	3.6 Conclusions

	4 chapter 4
	4.1 Introduction
	4.2 Related work
	4.3 Method
	4.3.1 Fitness Functions
	4.3.2 Multi-stage hierarchical DSE

	4.4 Experimental Evaluation
	4.4.1 Experimental setup
	4.4.2 Experimental results

	4.5 Conclusion

	Robustness for Distributed Inference
	5 chapter 5
	5.1 Introduction
	5.2 Related Work
	5.3 Background and Motivation
	5.4 The RobustDiCE Method
	5.4.1 Decentralized Computing Framework
	5.4.2 Robust Partitioning

	5.5 Evaluation of the RobustDiCE Method
	5.5.1 Experimental Setup
	5.5.2 Experimental Results

	5.6 Conclusions

	6 chapter 6
	6.1 Introduction
	6.2 Related work
	6.3 Robust Model Splitting
	6.3.1 Motivational Example
	6.3.2 Robust Model Splitting

	6.4 Problem Formulation
	6.5 The EASTER method
	6.5.1 Partial Split Method for Transformers
	6.5.2 Design Space Exploration
	6.5.3 Multi-node Intermediate Representation

	6.6 Evaluation of the EASTER method
	6.6.1 Experimental Setup
	6.6.2 DSE Results and Comparison
	6.6.3 Robustness Verification Against Varying Failures
	6.6.4 Distributed Inference

	6.7 Conclusions

	7 Conclusion
	7.1 Answers to Challenges
	7.2 Future work

	Bibliography
	Summary

	Summary
	Samenvatting

	Samenvatting
	Acknowledgments

	Acknowledgements

