
Two Approaches in One for a Quick and Efficient Design of
Low Area Custom Microprocessor Cores

Development of the Ims8NI Core via VHDL and Logic-Synthesis

Peter Manoilov, George Kouzmanov, Todor Stefanov, Angel Popov
Computer Systems Department, Technical University - Sofia

E-mail: anp@vmei.acad.bg

ABSTRACT - This paper presents a methodology encapsulating the Hardware-Software Co-
Design and the Top-Down Approach for developing custom microcontroller cores. Such a core
(named Ims8NI), meeting specification requirements, was created in a top-down design style using
VHDL models for the hardware part. A set of base algorithms was used as an input, defined by the
specific domain of applications, the microcontroller should be used in. These algorithms were
partitioned into tasks and the decision for distributing them between the hardware and software
part was taken iteratively. An FPGA (Altera-Flex10K10) prototype of the core was implemented for
the purpose of functional tests. A simple silicon chip was also implemented and it is intended to
make the core public available as a soft- and/or hard-macro for further use in microprocessor
based application specific integrated circuits (ASICs). The core Ims8NI is compared with some
other kernels of the same class and the results are reported in this paper.

I. INTRODUCTION. The aim of this work is to present the author’s team
experience in developing a quick and efficient methodology for low area custom
microprocessor cores design. As a result, such a core (called Ims8NI) was created
and a simple silicon chip was implemented (as a soft-and hard-macro) for further use
in ASIC. They were intended to be controllers in the area of consumer electronics.
The design process of the core had to meet the following specification requirements:

• the core should be universal, but efficient enough to implement a set of base
control algorithms given by the user.

• the leading criterion (during the design process) should be a minimal core
area on a silicon chip. This is because the core is supposed to be a part of a more
complex System-on-Chip. The other purposes are to reach a higher manufacturing
yield and to produce the chip using a cheaper transistor technology (say 2µm).

• the instruction set should be compact for the target applications.
• open-core architecture - it means the possibility of an easy attachment to the

core of some peripherals (timers, counters, parallel and serial interfaces, LCD-
controllers and etc.).

• maximum speed of the core in respect to the achieved minimal area.

The Ims8NI project was partitioned into two parts (hardware and software). In order
to reduce the Time-to-Market both of them were developed simultaneously and
concurrently. The software part included an optimal (with respect to requirements
mentioned above) instruction set synthesis. The hardware part of the project included
a design, investigation and area optimization of the Control Unit and the Arithmetic-

Logic Unit (ALU) of the Ims8NI core. A special attention was paid to ALU
architecture, the control unit type (fixed-logic or micro-program control) and the
timing.

II. DESIGN PROCESS. There are many approaches for designing LSI [3,8]. Two
of them are the well known Hardware-Software Co-Design and Top-Down Design.
The methodology, presented in this paper, encapsulates these two approaches. The
Ims8NI core was developed using this methodology (see Fig. 1).

%DVH�DOJRULWKPV

,QVWUXFWLRQ�6HW

57/�6\QWKHVLV

6RIWZDUH

'HYHORSPHQW

%DVHG�RQ�WKH

DOJRULWKPV

$UFKLWHFWXUH�'HVLJQ�DW

57/�/HYHO

57/�VLPXODWLRQ

$UHD

2SWLPL]DWLRQ

$FFHSWDEOH

$UHD

�1HWOLVW

6LPXODWLRQ
(TXLYDOHQFH +

$FFHSWDEOH

$UHD

)3*$�3URWRW\SLQJ�

3ODFLQJ�DQG�5RXWLQJ

7RS�'RZQ

'HVLJQ

+DUGZDUH�6RIWZDUH�&R�'HVLJQ

,QVWUXFWLRQ�6HW

'HVLJQ

,QVWUXFWLRQ�6HW

0RGLILFDWLRQ

9+'/�0RGHOV

$UHD�RI�WKH

3URJUDP

0HPRU\

12

<(6

1HW/LVW

�9+'/�0RGHOV

3HUIRUPDQFH

3HUIRUPDQFH

12

<(6

<(6 12

&RUH�$UHD

$IWHU

2SWLPL]DWLRQ

Fig.1. Hardware-Software Co-Design with Top-Down Design of the hardware part.

The main idea is to use the advantages of the Hardware-Software Co-Design (the
very fast achievement of compatibility between the hardware and software),

combined with the possibility for an abstract top-down design. This combination
reduces the time-to-market of the device. The abstract top-down design was realized
on VHDL [2,8,9], used as an input of the VeriBest CAE tools [11] (including
simulator, synthesizer, optimizer and etc.).

Instruction Set Synthesis. There were not any formal approaches available for an
optimal (with specific constrains) instruction set synthesis. So an heuristic iterative
methodology was used to obtain the Ims8NI instruction set (see Fig. 1). We started
with a minimal compact instruction set synthesis. Some theoretical researches and
instruction sets of existent microprocessors [4,6,10] were used for this purpose. As a
result the following set was derived: AND, NOT, ADDition, Roll-Right-Carry, Roll-
Left-Carry, CALL, RETurn, Skip-if-Zero, Skip-if-Carry, Load-Accumulator, Store-
Accumulator. Some base algorithms were realized using this instruction set. Their
choice was very important because it defined the specific domain of application the
ASIC should be used in. In our case, these base algorithms had been destined for a
sensor and button sampling and for displays and actuators control. Based on the
instruction set (mentioned above), the core architecture was designed and the base
algorithms were programmed. Further on, the area needed for the core and program
memory was calculated, so the results were a minimal core area, but a huge program
memory area. This fact required multiple instruction set (including core architecture)
modifications (see Fig. 1) to achieve the total area (core + memory) minimization.
During this process a lot of instruction sets were obtained and the optimal one in
respect to the total area is shown in Table 1.

Table 1. Instruction Set of Ims8NI Core

Mnemonic Addressing Mode Description
JMP extended(addr10) Unconditional jump to addr10

CALL extended(addr10) Subroutine call addr10
AND direct(addr8) Logical AND between the accumulator and memory
OR direct(addr8) Logical OR between the accumulator and memory

XOR direct(addr8) Logical XOR between the accumulator and memory
ADD direct(addr8) Add memory to accumulator
ST direct(addr8) Store accumulator
LD direct(addr8) Load accumulator with memory
LD immediate(imm) Load accumulator with value

RET immediate(imm) Return from subroutine and load accumulator with value
SETB bit(addr5) Set bit
CLRB bit(addr5) Clear bit

SB bit(addr5) Skip if bit set
LDPC - Load program counter with accumulator
RRC - Rotate accumulator right
RLC - Rotate accumulator left
SC - Skip if carry
SZ - Skip if zero

HCF - Halt and catch fire
RET - Return from interrupt or subroutine
NOP - No operation

Ims8NI Architecture Design. The architecture of the Ims8NI core corresponding to
the instruction set given in Table 1 is depicted in Fig.2. This architecture meets all
the specification requirements and has the lowest possible area. It is a RISC-like
Harvard architecture core without an Index Register and Instruction Register. A 3-
level hardware stack is realized, but it is not a program accessible one (hidden for
the programmer with no PUSH and POP instructions included). Each of these
particularities reduces the area without harming the core efficiency.

���������	��
�������

&

�2

1

7

5

2

/

%LW�$GGUHVVDEOH

&HOOV
36:

�))K�

$/8
%22/($1

3URFHVVRU
$&&XPXODWRU

3URJUDP

&RXQWHU

7RS�2I�6WDFN

5(6(7

,17HUUXSW
���������
��� ��� �����
�������

����� �!�!"

+&)

#��$�&% ����� /HYHO��

/HYHO��
10

10

10

12

8

8

8

3

8 8

8
8

4

38

8 3

3

' � � �(��) �

��* � ��+,+ �-
./.* %0%1
 +,2 3 �4

�65,5
7� 378�+

� �$��9�� 3 %;:<
7%=���4>
��+,+ �-
./.

' 2 �-
���
�?+,+ �$
./.

' 2 �-
���
� � :
��+,+ �-
./.

���������

��� ��� �����

����� �!�!"

�������

��"@�!���

��"@�!���

��"@�����

* A �B�C���)!� �	��
D���4���

3URJUDP�&RGH

7DEOHV�RU�3URJUDP�&RGH

'DWD

RU

�3HULSKHUDOV

00h

FEh

3Fh

000h

3FFh

2FFh

001h

� � ��E � � :F:G�C: � � HJI�� � :GK

' � � � :G�C: � � H

Fig.2. Ims8NI core - Block diagram

We made some analysis of the base algorithms and encountered that there were no
operations over large data arrays. On the other hand the data memory space (256x8)
is very small, that means this kind of operations were inconsistent. Therefore there
was no need of an Index Register which fact contributed to the core area decrease
(about 15%). The architecture (see Fig.2) allows the outputs of the program memory
not to change their values while an instruction is running. That is why the Instruction
Register was not necessary. The decision for a 3-level-deep stack was taken after an

analysis of the programs which would be running on the core. The choice of a
hardware stack was predestined from the length differences between the program
memory word (10-bit length) and data memory word (8-bit length).

After the decisions at the architecture level (regarding the Ims8NI core structure) had
been taken, it was necessary to move at a lower abstract design level in order to
minimize the area of the Control Unit and Arithmetic-Logic Unit [5,7].

Control Unit. The control unit type (fixed-logic or micro-program control) and the
optimal timing design were the most important things in respect to the overall area of
the core. The choice of the lowest area control unit was made after some
investigations and a W-S curve was obtained for each type (W denotes a complexity
of the instruction set and S - the area). The results (at 2µm technology) are shown in
Fig.3. It is obvious that the micro-program control unit needs more area than the
fixed-logic control unit. That is why the fixed-logic control unit was chosen and
implemented in the Ims8NI core.

35.735
(8051)

Ims8NI
0.563

PIC16C54
3.1034 4.16

(8051)

0.299
Ims8NI

2.43984
PIC16C54

0.001

0.01

0.1

1

10

100

10 100 1000 10000

&RPSOH[LW\�RI�WKH�LQVWUXFWLRQ�VHW�:

$
UH

D�
�6

0LFUR�SURJUDP�FRQWURO)L[HG�ORJLF�FRQWURO

W C Ci
i

k

=
=
∑

1

,where:

C - number of the clocks in the instruction cycle;
Ci - number of the instruction cycles in the i-th

instruction;
k - number of the instructions.

Fig.3. Area comparison between the fixed-logic
control and micro-program control units

���������
�

	
�����	
�
�

�������������

��������
�����!
"$#%"$ '&)(* +&
,.-/-10 " 0324, �! '&

�
56����6�����7�

� 2 -%8:9 � 2 -18<;

� �3=>�?& 03- ���@ +� � (-A2 #

B4CED)FHGJIAK>F4L�M1CONQPEKSRHT

���������
�

	
�����	
�
�

�������������
�

5��U�����������

��������
�����!
"$#%"$ '&)(* +&
,.-/-10 " 0324, �! '&

,.V

W V

Fig.4. Two possible timing diagrams of Ims8NI

For the lack of any formal theory for an optimal timing design, the following
methodology was used. The whole instruction set (see Table 1) was run trough the
Ims8NI architecture and it was found that two synchro-events were necessary for
each instruction. The first event should enforce the asynchronous execution of the
three timing stages known as FETCH, DECODE and EXECUTE. The second should
event start the results WRITING (obtained after the instruction execution) into the
accumulator or into the data memory. Two rising or two falling clock edges could be

used for synchro-events as it is shown in Fig.4a. We made some researches and
another timing solution was proposed (see Fig.4b). This implementation (with one
rising and one falling edge as synchro-events) is not universal, but in our case it
leads to three main advantages: 1) the timing from Fig.4b allows a lower clock
frequency without violating the instruction execution time; 2) a lower power
consumption due to the lower switching frequency of the flip-flops; 3) the Control
Unit and the ALU can be realized as a pure combinational logic circuits. Therefore
the Ims8NI core area could be reduced.

Arithmetic-Logic Unit (ALU). The ALU implements one arithmetical operation
(Addition without input carry) and five logical operations (see Table 1). This is
enough for an efficient realization of the base algorithms. A compact system of
logical operations AND-OR-XOR was chosen. It is not a minimal basis, but it is
optimal in respect to the total area (core + memory) and the base algorithms. A lot of
operations in these algorithms check or change a single bit value, that is why we
realized an additional Boolean Processor in the Ims8NI core (see Fig.2). The area of
the core rose a little, but the program memory area decreased, reducing by this means
the total area.

Complex arithmetical problems can also be solved satisfactorily enough with the
simple set of operations that the ALU of the Ims8NI core implements. For example,
the 8-node FFT conversion time (at real clock frequency 15MHz) is about 10µs. It is
comparable with the conversion time of some digital signal processors (DSPs) like
the TMS320C2x family [10].

Prototyping and Manufacturing. An FPGA (Altera - FLEX10K10) [1] prototype of
the Ims8NI core was implemented for the purposes of functional testing, adjustment
and real physical parameters measuring. Also Placing and Routing on a silicon chip
using Standard Cells technology were performed, in order to estimate the real area of
the Ims8NI core.

III. ANALYSIS OF THE EXPERIMENTAL RESULTS. We compared the
Ims8NI core with the Ims8BC core (an original product of the InfoMicroSystems
Ltd.) and with the Ims16C54 core (functionally equivalent to the famous PIC16C54
microcontroller). The comparison was made at 2µm technology in respect to two
criteria: 1) total area of the silicon chip; 2) core speed measured in length of the
instruction cycle. The three cores have a similar domain of application and belong to
the same class. It means that each of them has: 1) Harvard architecture; 2) single
word instruction length; 3) one instruction cycle for each instruction; 4) up to 256
bytes data address space; 5) up to 1K words program address space. The facts
mentioned above are the main precondition for the comparative analysis given
below.

Fig.5 shows the area needed for the implementation of the cores on the silicon chip.
The Ims8NI core has the lowest total area compared with the other two cores,
because some original decisions (stated in the previous section) were realized during
the Ims8NI design process. We have to mark the fact that Ims8BC and Ims16C54
cores have more powerful instruction sets than Ims8NI core has. But it does not
affect the program power of the Ims8NI core, because we found that the most
frequently used instructions in the base algorithms are included in the Ims8NI
instruction set (see Fig.7).

Ims8NI Ims8BC Ims16C54

4,695

5,726 5,735

0

1,000

2,000

3,000

4,000

5,000

6,000

Ims8NI Ims8BC Ims16C54

$UHD�RI�WKH�SURJUDP�PHPRU\

$UHD�RI�WKH�HQWLUH�FRUH

7RWDO�DUHD

Fig.5. Area comparison of the three
microcontrollers (at 2µm technology)
measured in mm2

Ims8NI

Ims8BC

Ims16C54

300

100

66

0 50 100 150 200 250 300

Ims8NI

Ims8BC

Ims16C54

[ns]

Fig.6. Time performance comparison of the
three cores (measured in ns) at 2µm
technology

Ims8BC 40%

60%

Ims16C54

30%

70%

������� �	��
��� �����������	�	���	�����������	��� ����� ��!

������� �	��
��� �����������	�	���	�����#" �$�%�&������� ��!

Ims8NI

28%

72%

Fig.7. Frequency of the instruction usage

The speed comparison between the cores is shown in Fig.6. The parameter
“instruction cycle length” gives a real information for the speed of these three cores,
because it shows the execution period for each of their instructions. The good speed
results for the Ims8NI core are based on three main things: 1) the simple (low area)
architecture; 2) an optimal instruction set; 3) the optimal timing (see Fig.4b) which

allows instruction execution in only one instruction cycle. This cycle equals to one
clock period.

IV. CONCLUSION. Using the results demonstrated in the previous section, it is
worth noting the following advantages of the Ims8NI core: 1) low area of the silicon
chip; 2) cheaper transistor technology (2µm) for manufacturing; 3) high speed of the
core. These advantages allow the implementation of the Ims8NI core in Systems-on-
Chip for consumer electronics control. This chip will have a high manufacturing
yield and a low cost due to its small size and it is suitable for mass production. The
Ims8NI core could also be used in some real time control applications due to its high
speed performance.

Of course, any electronic device based on the Ims8NI core will work efficiently only
within the base algorithms defined above. It does not exclude, however, the
possibility for using the core in larger area of applications.

ACKNOWLEDGMENTS. The authors would like to thank the InfoMicroSystems
Ltd. We would like to acknowledge the team leader M. Marinov and the ASIC
designers G. Gegov, P. Petrov, A. Trifonov and B. Bonev for their support and the
practical experience they shared with us.

REFERENCES

1. ALTERA - Data Book, Altera Corp., 1998.
2. Bhasker, J., A Guide to VHDL Syntax, Prentice Hall, 1995.
3. Gajski, D., Edt., Silicon Compilation, Addison Wesley Pbl. Comp., 1988.
4. Microchip, PIC16C5X - EPROM-Based 8-Bit CMOS Microcontroller Series,

Microchip Technology Inc., 1993.
5. Omondi, Amos R., Computer Arithmetic Systems. Algorithms, Architecture and

Implementation. Prentice Hall, 1992.
6. PHILIPS, 80C51-Based 8-Bit Microcontrollers, Philips Semiconductors, 1995.
7. Sandige, R.S., Modern Digital Design, McGraw-Hill, New Jork, 1990.
8. Smith, D.J., HDL Chip Design, Doone Publications, 1997.
9. Swamy, S., A. Molin, B. Covnot, OO-VHDL. Object-oriented extensions to

VHDL, IEEE Computer, Oct.95, pp. 18-26.
10. Texas Instruments, TMS320C2X - User’s Guide, 1993.
11. VeriBest, VeriBest VB98.0A for Windows NT Intel-User’s Guide, VeriBest, Inc.

1998.

