
Automatic Derivation of Polyhedral Process

Networks from While-Loop Affine Programs

Dmitry Nadezhkin, Todor Stefanov

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

{dmitryn,stefanov}@liacs.nl

Abstract—The Process Networks (PNs) is a suitable parallel
model of computation (MoC) used to specify embedded streaming
applications in a parallel form facilitating the efficient mapping
onto embedded parallel execution platforms. Unfortunately, spec-
ifying an application using a parallel MoC is very difficult and
highly error-prone task. To overcome the associated difficulties,
an automated procedure exists for derivation of a specific
polyhedral process networks (PPN) from static affine nested loop
programs (SANLPs). This procedure is implemented in the pn
complier. However, there are many applications, e.g., multimedia
applications, signal processing, etc., that have adaptive and
dynamic behavior which can not be expressed as SANLPs.
Therefore, in order to handle more dynamic applications, in this
paper we address the important question whether we can relax
some of the restrictions of the SANLPs while keeping the ability
to perform compile-time analysis and to derive PPNs. Achieving
this would significantly extend the range of applications that
can be parallelized in an automated way. The main contribution
of this paper is a first approach for automated translation of
affine nested loops programs with while-loops into input-output
equivalent PPNs.

I. INTRODUCTION

Whereas embedded multiprocessor hardware technologies

have been making giant leaps in recent years, software tech-

nologies targeting these embedded hardware come always far

behind. In particular, software developers are facing the problem

of how to expose and utilize efficiently the parallelism available

in applications to be able to fully utilize the power provided

by multiprocessor embedded systems. The traditional approach

where an application is specified using sequential model of

computation (MoC) proved to be inefficient. The reason is that

a sequential program does not match the way multiprocessor

systems operate. A more promising approach is to specify an

application using a parallel MoC. Using a parallel MoC facilitates

the programming of parallel multiprocessor systems because a

parallel MoC makes the parallelism available in an application

and the communication between the application tasks explicit.

Unfortunately, specifying an application using a parallel MoC is

very difficult as the application developers i) have to be familiar

with a particular parallel MoC; ii) have to study the application

in order to identify possible parallelism that is available and to

reveal it by using the parallel model.

To relieve the designer from all these difficulties, the pn com-

piler [1] was introduced. It implements techniques for automated

parallelization of static affine nested loop programs (SANLP)

written in C into input-output equivalent Polyhedral Process

Network (PPN) descriptions. In the pn partitioning strategy, a

process is created for every statement and function call found

in the top-level of the program. In this way, the designers have

control over the granularity of the created partitions.

An example of a SANLP is given in Figure 2(a). A SANLP

consists of a set of statements and function calls, each possibly

enclosed in loops and/or guarded by conditions. The loops do not

have to be perfectly nested. All lower and upper bounds of the

loops as well as all expressions in conditions and array accesses

have to be affine functions of enclosing loop iterators and static

parameters. The parameters are symbolic constants, i.e., their

values can not change during the execution of the program.

Rather, parameter values determine different program instances.

In addition, data communication between function calls must

be explicit. For example, see function F3() at line 6 which

accepts i-th element of array y[] as an input argument. Providing

just a pointer to array y[] in this case is not allowed. The

above restrictions allow a compact mathematical representation

of a SANLP using the well-known polyhedral model [2]. The

SANLPs can be converted in an automated way into Polyhedral

Process Networks (PPNs) [1].

The target PPNs is a special case of the Kahn Process Networks

(KPNs) [3] model of computation. A PPN consists of concurrent

autonomous processes that communicate data in a point-to-point

fashion over bounded FIFO channels using blocking read/write

on an empty/full FIFO as synchronization mechanism. In ad-

dition, all code is expressed as parameterized polyhedrons [2],

which enables techniques for modeling, analysis, and SW/HW

synthesis in a systematic and automated way, and allows the

calculation of buffer sizes that guarantee deadlock-free execu-

tion [4]. In comparison, computing buffer sizes is not possible

for the more general KPN model. We are interested in the process

network model because it provides a sound formalism, well suited

for capturing and modeling of data-flow dominated applications

in the realm of multimedia, imaging, and signal processing,

that naturally contain tasks communicating via streams of data.

Moreover, it has been already shown that process networks allow

effective and efficient mappings of streaming applications to

certain parallel execution platforms [5]–[10].

Many scientific, matrix computation, and signal processing

applications can be specified as static affine nested loop pro-

grams (SANLPs), and therefore, the pn compiler [1] can be used

to derive equivalent parallel PPN specifications. However, many

multimedia applications, adaptive filters, iterative algorithms, etc.

have adaptive and dynamic behavior which can not be expressed

as SANLPs. In order to handle such dynamic applications, an

important question should be addressed, namely, whether some of

the restrictions of the SANLPs can be relaxed while keeping the

102978-1-4577-2122-9/11/$26.00 ©2011 IEEE ESTIMedia 2011

ability to perform compile-time analysis and to derive PPNs in an

automated way. Achieving this will significantly extend the range

of applications that can be parallelized in an automated way. We

propose the following three relaxations to SANLP programs:

1) allow dynamic if-conditions;

2) allow for-loops with dynamic bounds;

3) allow while-loops.

In [11], [12], the first two relaxations have been considered, i.e.,

how to translate affine nested-loop programs with dynamic if-

conditions and for-loops with dynamic bounds into input-output

equivalent PPNs in an automated way. In this paper, we consider

the third relaxation, while-loops, which is the most difficult of

all these relaxations. The main contribution of this paper is

a first approach for translation of affine nested loop programs

with while-loops (WLAP) into input-output equivalent PPNs.

This approach can be automated and implemented efficiently in

a compiler that will help to reduce significantly the time for

parallelizing sequential programs.

A. Motivating example

As a motivating example, we use a real-life application

from the signal processing domain called Adaptive Beamform-

ing (AB) [13]. With the description of the AB application below,

we present a program that has the specific dynamic behavior we

consider in this paper, and we outline the problems introduced by

this behavior.

Adaptive Beamforming is a signal processing technique which

performs adaptive spatial signal processing with an array of

antennas in order to transmit or receive signals in different

directions without having to mechanically steer the array. The

main property of the AB is the ability to adjust its performance

to match the changing signal parameters. Figure 1(a) illustrates

the AB application. Signals from three antennas are constantly

fed into an adaptive filter where they are processed together with

adaptive coefficients (ACs) w1-w3. ACs are needed to adjust the

signals and are recalculated for new signals received from the

antennas. This property makes the AB application to be widely

used in communications to point an antenna at the changing

signal source to reduce interference and improve communication

quality. That is why the AB is an important part of modern

wireless communication standards, such as IEEE 802.11n (Wifi),

4G, WiMAX, etc.

[w1, w2, w3]

A
n
te

n
n
a
s Adaptive Filter

SVD

(a) Adaptive beamforming applica-
tion

1 M = HouseHolder(M)

2 while (F(M)),

3 M = QR(M)

4 endwhile

(b) An example of a WLAP pro-
gram: the SVD algorithm

Fig. 1: Adaptive Beamforming and the SVD [14] algorithm.

The most computationally intensive part of the AB application

is the Singular Value Decomposition (SVD) algorithm. The SVD

algorithm performs a factorization of a matrix and is used to

produce ACs for the adaptive filter shown in Figure 1(a). Pseudo-

code of the SVD algorithm is illustrated in Figure 1(b). First,

a matrix is reduced to a bidiagonal form by the Householder

transformation at line 1, and then, the result is diagonalized using

an iterative QR algorithm at line 3. Iterative QR is an eigenvalue

algorithm, and is an example of a program which has dynamic

control. The program requires a while-loop at line 2 in Fig-

ure 1(b), as calculated values iteratively converge to eigenvalues

until desired precision determined by function F() is achieved.

The number of iterations to converge is unknown at compile-

time. Since the SVD algorithm cannot be specified as a static

program or a program with dynamic if-conditions considered

in [11] or for-loops with dynamic bounds considered in [12], the

pn compiler [1] as well as techniques from [11], [12] are unable

to handle the program in Figure 1(b). Therefore, in this paper,

we propose a solution approach to this problem by introducing a

novel procedure for automated translation of affine nested loops

programs with while-loops (WLAP) into input-output equivalent

PPNs.

Handling the dynamic behavior of while-loops is more difficult

compared to dynamic if-conditions and for-loops with dynamic

bounds. A for-loop with dynamic loop bounds can be replaced

by dynamic if-condition with some modifications as it has been

shown in [12]. However, a while-loop cannot be replaced by a

for-loop with dynamic bounds. Information about the number of

iterations of a while-loop is unknown until the loop has been

finished. Whereas the number of iterations of a for-loop with

dynamic bounds is known just before the loop starts to execute.

This absence of information in a while-loop requires much more

advanced analysis compared to analysis of for-loops. In this

paper, we demonstrate the analysis of while-loops in order to

translate WLAPs into input-output equivalent PPNs.

The remaining part of the paper is organized as follows. In

Section II we cover the related work. In Section III, we introduce

some notations and present a technique used to analyze sequential

programs with dynamic constructs. This is needed for better

understanding of the solution approach we propose and discuss

in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

The work presented in this paper is a significant extension

to previous works [11], [12], [15] on systematic and automated

derivation of process networks from affine nested loops programs.

Turjan et al. [15] proposed an automated derivation of process

networks from static affine nested loop programs (SANLPs). In

SANLPs the memory array subscripts, loop bounds and con-

ditional control structures are affine constructs of surrounding

loop iterators, program parameters and constants. Stefanov [11]

further developed a procedure for process network derivation

from more relaxed class of affine nested loop programs called

Weakly Dynamic Programs (WDPs). In this class of affine nested

loops programs, the conditions in if-statements may be dependent

on some data that is unknown at compile-time and may change

at run-time. Nadezhkin et al. [12] further extended the class of

WDP programs considered in [11] to programs with dynamic

for-loop bounds (Dynloop) from which PPNs can be derived

automatically. In contrast to the above mentioned techniques,

103

our approach presented in this paper deals with affine nested

loop programs with while-loops that currently cannot be handled

by [11], [12], [15] to derive PPNs.

There are a number of efforts which address the problem

of while-loops parallelization. Raman et al. [16] devise the

Parallel-Stage Decoupled Software Pipelining (PS-DSWP) multi-

threading technique to extract pipeline parallelism from codes

with irregular, pointer-based memory accesses and arbitrary con-

trol flow, which generally include while-loops. A parallel-stage

allows to obtain pipeline parallelism from some stages executed

in a DOALL fashion. In contrast, besides the pipeline- and

iteration-level parallelism, our approach supports also task- and

data-level parallelism. Moreover, we can generate parallel code

for multi-processor systems with distributed memory.

Rauchwerger et al. [17] focused on parallelizing while-loops

that are defined by one or more recurrences that can be detected

at compile-time; a reminder that can be either analyzed statically

or is unknown at compile-time; and one or more termination

conditions. Although, they were able to parallelize a while-loop

involving linked lists traversal, it is not shown how they would

tackle more general while-loops, which we consider in our work.

A series of similar works on parallelization of while-loops is

done by Griebl, Lengauer and Collard in [18]–[20]. Similar to

our approach, they perform array dataflow analysis to expose data

dependencies in an explicit way. Subsequently, they use space-

time restructuring techniques to generate the code for speculative

execution or software pipelining. Generally unscannable execu-

tion space that a while-loop provides, they scan with the help of

run-time computable predicates, that are also used for detection of

while-loops’ termination. Besides introducing an overhead at run-

time, these predicates limit the applicability of their approach to

shared memory systems. In contrast, our parallelization approach

targets multiprocessor systems with distributed memory.

Bijlsma [21] and Geuns [22] approach the problem of while-

loops parallelization by considering an initial program with

while-loops being in the local single assignment (LSA) form

where all data dependencies are explicit. They implement the

explicit data dependencies using circular buffers with overlapped

read and write windows. Specifying a program in a LSA form

can be very time consuming and error prone process because the

system designer has to do the dependence analysis manually. We

find this a very serious limitation of their work. By contrast, our

approach has an automatic data-dependence analysis procedure

which relieves the designer from the very difficult task to do the

manual dependence analysis.

A different approach is taken by Benabderrahmane et al. [23]

where they embed the control and exit predicates to the general

data-dependent control-flow programs with while-loops. This

predicates are used instead of while-loops as first-class citizens

of the algebraic representation. Subsequently, a polyhedral repre-

sentation is derived and code generation is performed from static

program analysis. In this approach, hiding all while-loops in al-

gebraic representations also diminishes the parallelism available

in the initial program as less information is visible for analysis.

By contrast, our technique exposes and utilizes all available

parallelism.

0 parameter N 1 10

1 for i = 1 to N,

S1: y[i] = F1()

3 for j = 1 to i,

S2: y[i] = F2()

5 endfor

S3: [] = F3(y[i])

7 endfor

(a) Static Affine Nested Loop Pro-
gram

0 parameter N 1 10

1 for i = 1 to N,

S1: y[i] = F1()

3 while (...),

S2: y[i] = F2()

5 endwhile

S3: [] = F3(y[i])

7 endfor

(b) Affine program with while-loop

Fig. 2: Examples of SANLP and WLAP programs.

III. BACKGROUND

In this section, we introduce some notations used through-

out the paper. Also, in Section III-B we formally describe a

state-of-the-art technique called Fuzzy Array Dataflow Analy-

sis (FADA) [24] used to analyze sequential programs with dy-

namic constraints. We introduce FADA because an important part

of the solution approach in Section IV is based on this technique.

A. Notations

All arrays in a WLAP program are indexed by affine functions

of static parameters and enclosing for-loop iterators only. An

iteration vector ~x of a statement in a WLAP program is built from

iterators of surrounding for- and while-loops. Although, an itera-

tor for a while-loop may not be explicitly mentioned in the source

code of a WLAP program, we can associate iterator w : 0 ≤ w

with the while-loop. The set of values of an iteration vector for

which a statement is executed represents an iteration domain,

denoted by D(). For example, the iteration domain of statement

S2 in Figure 2(b) is: D(S2) = {(i, w) | 1 ≤ i ≤ N ∧ 1 ≤ w}.

An evaluation of a single statement W on iteration ~x is called an

operation and denoted as 〈W,~x〉. By “≺” we denote ordering of

operations. An operation 〈W,~x〉 is evaluated before an operation

〈R, ~y〉 (〈W,~x〉 ≺ 〈R, ~y〉) according to the program sequence if:

1) ~x lexicographically precedes ~y; or 2) if ~x = ~y and statement W

precedes statement R in the program text. As described in [25],

order “≺" can be expanded to a system of linear inequalities. With

“max” we denote the lexicographical maximum operator. The

subvector of a vector ~x built from components k to l is written

as: ~x[k..l].

B. Fuzzy Array Dataflow Analysis

In this section, we formally describe the FADA analysis. We

introduce FADA because it is an important part of our solution

we present in Section IV. FADA allows for the compile-time de-

pendence analysis of programs where arbitrary if-conditions, for-

loops and while-loops are allowed. The goal of the dependence

analysis is to determine if evaluation of a statement depends on

evaluation of other statements and to find these evaluations. For

example, in the program depicted in Figure 2(b), the purpose of

the dependence analysis is to find whether statement S3 depends

on statements S1 or S2 via array y[] and at which iterations. Or

in other words, for every element of array y[] read at a given

iteration of statement S3, the dependence analysis finds which

statement, S1 or S2, and at which iteration it writes data to the

104

given array element. The result of the analysis forms the depen-

dency relations between iterations of statements writing/reading

to/from the array.

Consider two statement W and R of a WLAP program. Oper-

ation 〈W,~x〉 writes to and operation 〈R, ~y〉 reads from the same

array. Moreover, statement W is enclosed in a while-loop at depth

d. As a running example, consider Figure 2(b): statements S2

and S3 are W and R, respectively; statement S2 is enclosed in

the while-loop at depth 1. The iteration vector of statement S2

is ~x = (i, w). To find whether operation 〈W,~x〉 is a source for

operation 〈R, ~y〉, we need to build and solve a system of linear

inequalities:

QWR(~y, (~α, β)) = {~x | ~x ∈ D(W), ~x[1..d] = ~α,
1 ≤ ~x[d+ 1] ≤ β (c1)
IW (~x) = IR(~y), (c2)
〈W,~x〉 ≺ 〈R, ~y〉. (c3)

(1)

First, we explain the meanings of constraints (c2) and (c3).
Constraint (c2) specifies that if there is a dependency between

two operations, both have to access the same array element. To

access an array element, operation 〈W,~x〉 uses an affine indexing

function IW () and operation 〈R, ~y〉 uses an affine indexing func-

tion IR(). The (c3) constraint determines an order of operations,

i.e., source operation 〈W,~x〉 has to be evaluated before operation

〈R, ~y〉.
The meaning of constraint (c1) is the following. As statement

W is surrounded by a while-loop, exact operations of W cannot

be determined at compile-time. Thus, for any reading operation

〈R, ~y〉 it is impossible to determine the exact source operation.

The idea of the FADA algorithm is to introduce parameters which

would hide unknown information, i.e., parameters are used to

indicate at which iteration a writing operation 〈W,~x〉 may occur.

We do not know exactly at which iteration ~x ∈ D(W) writing

to the array occurs, but we assume that this happens for iterations

~x[1..d] = ~α and 1 ≤ ~x[d + 1] ≤ β. Vector ~x[1..d] is built of

iterators enclosing the while-loop, and iterator ~x[d + 1] is the

while-loop iterator. Parameter vector ~α captures the values of

loop iterators enclosing the while-loop, and parameter β indicates

the upper bound of the while-loop, i.e., we introduce a parameter

vector (~α, β). Both parameters are free parameters which values

have to be determined at run-time. Because source operations

satisfying system (1) are not exact, we call them approximated

sources.

There might be many operations of a single statement satisfy-

ing system (1), i.e., writing to the same array element. However,

we are interested in the last write operation before reading by

〈R, ~y〉 from the same element occurs. Therefore, the source

operation is the lexicographical maximum between all operations

satisfying system QWR(~y, (~α, β)):

KWR(~y, (~α, β)) = maxQWR(~y, (~α, β)). (2)

Finally, we need to consider all statements W1, . . . ,Wm writ-

ing to the same array element. For each Wk, k = [1..m], we

find approximated source. To find the source, we combine all

approximated sources as described in [24]:

σ(〈R, ~y〉, (~α, β)) =
max{〈Wk,KWkR(~y, (~α, β))〉 | k ∈ [1, m]}.

(3)

For example, consider again the WLAP depicted in Fig-

ure 2(b). There are two statements S1 and S2 writing to array y[]

and one statement S3 which reads from it. For every pair S1S3

and S2S3 we build the systems of linear inequalities (1) which

are depicted in Table I. To capture all evaluations of statement

S2, we introduce new iterator w which corresponds to the while-

loop at line 3. For pair S1S3 all operations of statement S1

are known and thus, a parameter is not introduced (see system

QS1S3
(i3) in Table I). However, for pair S2S3 (see system

QS2S3
(i3, (α, β)) in Table I), we introduce parameters α and β

as shown in system (1), because statement S2 is surrounded by

the while-loop at line 3 in Figure 2(b) and, thus, exact operations

of S2 cannot be determined at compile-time. These parameters

are used to designate at which iteration of S2 a writing to the

array y[] may occur. Values of the parameters are determined at

run-time.

QS1S3
(i3) QS2S3

(i3, (α, β))

1 ≤ i1 ≤ N 1 ≤ i2 ≤ N∧ (c1)

i2 = α ∧ 1 ≤ w ≤ β

i1 = i3 i2 = i3 (c2)

〈S1, i1〉 ≺ 〈S3, i3〉 〈S2, (i2, w)〉 ≺ 〈S3, i3〉 (c3)

TABLE I: Examples of system (1) for S1S3 and S2S3 pairs.

Approximated sources in S1S3 and S2S3 pairs are found

by solving the parametric integer linear problems (PILPs) for-

mulated in Table I. The “max” source defined in Equation 3

is determined by the recurrent algorithm of combining direct

dependencies described in Section 5.2 of [24]. Thus, the source

operation for statement S3: σ(〈S3, i3)〉, (α, β)) is:

if i3 = α ∧ β ≥ 1 then 〈S2, (α, β)〉

else 〈S1, i3〉.
(4)

From Solution 4 above, we see that for any read operation

〈S3, i3〉 there are two data sources: statements S1 or S2. When

for a given iteration i3 of statement S3, there is an iteration of

statement S2: (i2, w) = (α, β), such that for i3 = α there was at

least one iteration of the while-loop, i.e., β ≥ 1, then the source

is statement S2. Otherwise, the source is statement S1. Solution 4

is approximated, because it depends on parameters (α, β) that are

determined at run-time.

IV. SOLUTION APPROACH

In this section we present our compile-time approach for

translating WLAP programs into input-output equivalent PPNs.

The approach consists of four steps. First, we find all data-

dependency relations in the initial WLAP program by applying

the FADA analysis on it. Recall that the result of the analysis

is approximated, i.e., it depends on parameters which values

are determined at run-time. Second, based on the results of the

analysis, we transform the initial WLAP into a dynamic Single

Assignment Code (dSAC) representation. dSAC was proposed

in [11] as an extension of the SAC [25]. A dSAC program is input-

output equivalent to the initial program and it has the property

that every variable is written at most once. This implies that some

105

QS2S7
(i7) QS3S7

(i7, α, β) QS5S7
(i7, α, β)

1 ≤ i2 ≤ N 1 ≤ i3 ≤ N∧ 1 ≤ i5 ≤ N∧

i3 = α, 1 ≤ w3 ≤ β i5 = α, 1 ≤ w5 ≤ β (c1)

i5 + 1 ≤ j5 ≤ N + 1

— — — (c2)

〈S2, (i2)〉 ≺ 〈S7, (i7)〉 〈S3, (i3, w3)〉 ≺ 〈S7, (i7)〉 〈S5, (i5, w5, j5)〉 ≺ 〈S7, (i7)〉 (c3)

〈S2, (i7)〉

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S3, (α, β)〉

else ⊥ .

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S5, (α, β,N + 1)〉

else ⊥ .

SOLUTIONS

TABLE II: Systems of linear inequalities (1) for pairs S2S7, S3S7 and S5S7 in the program in Figure 3.

variables may not be written at all. We derive the dSAC program

using the FADA algorithm, therefore, parameters introduced by

FADA are present in the dSAC as well. The values of these

parameters in dSAC are assigned using control variables. The

generation of control variables constitutes the third step of our

solution approach. Control variables have been studied in [11],

[12] for programs containing dynamic if and for-loops, whereas,

in this paper, we present an extension to these procedures con-

cerning while-loops. In the last fourth step, the topology of the

corresponding PPN is derived, as well as the code executed in

each process. All these steps can be represented as transformation

of polyhedrons which we use for modeling the initial program and

the target PPN. In the remaining part of this section, we describe

the four steps in more detail and we also illustrate our solution

approach with the example shown in Figure 3.

1 parameter EPS 0.005

2 for i = 1 to N,

S1: y[i] = F1()

S2: x = F2(y[i])

W: while (x >= EPS)

S3: x = F3()

7 for j = i+1 to N+1,

S4: y[j] = F4(y[j-1])

S5: x = F5(x, y[j])

10 endfor

S6: y[i] = F6(x)

12 endwhile

S7: out = F7(x)

14 endfor

Fig. 3: A complex example of a WLAP program.

A. Step 1 (FADA analysis)

The formal description of the FADA algorithm has been given

in Section III-B. In this step of our solution approach, we

demonstrate the application of the FADA analysis on our running

example in Figure 3.

Consider the WLAP program in Figure 3. An application of

the FADA analysis on this program finds all data dependencies

between all functional statements communicating data via array

y[] and scalar x. We demonstrate in detail the application of the

FADA analysis in order to find source operations for scalar x read

in statement S7. For the other statements, we present the final

solutions only and discuss some important observations.

In order to be able to apply the FADA analysis to the program

in Figure 3, we have to capture all iterations of the while-loop

at line 5 in an explicit way. We associate an integer iterator w

with this while-loop. Later, we demonstrate the realization of this

iterator in the code.

The candidate source operations for statement S7 are in state-

ments S2, S3 and S5. Therefore, in order to find the source

operation for statement S7 we need to apply the FADA algorithm

presented in Section III-B on pairs S2S7, S3S7 and S5S7. Ac-

cording to FADA, for all these pairs we build the systems of linear

inequalities shown in Table II which correspond to Equation 1.

Constraint c1 in Table II describes all possible source iterations

of statements S2, S3 and S5. Constraint c2 is not stated as data is

communicated via scalar x. Parameters (α, β), store the iteration

point (i5, w5) of statement S5 and iteration point (i3, w3) of

statement S3 when writing to scalar x may occur.

Solutions to the three parametric integer linear problems stated

in Table II are shown in the last row of Table II. For example, in

pair S5S7 the source operation for x is statement S5 if condition

β ≥ 1 ∧ 1 ≤ α ≤ i7 evaluates to true. Otherwise, the source

for x is not statement S5 which is designated by ⊥. In this case,

statement S7 will use either the value of x assigned somewhere

else in the code, or the initial value of x.

Finally, after combining the three solutions in Table II, the

approximated source operation defined in Equation 3 for scalar

x read in statement S7 is:

σx(〈S7, (i7, α, β)〉) =

∣

∣

∣

∣

∣

∣

∣

if (β ≥ 1 ∧ 1 ≤ α ≤ i7)

then 〈S5, (α, β,N + 1)〉

else 〈S2, i7〉

(5)

From Solution 5 above, we see that for read operation

〈S7, (i7, α, β)〉 there are two possible source operations. De-

pending on the values of the parameter vector (α, β), the source

operation is either in statement S2 or in statement S5. The values

of the parameter vector will be determined at run-time.

Similarly, we find the source operations for the other state-

ments. Figure 4 shows the source σ functions only for statements

S4, S5, S6 and W that include non-trivial dependencies that exist

in the program in Figure 3.

B. Step 2 (Initial dSAC)

The solutions provided by FADA are used to transform the

initial WLAP program in order to expose the identified depen-

106

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

S1: y_1[i] = F1()

5 in_2 = y_1[i]
S2: x_2[i] = F2(in_2)

W while (in_w = σx(〈W, (i, w)〉) >= EPS),
8 w = w + 1
S3: x_3[i,w] = F3()

10 for j = i+1 to N+1,

11 in_4 = σy(〈S4, (i, w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

13 in_5_x = σx(〈S5, (i, w, j)〉)
14 in_5_y = y_4[i,w,j]
S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

16 endfor

17 in_6 = σx(〈S6, (i, w)〉)
S6: y_6[i,w] = F6(in_6)

19 endwhile

20 in_7 = σx(〈S7, (i, α, β)〉)
S7: out = F7(in_7)

22 endfor

(a) Initial dSAC

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)
4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W while (in_w = σx(〈W, (i, w)〉) >= EPS).

9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i, w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i, w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)
18 endfor

19 in_6 = σx(〈S6, (i, w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 (α, β) = ctrl_x_5
23 in_7 = σx(〈S7, (i, α, β)〉)
S7: out = F7(in_7)

25 endfor

(b) Modified dSAC with control variable

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)

4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W while (in_w = σx(〈W, (i, w)〉) >= EPS),

9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i, w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i, w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)

18 endfor

19 in_6 = σx(〈S6, (i, w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 ctrl_x_5_[i] = ctrl_x_5

23 (α, β) = ctrl_x_5_[i]
24 in_7 = σx(〈S7, (i, α, β)〉)
S7: out = F7(in_7)

26 endfor

(c) Final dSAC

Fig. 5: Examples of the initial dSAC, the modified dSAC with control variables and the final dSAC.

σy(〈S4, (i4, w4, j4)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j4 = i4 + 1)

then

∣

∣

∣

∣

∣

∣

∣

if (w4 = 1)

then 〈S1, i4〉

else 〈S6, (i4, w4 − 1)〉

else 〈S4, (i4, w4, j4 − 1)〉

(6)

σx(〈S5, (i5, w5, j5)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j5 = i5 + 1)

then

∣

∣

∣

∣

∣

∣

∣

if (w5 = 1)

then 〈S3, (i5, w5)〉

else 〈S5, (i5, w5 − 1, N + 1)〉

else 〈S5, (i5, w5, j5 − 1)〉

(7)

σx(〈S6, (i6, w6)〉) = 〈S5, (i6, w6, N + 1)〉 (8)

σx(〈W, (iW , wW)〉) =

∣

∣

∣

∣

∣

∣

∣

if (wW == 1)

then 〈S2, iW 〉

else 〈S5, (iW , wW − 1, N + 1)〉

(9)

Fig. 4: Source operations for statements S4,S5,S6 and W of

the WLAP program in Figure 3.

dencies in an explicit way. The transformed program shown in

Figure 5(a) is in dynamic Single Assignment Code (dSAC) form.

The dSAC is an extension of the SAC introduced in [25]. In

contrast to SAC where every variable is written exactly once, in

dSAC every variable is written at most once. This implies that

some of the variables may not be written at all.

Based on the solutions in the previous step, we transform

the initial WLAP program in Figure 3 and generate the dSAC

in Figure 5(a) by inserting the highlighted (bolded) code lines

into the initial WLAP program. The inserted code is needed to

implement array element accesses such that the data dependences

in the initial program are respected. The Right-Hand Side (RHS)

of code lines 7,11,13,17 and 20 implement the source σ functions

depicted in Solution 5 and in Figure 4 found by FADA in the

previous step of our solution approach. These source σ functions

should be interpreted as code lines determined by Solution 5 and

the solutions in Figure 4. For example, variable in_5_x at line

13 in Figure 5(a) is assigned by the source σx function defined

by Solution 7 in Figure 4. This solution finds a source for scalar

x read in statement S5 at line 9 in Figure 3. The whole line 13

in Figure 5(a) should be interpreted as the code in Figure 6. The

code represents the σx function defined by Solution 7. Similarly,

the other σ functions are represented in the code of dSAC.

Additionally, we transform the while-loop at line 5 in the initial

program in Figure 3 in order to implement data dependency

relations for the while-loop’s condition. First, we introduce the

iterator w in order to capture all iterations of the while-loop. This

iterator is initialized at line 2 and explicitly incremented at line

8 in Figure 5(a). Second, we replace line 5 in the initial program

in Figure 3 with line 13 in Figure 5(a) implementing the same

condition function. The source σx function defined by Solution 9

in Figure 4 should be interpreted in the same way as explained

above.

if (j == i+1),

if (w == 1),

in_5_x = x_3[i,w]

else

in_5_x = x_5[i,w-1,N+1]

endif

else

in_5_x = x_5[i,w,j-1]

endif

Fig. 6: An interpretation

of σx function for state-

ment S5.

Recall that to deal with a while-

loop, the FADA algorithm intro-

duces a vector of parameters to the

solutions. In our example, a vector

of parameters (α, β) is introduced

at line 20 in Figure 5(a) by Solu-

tion 5. At this line, a source oper-

ation for scalar x read in RHS of

statement S7 is determined. Solu-

tion 5 is approximate, as the poten-

tial source statement S5 is inside

the while-loop. Parameter α is re-

lated to iterator i and takes values

α ∈ [1..N]. Parameter β is related to iterator w and takes values

β ≥ 1. The meaning of the parameter vector values in this

program is to indicate the last iteration (i, w) when statement

107

S5 has been executed. The values of parameters α and β are

determined at run-time, during program execution. Therefore,

we need a mechanism to generate and propagate the values of

parameters at run-time in a way that keeps the correct program

behavior.

C. Step 3 (Control variables)

In order to keep the functionality of the dSAC equivalent to the

functionality of the initial dynamic program with while-loops, we

introduce control variables used to propagate parameter values

at run-time. That is, an array of control variables is added for

every parameter vector introduced by FADA. A control variable is

used to store a parameter vector value for every iteration. For our

running example, a new control variable ctrl_x_5 is introduced

at lines 3, 17 and 22 in the program shown in Figure 5(b). It

stores parameter vector (α, β), derived by FADA in Step 1 of

our solution approach. To access a control variable, we use the

same indexing function as in the corresponding data array. In

our example, the new control variable ctrl_x_5 is a scalar, as

it corresponds to the data scalar x.

The control variables must be initialized with values that are

never taken by the corresponding parameters. Recall that for our

example, parameter α ∈ [1..N] and β ≥ 1. Therefore, the

corresponding control variable ctrl_x_5 is initialized at line

3 in Figure 5(b) as follows: ctrl_x_5 = (N+1,0). Parameter

β that corresponds to the iterator w is always initialized to 0

which indicates that the corresponding while-loop has not been

executed.

Writing to the control variables is performed just after the

writing to the corresponding data array. For example, control

variable ctrl_x_5 is written right after function F5(), see

line 17 in Figure 5(b). This guarantees that when a function is

executed, the current iteration is stored in a control variable. The

value of control variable ctrl_x_5 is propagated and assigned

to the parameters α and β at line 22. These parameters are used

to evaluate the source σx function at line 23 corresponding to

Solution 5 which determines the source for the data read by

function F7 at line 24. With the introduction of the control

variables to the program shown in Figure 5(b), this program is

input-output equivalent to the initial program in Figure 3.

Additional control variables

Unfortunately, introducing control variables to the dSAC code

violates the property that "every variable is written at most

once”. For example, control variable ctrl_x_5 that initializes

parameter vector (α, β) at line 22 in Figure 5(b) is not in a

single assignment form, i.e., ctrl_x_5 may be written more

than once at line 17. Therefore, the program in Figure 5(b) is

not a dSAC anymore, and we cannot create a FIFO channel from

control variable ctrl_x_5. In order to be able to create a process

network, as discussed later in Step 4, and most importantly, to

create the FIFO channels used for transferring control and data,

the corresponding variables must be in a single assignment form.

In order to represent the program in Figure 5(b) as dSAC,

we need to identify the relation between writing to and reading

from the control variables. Thus, we need to perform dataflow

analysis for the control variables, where the writings to them

occur inside a while-loop. We achieve this in the following way.

While keeping the same functionality, we introduce additional

control variable ctrl_x_5_ right after the while-loop, see line

22 in Figure 5(c). This program is input-output equivalent to the

program in Figure 5(b). The new control variable is written at

every iteration of for-loop i and takes the value either of control

variable ctrl_x_5 assigned on the last iteration of the while-

loop, or its initial value, if the while-loop is not executed. On

this new control variable ctrl_x_5_ we can perform the static

exact array dataflow analysis (EADA) [25]. We can always do

this, because the new control variable is not surrounded by the

dynamic while-loop. The solution of EADA is used to modify

the program in Figure 5(b) into the program in Figure 5(c) by

inserting one-dimensional arrays ctrl_x_5_[i] at lines 22 and

23. The program in Figure 5(c) is in a dSAC form because the

new control variable ctrl_x_5_[] used to initialize parameter

vector (α, β) is in a single assignment form, thus allowing us to

create a FIFO channel to communicate values of control variable

ctrl_x_5_[].

Finally, the program shown in Figure 5(c) is functionally

equivalent to our running example shown in Figure 3. In the next

step, we explain how to generate a process network from the

program in Figure 5(c).

D. Step 4 (PPN generation)

Recall that a PPN consists of autonomous processes that com-

municate data in a point-to-point fashion over bounded FIFO

channels. In this last step of our solution approach, we describe

how the processes and FIFO channels are created from the

corresponding final dSAC program derived in the previous step.

The procedure of PPN generation consists of 4 substeps. First,

based on the final dSAC representation of a WLAP program

derived in the previous step, the topology of the PPN is created.

The topology is formed by instantiating processes and communi-

cation channels. Second, internal code structure of each process is

derived from the dSAC specification. It is important to note, that

in this substep, the created communication channels are not FI-

FOs but multi-dimensional arrays. Third, the multi-dimensional

arrays that are used for data communication between function

statements in the dSAC are replaced by FIFO channels. In other

words, we replace the multi-dimensional array accesses in the

code of each process with a read/write primitives to implement

synchronization through blocking read/write on FIFO communi-

cation channels. Fourth, the internal code structures of processes

are modified to avoid the overflow of while-loop iterators which

may lead to erroneous behavior of a PPN. Below, we explain the

four substeps in more detail using the dSAC in Figure 5(c).

P1

P2y_1[]

P4

y_4[]

W

x_2[] P7

x_2[]

P3

P5

P6

ctrl_x_5_[]

y_6[]

Fig. 7: PPN representation of the program in Figure 5(c).

108

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),
5 w = w + 1

6 if (w == 1),

7 in_w = x_2[i]

8 else

9 in_w = x_5[i,w-1,N+1]

10 end

11 C[i,w] = (in_w >= EPS)
12 if (!C[i,w]) <break>
13 endwhile

14 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),
5 w = w + 1

6 in_w = C[i,w]
7 if (!in_w) <break>
8 for j = i+1 to N+1,

9 if (j == i+1),

10 if (w == 1),

11 in_5_x = x_3[i,w]

12 else

13 in_5_x = x_5[i,w-1,N+1]

14 endif

15 else

16 in_5_x = x_5[i,w,j-1]

17 endif

18 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

20 ctrl_x_5 = (i,w)

21 endfor

22 endwhile

23 ctrl_x_5_[i] = ctrl_x_5

24 endfor

(b) Code of process P5

0 w = 0

2 for i = 1 to N,

3 (α,β) = ctrl_x_5_[i]

4 if (β>=1 && 1<= α <= i),

5 in_7 = x_5[α,β,N+1]

6 else

7 in_7 = x_2[i]

8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Fig. 8: Internal source codes of processes W , S5 and S7.

Substep 1: Topology creation of a PPN

The PPN that corresponds to the program in Figure 5(c) is

depicted in Figure 7. This PPN consists of 8 processes and 18

channels. We explain how these processes and communication

channels are created.

In our approach, one process is created for every function state-

ment in the dSAC program, and one process is created for every

while-loop’s condition function. The latter process is needed to

detect a while-loop’s termination and notify the processes that

execute functions enclosed in this while-loop. Therefore, the PPN

in Figure 7 has 7 processes, P1–P7, that correspond to functions

F1–F7 in Figure 5(c); and one process W which corresponds to

the while-loop’s condition function W at line 8 in Figure 5(c).

The 18 communication channels correspond to data and control

arrays in a single assignment form in the dSAC in Figure 5(c).

Recall that data arrays in a single assignment are introduced

after application of the FADA analysis on the WLAP program

in Figure 3 as described in Step 1 of our solution approach. The

control variables, i.e., array ctrl_x_5_[i] is introduced and

transformed in a single assignment form in Step 3 of our solution

approach. In the following substep, we describe how the internal

code structure of each process is generated.

Substep 2: Code generation

Let us consider Figure 8, which illustrates the internal code

structures of processes W , P5 and P7 of the PPN in Figure 7.

Process W is an example of a process detecting the termination

of the while-loop at line 5 in Figure 3. Process P5 is an example

of a process executing a function enclosed in the while-loop.

Process P7 is an example of a process that runs a function outside

the while-loop and has a data dependency with a function inside

the while-loop. Below, we will use them as examples to explain

how the internal code structure of each process in the PPN is

generated.

The internal code structure of each process is generated from

the dSAC program derived in Step 3 of our solution approach. The

code structure of each process is extracted from the code lines

of the dSAC program. For example, all non highlighted (non-

bolded) code lines in Figure 8 are taken from dSAC in Figure 5(c)

expanding all σ source functions as explained in Section IV-B and

illustrated in Figure 6. At this point, the PPN is not functionally

equivalent to the dSAC program because for processes enclosed

in a while-loop the termination problem is not solved yet.

To address this problem, process W is introduced which de-

tects the termination of the while-loop. This process evaluates the

while-loop’s condition function and propagates the result to all

processes that execute functions enclosed in this while-loop. This

behavior is implemented in the highlighted (bolded) code at lines

4, 11 and 12 in Figure 8(a). Note, that lines 6–10 realize the inter-

pretation of σx function defined in Solution 9 in Figure 4. A new

array C[i,w] is added to propagate the value of the while-loop’s

condition function via FIFO to other processes. Correspondingly,

we modify the code of process P5 in Figure 8(b) at lines 4, 6 and

7, where the information about while-loop termination is received

and used. As process P7 executes function F7 which is outside

the while-loop, no such modification is needed.

At this point, the processes of the PPN communicate data via

multi-dimensional arrays. In the following substep, we explain

how the multi-dimensional arrays are replaced with FIFO chan-

nels. This process is called Linearization.

Substep 3: Linearization

Processes W , P5 and P7 depicted in Figure 8 are connected

with communication channels which are the multi-dimensional

arrays inherited from the dSAC shown in Figure 5(c). However,

the processes in our target PPN have to synchronize using a

blocking read/write on an empty/full FIFO channel, i.e., an ex-

ecution of a process is suspended if it tries to read from an empty

FIFO channel, or tries to write to a full channel, respectively.

Therefore, in order to synthesize a PPN, the multi-dimensional

array accesses have to be replaced with corresponding write and

read operations on FIFO channels. This is called “linearization”.

109

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2
7 if (w == 1),

8 read(P2, 1, in_w)
9 else

10 read(P5, 2, in_w)
11 end

12 out_w = (in_w >= EPS)

13 write(P3, 3, out_w)
14 write(P4, 4, out_w)
15 write(P5, 5, out_w)
16 write(P6, 6, out_w)
17 if (!out_w) <break>
18 endwhile

19 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2
7 read(W, 1, in_w)
8 if (!in_w) <break>

9 for j = i+1 to N+1,

10 if (j == i+1),

11 if (w == 1),

12 read(P3, 2, in_5_x)
13 else

14 read(P5, 3, in_5_x)
15 endif

16 else

17 read(P5, 4, in_5_x)
18 endif

19 read(P4,5, in_5_y)
S5: out_5 = F5(in_5_x, in_5_y)

21 ctrl_x_5 = (i,w)

22 if (j == N+1),
23 write(P5, 6, out_5)
24 else
25 write(P5, 7, out_5)
26 endif
27 endfor

28 endwhile

29 out_5_c = ctrl_x_5

30 out_5_x = out_5
31 write(P7, 8, out_5_c)
32 write(P7, 9, out_5_x)
33 endfor

(b) Code of process P5

1 w = 0

2 for i = 1 to N,

3 read(P5, 1, in_c)
4 if (in_c.β>=1 && 1<= in_c.α <= i),

5 read(P5, 2, in_7)
6 else

7 read(P2, 3, in_7)
8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Fig. 9: Processes W , P5, and P7 after linearization of multi-dimensional arrays.

To implement the Linearization, we adapted the approaches

proposed in [26], [27]. In these works, the communication char-

acteristics are identified when exchanging data between pair of

statements. Based on this information, the multi-dimensional

array accesses are replaced with one-dimensional array accesses.

The result of the linearization applied on the arrays used in the

internal source codes of the processes in Figure 8 is shown in

Figure 9. In each process, the multi-dimensional arrays accesses

are substituted by reading/writing primitives from/to FIFO chan-

nels. The communication read/write primitives access the FIFO

channels through ports. That is, every process has a set of input

ports and a set of output ports connected to FIFO channels. For

example, process P5 in Figure 9(b) reads from process W and

itself via ports 1, 3 and 4 at lines 7, 14 and 17. These input

ports are connected with output port 5 of processes W , and

output ports 6 and 7 of process P5, correspondingly. Internally,

the read/write primitives realize the blocking synchronization

between processes.

Additionally, we want to discuss how buffer sizes in FIFO

channels of a PPN derived from a WLAP program are deter-

mined. In our procedure we use the method of buffer sizes

estimation presented in [1]. Although this method accepts as an

input a PPN derived from a static program, we explain how we

adapt our procedure to use this method.

There are two types of channels in a PPN derived from a

WLAP program: control and data channels. Control channels

realize data dependencies between control variables. These de-

pendencies are static and unique by construction. Therefore, we

can safely use the method from [1] to determine buffer sizes

in control channels. Data channels realize data dependencies

between function statements of a program. In contrast to static

programs, in WLAP programs data dependency relations are not

static as some of the statements are enclosed in while loops.

Therefore, the rate and the exact amount of data tokens that

will be transferred over a particular data channel is unknown at

compile-time, and we cannot directly use the method from [1] to

determine buffer sizes.

However, with the following observation we are still able to

determine buffer sizes. Consider two cases. First, if data depen-

dency relation exists across a while-loop, i.e., a source statement

is enclosed in the loop and the sink statement is outside, the

while-loop acts as a barrier meaning that only the data from the

last iteration of the while-loop has to be transferred to the sink.

Therefore, in the code after a while-loop we can reconstruct a

producer domain based on the data dependency relations with the

data written on the last iteration of the while-loop. Next, we use

the method from [1] to determine the buffer sizes of these data

dependency relations. Second, if a data dependency relation exists

between statements which are both enclosed in a while-loop, then

based on Property 1 presented below, and that w is not used in

indexing we can use the method from [1] to determine the buffer

sizes.

Substep 4: Implementation of a while-loop’s iterator w

The PPN generated in the previous three substeps has a prob-

lem: potentially, iterator w may overflow the finite set of values

determining the data type of the iterator. For example, if iterator w

is specified by a 32-bit integer data type, the overflow may occur

at line 5 in Figure 9(a) if the while-loop iterates more than 232

times. As a consequence, it may lead to erroneous evaluation of

110

the σ functions expanded in the previous code generation substep,

and, finally, to erroneous behavior of a PPN. To address this

problem, we show that it is sufficient to capture only 2 values

of iterator w. To prove this, we use the following Property.

Consider two statements W and R, and operations 〈W,x〉 and

〈R, y〉, where the first operation writes to an array and the second

operation reads from the same array. Both statements W and R

are governed by a while-loop located at depth k.

Property 1 In the solution of the FADA algorithm applied on

WR pair, the k+1-th dimension of mapping function M(~y) can

be in one of the two forms: ~y[k + 1] and ~y[k + 1]− 1.

Proof: According to Property 1 in [24], the solution defined

by Equation 1 in Section III-B is exact, and iterator ~y[k+1] asso-

ciated with the while-loop is present in sequencing predicate (c3)
only. Consider the expressions of Q

p
WR(~y):

• If k < p, then the sequencing predicate includes ~x[1..k +
1] = ~y[1..k + 1], and, thus, the lexicographical maximum

of Q
p
WR(~y) along k + 1-th dimension is ~y[k + 1].

• If k = p, then the sequencing predicate includes ~x[1..k] =
~y[1..k]∧~x[k+1] < ~y[k+1], and, thus, the lexicographical

maximum of Q
p
WR(~y) along k + 1-th dimension is ~y[k +

1]− 1.

Initially, iterator w which is associated with a while-loop is

initialized with value 0. This indicates that the while-loop has

never been executed. From Property 1 and the fact, that only non-

negative values of w determine source evaluations of statements

enclosed in the while-loop, we conclude that it is needed to

capture only 2 values of w: w = 1, meaning that the data

dependency is at the same iteration of the while-loop; and w ≥ 2,

meaning that the dependency is at the previous iteration of the

while-loop. The abovementioned reasoning allows us to modify

the internal code structures of processes generated in the previous

substep without altering their functionality. We introduce the code

that captures only two values of iterator w. For example, see lines

6 in Figures 9(a) and 9(b).

V. CONCLUSION

In this paper, we presented an approach for automated transla-

tion of affine nested loops programs with while-loops (WLAPs)

into input-output equivalent polyhedral process networks (PPNs).

Leveraging the data dependence analysis, this approach extracts

the maximum parallelism available in an application. Every step

of our approach is the transformation of polyhedrons which we

use for modeling. Therefore, our approach can be automated

and implemented efficiently in a compiler that will help to re-

duce significantly the time for parallelizing sequential programs

containing while-loops. The approach presented in this paper

includes only basic techniques that have to be applied in order

to derive a PPN automatically from a WLAP program.

REFERENCES

[1] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved
derivation of process networks,” EURASIP J. Embedded Syst., vol. 2007,
no. 1, pp. 19–19, 2007.

[2] P. Feautrier, “Automatic parallelization in the polytope model,” in The

Data Parallel Programming Model, ser. LNCS, vol. 1132, 1996, pp.
79–103.

[3] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proc. of the IFIP Congress 74. North-Holland Publishing
Co., 1974.

[4] H. Nikolov, T. Stefanov, and E. F. Deprettere, “Systematic and automated
multiprocessor system design, programming, and implementation,” IEEE

Trans. on CAD of Integrated Circuits and Systems, vol. 27, no. 3, pp.
542–555, 2008.

[5] T. Stefanov et al., “System Design using Kahn Process Networks: The
Compaan/Laura Approach,” in Proc. DATE, Feb. 2004, pp. 340–345.

[6] E. de Kock, “Multiprocessor Mapping of Process Networks: A JPEG
Decoding Case Study,” in Proc. 15th Int. Symposium on System Synthesis

(ISSS’2002), Kyoto, Japan, Oct. 2-4 2002, pp. 68–73.
[7] K. Goossens et. al, “Guaranteeing the Quality Of Services in Networks

On Chip,” in Networks on Chip. Kluwer Publishers, 2003, pp. 61–82.
[8] B. Dwivedi et. al, “Automatic Synthesis of System on Chip Multipro-

cessor Architectures for Process networks,” in Proc. CODES+ISSS, Sep.
2004.

[9] J. Castrillon et al., “Trace-based kpn composability analysis for mapping
simultaneous applications to mpsoc platforms,” in Proc. of DATE’2010,
2010.

[10] W. Haid et al., “Efficient execution of kahn process networks on multi-
processor systems using protothreads and windowed fifos,” in Proc. of

ESTIMedia. Grenoble, France: IEEE, 2009, pp. 35–44.
[11] T. Stefanov, “Converting Weakly Dynamic Programs to Equivalent

Process Network Specifications,” 2004, PhD thesis, Leiden University,
The Netherlands, ISBN: 90-9018629-8.

[12] D. Nadezhkin, H. Nikolov, and T. Stefanov, “Translating Affine Nested-
Loop Programs with Dynamic Loop Bounds into Polyhedral Process
Networks,” in Embedded Systems for Real-Time Multimedia (ESTIMe-

dia), 2010, Scottsdale, AZ, USA, October 2010, pp. 21–30.
[13] T.-J. Shan and T. Kailath, “Adaptive beamforming for coherent signals

and interference,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 33, pp. 527–536, 1985.
[14] G. Golub and C. Reinsch, “Singular value decomposition and least

squares solutions,” Numerische Mathematik, vol. 14, pp. 403–420, 1970.
[15] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating Affine Nested-

loop Programs to Process Networks,” in Proc. CASES’04, Washington
D.C., USA, Sep. 23-25 2004.

[16] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,
“Parallel-stage decoupled software pipelining,” in Proc. 6th annual

IEEE/ACM international symposium on Code generation and optimiza-

tion, New York, NY, USA, 2008, pp. 114–123.
[17] L. Rauchwerger and D. Padua, “Parallelizing while loops for multi-

processor systems,” in In Proceedings of the 9th International Parallel

Processing Symposium, 1995.
[18] J.-F. Collard, “Automatic parallelization of while-loops using speculative

execution,” Int. J. Parallel Program., vol. 23, pp. 191–219, April 1995.
[19] M. Griebl and J.-F. Collard, Generation of Synchronous Code for

Automatic Parallelization of while-loops. EURO-PAR’95, Springer-
Verlag LNCS, number 966, pp. 315-326, 1995.

[20] M. Griebl and C. Lengauer, “A communication scheme for the dis-
tributed execution of loop nests with while loops,” Int. J. Parallel

Programming, vol. 23, 1995.
[21] T. Bijlsma, M. J. G. Bekooij, and G. J. M. Smit, “Inter-task communica-

tion via overlapping read and write windows for deadlock-free execution
of cyclic task graphs,” ser. SAMOS’09, 2009, pp. 140–148.

[22] S. Geuns, T. Bijlsma, H. Corporaal, and M. Bekooij, “Parallelization
of While Loops in Nested Loop Programs for Shared-Memory Multi-
processor Systems,” in Proc. Int. Conf. Design, Automation and Test in

Europe (DATE’11)", Grenoble, France, Mar 14–18 2011.
[23] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul,

“The polyhedral model is more widely applicable than you think,”
in Proc. International Conference on Compiler Construction (ETAPS

CC’10), Paphos, Cyprus, 2010.
[24] D. B. Jean-Francois, J. francois Collard, and P. Feautrier, “Fuzzy array

dataflow analysis,” in Journal of Parallel and Distributed Computing,
1997, pp. 92–102.

[25] P. Feautrier, “Dataflow Analysis of Scalar and Array References,”
Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53, 1991.

[26] A. Turjan, B. Kienhuis, and E. Deprettere, “Realizations of the extended
linearization model in the compaan tool chain,” in Proceedings of the

2nd Samos Workshop, Samos, Greece, Aug. 2002.
[27] D. Nadezhkin and T. Stefanov, “Identifying Communication Models in

Process Networks Derived from Weakly Dynamic Programs,” in Proc.

SAMOS X, July 2010, pp. 372–379.

111

