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ABSTRACT

We use the polyhedral process network (PPN) model of com-
putation to program and map streaming media applications onto
embedded Multi-Processor Systems on Chip (MPSoCs) platforms.
In previous works, it has been shown how to apply different process
network transformations in isolation. In this work, we present a
holistic approach combining the process splitting and merging trans-
formations and show that it is necessary to use both transformations
in combination to achieve the best performance results, which cannot
be achieved using only one transformation. We solve the problem of
ordering both transformation and, in addition, relieve the designer
from the task to select the processes on which the transformation
should be applied. Thus, our approach combines both transformations
exploiting the data-level parallelism available in a PPN as much
as possible, even in cases where the parallelism is restricted by
topological cycles and stateful processes in the PPN.

I. INTRODUCTION

The programming of streaming media applications for em-
bedded Multi-Processor System on Chips (MPSoCs) is a
notorious difficult and time consuming task as it involves the
partitioning of applications and synchronization of different
program partitions. To address these issues, the pn compiler
[1] has been developed. It derives Polyhedral Process Net-
works (PPNs) from sequential nested-loop programs. This is
illustrated in Figure 1 (denoted by arrow I). If, for example,
the input is a sequential program with 3 program statements,
then the output of the pn compiler is a PPN consisting of 3
processes.

Polyhedral Process Networks [2] is a special class of Kahn
Process Networks (KPNs) [3]. A PPN consists of autonomous
processes that communicate and synchronize over FIFO chan-
nels using blocking FIFO read and write primitives. The
functional behavior of each process is expressed in terms of
polyhedral descriptions. Thus, everything about the execution
is known at compile-time, which allows the calculation of
buffer sizes and schedules for merging processes. Applica-
tions specified as (polyhedral) process networks allow a more
natural mapping of processes to processing elements of the
MPSoC architecture than a sequential program specification
[4]. In the pn partitioning strategy, a process is created for each
function call statement in the nested loop program as shown
in the example in Figure 1. Such a partitioning strategy may
not necessarily result in a PPN that meets the performance or
resource requirements. To meet these requirements, a designer
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Fig. 1. Deriving and Transforming Process Networks

can apply transformations to increase parallelism by splitting
processes as defined in [5], or to decrease parallelism by
merging processes into a single component as defined in [6].
In Figure 1, arrow II is an example of applying the process
splitting transformation on process P1 . The transformed net-
work has two processes P1 executing the same function such
that the data tokens are delivered twice faster to the consumer
process P2 . Arrow III is an example of transforming the
initial PPN by applying the merging transformation on pro-
cesses P2 and P3 to create compound process P23 . Although
the process splitting and merging transformations have been
defined in [5], [6], no hints were given how to apply these
transformations. This is necessary as there are many options
to apply a transformation and many factors should be taken
into account to achieve good performance results. The problem
how to apply each transformation has been addressed in [7]
and [8], where compile-time approaches for each of these
transformations have been defined in isolation. However, still a
remaining challenge is to devise a holistic approach to help the
designer in transforming and mapping PPNs onto the available
processing elements of the provided target platform to achieve
even better performance results using the two transformations
in combination.
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Problem Definition and Paper Contributions

The pn compiler derives Polyhedral Process Networks
(PPNs) from sequential program specifications. Recall that
there are two parameterized transformations that play a vital
role in meeting the performance/resource constraints: i) the
process splitting transformation to create multiple instances
of the same process to better distribute the workload, and ii)
the process merging transformation to reduce the number of
processes in the network by sequentializing them in a com-
pound process. The former transformation is parameterized in
the sense that a given process can be split up in many different
ways, and the designer must choose a specific splitting factor
(i.e., the number of created copies). For the latter, it is obvious
that the designer must decide which processes to merge. The
problem is that, for both transformations, the designer must
select a particular process(es) to apply the transformations on
in order to achieve good results. This is not a straightforward
task as we explain in Section III-B. In addition to this, both
transformations can be applied one after the other and in a
different order with different parameters which may, or may
not, give better results than applying one transformation only.
Therefore, in this paper we:

1) investigate whether applying the two transformations in
combination can give better performance results than
applying only one,

2) propose a solution approach that solves the very difficult
problem of determining the best order of applying the
transformations and the best transformation parameters,

3) relieve the designer from the challenging task of select-
ing processes on which the applied transformations have
the largest positive performance impact, and

4) present a solution approach that exploits all available
data-level parallelism in cyclic PPNs and/or PPNs with
stateful processes.

II. MOTIVATING EXAMPLES

In this section, we investigate whether applying both the
process splitting and merging transformations in combination
gives better performance results than using only one transfor-
mation. Consider the initial and transformed PPNs in Figure 1.
Each process Pi is annotated with a workload number, to
which we refer as WPi

:

WPi
= C

Pi + x · CRd + y · CWr
, (1)

where CPi denotes the number of time units required to
execute the process function once, x and y denote how many
FIFOs are read and written per process firing, and CRd and
CWr denote the communication costs, i.e., the numner of time
units required to read/write a single token from/to a FIFO
channel. Note that the costs for the process function CPi and
FIFO communication CRd and CWr are modeled with con-
stants, because we assume that CPi is the worst case execution
time of the function, and for constant communication costs we
rely on MPSoC platforms that provide an interconnect with
guaranteed services, i.e., the ESPAM platform [9] in our case.

Process P1 in Figure 1, for example, needs 10 time units,
i.e., WP1 = 10, while P2 is computationally less intensive
process as it takes 6 time units, i.e., WP2 = 6. Process
P3 needs only 1 time unit, respectively. Process P1 deter-
mines therefore the system throughput of the initial PPN.
The throughput is denoted by τout and we define it as the
average number of tokens produced by the network per time
unit. Since P1 is the most computationally intensive process
that executes each 10 time units, the throughput and number
of produced tokens is 1

10
tokens per time unit. Now we show

and discuss many different examples in this section to illustrate
how difficult it is for a designer to apply transformation, even
for such a simple initial PPN as shown in Figure 1.

A. Transforming and Deriving a PPN with 4 Processes

If we want to increase the performance results for a given
PPN, the number of processes can be increased using the
process splitting transformation to benefit from more paral-
lelism. In this subsection we, therefore, show two different
PPNs consisting of 4 processes that are derived from the same
initial PPN consisting of 3 processes. The first transformed
PPN is derived from the initial PPN in Figure 1 using only
the process splitting transformation, and the second is derived
from the initial PPN using both the process splitting and
merging transformation.

Transformed PPN1 (only splitting): We split up process
P1 two times as shown in Figure 1. Then there are 2 processes
that generate data in parallel for consumer process P2 . As
a result, process P2 receives its input data twice faster.
Therefore, we say that process P2 receives its data with an
aggregated throughput of 1

10
+ 1

10
= 1

5
. We know that the

slowest process in a network determines the system throughput
and to check this, we compare the incoming throughput of a
process with the time it takes to execute its process function.
While P2 receives its input data with a throughput of 1

5
tokens

per time unit, it can only produce tokens with a throughput of
1

6
(WP2 = 6). This means that the input tokens arrive faster

than P2 can process them. To calculate the overall system
throughput, we therefore propagate the throughput τ = 1

6
of

P2 to sink process P3 and compare what is slower: the arrival
of the input data, or the execution of process P3 . We see that
P3 can process data much faster than it actually receives, as
it only has a workload of WP3 = 1, but still it produces
tokens with a throughput of 1

6
caused by the slowest process

P2 . The overall system throughput is therefore τout = 1

6
,

determined by P2 . Thus, we have derived a PPN which gives
a throughput τout = 1

6
that is much better than the original

throughput τout = 1

10
.

Now we investigate whether we can derive another network
with 4 processes, using both the process splitting and merging
transformations in combination, that gives even better perfor-
mance results than our previous example.

Transformed PPN2 (splitting+merging): We apply first
the process splitting transformation on processes P1 , P2 ,
and P3 from the initial PPN to derive the transformed PPN
shown in Figure 2 A). Two independent data paths are created
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Fig. 2. Transformed PPN2: Splitting and Merging to Create 4 Processes

each consisting of 3 processes. In each data path, process
P1 is the bottleneck process such that tokens are delivered
with a throughput of 1

10
. Since there are two data paths, we

say that the overall system throughput of the transformed
PPN in Figure 2 A) is τout = 1

10
+ 1

10
= 1

5
. When

we merge P2 with P3 , process P1 remains the bottleneck
and the throughput is unaffected as shown in Figure 2 B).
Thus, we have derived a PPN with 4 processes that gives
better performance results compared to the previous example
Transformed PPN1 (only splitting) shown in Figure 1. That
is, applying both transformations in combination achieves a
throughput of τout = 1

5
, while applying only the process

splitting transformation gives as throughput τout = 1

6
. In fact,

to create a PPN with n processes from the initial PPN in
Figure 1, the best performance results that can be achieved
by using the process splitting transformation only, will never
be better than the best performance results that can be achieved
by applying both transformations in combination. Therefore,
this example shows that both transformations must be used in
combination to achieve better performance results.

B. Transforming and Deriving a PPN with 2 Processes

A designer sometimes needs to reduce the number of
processes for a given PPN in order to meet the resource
constraints. Another reason to reduce the number of processes,
is that in some cases the same performance can be achieved
using less processes. In this subsection, our objective is to
derive a PPN consisting of 2 processes when this is required
for one of the two reasons mentioned above. We start with the
initial PPN from Figure 1 that has 3 processes and investigate
again whether the combination of applying the transformations
is important when the number of processes in the network must
be reduced.

Transformed PPN3 (only merging): A transformed PPN
with 2 processes is shown at the bottom right in Figure 1,
which is obtained by applying only the process merging
transformation. The resulting network has the same throughput
as the original PPN, but uses one process less. By merging
2 light-weight processes P2 and P3 , process P1 remains
the most computationally intensive process. As a result, the
system throughput remains the same as the original network,
i.e., τout = 1

10
.

Transformed PPN4 (splitting+merging): An alternative
using both the process splitting and merging transformations
is shown in Figure 3.

All processes are first split up twice as shown in Figure 3 A).
Then, two compound processes are created by merging an
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instance of each process into a compound process P123

as shown in Figure 3 B). The workload of a compound
process is WP123 = WP1 + WP2 + WP3 = 17 time units,
because all functions are executed sequentially. This means
that a compound process delivers tokens with a throughput of
τ = 1

17
. Since we have 2 compound processes, the resulting

overall throughput is τout = 1

17
+ 1

17
= 1

8.5
, which is better

than the throughput τout = 1

10
of our previous example

Transformed PPN3 (only merging) shown in Figure 1. This is
another example which shows that both transformations should
be used in combination to obtain better performance results,
which cannot be obtained by only one transformation, i.e., the
merging transformation in this case.

C. Transformations Resulting in Performance Degradation

We have shown that there is great potential in using both
transformations in combination, but a designer should be
very careful how the transformations are applied, otherwise
performance degradation may be encountered. We illustrate
this with two examples using both the process splitting and
merging transformations. First we show an example for a PPN
with 4 process and then for a PPN with 2 processes.

Transformed PPN5 (splitting+merging): We start with the
initial PPN (see Figure 1) consisting of 3 processes and split
up both processes P1 and P2 to obtain the PPN shown in
Figure 4 A).
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The network has a throughput of 1

5
using 5 processes,

while our objective is to use 4 processes. Therefore, we
merge two light-weight processes P2 and P3 as shown in
Figure 4 B). The created compound process P23 has a
workload of WP23 = 7 time units and is the bottleneck
process of the network. The overall system throughput is,
therefore, determined by P23 and is τout = 1

7
. In this way,

we have derived another PPN with 4 processes that performs
better than the initial process network (τout = 1

10
). However,

it is worse than applying only the splitting transformation,
i.e., transformed PPN1 (only splitting) in Figure 1 with
a throughput of τout = 1

6
and subsequently also worse
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than Transformed PPN2 shown in Figure 2 B) that has a
throughput τout = 1

5
.

Transformed PPN6 (splitting+merging): We have shown
two examples to transform the initial PPN into a PPN with
2 processes, see Transformed PPN3 and Transformed PPN4

in Section II-B. Both give good performance results, but now
we give an example of a PPN that performs worse. Another
possibility to create a PPN with 2 process is to first split
up the computationally most intensive process P1 as shown
in Figure 5 A). Then, two compound processes are created,
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Fig. 5. Transformed PPN6: Splitting and Merging to Create 2 Processes

one by merging process P1 with P3 , and the other one by
merging process P1 and P2 . We see that a topological cycle
is introduced by merging processes in this way and we find
that the system throughput is τout = 1

16
tokens per time unit.

This result is worse than Transformed PPN3 and Transformed
PPN4 that have a throughput of τout = 1

10
and τout = 1

8.5
,

respectively.
In this section, we have shown that it is necessary to

use both the process splitting and merging transformations in
combination to achieve better performance results that cannot
be achieved by applying only one transformation in isolation.
On the other hand, however, performance degradation may be
encountered if the transformations are not applied properly.
So the question is how a designer should apply the trans-
formations properly, i.e., choosing the best possible order of
transformations and their parameters. In the next section, we
show our solution approach that addresses these issues.

III. SOLUTION APPROACH

Before introducing our solution in a more formal way, we
show how our approach intuitively works for the examples
discussed in Section II. We have already shown 3 different
PPNs consisting of 4 processes that were derived from the
same initial PPN. The first transformed PPN is obtained by
using only the splitting transformation as shown in Figure 1.
In two other examples, shown in Figure 2 B) and Figure 4 B),
different networks were obtained by consecutively using the
process splitting and merging transformations. In addition to
these examples, our approach gives yet another solution as
shown in Figure 6 that also gives better performance results
than all 3 other PPNs mentioned above. With this example,
and all the other examples presented in Section II, we have
shown that we need a simple and effective solution to help the
designer in transforming PPNs in an efficient way.

In our simple, elegant but yet very effective solution ap-
proach, we first split up all processes with a splitting factor
that is specified by the designer. This splitting factor can,
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for example, be the number of available processing elements
of the target platform, or simply the number of tasks the
designer wants to create. Since in our examples the goal is
to transform and create a PPN with 4 processes, we split
up all processes 4 times as shown in Figure 6 A). In this
way, we create a PPN consisting of 12 processes. Next, we
merge back process instances into compound processes such
that they contain one instance of each process. Figure 6 B)
shows these compound processes P123 . Note that the self-
edges for two compound processes have been omitted for the
sake of clarity. The workload of the compound processes is
17 time units that is obtained by summing the workload of
the individual processes (WP1 ) and thus we see that each
compound process produces 1

17
tokens per time unit. Since

there are 4 of such compound processes, the overall system
throughput τout = 4

17
≈ 1

4
, which is better than all

other transformed PPNs with 4 processes shown in Figure 1,
Figure 2 B) and Figure 4 B).

The initial PPN is transformed in a similar way if the num-
ber of processes needs to be reduced. We have already shown
2 examples and our solution is already given in Figure 3;
all processes are first split up 2 times, and then compound
processes are created by merging different instances such that
the resulting transformed network consists of 2 processes.

A. Creating Load-Balanced Tasks

While we illustrated our solution approach with the exam-
ples in Figure 3 and Figure 6, a more formal description of
this approach is given with the pseudo-code in Algorithm 1.
We create a number of tasks from an initial PPN based on
the combination of two transformations: i) the processes are
split-up first, and ii) load-balanced tasks are created by using
the process merging transformation.

Algorithm 1 : Task Creation Pseudo-code
Require: A Polyhedral Process Network PPN with n processes,
Require: A process splitting factor u.

for all Pi ∈ PPN do
{Pi1, Pi2, .., Piu} = split(Pi, u)

end for
for i = 1 to u do

PCi = merge({P1i, P2i, .., Pni})
end for
return all compound processes PCi

Algorithm 1 uses two functions: split and merge. For
the former, we refer to [7] in which it is shown that a
process can be split up in many different ways and how to
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select the best splitting. We use the approach in [7] to select
and perform the processes splitting. For the process merging
transformation, we rely on the approach described in [8]. We
add to this approach a procedure to cluster producer-consumer
pairs of processes. By clustering producer-consumer processes,
communication between these processes stays within one com-
pound process after merging. Thus, it avoids communication
and synchronization of different compound processes. An
example of this is given in Figure 6. One instance of P1

has only one channel to P2 , which on its turn has only one
channel to P3 . Merging processes in this sequence results
in compound processes that do not have any communication
channels between them. It is not always possible to obtain
completely independent compound processes. If one producer
process has multiple channels to consumer processes, as shown
in Figure 7 A), one particular consumer has to be selected and
merged with the producer.

P12

P12

P2

P2

P1

P1

A) B)

Fig. 7. Different Merging Options

If we start with the first instance of P1 , i.e., grey process
P1 in Figure 7 A), then we see that it has two outgoing
channels to two instances of P2 . Regardless which instance
of P2 is chosen for merging, the resulting compound pro-
cesses will have channels for data communication, as shown
in Figure 7 B). In our approach, we simply consider the
first outgoing channel and corresponding consumer process
and merge it with the producer, because the data is evenly
distributed over the channels. We mark the selected consumer
as being merged already in the merging procedure, to avoid
that it will be selected again.

B. Selecting Processes for Transformations

Our solution approach in Section III solves another problem
indicated in Section I, i.e., how to select processes on which
the transformations have the largest positive performance
impact. For the process splitting, it is important to find the
bottleneck process of the network, because splitting is the most
beneficial when applied on the most computationally intensive
process. For process merging, it is important to avoid merging
the bottleneck process, i.e., not introducing an even more
computationally intensive process. In general, however, it is
not possible to determine a single bottleneck process of a PPN.
The reason is that, in PPNs, different data paths can transfer
a different number of tokens. As a result, different processes
can dominate the overall system throughput at different stages
during the execution of the network, which we illustrate with
the example shown in Figure 8.

The network has two datapaths DP1 = (P1 ,P2 ,P3 ,P6 )
and DP2 = (P1 ,P4 ,P5 ,P6 ) that transfer a different number
of tokens. This is the result of the communication patterns
[1100000] and [0011111] at which process P1 writes to
its outgoing FIFO channels. A ”1” in these patterns indicates
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Fig. 8. What is the Bottleneck: P2 or P4 ?

that data is read/written and a ”0” that no data is read/written.
So, the FIFO channel connecting P1 and P2 , for example, is
written the first two executions of P1 , but not in the remaining
5 executions. As a consequence of these patterns, more tokens
are communicated through the second datapath DP2 . At the
bottom of Figure 8, the different time lines of the processes
are shown. Each block corresponds to an execution of that
process producing data, and the arrow indicates the dependent
consumer process. In this way, a full simulation of the process
network is shown. We observe that, despite process P2 largest
workload of 10 time units, process P4 with a workload of 6 is
determining the throughput most of the time. This illustrates
that, in general, due to the varying and possibly complicated
communication patterns, it is not possible to decide which
process to split up for a more balanced network. Our solu-
tion approach solves this problem as the transformations are
applied on all processes and, therefore, it is not necessary to
select particular processes.

IV. DISCUSSION

The idea of our approach presented in Section III is to create
load-balanced tasks that exploit data-level parallelism as much
as possible. In this section, we want to show that our simple
solution always results in performance gains when there is
data-level parallelism to be exploited. The degree of data-level
parallelism that can be exploited is determined by:

1) Processes with self-edges in a PPN. Similar to the defini-
tion used in [10], we refer to data-level parallelism when
processes do not dependent on previous executions of
itself. Obviously, when there is no self-edge, the process
is stateless and an arbitrary number of independent
process instances can be created that run in parallel.
When a process has a self-edge, however, it produces
data for itself and there exist a dependency between
different executions of that process. Then, we refer to
such a process as stateful.

2) Cycles in a PPN. A cycle can be responsible for sequen-
tial execution of the processes involved in the cycle. If
this is the case, we call it a true cycle.

Despite stateful processes and topological cycles, PPNs may
still reveal some data-level parallelism which is exploited by
our solution approach. This means that our solution approach
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gives better performance results when there is data parallelism
to be exploited, and the same performance as the initial PPN
if there is nothing to be exploited. In addition to cycles and
stateful process, the workload balancing of the initial PPN is
another important factor that determines whether performance
gains are possible. We therefore first discuss this workload
balancing before we elaborate how to exploit more data-level
parallelism for stateful processes and cyclic PPNs.

Balanced PPNs: Let us consider a simple acyclic PPN with
only two processes P1 and P2 as shown in Figure 9 A).

Case I: if a network with processes P1 and P2 is balanced,
then WP1 = WP2 = t time units and thus τout = 1

t
. If

we apply splitting and merging, as illustrated with the arrows
in Figure 9 A), then a compound process has a throughput of
τ = 1

2t
. Since there are two compound processes the overall

throughput is τ ′

out = 2 · 1

2t
= 1

t
. Thus, we see that the new

throughput τ ′

out is the same as the throughput of the initial
PPN, that is, τ ′

out = τout. Now let us consider the other
case.

Case II: if a network with processes P1 and P2 is
imbalanced, then we have WP1 = t and WP2 = t + x, where
x > 0. The throughput of the initial PPN is τout = 1

t+x
.

Then, we apply our solution approach and create 2 indepen-
dent streams. Each compound process has a throughput of
τ = 1

WP1+WP2

= 1

2t+x
. Since we have 2 parallel streams,

the throughput is τ ′

out = 2

2t+x
. If we want to know when

splitting and merging is worse compared to the initial PPN,
then we have: 2

2t+x
< 1

t+x
. From this inequality it follows

that x < 0, which contradicts with the fact that the network
is imbalanced and that x > 0. Thus, the new throughput is
the same or better than the initial PPN, i.e., τ ′

out ≥ τout.
We have shown that τ ′

out = τout when the initial network
is already balanced, and that τ ′

out ≥ τout when this not
the case. In other words, applying our approach results in
performance gains when there is something to be gained by
load balancing. Next, we discuss how our approach exploits
data-level parallelism for PPNs with cycles and/or stateful
processes.

A. Stateful Processes

When a stateful process is split up, then the different process
instances must communicate data as a result of dependencies
between different executions. The question whether the pro-
cess instances can run in parallel, i.e., they have overlapping
executions, depends on the distance of the self-dependency,
which is expressed in terms of a number of process firings
between data production and consumption. If data is produced
for the next execution of a process (i.e., the distance is 1),
then there is no data-level parallelism to be exploited and
splitting such a process results in sequential execution of the
process instances. However, when the distance is larger than
1, then some copies of that process have some data parallelism
that can be exploited by the process splitting transformation.
If for example the distance between data production and
consumption is 5, then 5 process executions can be done in

parallel before synchronization is required again. Applying our
solution approach, splits up all processes first. As a result, the
same functions are executed by several process instances. The
necessary FIFO communication channels are automatically
derived in case the split up processes are stateful. In this way,
the different process instances overlap their executions when
this is allowed by the self-dependences, i.e., the dependence
distance is larger than 1, and synchronize their executions
when necessary.

B. Cycles

For splitting processes that form a topological cycle, it is
important to realize that the process splitting and merging
transformations do not re-time any of the process executions.
This means that the process executions are not re-scheduled,
but only assigned to different process instances. Therefore, a
cycle present in the initial PPN, will not be removed by our
approach and the transformed PPN will have a cycle as well.
The behavior of the cycle is the most important factor that
determines whether performance improvements are possible or
not and we illustrate this with 3 different examples in Figure 9.
There are 2 extremes: the first is a true cycle for which nothing
can be gained, and the second is a doubling of the throughput
by creating 2 independent streams. A third example shows
a network that gives performance results between the two
extremes. For the three examples in Figure 9, we discuss
how: i) the initial load balancing, and ii) the inter-process
dependencies after splitting play a role on the performance
results.

Extreme I (same throughput): We already mentioned that
for true cycles all processes involved in such a cycle execute
sequentially. That is, data is typically read once from outside
the cycle and then data is produced/consumed for/from pro-
cesses belonging to that cycle. For the initial PPN in Figure
9, this can mean that P1 reads from its input channel once,
and then produces/consumes from the 2 channels to/from P2 .
If P1 injects a data token in the cycle in one execution
and reads a token from the feedback channel in the subse-
quent executions, then processes P1 and P2 execute in a
pure sequential way. It is clear that for this type of cycles,
performance gains are not possible. Applying our solution
approach on a true cycle, as shown with Example I in
Figure 9, gives the same performance results as the initial
PPN. The reason is that after splitting, the cycle is present
as a path connecting P1 ,P2 ,P1 ,P2 ,P1 , and after merging
this sequential execution sequence is not changed as the
dependencies and sequential execution does not allow any
overlapping executions.

Extreme II (doubling throughput): Another extreme is a
transformed network with independent data paths. The initial
PPN from which this transformed PPN is derived, is topo-
logically the same as the initial PPN in Extreme I, but the
behavior is different, i.e., it is not a true cycle because P1

injects first, for example, at least 2 tokens before reading
data from the cycle. Thus, depending on the behavior of the
cycle, splitting processes can result in different paths where
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the cycle connects only processes in the same path. In other
words, independent streams can be created as illustrated with
Example III in Figure 9. This can easily happen when
we split processes, for example, 2 times such that the even
executions of that process are assigned to one process instance,
and the odd executions to another instance. If the cycle and
thus the dependent producer and consumer executions are from
even to even executions and from odd to odd executions,
then the communication remains local to one data path as
shown in Example III of Figure 9. This is an example of
a cyclic PPN that has the potential to scale linearly with the
number of created streams. Having a transformed PPN with
independent data paths, however, does not automatically mean
that performance gains are possible. Besides the dependencies
as we have just discussed, the workload balancing of the initial
PPN is another important factor. For our example with the
2 independent data paths, it can still happen that the same
throughput as the initial network is achieved, i.e., τ ′

out = τout,
when the initial network is already perfectly balanced. That
is, for a network that is already balanced, there is nothing to
be gained with load-balancing. On the other hand, when the
two processes are highly imbalanced, then a doubling of the
throughput can be approached.
Between the 2 Extremes: Example II in Figure 9 gives
performance results between the two extremes. After splitting
and merging, the compound processes are connected with
one communication channel. Depending on how many times
synchronization and data communication occurs between the
compound processes, the performance results can be the
same as for a true cycle (i.e., sequential execution), or the
performance results can approach a doubling of the throughput
if synchronization does not play a role as, for example, data
is communicated only once.

V. RESULTS

To illustrate that our approach works for PPNs with stateful
processes and cycles, we consider 2 different algorithms and

implement their initial PPN and transformed PPNs onto the
ESPAM platform prototyped on a Xilinx FPGA [11], [9].
We measure the performance results to check that indeed
the maximum performance gains are obtained when allowed
by inter-process dependencies. First, we focus on the QR
algorithm, which is a matrix decomposition algorithm that is
interesting as the compute processes have self-edges and, in
addition to this, the PPN is cyclic. Secondly, we consider a
simple pipeline of processes and we show that our approach
is as good as the initial network if the network is already
perfectly balanced.

A. QR Decomposition - a PPN with Process State and Cycles

A QR decomposition of a square matrix A is a decompo-
sition of A as A = QR, where Q is an orthogonal matrix
and R is an upper triangular matrix. Our implementation and
corresponding PPN is shown in Figure 10 A). It consists of
2 source processes, 1 sink process, and 2 compute processes
denoted by V and R. This network is highly imbalanced as
process R executes more times and is also computationally
more intensive than V . Applying the process splitting trans-
formations on processes V and R gives as a result the network
shown in Figure 10 B). We apply our solution approach
and merge instances of V with R (and not V with V ) to
create compound processes V R1 and V R2. We do this by
considering first one instance of V in the network and see that
it has outgoing FIFO channels to another instance of V and
to one instance of R. The remaining two process instances
of V and R are merged and in a similar way to create the
second compound process. The final result and transformed
PPN is shown in Figure 10 C). In all our experiments, we
assume that source and sink processes cannot be transformed.
The reason is that, for example, these processes read and write
data from/to a memory location, which can only be done by
one process sequentially and, thus, not by multiple processes
in parallel.

The resulting network is perfectly balanced. To implement
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the network, we apply a one-to-one mapping of processes
to processors and thus 5 processors are used in total. To be
more specific, the processes are mapped as software threads
onto softcore MicroBlaze processors, which are point-to-point
connected. Figure 11 shows the corresponding measured per-
formance results on the ESPAM platform [11], [9], prototyped
on a Xilinx FPGA. The source and sink processes have a work-
load of only 1 instruction, while the compute processes V and
R have workloads of 100 and 450 instructions, respectively.
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Fig. 11. Measured Performance Results of QR on the ESPAM Platform

The first bar serves as our reference point and it corre-
sponds to the performance results of the initial PPN shown
in Figure 10 A). The QR network needs 6 million cycles to
finish its execution and uses 5 processors. For the same number
of processors, our approach is much better as shown by the
second bar; the compute processes are split up 2 times and dif-
ferent instances are merged, which is denoted by split2+merge
and shown in Figure 10 C). When we apply our approach
and create 3 compound processes, denoted by split3+merge,
then we even further improve performance results using 6
processors as shown by the third bar. Next, we compare the
results of applying only the process splitting transformation,
denoted by split2 and shown in Figure 10 B), with our
approach of splitting processes 4 times and merging different
instances into compound processes, denoted by split4+merge.
Both experiments use 7 processors and the 4th and 5th

bars show the corresponding performance results. It can be
seen that creating balanced partitions gives better performance
results than applying only the splitting transformation. Note
that the initial PPN with 5 processors executes mostly in a
sequential way, i.e., no data-level parallelism is exploited. By
applying our approach, i.e., splitting the compute processes 2,
3, and 4 times, we exploit data level parallelism and achieve
speed ups of 1.7, 2.3, and 3, respectively.

The QR algorithm is an example of Example II in Fig-

ure 9. The self-edges in Figure 10 A) are annotated with their
minimum buffer size capacity as computed by the pn compiler
[1]. Process V , for example, has a self-channel that should
have a capacity of at least 16 tokens to avoid a deadlock. This
means that 16 tokens are produced and buffered before they
are finally consumed by the same process: 16 executions of
that process could be done in parallel before synchronization
is required again, while we showed results for splitting up
the stateful processes 2, 3, and 4 times in the experiments.
After applying our approach, we see in Figure 10 C) that the
self-channels appear as the channels connecting the compound
processes. These observations makes clear that the cycles are
not true cycles as we have discussed in the previous section
and that there is data-level parallelism to be exploited by
applying our solution approach. This is, indeed, confirmed by
the measured performance results. Our approach almost scales
linearly by increasing the number of compound processes (2nd
and 5th bars) compared to the initial PPN, indicating that we
exploit all available data-level parallelism.

B. Transforming Perfectly Balanced PPNs

We have shown that stateful processes and cycles in PPNs
restrict data-level parallelism and thus influence performance
results. In this section we show that the process workload is
another aspect that should be taken into account. To illustrate
this, we consider a simple PPN consisting of a pipeline of
4 processes. The goal of this experiment is to verify that
our approach, compared to applying only the process splitting
transformation, does not give worse performance results for
PPNs that are already balanced. To check this, we generate
the following 4 PPNs as also shown in Figure 12: I) the
initial PPN, II) a PPN with process P2 split up 2 times, III) a
PPN with processes P2 and P3 split up 2 times and different
instances merged, and IV), a PPN with processes P2 and P3

split up 3 times and different instances merged.

P23

P23

P1 P4

{101, 150, 175, 200}

{101, 150, 175, 200}

1 1
P23

P23

P23

P1 P4

{101, 150, 175, 200}

{101, 150, 175, 200}

1 1

P1 P3 P4P2

P2

1 1100

100

{1, 50, 75, 100}

P1 P2 P3 P4

III) IV)

I)

4 Processes

5 Processes

{1, 50, 75, 100}100 11

4 Processes

5 Processes

II)

S2x+M
S3x+M

S2x

Fig. 12. Splitting vs. ”Splitting+Merging” with Different Workloads

For each process network, we vary the workload of process
P3 and assign 4 different values: 1, 50, 75, and 100 time units.
This means that process P2 is the bottleneck when P3 has
a workload of 1, 50, and 75 time units. By increasing it to
100, eventually both P2 and P3 are equally computationally
intensive. Recall that we do not transform source and sink
processes P1 and P4 in our experiments. We therefore say
that the network is imbalanced when P3 has a workload of
1, 50, or 75 time units, and balanced when we choose the
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workload to be 100 for P3 . We expect that: i) the more
balanced the network becomes by increasing the workload of
P3 , the less is gained by splitting only process P2 two times
(network II), ii) our approach (network III) provides the same
performance as the initial PPN when the network is already
balanced, iii) our approach can even achieve better results by
creating more than 2 compound processes (network IV), while
this is not possible using the same number of processors and
thereby applying only the process splitting transformation.

We make 2 comparisons and measure the performance
results on the ESPAM platform of PPNs with an equal number
of processes, i.e., PPNs with 4 processes and PPNs with 5
processes. First, we compare the initial PPN (i.e., network I
in Figure 12) with the network on which process splitting and
merging has been applied (i.e., network III in Figure 12).
Second, we compare network II with network IV from
Figure 12.
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Fig. 13. Initial PPN (PPN I) vs. Splitting 2x + Merging (PPN III)

Figure 13 shows the measured performance results for the
2 different PPNs with 4 processes. Because we map the
processes one-to-one onto processors, there are 4 processors
used in this experiment. For each workload configuration,
the first bar corresponds to process network I in Figure 12
and the second bar to process network III. The initial PPN
gives the same performance results for all different workload
configurations as the overall throughput is τout = 1

100
deter-

mined by process P2 . Our approach gives better results for
unbalanced networks. However, as the workload of process
P3 is increased, the network becomes more balanced and
less can be gained by transformations targeting the same
number of processors. Figure 13 shows that the difference
between the initial PPN and the transformed PPN becomes
smaller. The last 2 bars displays the results for the PPNs
where the initial network is already balanced, i.e., workload
configuration WP3 = 100. It can be seen that our approach
is slightly worse than the initial PPN, although the difference
is not significant as it is only 2% off. The reason is that the
transformations introduce a small overhead in the compound
processes, which consist of additional control to execute the
different functions. In the ideal case when there is no overhead,
the throughput of one compound process is 1

200
and thus the

aggregated throughput of both compound processes is 1

100
,

which is the same as the initial PPN. Due to the additional
control, however, the workload is not WP23 = 200, but a little
bit higher which finally results in the minor and not significant

performance degradation. The ratio of the workload and the
control overhead is important for the actual overhead and
performance degradation. In our experiments, the workload
of the compound processes is 200 assembly instructions. In
most applications however, the process workload will be much
larger such that the overhead will, therefore, have less impact
on the performance results and will be negligible (i.e., less
than 2%).

Figure 14 shows the comparison between PPNs with 5
processes. That is, we compare our solution approach that
splits up all processes 3 times and merge back different
instances, with applying only the process splitting transforma-
tion. For each workload configuration, the first bar corresponds
to network II in Figure 12, and the second bar to network
IV. The bold horizontal line in Figure 14 is the reference
corresponding to the performance results of the initial PPN.
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Fig. 14. ”Splitting 2x” (PPN II) vs. ”Splitting 3x + Merging” (PPN IV)

We see that applying only process splitting for process P2

is less beneficial as the network becomes more balanced as
illustrated with the 1st, 3th, 5th, and 7th bars. Eventually, when
the network is balanced, i.e., the 7th bar, the performance
results are a bit worse than the initial PPN due to some
additional control introduced by the transformations as dis-
cussed before. For splitting and merging the processes 3 times,
however, we see that better performance results are obtained
as illustrated with the 2nd, 4th, 6th, and 8th bars in Figure 14.
The reason is that 3 balanced compound processes execute
as 3 independent streams in parallel. Each compound process
delivers tokens with a throughput of 1

200
(when processes

P2 and P3 have a workload of 100). The overall system
throughput is therefore τout = 3

200
≈ 1

67
. If only P2 is split

up, then the overall system throughput will be determined by
P3 and remains τout = 1

100
. We see that our approach gives

better performance results for all workload configurations.
By increasing the workload, the cycle count goes up, but
not as steep compared to applying only the process splitting.
In addition, our approach would also scale for more than 5
processors, as an arbitrary number of independent streams can
be created.

VI. RELATED WORK

Our work is most closely related to the work of [10] that
aims at exploiting coarse-grained task, data and pipeline paral-
lelism in stream programs. The StreamIt [12] compiler derives
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stream graphs which are mapped on the Raw architecture and
has optimizations for filter fusion and fission [13], comparable
to our process merging and splitting transformations. In their
approach, fusion is performed as long as the result of each
fusion is stateless. When the filter becomes stateful, fission is
performed on the stateless and coarsed-grain task to create
more data-level parallelism. We have shown in this paper,
however, an approach for cycles and networks with stateful
processes and demonstrated that performance gains are possi-
ble. Two other approaches that unfold and partition processes
in streaming applications using integer linear programming
techniques are described in [14], [15]. However, they again
work only on acyclic graphs and stateless processes.

Another difference is that we derive process networks from
sequential programs written in C, as opposed to the StreamIt
language that has language constructs to specify filters and
FIFO communication. Each kernel in the StreamIt language
has a single input and single output channel. Our process
networks, however, can have multiple input/output channels
and can read/write all, or a subset, of these channels in a
single execution of a process.

In [16], another approach is shown for mapping stream
programs onto heterogeneous multiprocessor systems. A par-
titioning algorithm is presented that takes as input a graph,
and outputs a mapping to fuse kernels to tasks. In an it-
erative manner, tasks are merged, kernels are moved from
bottleneck processors, and tasks are created. Similar to the
StreamIt approach, an annotated version of the C programming
language is used. Moreover, only stateless kernels are split for
greater parallelism. Besides the average load of each kernel
on each processor, similar to the workload of our processes,
an additional parameter is required obtained from run-time
analysis which we do not need. That is, the average data rate
on each stream that must be obtained from a profile.

In [17], the scheduling of Synchronous DataFlow (SDF)
graphs [18] to parallel targets is discussed. The work focuses
on partitioning and scheduling techniques that exploit task and
pipeline parallelism. To schedule a SDF graph, a precedence
graph is first constructed, which exposes the available data
level parallelism. Then, to limit the explosion of nodes,
clustering is applied and thus composite nodes are created.
A fundamental difference with our work is that workloads are
not taken into account in the clustering as we presented in
this paper. In addition to this, polyhedral process networks
are more expressive than SDFs. In SDFs, all incoming and
outgoing channels are read/written per firing of an actor, while
in PPNs FIFO reads/writes can occur in some patterns and are
described by (parameterized) polytopes. The fact that FIFOs
can be read/written in some patterns, is similar to the cyclo-
static dataflow graphs (CSDF) [19], with the difference that
the phases in PPNs can be very large, as they are derived from
nested-loop programs, and can also be parametric.

VII. CONCLUSION

In this paper we have shown that better performance results
are obtained when both the process splitting and merging

transformations are applied in combination, as opposed to
applying only one of these transformations. Furthermore,
we have shown that it is very difficult to identify a single
bottleneck process in PPNs, since this can vary during the
execution of a PPN. Our approach solves this problem, as
first all processes are split up and then perfectly load-balanced
compound processes are created using the process merging
transformation. Our approach also works for process networks
with cycles and stateful processes. If in the initial PPN there is
data-level parallelism to be exploited, then our approach gives
better performance results compared to the initial PPN, and
the same performance results when no data-level parallelism
is available.
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