
Translating Affine Nested-Loop Programs with

Dynamic Loop Bounds into Polyhedral Process

Networks

Dmitry Nadezhkin Hristo Nikolov Todor Stefanov

Leiden Institue of Advanced Computer Science, Leiden University, The Netherlands

{dmitryn, nikolov, stefanov}@liacs.nl

Abstract—The Process Network (PN) is a suitable parallel
model of computation (MoC) used to specify embedded streaming
applications in a parallel form facilitating the efficient mapping
onto embedded parallel execution platforms. Unfortunately, spec-
ifying an application using a parallel MoC is very difficult and
highly error-prone task. To overcome the associated difficulties,
an automated procedure exists for derivation of a specific
polyhedral process networks (PPN) from static affine nested
loop programs (SANLPs). This procedure is implemented in
the pn complier. However, there are many applications, e.g.,
multimedia applications (MPEG coders/decoders, smart cameras,
etc.) that have adaptive and dynamic behavior which can not
be expressed as SANLPs. Therefore, in order to handle more
dynamic multimedia applications, in this paper we address the
important question whether we can relax some of the restrictions
of the SANLPs while keeping the ability to perform compile-time
analysis and to derive PPNs. Achieving this would significantly
extend the range of applications that can be parallelized in
an automated way. The main contribution of this paper is a
first approach for automated translation of affine nested loops
programs with dynamic loop bounds into input-output equivalent
polyhedral process networks.

I. INTRODUCTION

Moving from sequential computing to parallel computing has be-

come necessary nowadays because single-processor embedded sys-

tems can not cope anymore with applications complexity, through-

put, and power consumption constraints that are inherent to so

many embedded applications. Although, we are witnessing the

emergence of parallel (multi-core and multi-processor) systems in

all markets: from general-purpose computing to embedded systems,

e.g., multimedia systems, game consoles and all sorts of mobile

devices, the transition from sequential to parallel computing is far

from trivial. To satisfy emerging applications requirements, the

multiprocessor embedded systems must be programmed in a way

that the available parallelism is revealed and exploited efficiently.

However, programming of a multiprocessor system is a challenging,

error-prone, and time consuming task as it involves the partitioning

of programs, and consequently, synchronization of different pro-

gram partitions. In recent years, a lot of attention has been paid

to the building of parallel systems. However, insufficient attention

has been paid to the development of concepts, methodologies, and

tools for efficient programming of such systems. Therefore, the pro-

gramming still remains a major difficulty and challenge [1]. Today,

system designers experience significant difficulties in programming

parallel systems because the way an application is specified by

an application developer, typically as a sequential program using

sequential model of computation (MoC), does not match the way

multiprocessor systems operate, i.e., multiple cores run (possibly)

in parallel.

If an application is specified using a parallel MoC, then the

mapping of this application onto a multiprocessor system can be

done in a systematic and transparent way by using a disciplined

approach [2]. Using a parallel MoC facilitates the programming

of parallel multiprocessor systems because a parallel MoC makes

the parallelism available in an application and the communication

between the application tasks explicit. Unfortunately, specifying an

application using a parallel MoC is very difficult as the application

developers i) have to be familiar with a particular parallel MoC;

ii) have to study the application in order to identify possible

parallelism that is available and to reveal it by using the parallel

model.

To relieve the designer from all these difficulties, the pn com-

piler [3] was introduced. It implements techniques for automated

parallelization of static affine nested loop programs (SANLP) writ-

ten in C into input-output equivalent Polyhedral Process Network

(PPN) descriptions. In the pn partitioning strategy, a process is

created for every statement and function call found in the top-level

of the program. In this way, the designers have control over the

granularity of the created partitions.

1 parameter N 10 100;

2 for j = 1 to 6*N-3,

3 A[j] = Func1()

4 endfor

5 for j = 0 to N,

6 for i = j to 3*j-2,

7 if(i+j < 4*N-6)

8 A[i] = Func2(A[2*i-1], A[2*i+1])

9 endif

10 Func3(A[i])

11 endfor

12 endfor

Fig. 1: Pseudo code of a SANLP.

An example of a SANLP is given in Figure 1. A SANLP consists

of a set of statements and function calls, each possibly enclosed

in loops and/or guarded by conditions. The loops do not have to

be perfectly nested. All lower and upper bounds of the loops as

well as all expressions in conditions and array accesses have to be

affine functions of enclosing loop iterators and static parameters.

The parameters are symbolic constants, i.e., their values can not

change during the execution of the program. Rather, parameter

values determine different program instances. In addition, data

communication between function calls must be explicit. For ex-

978-1-4244-9085-1/10/$26.00 ©2010 IEEE 21 ESTIMedia 2010

ample, see function Func2() at line 8 which accepts 2 elements

of array A as input arguments. Providing just a pointer to array

A in this case is not allowed. The above restrictions allow a

compact mathematical representation of a SANLP using the well-

known polyhedral model [4]. The SANLPs can be converted in an

automated way into Polyhedral Process Networks [3].

The target Polyhedral Process Networks (PPNs) [5] is a special

(static) case of the Kahn Process Networks (KPNs) [6] model of

computation. A PPN consists of concurrent autonomous processes

that communicate data in a point-to-point fashion over bounded

FIFO channels using a blocking read/write on an empty/full FIFO

as synchronization mechanism. In addition, everything about the

execution of a PPN is known at compile-time. The latter enables

techniques for modeling, analysis, and SW/HW synthesis in a

systematic and automated way, and allows the calculation of buffer

sizes that guarantee deadlock-free execution. In comparison, com-

puting buffer sizes is not possible for the more general KPN model.

We are interested in the process network model because it provides

a sound formalism, well suited for capturing and modeling of data-

flow dominated applications in the realm of multimedia, imaging,

and signal processing, that naturally contain tasks communicating

via streams of data. Moreover, it has been already shown that pro-

cess networks allow effective and efficient mappings of streaming

applications to certain parallel execution platforms [7], [8], [9],

[10], [11], [12].

Many scientific, matrix computation, and signal processing ap-

plications can be specified as static affine nested loop programs, and

therefore, the pn compiler [3] can be used to derive equivalent par-

allel PPN specifications. However, many multimedia applications

such as MPEG coders/decoders, Smart Cameras, etc. have adaptive

and dynamic behavior which can not be expressed as static affine

nested loop programs. In order to handle dynamic applications,

in this paper we address the important question whether we can

relax some of the restrictions of the SANLPs while keeping the

ability to perform compile-time analysis and to derive PPNs in an

automated way. Achieving this will significantly extend the range of

applications that can be parallelized in an automated way. The main

contribution of this paper is a first approach for automated transla-

tion of affine nested loop programs with dynamic loop bounds into

input-output equivalent polyhedral process networks.

A. Motivating example

As a motivating example, we use an application from the smart

cameras domain called low speed obstacle detection (LSOD). With

the LSOD description below, we illustrate a program that has the

specific dynamic behavior we consider in this paper and we outline

the problems introduced by this behavior.

The LSOD application is intended to detect and to track objects

in front of a car in traffic. The output of the system presents spatial

positions for targets – cars, pedestrians, etc. Applying several gen-

eral image processing algorithms helps to find new targets, and to

track existing targets. The algorithms implement shadow detection,

symmetry detection, lights detection, motion segmentation, and

vertical edge detection. The output of each algorithm is collected

by a particle filter component [13] for analysis. The first step in

the LSOD application is to obtain two images from a given camera

picture. They are named high and low resolution images and are

depicted by the two dark rectangles in Figure 2. Applying different

image processing algorithms on these images, hypotheses whether

������ ������� �

������ ������� �

Fig. 2: LSOD applied on real data. The vehicles in front of the

camera are detected and tracked. The dark rectangles depict

the area of the image that is processed.

1 for k = 1 to Targets,

2 [Height,Width] = getLSODTarget()

3 for j = 0 to Height+1,

4 for i = 0 to Width+1,

5 img[j,i] = readTarget()

6 endfor

7 endfor

8 for j = 1 to Height,

9 for i = 1 to Width,

10 img_out[j-1,i-1] = edgeDetection(

img[j-1,i-1],img[j-1,i+1],

img[j ,i-1],img[j ,i+1],

img[j+1,i-1],img[j+1,i+1])

11 img_out[j-1,i-1] = absVal(img_out[j-1,i-1])

12 endfor

13 endfor

14 for j = 0 to Height-1,

15 for i = 0 to Width-1,

16 vsum[i] = vertSum(vsum[i], img_out[j,i])

17 endfor

18 endfor

19 endfor

Fig. 3: Pseudo code of the edge detection part of the motivating

example. Target size is specified by variables Height and

Width. For the sake of brevity, the information about targets

position is omitted.

cars exist are computed. Possible targets are defined as coordinates

and dimensions of rectangles belonging either to the high or low

resolution image. In Figure 2, two possible targets are presented by

the white rectangles, surrounding the cars. Then, for every identified

target, the image gradient in vertical direction of the area of the

target is computed. The result is finally analyzed in order to support

or decline a target.

The edge detection part of the LSOD application, shown in

Figure 3, is an example of a program which is not a static affine

nested loop program. This program is affine nested loop program

but it has dynamic control as function getLSODTarget() at line 2

initializes variables Height and Width used as loop bounds. These

variables define the size of a target, i.e., the amount of data to be

processed, and change values for every target at run-time. Since

22

targets are moving in front of a camera (which is also moving), the

identified positions and dimensions will differ for different targets

in the frame and for one and the same target in different frames.

That is why, the values of variables Height and Width (as well as

the number of targets) are not known at compile-time, and therefore,

the pn compiler [3] cannot handle the program shown in Figure 3.

In this paper we propose a solution approach to this problem by

introducing a novel procedure for automated translation of affine

nested loops programs with dynamic loop bounds into input-output

equivalent polyhedral process networks.

The remaining part of the paper is organized as follows. In the

following section, we introduce some notations and present two

techniques currently used to analyze sequential programs. This

is needed for better understanding of the solution approach we

propose and discuss in Section III. An application of our solution

approach to the program in Figure 3 is presented in Section IV.

Section V covers the related works. Finally, Section VI concludes

the paper.

II. BACKGROUND

In this section, we introduce some notations used throughout

the paper. Also, for better understanding of the solution approach,

we briefly present two state-of-the-art techniques used to analyze

sequential programs. The first one, called Exact Array Dataflow

Analysis (EADA) [14], is used to analyze static programs, namely

SANLPs. EADA is implemented in the pn compiler for the trans-

lation of SANLPs to polyhedral process networks. We formally

describe EADA in Section II-B. The second technique, which we

present in Section II-C, allows for the analysis of programs with

more relaxed constraints than SANLPs. That is, we consider the

Fuzzy Array Dataflow Analysis (FADA) introduced in [15]. FADA

is an enhanced version of EADA and it is used in [16] to analyze

Weakly Dynamic Programs (WDP). WDPs are class of affine nested

loop programs which may have if-conditions dependent on data

which is unknown at compile-time and which may change at run-

time. In [16], FADA is used for translation of WDPs to equivalent

PNs. Similarly to SANLPs, in WDPs loop bounds have to be

affine functions of enclosing loop iterators and static parameters.

In this paper, we further relax these restrictions by considering

sequential affine nested loop programs with dynamic loop bounds.

In this section, we introduce FADA because an important part of

the solution approach presented in Section III is based on this

technique.

A. Notations

An iteration vector x of a statement is built of iterators of

surrounding loops. The set of values of an iteration vector for which

a statement is executed represents an iteration domain, denoted

by D(). For example, the iteration domain of statement S2 in

Figure 4(a) is: D(S2) = {1 ≤ i ≤ N ∧ i ≤ j ≤ M ∧ j ≤ 2}.

An evaluation of a single statement W on iteration x is called an

operation and denoted as 〈W,x〉. By “≺” we denote ordering of

operations. An operation 〈W,x〉 is evaluated before an operation

〈R, y〉 (〈W,x〉 ≺ 〈R, y〉) according to the program sequence if: 1)

x lexicographically precedes y; or 2) if x = y and statement W
precedes statement R in the program text. As described in [14],

order “≺” can be expanded to a system of linear inequalities. With

“max” we denote the lexicographical maximum operator. In this

paper, we use Dynloop to designate affine nested loop programs

with dynamic loop bounds.

1 parameter M 1 10

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for i = 1 to N,

7 for j = i to M,

8 if j <= 2 then

S2: y[j] = F2()

10 endif

S3: [] = F3(y[j])

12 endfor

13 endfor

(a) Static Affine Nested Loop Pro-
gram

1 parameter M 1 10

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for i = 1 to N,

7 for j = i to M,

8 if y[j] <= 2 then

S2: y[j] = F2()

10 endif

S3: [] = F3(y[j])

12 endfor

13 endfor

(b) Weakly Dynamic Program

Fig. 4: Examples of SANLP and WDP programs. The only

difference is that in WDP, the conditional statement in line 8

is data-dependent.

B. Exact Array Dataflow Analysis

In this section we formally describe the EADA algorithm, which

is used to perform the dependence analysis on static programs. The

goal of the dependence analysis is to determine if evaluation of a

statement depends on evaluation of other statements and to find

these evaluations. For example, in the SANLP program depicted

in Figure 4(a), the purpose of the dependence analysis is to find

whether statement S3 depends on statements S1 or S2 via array

y and at which iterations. Or in other words, for every element of

array y read at a given iteration of statement S3, the dependence

analysis finds which statement, S1 or S2, and at which iteration it

writes data to the given array element. The result of the analysis

forms the dependency relations between iterations of statements

writing/reading to/from the array.

Consider two statements W and R, and operations 〈W,x〉 and

〈R, y〉, where the first operation writes to an array and the second

operation reads from it. To find whether the operation 〈W,x〉 is a

source for operation 〈R, y〉, we need to build and solve a system of

linear inequalities:

QWR(y) = {x | x ∈ D(W), (c1)
IW (x) = IR(y), (c2)
〈W,x〉 ≺ 〈R, y〉. (c3)

(1)

The first constraint (c1) states that the source iteration x has to

exist, i.e., it has to belong to the iteration domain of a W statement.

The constraint (c2) specifies that if there is a dependency between

two operations, both have to access the same array element. To

access an array element, operation 〈W,x〉 uses an affine indexing

function IW () and operation 〈R, y〉 uses an affine indexing function

IR(). The (c3) constraint determines an order of operations, i.e.,

source operation 〈W,x〉 has to be evaluated before operation 〈R, y〉.

There might be many operations of a single statement satisfying

system (1), i.e., writing to the same array element. However, we are

interested in the last write operation before reading by 〈R, y〉 from

the same element occurs. Therefore, the source operation is the

lexicographical maximum between all operations satisfying system

QWR(y):

KWR(y) = max QWR(y). (2)

So far, operations of only single statement have been considered,

while there might be several statements W1,. . . ,Wm writing to the

23

same array element. In this case, we have to consider all pairs

W1/R,. . .Wm/R. The actual source is the “last” operation between

all operations of all statements:

σ(〈R, y〉) = max {〈Wk,KWkR(y)〉 | k ∈ [1, m]}. (3)

For example, consider the program in Figure 4(a). There are two

statements, S1 and S2 writing to array y and one statement S3

reading from that array. Therefore, we consider two pairs S1S3 and

S2S3. For each pair we build the system of linear inequalities (1) as

depicted in Table I (see QS1S3((i3, j3)) and QS2S3((i3, j3))). With

(i3, j3), we denote the iteration vector (i, j) of statement S3.

QS1S3((i3, j3)) QS2S3((i3, j3))
1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

j2 ≤ 2
k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

TABLE I: Examples of system (1) for S1S3 and S2S3

statements.

After solving the parametric integer linear problems (PILPs)

formulated in Table I and finding “max” according to Equation 3,

the source operation σ(〈S3, (i3, j3)〉) for the data read by statement

S3 is:

if j3 ≤ 2 then 〈S2, (i3, j3)〉
else 〈S1, (j3)〉.

(4)

The solution above shows that the source of the data for state-

ment S3 of the program in Figure 4(a) can be from two different

statements. The source is statement S1 when the iterator j of S3 is

greater than 2. Otherwise, the source is statement S2.

C. Fuzzy Array Dataflow Analysis

In this section, we formally describe the Fuzzy Array Dataflow

Analysis (FADA). The FADA algorithm is used to perform depen-

dence analysis on Weakly Dynamic Programs (WDP) which have

data-dependent if-conditions [16]. We introduce FADA because it

is an important part of the solution we present in Section III.

Consider two statement W and R of a weakly dynamic program.

Operation 〈W,x〉 writes to and operation 〈R, y〉 reads from the

same array. Moreover, let statement W be surrounded by a data-

dependent if-condition. As a running example, consider Figure 4(b):

statements S2 and S3 are W and R, respectively, and the if-

condition in line 8 surrounding statement S2 is a data-dependent

condition.

In Section II-B, we showed that in order to have two operations

〈W,x〉 and 〈R, y〉 of a static program dependent, they have to

comply to the system of linear inequalities (1). In the same way,

to find whether operation 〈W,x〉 is a source for operation 〈R, y〉 in

a dynamic program, we need to build and solve a system of linear

inequalities:

QWR(y,α) = {x | x ∈ D(W), x = α, (c1)
IS(x) = IR(y), (c2)
〈S, x〉 ≺ 〈R, y〉. (c3)

(5)

The meaning of constraints (c2) and (c3) are the same as in

system (1): operations should access the same array element and

the writing operation should occur before the reading operation.

We will explain the meaning of constraint (c1). As statement W

is surrounded by data-dependent if-condition, exact operations of

W cannot be determined at compile-time. Thus, for any reading

operation 〈R, y〉 it is impossible to determine the exact source

operation. The idea of the FADA algorithm is to introduce a

parameter which would hide unknown information, i.e., a parameter

is used to indicate at which iteration a writing operation 〈W,x〉 may

occur. We do not know exactly at which iteration points x ∈ D(W)
writing to the array occurs, but we assume that this happens for

iterations x = α, where α is a free parameter which values have

to be determined at run-time. Because source operations satisfying

system (5) are not exact, we call them approximated sources.

Similarly to the EADA algorithm, we are interested in the last

write operation before reading by 〈R, y〉 from the same element

occurs, i.e., the lexicographical maximum between all operations

satisfying system QWR(y, α):

KWR(y,α) = maxQWR(y,α). (6)

Finally, we need to consider all statements W1, . . . ,Wm writing

to the same array element. For each Wk, k = [1..m], we find

approximated source. To find the source, we combine all approx-

imated sources as described in [15]:

σ(〈R, y〉, α) = max{〈Wk,KWkR(y)〉| k ∈ [1, m]}. (7)

For example, consider the WDP depicted in Figure 4(b). There

are two statements S1 and S2 writing to array y and one statement

S3 which reads from it. For every pair S1S3 and S2S3 we build the

systems of linear inequalities (5) which is depicted in Table II. For

pair S1S3 all operations of statement S1 are known and thus, a pa-

rameter is not introduced (see system QS1S3((i3, j3)) in Table II).

However, for pair S2S3 (see system QS2S3((i3, j3), (αi, αj))), we

introduce parameters αi and αj as shown in system (5), because

statement S2 is surrounded by the dynamic if-condition at line 8 in

Figure 4(b) and, thus, exact operations of S2 cannot be determined

at compile-time. These parameters are used to designate at which

iteration of S2 a writing to the array y may occur. Values of the

parameters are determined at run-time.

QS1S3((i3, j3)) QS2S3((i3, j3), (αi, αj))
1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

i2 = αi ∧ j2 = αj

k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

TABLE II: Examples of system (5) for S1S3 and S2S3

statements.

Approximated sources in S1S3 and S2S3 pairs are found by

solving the parametric integer linear problems (PILPs) formulated

in Table II. The “max” source defined in Equation 7 is determined

by recurrent algorithm of combining direct dependencies described

in Section 5.2 of [15]. Thus, the source operation for statement S3:

σ(〈S3, (i3, j3)〉, (αi, αj)) is:

if i3 ≥ αi ∧ j3 == αj then 〈S2, (αi, αj)〉
else 〈S1, (j3)〉.

(8)

From Solution 8 above, we see that for any read operation

〈S3, (i3, j3)〉 there are two data sources: statementsS1 or S2. When

for a given iteration (i3, j3) of statement S3, at least one of the

24

1 parameter N 1 10;

2 for j = 1 to N,

3 for i = 1 to f(...),

S1: y[i] = F1()

5 endfor

6 endfor

S2: [...] = F2(y[5])

Fig. 5: An example of a Dynloop program.

previous evaluations of the condition at line 8 in Figure 4(b) was

true, then parameter αi ≤ i3 and, parameter αj = j3, thus,

the source is statement S2. Otherwise, the source is statement S1.

In contrast to Solution 4, Solution 8 is approximated, because it

depends on parameters (αi, αj) that are determined at run-time.

III. SOLUTION APPROACH

In this section, we present the compile-time procedure we have

devised for translating affine nested loop programs with dynamic

loop bounds (Dynloop) into input-output equivalent polyhedral pro-

cess networks (PPN). We have found out that a Dynloop program

can be formally represented as a Weakly Dynamic Program (WDP).

Therefore, in the proposed solution approach we can employ the

FADA dependence analysis technique, described in Section II-C.

The procedure for translating Dynloop programs to polyhedral

process networks consists of 4 steps. First, the initial Dynloop

program is represented as a WDP. Second, we find all data depen-

dency in the corresponding WDP program by applying the FADA

analysis on it. Recall that the result of the analysis is approximated,

i.e., it depends on some parameters which values are determined

at run-time. Third, based on the results of the analysis, we create

a dynamic Single Assignment Code (dSAC) representation of the

WDP program. The dSAC was proposed in [16] as an extension

of the SAC [14]. A dSAC program is input-output equivalent to

the corresponding WDP and it has the property that every variable

is written at most once. This implies that some variables may not

be written at all. We derive a dSAC program using the FADA

algorithm, therefore, parameters introduced by FADA are present

in the dSAC as well. The values of these parameters in dSAC

are assigned using control variables. The generation of the control

variables has been studied in [16], whereas, in this section, we

present an extension to this procedure. In the last forth step, the

topology of the corresponding PPN is derived, as well as the code

executed in each process. In the remaining part of this section, we

consider the four steps in more detail and we also illustrate the

solution approach using the example shown in Figure 5.

Step 1 (Dynloop-to-WDP)

Consider the Dynloop program in Figure 5. In this program,

the upper bound of the for-loop at line 3 is determined by an

arbitrary function f(. . .). The upper bound of the inner loop i may

change at every iteration of the outer loop j. More importantly, the

values of the upper bound are unknown at compile-time as they are

determined at run-time by f().
In order to be able to apply our solution approach, we assume that

the range of the values that function f() may have is finite. This is

particularly true for all programs that execute in finite memory, i.e.,

the programs we are interested in.

Then, without altering the functionality, we modify the initial

Dynloop program to the program shown in Figure 6(a). Such mod-

ification is general and applicable to any Dynloop program. First,

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max f,

5 if i <= X[j],

S1: y[i] = F1()

7 endif

8 endfor

9 endfor

S2:[] = F2(y[5])

(a) Newly created WDP program

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max_f,

5 if i <= X[j],

S1: y 1[j,i] = F1();

7 endif

8 endfor

9 endfor

10 if c1 <= N & c2 == 5,

11 in 0 = y 1[c1,c2]

12 else

13 in 0 = 0

14 endif

S2:[] = F2(in_0)

(b) Initial dSAC

Fig. 6: A WDP program equivalent to the Dynloop program

in Figure 5 and its corresponding dSAC.

we substitute the upper bound of the loop at line 3 in Figure 5 with

a constant equal to the maximum value of f(), denoted by max f,

see line 4 in Figure 6(a). The value of max f can be determined

by studying the range of function f(). If it is not possible, we can

use the following approach. Assume that the capacity of the array

y is 100 elements. Then, by taking into account the array indexing

function at line 4 of Figure 5 and that the program is correct, we

can deduce that the maximum value of iterator i and, consequently

the max f equals to 100. In addition, we introduce an array X used

to capture the values of the dynamic upper bound at run-time.

That is, the elements of X are written by function f() at line 3

in Figure 6(a), just before the for-loop. The same array elements

are used in evaluating the if-condition at line 5 in Figure 6(a),

which preserves the original program behavior. This newly created

program belongs to the class of the weakly dynamic programs.

Since the loop bounds of the program in Figure 6(a) are fixed and

known at compile-time, we can apply the FADA algorithm on this

program to perform dependence analysis.

The formal description of the FADA algorithm has been given

in Section II-C. In the following section, we demonstrate only the

application of FADA on our running example.

Step 2 (FADA analysis)

The WDP program in Figure 6(a) has two statements S1 and

S2 which communicate through array y. According to FADA, for

the pair S1S2, we build the system of linear inequalities shown

in Table III which corresponds to Equation 5. Constraint c1 in

Table III describes all possible source iterations of statement S1,

i.e., its iteration domain. Parameters (αj , αi) store the iteration

point (j1, i1) of statement S1 where writing to array y may occur.

QS1S2((αj , αi))
1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max f (c1)
j1 = αj ∧ i1 = αi

i1 = 5 (c2)
true (c3)

TABLE III: An example of system (5) for S1S2 pair.

The approximated source operation defined in Equation 7 for

statement S2: σ(〈S2, ()〉, (αj , αi)) is:

25

if N ≥ αj ∧ 5 == αi then 〈S1, (αj , αi)〉
else ⊥ .

(9)

From Solution 9 above, we see that for read operation 〈S2, ()〉

there is one data source. If for at least one iteration (j1, 5) of

statement S1, the condition at line 5 in Figure 6(a) is evaluated to

true, then the source is statement S1. Otherwise, the source for

y[5] is not statement S1. If this is the case, statement S2 will use

the initial value of y[5]. For the sake of brevity, the initialization

of array y is omitted in the example.

Initial dSAC

The solution provided by FADA is used to modify the WDP pro-

gram in order to capture the identified dependencies in an explicit

way. The result for our running example is shown in Figure 6(b)

which is in a dynamic single-assignment-code (dSAC) form. The

dSAC is an extension of the SAC [14]. In contrast to SAC where

every variable is written exactly once, in dSAC every variable is

written at most once. This implies that some of the variables may

not be written at all.

Based on Solution 9, we modify the WDP in Figure 6(a) and

generate the dSAC in Figure 6(b) by inserting the code lines 10-

14 shown in Figure 6(b). This code is needed to implement array

element accesses such that the dependences identified by FADA are

respected. The if-condition at line 10 implements the condition that

the FADA analysis gave us in Solution 9. Recall that when the if-

condition evaluates to true, then the source of the data is statement

S1. This is captured by line 11. Otherwise, statement S2 will use

the initial value of y[5]. Assume that in our example, y[5] has

been initialized to zero. Therefore, at line 13, the input argument

for statement S2 has been set to zero as well.

Recall that to deal with a dynamic if-condition, the FADA

algorithm introduces parameters. In our example, there are two

parameters (see line 10 in Figure 6(b)) which are reflected in the

following way. Parameter c1 corresponds to αj . It is related to iter-

ator j and may have values c1 ∈ [1..N]. Parameter c2 corresponds

to αi. It is related to iterator i and may have values c2 ∈ [1..max f].

The meaning of the parameter values in this program is to indicate

the last iteration of j when function F1() has been executed at

the fifth iteration of i. The values of parameters c1 and c2 are

unknown at compile-time. They are determined at run-time, during

the execution of the program. Therefore, we need a mechanism to

generate and propagate the values at run-time in a way that keeps

the correct program’s behavior.

Step 3 (Control variables)

In order to keep the functionality of the dSAC equivalent to the

functionality of the initial WDP, we introduce control variables

used to propagate parameter values at run-time. That is, an array

of control variables is added for every parameter introduced by

FADA. A control variable is used to store a parameter value for

every iteration. For our example in Figure 6(b), two new control

variables ctrl_c1 and ctrl_c2 are introduced in the program

as shown in Figure 7(a). They correspond to parameters c1 and c2

derived by FADA.

We use the original index function used with the data variable

y, i.e., y[i], to perform the access to the control variables, i.e.,

ctrl_c1[i] and ctrl_c2[i]. The control variables must be

initialized with values that are greater than the maximum value of

the corresponding parameters. Recall that for our example, param-

eter c1 ∈ [1..N] and c2 ∈ [1..max f]. Therefore, the corresponding

control variables are initialized as follows:

∀i : 1 ≤ i ≤ max f : ctrl c1[i] = N+ 1,

ctrl c2[i] = max f+ 1.
(10)

This initialization is not shown in Figure 7(a) for the sake of

brevity. Writing to the control variables is performed just after

function F1(), see lines 7 and 8 in Figure 7(a). This guarantees

that when the function is executed, the current iteration is stored

in the control variables. The values of the control variables are

propagated and assigned to the parameters c1 and c2 at lines 12

and 13. These parameters are used to evaluate the conditions at line

14 which determine the source of the data for function F2(). With

the introduction of the control variables to the program shown in

Figure 7(a), this program is input-output equivalent to the program

in Figure 6(a).

Additional control variables

Unfortunately, introducing control variables to the dSAC code

violates the property that ”every variable is written at most once”.

For example, control variables ctrl_c1[i] and ctrl_c2[i]

that initialize parameters c1 and c2 at lines 12 and 13 in Fig-

ure 7(a) are not in a single assignment form, i.e., ctrl_c1[i]

and ctrl_c1[i] may be written more than once. Therefore, the

program in Figure 7(a) is not a dSAC program. In order to be able

to create a process network, as discussed later in Step 4, and most

importantly, to create the FIFO channels used for transferring data,

the corresponding data variables must be in a single assignment

form. A novel contribution of our work is a procedure that extends

the control variables generation described in the previous section.

Our extension solves the problem that the control variables in

Figure 7(a) are not in the single assignment form. Below, we explain

how such control variables are transformed into a single assignment

form.

QS1S2()
1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max f (c1)
i1 = 5 (c2)
true (c3)

TABLE IV: ILP system (5) for the control variables at lines

10, 11, 14 and 15.

In order to represent the program in Figure 7(a) as dSAC, we

need to identify the relation between writing to and reading from

the control variables. Thus, we need to perform dataflow analysis

for the control variables, where the writings to the control vari-

ables occur inside a block surrounded by a dynamic if-condition.

We achieve this in the following way. While keeping the same

functionality, we introduce additional control variables ctrl_c1_

and ctrl_c1_ outside the block surrounded by the dynamic if-

condition, see lines 10,11,14 and 15 in Figure 7(b). This program is

input-output equivalent to the program in Figure 7(a). The new con-

trol variables are written (lines 10 and 11) at every iteration of the

for-loops and take the same values as control variables ctrl_c1

and ctrl_c2. On these new control variables ctrl_c1_ and

ctrl_c1_, we can perform the static exact array dataflow analysis

26

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 ctrl c1[i] = j

8 ctrl c2[i] = i

9 endif

10 endfor

11 endfor

12 c1 = ctrl c1[5]

13 c2 = ctrl c2[5]

14 if c1 <= N & c2 == 5,

16 in_0 = y_1[c1,c2]

17 else

18 in_0 = 0

19 endif

20 [] = F2(in_0)

(a) Initial dSAC shown in Figure
6(b) with control variables

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 ctrl_c1[i] = j

8 ctrl_c2[i] = i

9 endif

S1: ctrl c1 [i] = ctrl c1[i]

S1: ctrl c2 [i] = ctrl c2[i]

12 endfor

13 endfor

S2: c1 = ctrl c1 [5]

S2: c2 = ctrl c2 [5]

16 if c1 <= N & c2 == 5,

18 in_0 = y_1[c1,c2]

19 else

20 in_0 = 0

21 endif

22 [] = F2(in_0)

(b) Modified dSAC code with
new control variables

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 ctrl_c1[i] = j

8 ctrl_c2[i] = i

9 endif

10 ctrl c1 1[j,i] = ctrl c1[i]

11 ctrl c2 1[j,i] = ctrl c2[i]

12 endfor

13 endfor

14 if max f >= 5,

15 c1 = ctrl c1 1[N, 5]

16 c2 = ctrl c2 1[N, 5]

17 else

18 c1 = N + 1

19 c2 = max f + 1

20 endif

21 if c1 <= N & c2 == 5,

22 in_0 = y_1[c1,c2]

23 else

24 in_0 = 0

25 endif

26 [] = F2(in_0)

(c) Final dSAC

Fig. 7: Examples of the initial dSAC with control variables, the modified dSAC and the final dSAC.

presented in Section II-B. We can always do this, because the new

control variables are not surrounded by the dynamic if-condition.

As it has been shown in Section II-B, we need to build a system

of linear inequalities, which for the pairs S1S2 in Figure 7(b) is

shown in Table IV. The system is build for each pair S1S2, i.e.,

S1 at line 10 with S2 at line 14 and S1 at line 11 with S2 at line

15. After solving the system and finding the maximum according to

Equation (3), the final solution and the source operation is:

if max f ≥ 5 then 〈S1, (N, 5)〉
else ⊥ .

(11)

We use this solution to replace the original one-dimensional

arrays ctrl_c1_ and ctrl_c2_, see lines 10,11,14 and 15

in Figure 7(b), with two-dimensional arrays ctrl_c1_1 and

ctrl_c2_1 shown at lines 10, 11, 15, and 16 in Figure 7(c). The

if-condition at line 14 in Figure 7(c) implements the if-condition of

Solution 11. If it evaluates to true, then the source of the param-

eters c1 and c2 is ctrl_c1_1[N,5] and ctrl_c1_2[N,5],

respectively (see lines 15 and 16). In case the condition evaluates to

false, then the initial values of the control variables will be used.

Recall that in our approach, the control variables used to propagate

parameter values are initially set as shown in Equation 10. There-

fore at lines 18 and 19 in Figure 7(c), we put assignments c1 = N+1
and c2 = max f+ 1, respectively.

The program in Figure 7(c) is in a dSAC form because the new

control variables ctrl_c1_1 and ctrl_c1_2 used to initialize

parameters c1 and c2 are in a single assignment form. This dSAC

is the final input-output equivalent representation of our running

example which is the Dynloop program in Figure 5. We use this

dSAC to generate a process network which is explained in the next

section.

Step 4 (dSAC-to-PPN synthesis)

The last step of the procedure to translate Dynloop programs

into equivalent polyhedral process networks (PPN) is the dSAC-

to-PPN synthesis step. Recall that a PPN consists of autonomous

processes that communicate data in a point-to-point fashion over

bounded FIFO channels. We describe how the processes and FIFO

channels are created from the corresponding dSAC program.

The procedure of PPN synthesis consists of 3 steps. First, based

on the dSAC representation of a Dynloop program, the topology

of the PPN is created. The topology is formed by instantiating

processes and communication channels. It is important to note, that

in this step, the created communication channels are not FIFOs

but multi-dimensional arrays. Second, internal code structure of

each process is derived from the dSAC specification. Third, the

multi-dimensional arrays that are used for data communication

between function statements in the dSAC are replaced by FIFO

channels. Also, we replace the multi-dimensional array accesses in

the code of each process with a read/write primitives to implement

synchronization through blocking read/write on FIFO channels.

Below, we explain the three steps in more detail using the dSAC

in Figure 7(c).

Topology of a PPN

P1 P2 P3

X[j]

ctrl_c1_1[j,i]

ctrl_c2_1[j,i]

y_1[j,i]

Fig. 9: The topology of the PN derived from the dSAC in Figure 7(c).

The PPN corresponding to the dSAC in Figure 7(c) is shown in

Figure 9. This PPN consists of 3 processes and 4 communication

channels. We explain how these processes and communication

channels are created. In our approach, a process is created for

27

1 if max_f >= 5,
2 c1 = ctrl_c1_1[N, 5]
3 c2 = ctrl_c2_1[N, 5]
4 else
5 c1 = N + 1
6 c2 = max_f + 1
7 endif
8 if c1 <= N & c2 == 5,
9 in_0 = y_1[c1,c2]
10 else
11 in_0 = 0
12 endif
13 [] = F2(in_0)

Process P3Process P1

1 for j = 1 to N,
2 X[j] = f();

ctrl_c1_1[j,i]

ctrl_c2_1[j,i]

y_1[j,i]

X[j]

3 endfor

Process P2

2 for i = 1 to max_f,

4 y_1[j, i] = F1()
5 ctrl_c1[i] = j
6 ctrl_c2[i] = i
7 endif

3 if i <= X[j]

8 ctrl_c1_1[j,i] = ctrl_c1[i]
9 ctrl_c1_1[j,i] = ctrl_c1[i]
10 endfor
11 endfor

1 for j = 1 to N,

Fig. 8: The internal code structure of each process in the PPN derived from the dSAC in Figure 7(c).

every function statement in the dSAC program. Therefore, the

PPN in Figure 9 has three processes: process P1 corresponds to

function f() at line 3 in Figure 7(c), process P2 corresponds to

function F1() at line 6, and process P3 corresponds to F2() at

line 26 in the same Figure. The four communication channels

correspond to arrays which are in a single assignment form in

the dSAC in Figure 7(c). These arrays are: one-dimensional array

X[j] at line 3 and 5 in Figure 7(c), two-dimensional data array

y_1[j,i] at lines 6 and 22, and 2 two-dimensional control

variable arrays ctrl_c1_1[j,i] and ctrl_c2_1[j,i] at

lines 10, 11, 15 and 16 in the same Figure. Recall that array X[j]

is in a single assignment form because of the way we introduced

this array in Step 1 of our solution approach. Array y_1[j,i]

is a single assignment form of array y. The latter array is used

in the initial program shown in Figure 5 after application of the

FADA analysis on the WDP program in Figure 6(a) as described

in Step 2 of our solution approach. The control variables arrays

ctrl_c1_1[j,i] and ctrl_c2_1[j,i] are introduced and

transformed in a single assignment form in Step 3 of our solution

approach. In the following step, we describe how the internal code

structure of each process is created.

Internal code structure

Let us consider Figure 8, where the internal code structures of all

processes of the PPN in Figure 9 are depicted. Below we explain

how the internal code structure of each process is derived from the

corresponding dSAC specification shown in Figure 7(c).

Every process executes a sequential nested loop program, derived

from the dSAC program. The internal code structure of each process

is formed by code pieces of the dSAC code. Based on the example

of the dSAC shown in Figure 7(c), the internal code for processes

P1, P2 and P3 is derived as follows. The internal code structure of

process P1 depicted in Figure 8 is formed by lines 2, 3 and 13 of

the dSAC code in Figure 7(c). The internal code structure of process

P2 is formed by lines 2, 4–13 of the same dSAC specification. And

the internal code structure of process P3 is formed by lines 14–26.

In the following step, we explain how the multi-dimensional arrays

are replaced with FIFO channels and synchronization between pro-

cesses is realized with FIFOs. This process is called Linearization.

Linearization

In the PPN depicted in Figure 8, processes are connected with

communication channels which are the multi-dimensional arrays

used in the dSAC shown in Figure 7(c). However, the processes in

our PPNs synchronize using a blocking read/write on an empty/full

FIFO channel, i.e., an execution of a process is suspended if it

tries to read from an empty FIFO channel, or tries to write to

a full channel, respectively. Therefore, in order to synthesize a

PPN, the multi-dimensional array accesses have to be replaced with

corresponding write and read operations on FIFO channels.

To implement the Linearization, we adapted the approaches

proposed in [17], [18]. In these works, the communication char-

acteristics are identified when exchanging data between pair of

statements. Based on this information, the multi-dimensional array

accesses are replaced with one-dimensional accesses. The result of

the linearization applied on the dSAC in Figure 7(c) is shown in

Figure 10. In each process, the multi-dimensional arrays accesses

are substituted by reading/writing primitives from/to FIFO chan-

nels. Internally, these read/write primitives realize synchronization

between processes. For example, writing to the control variables

array at lines 8 and 9 of process P2 in Figure 8 are substituted by

writing to the FIFOs at lines 13 and 14 in process P2 in Figure 10.

The communication read/write primitives access the FIFO chan-

nels through ports. That is, every process has a set of input ports

and a set of output ports connected to FIFO channels. For example,

process P2 reads from a single channel via port i1 at line 2

and writes data to 3 channels via ports o1, o2 and o3 at lines

13, 14 and 15, respectively. Additionally, we applied the iteration

domain reconstruction of each process described in [19] to avoid

transferring more data tokens than needed. We do not discuss this

step in our solution approach.

Finally, we want to discuss how buffer sizes in FIFO channels

of a PPN derived from a WDP program are determined. In our

procedure we use the method of buffer sizes estimation presented

in [3]. Although this method accepts as an input a PPN derived from

a static program, we explain how we adapt our procedure to use this

method.

There are two types of channels in a PPN derived from a WDP

program: control and data channels. Control channels realize data

dependencies between control variables. These dependencies are

static and unique by construction. Therefore, we can safely use the

28

1 for j = 1 to N,
2 read(i1, in_1)
3 for i = 1 to max_f,
4 if i <= in_1,
5 y_1[j,i] = F1()
6 ctrl_c1[i] = j
7 ctrl_c2[i] = i
8 endif
9 if j=N and i=5
10 out_1 = ctrl_c1[i]
11 out_2 = ctrl_c2[i]
12 out_3 = y_1[ctrl_c1[i], ctrl_c2[i]]
13 write(o1, out_1)
14 write(o2, out_2)
15 write(o3, out_3)
16 endif
17 endfor
18 endfor

Process P2

i1

i3

i2

1 if max_f >= 5,
2 read(i1, in_1)
3 read(i2, in_2)
4 read(i3, in_3)
5 else
6 in_1 = N+1

9 if in_1 <= N & in_2 == 5,

11 else
12 in_4 = 0
13 endif
14 [] = F2(in_4)

8 endif
7 in_2 = max_f+1

10 in_4 = in_3

Process P3Process P1

o1

1 for j = 1 to N,
2 out_1 = f();
3 write(o1, out_1);
4 endfor

i1

o3

o2
o1

Fig. 10: The final PPN derived from the program in Figure 5.

method from [3] to determine buffer sizes in control channels.

Data channels realize data dependencies between function state-

ments of a program. In contrast to static programs, in WDP pro-

grams data dependency relations are not static as some of the

statements are guarded by dynamic if-conditions. Therefore, the

rate and the exact amount of data tokens that will be transferred

over a particular data channel is unknown at compile-time, and we

cannot use the method from [3] to determine buffer sizes. To be

able to handle the dynamism of WDP programs we have to follow

a conservative strategy, i.e., we have to overestimate buffer sizes to

provide enough space to run all possible instances of the dynamic

program. In our procedure, we modify the iteration domains of

input/output ports of all FIFOs, such that all dynamic if-conditions

defining any of these iteration domains evaluate always to true.

Then, we apply the procedure from [3] to the resulted PPN.

IV. EXPERIMENTS

In this section, we apply our solution approach introduced in

Section III on the motivating example shown in Figure 3.

According to Step 1 of the solution approach, we modify the

initial program shown in Figure 3 in the following way: for loop

nests with dynamic upper bounds at lines 3–4, 8–9 and 14–15, we

substitute the upper bounds with constants equal to the maximum

values variables Height and Width may take. In the LSOD

program, the maximum values of Height and Width are the max-

imum dimensions of a picture frame provided by a video camera

device. In addition, for each such loop nest, we introduce two arrays

Xi and Xj that capture the values of the dynamic upper bounds

at run-time. For example, the loop nest at lines 3–7 in the initial

program in Figure 3 is modified into the loop nest in Figure 11.

By applying Steps 2 to 4 of our approach to the newly created

program, we build the PPN depicted in Figure 12. The topology of

this PPN consists of 5 processes, 3 data channels shown as solid

lines that are used to exchange data between processes, 4 data

channels shown as dotted lines used to propagate upper bounds

Height and Width, and 3 control channels shown as dashed lines

used to propagate control variables. The latter channels are defined

by control variables as described in Step 3 of our solution approach.

Although our approach is general and will derive a PPN for any

affine nested loop program with dynamic loop bounds, for some

programs the derivation of more optimal PPN is possible using an

1 for k = 1 to Targets,

2 [Height,Width] = getLSODTarget()

3 X_j[k] = Height+1

4 X_i[k] = Width+1

5 for j = 0 to max_Height,

6 for i = 0 to max_Width,

7 if (j <= X_j[k] && i <= X_i[k])

8 img[j,i] = readTarget()

9 endif

10 endfor

11 endfor

...

endfor

Fig. 11: The LSOD application as a WDP.

getLSODTarget

edgeDetection vertSumreadTarget

absVal

img vsum

img_out

Fig. 12: The PPN derived from the LSOD program.

ad-hoc approach. Let us consider the LSOD application again. The

LSOD application shown in Figure 3 is simple enough such that

we can create the topology of the LSOD application’s PPN just by

inspecting its source code. This topology is comprised by the same

nodes and data channels, as the PPN derived by our approach and

depicted in Figure 12, except the control channels shown as dashed

lines. This is possible due to the fact that all dynamic upper bounds

of all loops in the program are the same. Therefore, once the values

of variables Height and Width are determined at run-time at line

2 in Figure 3, the rest of the LSOD application turns into a SANLP

program without loop-carried dependencies, and the corresponding

PPN does not need any control channels.

We see, that our solution approach applied to the LSOD applica-

tion derives a more complex PPN than the PPN obtained using the

ad-hoc approach. This more complex PPN contains more control

channels which leads to larger memory usage and increased com-

munication control overhead at run-time. This is the price a system

29

designer has to pay for using our general approach. However, in

many cases the derivation of a PPN using an ad-hoc approach might

be very difficult and time consuming. Moreover, the number of

control channels in the ad-hoc derived PPN will be the same as

in the PPN derived using our procedure. Therefore, although our

approach may not give an optimal solution immediately, it provides

very fast a valuable information to a system designer about the

degree of parallelism present in the initial application specification.

Additionally, our general approach may be considered as a refer-

ence point for further optimizations.

V. RELATED WORK

The work presented in this paper is an extension to previous

works on systematic and automated derivation of process networks

from affine nested loops programs. That is, Turjan et al. [20]

proposed an automated derivation of process networks from static

affine nested loop programs. In SANLPs the memory array sub-

scripts, loop bounds and conditional control structures are affine

constructs of surrounding loop iterators, program parameters and

constants. Stefanov [16] further developed a procedure of process

network derivation from more relaxed class of affine nested loop

programs called Weakly Dynamic Programs. In this class of affine

nested loops programs, the conditions in control structures might

be dependent on some information that is unknown at compile-time

and may change at run-time. In contrast, our approach presented in

this paper deals with affine nested loop programs with loop bounds

determined at run-time.

Knobe and Sarkar [21] proposed a procedure for converting

nested loop programs into a single assignment form that they called

Array Static Single Assignment (ASSA). Their procedure accepts

as an input a more general class of nested loop programs than the

programs considered in this paper (Dynloop and WDP). Because of

this and the fact that most of the analysis presented in [21] is done

at run-time, their approach produces a large overhead in terms of

memory usage and execution time.

The LooPo compiler [22] deals with parallelization of more gen-

eral class of nested loop program than the class we consider in this

paper. It includes nested loop programs with unscannable execution

spaces which boundaries are determined at run-time. The proposed

parallelization procedure is based on run-time detection of executed

statements as well as detection of program termination [23].

In contrast to [21] and [22], we use FADA and perform approx-

imated dependence analysis at compile-time. Moreover, we do as

much as possible analysis at compile-time, thereby reducing the

run-time overhead significantly.

VI. CONCLUSIONS

In this paper, we presented a first approach for automated

translation of affine nested loops programs with dynamic loop

bounds (Dynloop) into input-output equivalent polyhedral process

networks (PPN). This approach can be implemented efficiently

in a compiler that will help to reduce significantly the time for

parallelizing sequential programs. The approach presented in this

paper includes only basic techniques that have to be applied in

order to derive a PPN automatically from a Dynloop program. In

some cases our approach may create more control channels than

needed. This will result in more run-time communication of control

data in comparison to the control data communication in a PPN

carefully optimized and derived by hand. This fact indicates that

some optimization techniques have to be added to our approach in

order to improver the quality of the generated PPNs in terms of

communication control overhead. We consider such optimization

techniques as future work.

REFERENCES

[1] G. Martin, “Overview of the MPSoC Design Challenge,” in Proc. DAC,
Jul. 2006.

[2] A. Mihal and K. Keutzer, “Mapping Concurrent Applications onto
Architectural Platforms,” in Networks on Chips, A. Jantsch and H. Ten-
hunen, Eds. Kluwer Academic Publishers, 2003, pp. 39–59.

[3] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved
derivation of process networks,” EURASIP J. Embedded Syst., vol. 2007,
no. 1, pp. 19–19, 2007.

[4] P. Feautrier, “Automatic parallelization in the polytope model,” in The

Data Parallel Programming Model, ser. LNCS, vol. 1132, 1996, pp.
79–103.

[5] “To appear in handbook of signal processing systems, download via:
https://lirias.kuleuven.be/handle/123456789/235370.”

[6] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proc. of the IFIP Congress 74. North-Holland Publishing
Co., 1974.

[7] T. Stefanov et al., “System Design using Kahn Process Networks: The
Compaan/Laura Approach,” in Proc. DATE, Feb. 2004, pp. 340–345.

[8] E. de Kock, “Multiprocessor Mapping of Process Networks: A JPEG
Decoding Case Study,” in Proc. 15th Int. Symposium on System Synthesis

(ISSS’2002), Kyoto, Japan, Oct. 2-4 2002, pp. 68–73.
[9] K. Goossens et. al, “Guaranteeing the Quality Of Services in Networks

On Chip,” in Networks on Chip. Kluwer Publishers, 2003, pp. 61–82.
[10] B. Dwivedi et. al, “Automatic Synthesis of System on Chip Multipro-

cessor Architectures for Process networks,” in Proc. CODES+ISSS, Sep.
2004.

[11] J. Castrillon et al., “Trace-based kpn composability analysis for mapping
simultaneous applications to mpsoc platforms,” in Proc. of DATE’2010.

[12] W. Haid et al., “Efficient execution of kahn process networks on multi-
processor systems using protothreads and windowed fifos,” in Proc. of

ESTIMedia. Grenoble, France: IEEE, 2009, pp. 35–44.
[13] S. Arulampalam and S. Maskell, “A Tutorial of Partical Filter for On-line

Non-linear/Non-Gaussian Bayesian Tracking,” IEEE Trans. on Signal

Processing, pp. 68–73, Feb. 2002.
[14] P. Feautrier, “Dataflow Analysis of Scalar and Array References,”

Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53, 1991.
[15] J.-F. Collard, D. Barthou, and P. Feautrier, “Fuzzy array dataflow

analysis,” in ACM SIGPLAN Symp. on Principles and Practice of

Parallel Programming. Santa Barbara, California: ACM Press, 1995,
pp. 92–101.

[16] T. Stefanov, “Converting Weakly Dynamic Programs to Equivalent
Process Network Specifications,” 2004, phD thesis, Leiden University,
The Netherlands, ISBN: 90-9018629-8.

[17] A. Turjan, B. Kienhuis, and E. Deprettere, “Realizations of the extended
linearization model in the compaan tool chain,” in Proceedings of the

2nd Samos Workshop, Samos, Greece, Aug. 2002.
[18] D. Nadezhkin and T. Stefanov, “Identifying Communication Models in

Process Networks Derived from Weakly Dynamic Programs,” in Proc.

SAMOS X, July 2010, pp. 372–379.
[19] A. Turjan, “Compiling nested loop programs to process networks,” 2007,

PhD thesis, Leiden University, The Netherlands.
[20] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating Affine Nested-

loop Programs to Process Networks,” in Proc. CASES’04, Washington
D.C., USA, Sep. 23-25 2004.

[21] K. Knobe and V. Sarkar, “Array SSA form and its use in Parallelization,”
in ACM Symp. on Principles of Programming Languages (PoPL), San
Diego, California, USA, Jan. 1998, pp. 107–120.

[22] M. Griebl and C. Lengauer, “The loop parallelizer loopo,” in Proc.

Sixth Workshop on Compilers for Parallel Computers, volume 21 of

Konferenzen des Forschungszentrums Jlich. Forschungszentrum, 1996,
pp. 311–320.

[23] M. Geigl, M. Griebl, and C. Lengauer, “Termination detection in parallel
loop nests with while loops,” Parallel Comput., vol. 25, no. 12, pp.
1489–1510, 1999.

30

