

1Abstract—The following paper discusses the structure and

semantics of an open-source high-level embedded system

design framework called DAEDALUS. It consists of multiple

tools that help making the transition between the electronic

system level (ESL) to register transfer level (RTL) description

of streaming data multiprocessor systems. Application,

platform, and mapping specifications are thoroughly discussed.

 Index Terms—Electronic system level; Multiprocessor

embedded systems; Polyhedral process networks; Design space

exploration.

I. INTRODUCTION

Developing an embedded system has always been a

challenging task due to the fact that hardware and software

are being involved in the process and both depend on each

other. An improper hardware design would reflect

negatively on the software and vice versa. That is why new

methods have emerged in the field of embedded systems

where both hardware and software are being automatically

generated from a high-level system description. Increasing

the level of abstraction helps fighting the rapid complexity

growth that is connected with that of the design productivity

[1]. High levels of abstraction are also used in modelling,

simulation and verification that are inseparable part of the

entire production process. However, automation may

become a challenging task itself when the system

abstraction is not well defined, or when system components

at specific level are not implemented, or when system

design languages do not fit in particular application, etc. To

present visually the relationship between different design

methodologies and different levels of abstraction a so-called

Y-Chart is widely used in the embedded systems

development. This chart is proposed by Gajski [2]. It

presents modelling of a design, no matter how complicated

it is, in three basic ways (hence the three arcs that resemble

the letter Y from the Latin alphabet) – behaviour, structure

and physical design (Fig. 1). The term “behaviour” is also

referred to as functional model or specification. It describes

the system as a black box whose inputs are known in

advance and its outputs respond in a specific way. As the

input stimuli change over time, the outputs respond in a

correlated manner. The inner mechanisms that make the

Manuscript received 30 January, 2021; accepted 11 April, 2021.

outputs change are not described at all. Those mechanisms

are shown on the structure axis that is sometimes referred to

as a block diagram or a netlist. It must contain separate

blocks that are connected to each other in such a way that

the whole could perform a certain task. What is missing so

far are parameters that describe the components – size,

position, ports, connections, etc. In a real world, this would

mean the layout of a silicon chip or a printed circuit board.

To further expand the Y-Chart, each axis contains different

levels of abstraction of the selected design that are shown as

circles around the center of the chart. In most cases, up to

four levels are used:

- Circuit level

- Logic level

- Processor level

- System levels.

Fig. 1. The Gajski Y-Chart.

Those names are derived from the components that are

automatically generated at the end of the respective level.

Circuit level uses basic blocks such as transistors, resistors,

capacitors, diodes and so on. Combined together they make

up a circuit. In digital systems, circuits that implement basic

logic functions (such as AND, OR, XOR, NOR, etc) are

called gates and they are the main building blocks of the

logic level. Complex blocks may group together to form

registers, ALUs, multipliers and other functional and

memory elements. This level is also referred to as Register

Transfer Level, or RTL. The elements from the RTL

combine to form processing elements and state machines

such as standard processors, memory controllers, arbiters,

bridges, and interfaces. The system level uses processors,

memories, buses, and other high-level components as main

DAEDALUS Framework for High-Level
Synthesis: Past, Present and Future

Todor Stefanov1, Hristo Nikolov1, Lubomir Bogdanov2, *, Angel Popov2
1Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2Department of Electronics, Faculty of Electronic Engineering and Technologies,

8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria

lbogdanov@tu-sofia.bg

978-1-6654-4387-6/21/$31.00 ©2021 IEEE

20
21

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
El

ec
tro

ni
cs

 |
97

8-
1-

66
54

-4
38

7-
6/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IE
EE

C
O

N
F5

27
05

.2
02

1.
94

67
44

5

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

building blocks. They are produced as a result of the design

at the RTL. The abstraction at this point is so high, that the

developers do not need to know any low-level details such

as how are the gates connected, or how are the registers

grouped in files. The entire thought is focused on what

should the system do, given a specific input, and what

should the response be in that specific case. This level is

also referred to as Electronic System Level, or ESL.

II. THE DAEDALUS FRAMEWORK

Nowadays many development environments for ESL

synthesis exist. Some of them are freeware, others are

commercial and require paid license. Industrial giants such

as Mentor Graphics, Cadence and Synopsys provide ESL

tools. An open-source alternative is the Daedalus design

flow (http://daedalus.liacs.nl) that originates from the

Leiden Institute for Advanced Computer Science (LIACS)

at Leiden University, The Netherlands. The main tools

involved in the synthesis are shown in Fig. 2. Daedalus fills

the so-called “implementation gap” in system-level design –

it bridges the ESL and RTL levels by providing a tool called

ESPAM. Other manufacturers either have ESL frameworks,

or RTL frameworks, but none have a framework that

combines both in a single tool flow. Daedalus is suited for

designs that require streaming data processing and are

implemented on multi-processor system-on-chip (MPSoC).

Certain rules have to be followed, so that the C program is

compliant with Daedalus. A list of those rules is given

section V. Designs are easily prototyped on an FPGA and

verified. SystemC timed simulations are also available, as

we will see later in this paper. System design begins with

functional description of the system. Currently the standard

ANSI C is supported but the front-end could be modified to

support any other specification language (SystemC, SpecC,

etc). The C language is unchanged, i.e. no modifications to

the C syntax are needed. Certain coding style rules have to

be respected. The program is a sequential one at this stage

(which is easier for the developer). Next, an ESL

specification of the MPSoC is automatically derived from

the C program. This specification is divided into three XML

files: application, platform and mapping.

Fig. 2. Daedalus Framework for high-level system synthesis.

Application specification – contains a parallel equivalent

of the sequential C program. The application is presented as

a set of tasks that exchange data between each other. The

model of computation being used is the polyhedral process

network or PPN, originally proposed at Leiden University.

In it, tasks are concurrent and transfer data through FIFO

channels.

Platform specification – describes the topology of the

multiprocessor system as a set of processing elements (PE),

buses and switches. Memories are also used for the

application code and the FIFO buffers.

Mapping specification – describes the link between each

application task and each processing element. Simply put,

the file tells the system which code is executed on which

processor.

The sequential C program must be written as a

parameterized static affine nested loop program (SANLP).

This is the input expected by the parallelizing tool called

PNgen. If not used, the user must write the application

specification by hand in XML.

The platform and mapping specification are derived at

ESL by a tool called SESAME that can optimize the system

for a specific parameter (currently time, cost and power are

supported). The optimization process is called design space

exploration, or DSE. The user could skip this tool also, in

that case an Eclipse plug-in has been developed that loads a

GUI editor for mapping and platform, and those

specifications could be done by hand (or semi-

automatically). SESAME uses a component library that

separates entities at two levels of abstraction - high-level for

ESL synthesis and modeling of multiprocessor systems, and

low-level RTL models to make a transition between the ESL

and the RTL designs. As input the SESAME accepts the

XML description of the application. When all of the XML

files are ready, they are passed to a tool called ESPAM that

automatically generates, in several steps, an RTL

specification that includes hardware and software. The RTL

specification is then fed as an input to a commercial tool

that will carry on with the development. Currently the

supported IDE is Xilinx (XPS, XSDK and Vivado). The

derived files are actually a VHDL description of the MPSoC

and C/C++ firmware for the microprocessors. The VHDL is

divided in three parts:

- platform topology – a netlist of the MPSoC describing

in greater detail the connections between the components;

- hardware descriptions of IP cores – predefined or

custom intellectual property (IP) cores such as processors,

memories, buses, etc.;

- custom IP cores – auxiliary cores needed as glue logic

between the components in the system.

The C/C++ firmware is a low-level representation of the

ESL application specification. It contains code for the

functional behavior, as well as synchronization of the

communication between the PE. The C/C++ source files are

input to a common cross compiler, currently GCC ported for

Xilinx's Microblaze microprocessor.

An important feature of the Daedalus framework is that

the mapping of FIFO channels to memories is not part of the

mapping specification. A FIFO channel X is always mapped

to a local memory of processing component Y, if the

process that writes to X is mapped on processing component

Y. Following this rule, ESPAM explicitly derives the

mapping of FIFO channels to memories.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

III. HISTORY OF THE DAEDALUS FRAMEWORK

The origin of the Daedalus framework dates back to the

year 2004 when work on key features has started. Two

university professors and a PhD student were involved – Ed

Deprettere, Todor Stefanov and Hristo Nikolov. All of them

worked at Leiden University, more specifically the

computer science institute – LIACS. The project is actually

a spin off from the commercial tool Compaan. An open-

source back-end was added to it, namely ESPAM. To make

the entire project open-source, the Compaan was replaced

with PNgen. Compaan continues to be a closed source

alternative and is used by CompaanDesign BV

(https://www.compaandesign.com), founded by Bart

Kienhuis and Ed Deprettere. The PNgen was developed in

2005-2006 by Sven Verdoolaege, Todor Stefanov and

Hristo Nikolov, and the year 2006 may be considered as the

birth year of Daedalus. In the period 2007–2008 along with

help from the University of Amsterdam, the SESAME tool

had been integrated. Thusly the first full version of the

framework was presented in 2008 at the 45th ACM/IEEE

Int. Design Automation Conference (DAC'08), Anaheim,

USA. To help proliferate the new software, in 2009 the

Daedalus foundation was created by Todor Stefanov, Andy

Pimentel and Ed Deprettere. In the beginning of 2010,

Todor Stefanov and Ed Deprettere from Leiden University

and Angel Popov, Marin Marinov and other colleagues from

TU Sofia founded the DAEDALUS research and education

laboratory, a joint laboratory between LIACS, Leiden

University and the Department of Electronics, Faculty of

Electronic Engineering and Technology, Technical

University of Sofia, Bulgaria.

IV. THE POLYHEDRAL PROCESS NETWORK MODEL OF

COMPUTATION

An integral part of the Daedalus tool flow is the

polyhedral process network. As mentioned before,

streaming data applications are the target of the current

framework. Examples of such uses are in the multimedia,

imaging, and signal processing. A polyhedral process

network (PPN) is a network of parallel executing tasks that

communicate over bounded (restricted in size) FIFO buffers

[3]–[5]. Each channel serves streams of data tokens. There

are two types of tasks – a producer and a consumer. For

each FIFO there is a single producer and a single consumer

of data. Multiple producers cannot communicate over a

single channel and the same goes for the consumers. The

synchronization of the communication is done with a

blocking mechanism. If a FIFO buffer is empty, or in other

words – no data tokens are stored in it, a read on this FIFO

will stall or block the reader until a producer writes some

data in it. If a FIFO is full, or in other words – all the

registers contain data, a write to this FIFO will make the

writer to stall or block until a consumer reads some data

from it. Reading from a FIFO is destructive which means

that data is removed from the FIFO once it has been read.

Reading two times the same value is not possible. At any

given clock cycle, a process is either performing

calculations or is blocked on some of its channels. A

process may exchange data only on one channel at a time. If

a process is blocked on some of its channels, it cannot

access other channels that are not empty.

An example PPN is shown in Fig. 3. It contains three

processes (tasks) that communicate through four FIFO

channels. For each process, there is a single microprocessor

implemented on the FPGA, hence the multiple main()

functions. Read and write primitives have the same

implementation on all cores, but each core has a library in

its local memory that contains copies of the read() and

write() functions. The PPN is a derivative of the more

general Kahn process network (KPN). PPN processes go

through three phases, namely read, execute, and write. The

name polyhedral stems from the behavior of the process in a

PPN and it resembles parametrized polyhedral descriptions

using the polytope model. Formal descriptions are expressed

in the following form

 () { },dD p x Z A x B p b= Î ´ ³ ´ + (1)

where D(p) is a parametrized polytope affinely depending

on parameter vector p, x is a variable argument from a linear

equation, Z is a union of sets of integral solutions to systems

of affine inequalities, d is a number corresponding to the

number of dimensions used, A and B are static parameters

in a linear equation, and b is an Y-axis intercept parameter

from a linear equation. If we look at process P2 in Fig. 3,

and by obeying certain rules, called the Daedalus rules for

SANLP programs (shown in Section V), every function

must be enclosed in a for-statement, and by using a few

transformations including dependence analysis (to output a

Static Single Assignment Codes, SSAC), linearization (to

map FIFO buffers to memory with linearly incremental

addresses), and FIFO size calculation (by simulation of the

program), the number of iterations of the code at line 18 can

be found with the expression that describes a two-

dimensional polytope

 () (){ }2
9 , , 2 1 .D N M i j Z i N j M i= Î £ £ £ £ + (2)

The same way, iterations for code line 8 can be calculated

using

 () (){ }2
8 , , 3 1 .D N M i j Z i N j M i= Î Ú £ £ £ £ + (3)

If we combine all polytopes that describe the process

together, we will accurately capture the behaviour of that

process. Because all processes are concurrent and their

communication is explicit, this makes a very good fit

between PPNs and multi-processor systems. The advantages

of PPN models of computation for MPSoC can be

summarized as:

- design-time analysable – tasks are described as

polytopes (or more specifically as polyhedrons) and FIFO

sizes can be calculated in advance;

- algebraic transformations can be performed – using

mathematical transformations PPNs can be optimized to

fit with the processing power of an MPSoC;

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

- determinism – scheduling of application processes is

not crucial and many mappings may exist of one and the

same hardware which allows for different types of

optimizations;

- distributed control – no global scheduler is needed,

scheduling can be done locally with a real-time operating

system, or by simply using interrupts if no OS is present;

- distributed memory – no shared memories are being

used, thusly avoiding race conditions and inter-processor

competition;

- simple synchronization – the process network

synchronizes itself due to the blocking read/write

mechanism.

Fig. 3. An example of a polyhedral process network and firmware for

process P1.

V. THE PNGEN TOOL: PERFORMING AUTOMATIC

APPLICATION PARALLELIZATION

As mentioned in the previous sections, the first step in the

ESL synthesis starts with automatic transformation of a

sequential program in a parallel description. The tool that

does this processing is called PNgen and is part of the

Daedalus tool flow. The input is a sequential program

written in C that complies with static affine nested loop

rules. To call a program a static affine nested loop program

(SANLP), one must write the program in such that it

contains if-statements and function calls enclosed in one or

more for-loops. Some rules have to be obeyed:

- loop increments or decrements must be constant;

- loop boundaries must be affine expressions of the

enclosing loop iterators, static parameters or constants;

- if statements must have affine conditions of the loop

iterators, static parameters or constants;

- static parameters' values may not change during run

time;

- function calls must exchange data between each other

in an explicit manner, i.e. using only scalar variables,

single array elements, and structures (without pointers to

other objects);

- array elements must be indexed with affine expressions

of the enclosing loop iterators, static parameters or

constants.

A program that conforms to those standards is given

below and is written in the C programming language:
for(int i = 0; i < N; i++){
 b[i] = function_1();
}

for(int i = 0; i < N; i++){
 if(i > 0){ tmp = b[i - 1]; }
 else{ tmp = b[i]; }
 function_2(b[i], tmp, &c[i]);
}

The above-mentioned restrictions allow that the program

be represented with the polytope model that uses number

sets and integral vectors defined by linear equations and

inequations, existential quantification, and the union

operation. The set of iterator vectors for which a function

call is executed is an integer set that is called iteration

domain. The inequality corresponding to this parameter

depends on the lower and upper bounds of the for-loop that

encloses the function call of interest. For example, the

iteration domain of function_1 is {i, | 0 ≤ i ≤ N – 1}. All the

iteration domains of a program form the basis of the PPN

model because each function represents a process. The code

given above has two processes that correspond to

function_1 and function_2 (shown as ellipses on the

graphical representation). FIFO channels are derived from

the vector (arrays) or scalar (integers, floating point

numbers, etc) accesses by each function call. All of the left-

hand side function parameters are considered to be write

accesses and must be preceded by the “const” type specifier.

The rest parameters on the right-hand side are read accesses

and must be “non-const” variables. FIFO channels can be

derived using standard array data-flow analysis. This done

in the following way: for each read operation by a function

call, the respective source of the data has to be found, or in

other words – we must find the corresponding function that

wrote this data. The answer to this question could be given

with the help of parametric integer programming (PIP),

where the lexicographical maximum of the write (or read)

source operations in terms of the iterators of the “sink” read

operation. The PIP operations are performed a number of

times depending on the nesting level of the loops. To

construct the PPN shown in Fig. 4, we must first note that

the first read access in function_2 has read data written by

function_1. This results in the FIFO channel represented

with an arrow and named “b”. Data flows from iteration i_w

of function_1 to i_t of function_2 and can be described as

 (){ }1 2 , 0 1 .F F w r r w rD i i i i i N® = Ú = £ £ - (4)

The second read access of function_2 will derive a so-

called self-loop channel (shown as b_1 in the figure)

because the data has already been read by the same function

call after it was written. The temporary variable tmp is

eliminated for this assumption. The self-loop channel is

described as

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

(){ }

(){ }

2 2 , 11 1

, 0 .

F F w r w r r

w r w r

D i i i i i N

i i i i

® = = - £ £ - È

È Ú = = (5)

Fig. 4. A graphical representation of a simple SANLP in a PPN.

A union of integer relations could be derived

 () 1 2
1 , ,n nm

j w rj D i i Z xZU = Î (6)

where n1 and n2 are the number of loops enclosing the

write/read and read operations. FIFO channels size have to

be calculated in such a way that no deadlocks could occur.

The size has to be minimal to save hardware/software

resource. The problem could be solved by first computing a

deadlock-free schedule. The sizes of each channel can then

be calculated individually. This schedule is temporary and

not present in the final implementation, its sole purpose is to

help with the calculations. The PPN can self-schedule

themselves, as mentioned in the previous sections. The

intermediate schedule is not guaranteed to be optimal.

However, the calculations prove that such a schedule exists

for the given buffer sizes. A greedy algorithm is used for the

calculations. The basic idea is to place all iteration domains

in a common iteration space at an offset that is computed by

the scheduling algorithm. The execution order in this

common iteration space is the lexicographical order. A

minimal dependence distance vector is computed for any

pair of connected processes in the application. This vector is

actually the difference between a read and the

corresponding write operation. All process pairs are greedily

combined, in such a way that all distance vectors are

positive in lexicographical manner. The end result of this

operation ensures that a data element is first written, then

read. A loop fusion is also done on the SANLP. When the

schedule is complete, all FIFO channels could be considered

as self-loops of the common iteration space. For this

schedule, the minimum channel sizes can be calculated. For

each read iteration R(i) that is executed before a given read

operation i a subtraction is done from the number of write

operations W(i) preceding the read operation. Therefore, the

number of data elements at operation i, that depends on the

for loop iteration counter, can be expressed as

 () () ,i W i R i= - (7)

where W is the write access and R is the read access of that

specific iteration. This computation can be done by the

readily available Barvinok library. The Barvinok library

efficiently computes the number of integer points in a

parametric polytope. The output is a polynomial of the read

iterators and the parameters. The channel size is the

maximum of this output over all read operations

 () ()()max .W i R i- (8)

This maximum is calculated with the help of the

Bernstein expansion that obtains a parametric upper bound.

VI. THE ESPAM TOOL: AUTOMATED SYSTEM-LEVEL

SYNTHESIS

The tool from the Daedalus design flow that is

responsible for automated system-level hardware and

software synthesis is called ESPAM (Embedded System-

level Platform Synthesis and Application Mapping). It fills

the so-called “implementation gap” between the ESL and

RTL. A lot of tools exist on those levels but only few can

make such a transition in the abstraction. As mentioned

before, the input files for ESPAM are application, platform,

and mapping.

The platform specification file consists of three parts -

processing components, communication components and

links. There are two ways to create the platform – either edit

the platform by hand, using a GUI editor, or use an

automated framework, called SESAME [6], to generate it by

only giving optimization parameters, e.g. optimize for price,

performance, or consumed energy. SESAME also decides

the mapping strategy between the abstract description and

the platform. An example platform is shown in Fig. 5. Each

link connects a processing component to a communication

component. Every component has a name and parameters.

There are no memory controllers instantiated. ESPAM will

automatically handle memories during the synthesis by

placing either hardware FIFO buffers implemented on the

FPGA, or by placing software FIFOs that are mapped to

special communication memories (again implemented on

the FPGA). The performance of the memory controllers

depends on the RTL library currently being used and is

subject to change between revisions. However, most of the

memory controllers are as fast as the microprocessor, with

frequencies of up to 500 MHz on a Xillinx XUPV5

development board. This is done for the sole purpose of

simplification of the design at high level. To be able to

generate such a file, the developer needs a library of

parametrized components. Such components include 7 types

of devices: processing devices, memory, memory

controllers, communication components (crossbar switches

that connect separate processing elements together),

communication controllers (modules that implement the

features of a FIFO), peripheral components and links. The

processing components, or processing elements (PE),

implement the behaviour of the MPSoC by executing code

from the process network. The user may choose between

programmable processors implementing a certain instruction

set and non-programmable dedicated IP cores. Many

parameters exist for their configuration such type, number

of I/O ports, memory size, etc. Memory models describe

either local program and data memories of each processor,

or data communication storage used for the FIFO channels.

The latter could be mapped onto the local data memory of

the PE, or could be implemented with a separate hardware

FIFOs. A user should choose only one of the two methods.

Some parameters of the memories include type, size, and

number of I/O ports. Communication components are used

for inter-processor communication and usually crossbar

switches are being used (CB in Fig. 5). The topology of the

entire MPSoC depends on the connection of the

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

communication component. Currently the Daedalus

framework implements two types of topologies: a point-to-

point and a multi-FIFO. If at least one communication

component is used in the system, it is considered a multi-

FIFO topology. If not a single one is used, and PEs are

connected directly to each other through hardware FIFOs,

then it is considered a point-to-point. Some parameters of

the communication component include type and number of

I/O ports. Communication controllers (CC) are used for

synchronization of the data communication required by the

PPN. Memory controllers connect each PE to its respective

local memory. Because different types of memories could

be used for program and data (SRAM, DRAM, Flash,

ROM), different memory controllers also exist. An

important memory parameter is the size of the memory.

Peripheral components are the entry and exit points of the

data to be processed in the streaming data system. Such

devices could be UARTs and off-chip memories. For code

profiling purposes timer modules are also included. Links

are used to connect two or more ports of a device from the

MPSoC together. Links are transparent from system-level

point of view.

Fig. 5. An example multi-processor platform, where µP is a

microprocessor, MC is a memory controller, CC is a communication

controller, CM is a communication memory, MEM is a microprocessor’s

local memory.

The application specification file contains a PPN, with

processes and FIFO channels in an XML format. This file is

the output of the PNgen tool. The information about the

number of times a specific function is executed can be

written to a parametrized iteration domain captured in a

compact matrix form. The application file contains

important information about the iterations when an input

port has to be read from and when an output port has to be

written to.

The mapping specification file contains information about

the connection between processing elements and application

tasks. It is in an XML format and an example is given

below. It assumes an MPSoC with four processing

components and five PPN processes.
<mapping name = "myMapping" >
<processor name = "uP1" >
 <process name = "P4" />
</processor>
<processor name = "uP2" >
 <process name = "P2" />
 <process name = "P5" />
</processor>
<processor name = "uP3" >

 <proces name = "P3" />
</processor>
<processor name = "uP4" >
 <process name = "P1" />
</processor>
</mapping>

A single process could be mapped to a single component,

like in the case with uP1, uP3 and uP4. Also, multiple

processes could be mapped onto a single component, like in

uP2. However, a single process cannot be mapped to

multiple processing elements which yields an asymmetric

multiprocessing system (AMP). The mapping of the FIFO

channels to memories is not described anywhere in this file.

As mentioned before, this is done by ESPAM automatically.

VII. CONCLUSIONS

In the presented paper the authors presented insights

about the high-level synthesis framework called Daedalus. It

is an open-source framework for ESL synthesis and

automatic generation of RTL hardware and software.

Modern system design requires that a high-level approach is

used to solve the problem and meet the time-to-market

deadlines. The framework is complete and ready for

production. The future development of Daedalus would be

to increase the number of IP cores and supported back-end

(RTL) environments. The industry is welcome to enhance

and proliferate the tool. The original COMPAAN tool, that

spawned Daedalus, has already seen real industrial action

[7] and the results are promising.

ACKNOWLEDGMENT

The authors would like to thank the Research and

Development Sector at the Technical University of Sofia for

the financial support.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] T. Stefanov, E. Deprettere, H. Nikolov, M. Marinov, A. Popov,

Embedded Systems - components, modelling, design and case study.

2012.

[2] D. D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, Embedded System

Design. Boston, MA: Springer US, 2009. DOI: 10.1007/978-1-4419-

0504-8.

[3] S. Verdoolaege, “Polyhedral process networks,” in Handbook of

Signal Processing Systems. Boston, MA: Springer US, 2010, pp. 931–

965. DOI: 10.1007/978-1-4419-6345-1_33.

[4] S. Meijer, H. Nikolov, T. Stefanov, “Combining process splitting and

merging transformations for Polyhedral Process Networks”, in 8th

IEEE Workshop on Embedded Systems for Real-Time Multimedia,

Scottsdale, AZ, USA, 2010, pp. 97–106. DOI:

10.1109/ESTMED.2010.5666985.

[5] S. Meijer, H. Nikolov, T. Stefanov, “Throughput modeling to evaluate

process merging transformations in polyhedral process networks”, in

Design, Automation & Test in Europe Conf. & Exhibition (DATE

2010), Dresden, Germany, 2010, pp. 747–752. DOI:

10.1109/DATE.2010.5456953.

[6] M. Thompson, A. D. Pimentel, “Towards multi-application workload

modeling in sesame for system-level design space exploration,” in

Embedded Computer Systems: Architectures, Modeling, and

Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 222–

232. DOI: 10.1007/978-3-540-73625-7_24.

[7] L. Bogdanov, S. Polstra, P. Yakimov, M. Marinov, “DAEDALED: A

GUI Tool for the optimization of Smart City LED street lighting

networks”, in Proc. XXVII Int. Scientific Conf. Electronics (ET 2018),

Sozopol, 2018, pp. 125–129.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 24,2023 at 14:49:34 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T01:17:36-0400
	Preflight Ticket Signature

