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Abstract—Analog In-Memory Computing (AIMC) has
emerged as a promising solution to address the performance
and energy efficiency limitations of conventional von Neumann
architectures for machine learning (ML) applications. This
promising approach relies on analog-to-digital converters
(ADCs) to enable the integration of AIMC tiles into larger
digital systems. In this paper, we investigate the vulnerability
of AIMC tiles to power side-channel attacks targeting these
ADCs. Specifically, we demonstrate that the numerical values
of weights stored in an AIMC tile, that are often a critical
asset of an ML model, can be extracted by analyzing the power
consumption of the ADCs. With this objective in mind, we
propose TraceFormer, which is a two-phase method: 1) we train
a Transformer neural network (NN) model to translate captured
ADC power traces into digital output values; 2) we utilize a
novel input-controlled weight isolation technique in order to
isolate each individual weight within the AIMC tile, and then
reveal the isolated weight’s value by ADC power side-channel
analysis using the Transformer NN model. We demonstrate the
practical applicability and robustness of our proposed method by
power side-channel analysis of Oscillator-based ADCs that are
typically integrated within AIMC tiles. The experimental results
show high accuracy and robustness of our Transformer-based
analysis, implying potential vulnerabilities in AIMC tiles.

Index Terms—Analog In-Memory Computing, Vulnerabilities,
Power Side-Channel Analysis, ADC Power Analysis.

I. INTRODUCTION

The advancement of machine learning (ML) has led to its
widespread adoption in various domains such as image recog-
nition, natural language processing, and autonomous systems.
To meet the computational demands of ML models, especially
deep neural networks, specialized hardware systems like in-
memory computing (IMC) systems have been developed [1].
IMC systems tightly integrate memory and computation, of-
fering significant improvements in speed and energy efficiency
when performing ML tasks.

IMC systems are broadly classified into digital in-memory
computing (DIMC) systems and analog in-memory computing
(AIMC) systems. DIMC systems embed digital logic near
memory arrays to perform computations with high precision
and noise immunity, although at the cost of lower compute
density and sometimes higher energy consumption [2]. In
contrast, AIMC systems leverage analog device physics to
achieve superior energy efficiency and compute density by
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using physical properties of devices such as resistance or
charge to perform computations directly in the memory array.

As ML models become increasingly integrated into acces-
sible specialized hardware systems containing AIMC tiles,
concerns regarding the security of the models and the po-
tential leakage of sensitive information, such as the model
topology and weights, arise [3]. Previous research has explored
vulnerabilities in AIMC architectures, including methods for
extracting ML model topology information from IMC tiles [4].
However, to the best of our knowledge, no existing work has
specifically targeted the extraction of the numerical values of
weights stored in an AIMC tile. The stored values of the
weights after ML model training are very often a critical asset
of an ML model because obtaining high-quality data to train
ML models remains one of the primary challenges in the ML
domain due to, for example, data confidentiality, cost, and the
substantial time and effort required for the data collection and
model training [5].

Therefore, in this paper, we investigate the vulnerability of
AIMC tiles to revealing ML model weights via side-channel
analysis, which aims at extracting this potentially sensitive
information from the hardware implementation of a system
containing AIMC tiles by observing the power consumption
of the system. From a security standpoint, the hardware
implementation of AIMC tiles might seem inherently robust
against power side-channel analysis, as analog computations
and circuits themselves do not produce significant switching
activity, which is the main source of power side-channel
leakage in CMOS-based digital circuits. However, systems
containing AIMC tiles necessarily convert analog computation
results from the tiles into digital values using analog-to-digital
converters (ADCs) that do involve CMOS transistor switching.
Consequently, ADCs can serve as potential leakage points
vulnerable to power side-channel analysis.

In this paper, we exploit these potential leakage points and
demonstrate that extracting ML model weights stored in an
AIMC tile is possible by performing power side-channel analy-
sis on the tile’s ADCs, thereby revealing AIMC vulnerabilities.
More specifically, by carefully controlling and sequencing the
inputs provided to the AIMC tile, collecting the corresponding
ADC power consumption traces during the analog-to-digital
conversion, and then analyzing these traces, we can extract
the internal weights of the ML model embedded in the tile.
To analyze the power traces and extract the corresponding
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weight values, we employ a Transformer neural network (NN)
model. The Transformer NN model effectively learns the
relationship between the power consumption patterns and the
weight values, enabling accurate inference of the weights.

The main novel contributions of this paper are summarized
as follows:

• We propose TraceFormer, a method to extract ML model
weights from an AIMC tile by performing analysis on
ADC power consumption traces. Our method utilizes a
specific one-hot encoding schema for AIMC tile inputs to
isolate the effect of individual weights on the ADC power
trace, facilitating accurate extraction of every individual
weight value in isolation.

• We construct and train a Transformer NN model to learn
the relationships between the power traces, captured dur-
ing the analog-to-digital conversion process in Oscillator-
based ADCs that are typically integrated within AIMC
tiles, and the corresponding digital values coming out
from this type of ADCs. The Transformer NN model
enables accurate extraction of an individual weight value
in different ADC operating conditions, such as different
temperature, supply voltage, clock speed, and measure-
ment setup.

• We demonstrate the practical applicability of the Trans-
former NN model by utilizing it for power side-channel
analysis of Oscillator-based ADCs that are emulated on
a real hardware platform. The experimental results show
high accuracy and robustness of our Transformer NN
model in translating captured ADC power traces into
digital output values, confirming that ADCs are indeed
leakage points within AIMC tiles, thereby making such
tiles vulnerable. Moreover, the results show that our
Transformer NN model is the best option among several
NN models, i.e., CNN, RNN, GAN, TCN, and LSTM,
we have experimented with, as our model consistently
outperforms the others.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work and provides the context of
our investigation. Section III presents an overview of the
operational principles of Oscillator-based ADCs and power
side-channel analysis. In Section IV, we detail our method for
extracting ML model weights stored in an AIMC tile. Sec-
tion V describes our experimental setup and results. Finally,
Section VI concludes the paper and suggests directions for
future research.

II. RELATED WORK

In this section, we discuss recent studies that have inves-
tigated the application of power analysis and side-channel
attacks to reverse engineer ML models running within (em-
bedded) System-on-Chip (SoC) architectures, some of which
containing IMC components.

Maji et al. [6] demonstrate that by analyzing power and
timing side-channel information, it is possible to recover
both the parameters (weight and biases) and inputs of neural

networks deployed on embedded microcontrollers. Their ex-
periments reveal that even simple power analysis techniques
could effectively extract sensitive information from various
network precisions, including floating-point and fixed-point
implementations.

Batina et al. [7] explore the feasibility of reverse engineering
neural networks using side-channel information. They focus on
multilayer perceptrons implemented on ARM Cortex-M3 mi-
crocontrollers and demonstrate that an attacker could deduce
critical aspects of the network, such as activation functions
and layer configurations, solely through non-invasive power
measurements. This study highlights the vulnerability of neural
network implementations to side-channel attacks.

Neskovic et al. [8] propose a SystemC-based model to
estimate information leakage in AI accelerators during the
early design stages. They demonstrate successful side-channel
attacks, such as correlation power analysis and template at-
tacks, using their model. The study emphasizes the importance
of incorporating security evaluations in the design phase to
develop attack-resilient AI accelerators.

In recent years, the utilization of ML techniques for power
analysis has significantly enhanced the efficacy of side-channel
attacks. Researchers have leveraged ML algorithms to analyze
power consumption patterns, enabling more precise extraction
of sensitive information from cryptographic devices. For ex-
ample, Ashutosh et al. [9] conduct a comprehensive review
of various ML-based power side-channel attacks, focusing on
feature extraction techniques and classification methods. Their
study highlights the effectiveness of ML in identifying subtle
patterns in power traces that traditional analysis methods might
overlook, thereby improving the success rate of side-channel
attacks.

Moreover, recent studies also have explored power analysis
in the context of IMC architectures. For instance, Wang
et al. [4] develop a side-channel attack technique targeting
IMC systems, demonstrating the feasibility of extracting NN
model topology information from power trace measurements
without prior knowledge of the neural network. They create
a simulation framework to emulate dynamic power traces of
IMC macros, highlighting potential vulnerabilities in IMC
architectures.

Sayyah Ensan et al. [10] explored the vulnerability of IMC
architectures, particularly those utilizing resistive random-
access memory (RRAM), to side-channel attacks. They
demonstrate that functions implemented within such IMC
architectures could be reverse-engineered by analyzing power
and timing signatures. Their findings suggest that even without
invasive techniques, sensitive intellectual property embedded
in IMC architectures can be compromised through side-
channel analysis.

Kanellopoulos et al. [11] investigate the security impli-
cations of processing-in-memory (PiM) operations, a subset
of IMC architectures. They introduced IMPACT, a set of
high-throughput main memory-based timing attacks leveraging
PiM characteristics to establish covert and side channels.
Their study reveals that PiM operations could inadvertently
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amplify timing-based side-channel vulnerabilities, leading to
significant data leakage risks.

[12] analyzes the vulnerability of Spin Transfer Torque
RAM (STTRAM), a promising candidate for last-level cache
in IMC systems, to power side-channel attacks. They propose
several low-cost countermeasures, such as short retention
STTRAM and constant current write drivers, to mitigate these
vulnerabilities. Their work underscores the importance of ad-
dressing side-channel risks in emerging memory technologies
integral to IMC architectures.

While the aforementioned prior research efforts have pri-
marily focused on extracting high-level NN topology infor-
mation, cryptographic secrets, reverse-engineering functions
within IMC or other SoC systems, our proposed method in this
paper aims at extracting ML model weights stored in AIMC
tiles, thereby highlighting potential and previously unexplored
vulnerabilities in systems containing AIMC tiles.

III. BACKGROUND

In this section, we discuss fundamental principles behind
ADCs and their distinctive power consumption characteristics
that enable side-channel analysis. Understanding these oper-
ational characteristics is essential to comprehending how our
proposed method exploits ADC power consumption traces to
retrieve the weights of an ML model embedded in an AIMC
tile.

ADCs are essential components that convert continuous
analog signals into discrete digital representations, and ADCs
are integral to AIMC tiles [13]. Many ADC circuits are imple-
mented using the CMOS technology. CMOS circuits exhibit
power consumption patterns that are heavily influenced by the
transistor switching activity and short-circuit current during the
transistors switching, i.e., the dynamic power consumption,
as well as the static leakage current, i.e., the static power
consumption [14]. The dominant dynamic power consumption
Pdynamic in CMOS circuits is expressed as

Pdynamic = αCV 2
DDf (1)

where α denotes the switching activity factor (the fraction
of transistors switching per cycle), C is the effective load
capacitance, VDD is the supply voltage, and f is the transistor
switching frequency [14]. During ADC operations, each bit
decision, comparator switching, or frequency modulation leads
to distinct switching patterns, directly influencing the value of
α and f . Thus, these operations leave identifiable patterns in
the ADC power consumption traces, making the inference of
the ADC digital output through power side-channel analysis
feasible.

Further, we focus on and briefly discuss Oscillator-based
ADCs because this type of ADCs are used in our experimental
work and they are typically integrated within AIMC tiles due
to their simple design and smaller circuit footprint compared to
other ADC types. During operation, an Oscillator-based ADC
converts an input voltage signal into a frequency modulated
signal. To this end, a voltage-controlled oscillator is used

which frequency fosc is directly modulated by the input voltage
Vin as follows

fosc = f0 + kVin (2)

where f0 is the oscillator’s nominal frequency and k is its
voltage-to-frequency conversion factor [15]. The oscillator
triggers digital counting circuits to obtain the digital value
corresponding to Vin. Moreover, the switching activities of
the digital counting circuits correlate directly with the input
voltage Vin and its corresponding digital representation (value).
This results in power consumption traces strongly tied to the
input signal due to frequency-dependent switching patterns.
Such frequency modulation directly impacts CMOS transistor
switching dynamics, leaving distinct power signatures that
can be analyzed to infer the digital representation (value)
corresponding to Vin.

IV. PROPOSED METHOD

In this section, we propose TraceFormer, a two-phase
method to extract the weights of an ML model stored in
an AIMC tile using power side-channel analysis on ADCs.
To achieve this goal, we rely on the following assumptions.
First, as an authorized user or tester of an AIMC-based
system, we have full control over the inputs provided to the
AIMC tile for computation. Second, we assume that it is
possible to capture the ADC power consumption traces, which
is a realistic assumption because modern mixed-signal SoCs
typically isolate analog components—including ADCs—onto
dedicated analog power rails, enabling power measurements
via a small series resistor or direct probing on the printed-
circuit board [16], [17]. Based on these assumptions, in the
first phase, called Transformer-based Power Trace to Weight
Translation, we train a Transformer NN model to learn the
relationships between ADC power consumption patterns and
the corresponding digital values coming out from the ADC.
After training, this Transformer NN model can accurately
translate captured ADC power consumption traces into digital
values. However, to achieve our primary objective—extracting
the embedded ML model weights—we must ensure that each
ADC operation involves exactly one unknown weight at a
time. Therefore, in the second phase, called Input-Controlled
Weight Isolation, we control the AIMC tile inputs using specif-
ically crafted one-hot encoded inputs in order to isolate each
individual weight within the AIMC tile, and then reveal the
isolated weight’s value by ADC power side-channel analysis
using the trained Transformer NN model.

A. Phase 1: Transformer-based Power Trace to Weight Trans-
lation

This phase focuses on how to translate captured ADC power
traces into their corresponding digital values. This is achieved
by building a supervised learning pipeline that takes pairs of
power traces and known digital outputs as training data. The
overall goal is to build a reliable digital output predictor that
generalizes across different ADC operating conditions. The
following two steps describe how we prepare the training data
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and how we design, train, and validate a Transformer NN
model that performs this translation with high accuracy.

1) Step 1: Dataset Preparation: In this step, we begin
by building a labeled dataset that captures the relationship
between ADC power traces and their corresponding digital
outputs. This dataset serves as the training foundation for our
Transformer NN model.

Each data collection session targets an ADC configured
to produce B bits of digital output. Given B bits of digital
output, there are 2B possible output values, ranging from all-
zeros to all-ones. We generate corresponding analog inputs
that stimulate the ADC to produce each possible digital output
value. For every analog input, we capture the resulting ADC
power consumption trace, represented as a sequence of power
samples X = [x1, . . . , xL], where every sample xi ∈ R and
L is the number of samples captured during each conversion
process. L stays the same for all captured traces during the
dataset generation. The B-bit digital output Y ∈ {0, 1}B is
recorded together with each trace X , resulting in the trace-
output pair (X,Y ).

To capture variations in the ADC operating condition,
device behavior, and measurement noise, we repeat the data
collection process multiple times for each analog input. Specif-
ically, for every target output value, we apply R times the
corresponding analog input under varying conditions such
as different temperatures, supply voltages, and measurement
setups. This process generates C ×R number of trace-output
pairs (X,Y ) in the training dataset, where C = 2B is
the number of unique output values and R is the number
of repetitions per value. The parameters C, R, and L are
configurable and chosen to balance between dataset coverage
and practical limitations on storage and measurement time.
This dataset forms the basis for training the Transformer NN
model described in Step 2.

2) Step 2: Transformer NN Model: To reliably infer dig-
ital outputs from raw ADC power traces, we construct and
train a Transformer NN model that learns intricate temporal
dependencies directly from captured current measurements.
Each ADC power trace is initially represented by a real-
valued vector X = [x1, . . . , xL], where every sample xi ∈ R
and L denotes the number of current samples collected per
ADC conversion. Due to the large number of samples and
redundancy present in raw power trace data, direct modeling is
computationally prohibitive, motivating the need for effective
pre-processing steps.

First, we normalize each trace individually, rescaling sample
to the interval [0, 1]. Such normalization ensures numerical sta-
bility during training and standardizes input variations across
diverse ADC conversions. Subsequently, we apply Principal
Component Analysis (PCA) [18] to reduce the number of ele-
ments of each trace while retaining critical variance informa-
tion essential for distinguishing between different ADC output
patterns. Specifically, PCA converts the original potentially
long trace X into a shorter trace X ′ = [x′

1, . . . , x
′
L′ ], where

x′
i ∈ [0, 1] and L′ ≪ L.
Following the PCA conversion, we segment the shorter trace

X ′ into scalar tokens suitable for the Transformer NN model
processing. Each scalar token x′

t is individually embedded into
a latent vector space of dimension d (embedding size), using
a learned affine transformation characterized by weight matrix
We ∈ Rd×1 and bias vector be ∈ Rd:

et = Wex
′
t + be, et ∈ Rd, t ∈ {1, . . . , L′}. (3)

Additionally, we prepend a special classification token ([CLS])
at the beginning of each token sequence. This token enables
the model to efficiently aggregate global contextual informa-
tion about the entire trace, facilitating accurate prediction of
the underlying digital values.

To effectively handle temporal jitter and subtle timing
variations inherent in practical ADC measurements, we in-
tegrate relative positional encoding [19] into our Transformer
architecture. Relative positional encoding explicitly represents
pairwise temporal distances among tokens, rather than relying
on fixed absolute positions. This adaptive representation signif-
icantly enhances the model’s resilience to temporal shifts and
jitter, enabling the Transformer to accurately capture timing-
sensitive information within ADC traces.

The sequence of embedded tokens, denoted as

E = [e[CLS], e1, . . . , eL′ ] ∈ R(L′+1)×d (4)

is processed through a stack of NL Transformer encoder
layers, where NL denotes the number of stacked encoder lay-
ers. Each encoder layer comprises two primary components:
a multi-head self-attention (MHSA) module and a position-
wise feed-forward network (FFN). The Transformer employs
residual connections around both modules to facilitate stable
gradient flow and effective training:

E′ = MHSA(E) + E, (5)
Eout = FFN(E′) + E′ (6)

To preserve amplitude-sensitive information critical for effec-
tive side-channel analysis, we deliberately omit layer normal-
ization, which could otherwise suppress subtle yet meaningful
amplitude variations in the input traces.

The final encoder output associated with the special [CLS]
token, denoted h[CLS] ∈ Rd, provides a concise summary of the
entire input power trace. To predict the digital ADC output, we
apply a linear transformation with parameters Wout ∈ RN×d

and bout ∈ RN , mapping the summarized trace representation
to a vector of logits:

o = Wouth[CLS] + bout. (7)

Here, N represents the bit-resolution of the targeted ADC.
Subsequently, we apply an element-wise sigmoid activation
function, converting the logits to bit-wise probability estimates
indicating the likelihood that each bit is one:

Ŷ = σ(o), Ŷ ∈ [0, 1]N . (8)

Training the Transformer model involves minimizing the
binary cross-entropy loss computed independently for each
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Fig. 1. Structure of an AIMC tile with M word lines. Each crosspoint stores
a weight Wi,j . The Word Line Driver applies input activations to the rows.
A multiplexer (MUX) sequentially forwards each bit line to the ADC for
digitization, with results stored in the Output Register.

ADC output bit. Given a ground-truth bit-vector Y ∈ {0, 1}N ,
the training loss is formally expressed as:

LBCE = − 1

N

N∑
i=1

[
Yi ln Ŷi + (1− Yi) ln

(
1− Ŷi

)]
. (9)

The optimization is performed using the AdamW algo-
rithm with specified batch size B (number of traces per
training batch) and learning rate lr. Training continues for a
predetermined number of epochs, leveraging mixed-precision
arithmetic to enhance computational efficiency. Additionally,
we incorporate four targeted data augmentation techniques
such as uniform random time shifts, additive Gaussian noise,
amplitude scaling, and mild temporal warping in order to
promote robust generalization against realistic measurement
variations encountered during ADC operations.

B. Phase 2: Input-Controlled Weight Isolation

After training the Transformer NN model to translate ADC
power traces into digital values in Phase 1, we utilize it to
extract individual weights embedded in an AIMC tile. This
phase leverages a sequence of one-hot encoded inputs provided
to the tile in order to isolate the effect of individual weights
on the ADC output, making possible the extraction of each
weight from the captured ADC power traces.

As illustrated in Figure 1, an AIMC tile consists of a
crossbar array of memory elements arranged along M word
lines (rows) and J bit lines (columns). Each crosspoint at
coordinate (i, j) stores a weight Wi,j , typically implemented
as a programmable conductance. Input voltages WLi are

applied to the array through the word lines, while the resulting
column-wise currents BLj are collected on the bit lines. The
analog computation performed by the tile corresponds to a
vector-matrix multiplication, where the current BLj on bit line
j is given by

BLj =
M∑
i=1

Wi,j · WLi (10)

where WLi is the voltage applied to word line i.
To isolate, the contribution of a specific weight Wi,j to the

current BLj , we put a one-hot encoded input in the Input
Register, shown in Figure 1, that activates the Word Line
Driver to apply non-zero voltage only to the i-th word line
(e.g., WLi = 1V) while applying zero volts to all other lines:

∀k ∈ [1,M ], WLk =

{
1, if k = i,

0, otherwise.
(11)

Under this condition, the current on bit line j, expressed by
Equation 10, becomes

BLj = Wi,j

meaning that the current on bit line j is directly proportional
to the isolated weight Wi,j at position (i, j) in the AIMC tile
crossbar array.

The Bit Line Driver routes the currents to the multiplexer
component MUX depicted at the bottom of Figure 1. The
MUX selects one bit line j at a time and forwards its analog
signal (current BLj) to the ADC for digitization. This time-
multiplexed readout of the outputs of the AIMC tile crossbar
array ensures that, during each ADC conversion cycle, exactly
one analog signal proportional to the isolated weight Wi,j is
presented to the ADC as input. The ADC converts this analog
signal (input) to a digital output while generating a distinctive
power trace resulting from internal CMOS switching activity.
This trace reflects the specific characteristics of the digitized
value, providing a side-channel signal that can be captured ex-
ternally. Using the Transformer NN model trained in Phase 1,
we analyze this power trace (side-channel signal) to predict
the digital representation of the isolated weight.

The aforementioned process is repeated for all word lines
and bit lines. For each isolated weight Wi,j , multiple traces are
captured across P independent repetitions to improve measure-
ment reliability through averaging and noise reduction. The
controlled on-hot encoded input to the AIMC tile, combined
with the sequential selection of bit lines via the MUX and the
high-resolution analysis of the ADC power traces using the
trained Transformer NN model, provides an effective method
for extracting all weights embedded in the AIMC tile.

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the practical applicability
of our Transformer NN model by training and utilizing it
for power side-channel analysis of an Oscillator-based ADC
which is emulated on a real hardware setup. The goal is to
evaluate the accuracy and robustness of our model in trans-
lating captured ADC power traces into digital output values,
thereby experimentally confirming or not that Oscillator-based
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Fig. 2. An overview of the experimental setup with CW305, ARM Cortex-
M0, and ChipWhisperer Husky for power trace capturing.

ADCs are potential leakage points if integrated within AIMC
tiles. In addition, we compare our Transformer NN model with
several other NN models, i.e., CNN, RNN, GAN, TCN, and
LSTM to check whether our model is the best option for power
side-channel analysis of Oscillator-based ADCs.

A. Experimental Setup
The comprehensive experimental hardware setup is illus-

trated in Figure 2. It comprises a ChipWhisperer platform
consisting of a CW305 Artix-7 FPGA target board and
a ChipWhisperer Husky power trace capture device. The
FPGA implements the digital back-end of an Oscillator-based
ADC [20]. The analog front-end of the ADC, i.e., the voltage-
controlled oscillator is emulated on a MicroBit board featuring
an ARM Cortex-M0 microcontroller [21]. The microcontroller
generates a digitally programmable pulse-width-modulated
(PWM) waveform that feeds the digital back-end of the
Oscillator-based ADC implemented in the FPGA. The ADC’s
counter in the digital back-end treats this waveform as the
oscillations it would normally receive from its analog front-
end that trigger the counter to increment its digital value on
the rising edges of the PWM pulses. All PWM waveform
parameters, including the carrier frequency, modulation depth,
and modulation rate, are controlled via the UART interface
of the MicroBit board. This allows us to have fully con-
trolled waveform generation without firmware modifications,
supporting repeatable waveforms across different rounds of
experiment.

The ChipWhisperer Husky capture device samples the
FPGA’s instantaneous power consumption at a temporal res-
olution of 105 mega samples per second (MS/s) with 12-
bit amplitude resolution per sample. It captures high-quality
power consumption traces, corresponding to the ADC digital
back-end operations, and transmits the data to a host computer
via a USB-C interface for further power side-channel analysis
utilizing our Transformer NN model.

B. Evaluation of the Transformer NN model
In this section, we evaluate the accuracy and robustness

of the Transformer NN model (Section IV-A) in inferring

ADC digital outputs from power consumption traces. First,
we explain how the training dataset for the model is generated
using the experimental setup. Then, we introduce the architec-
ture of the Transformer NN model, we have constructed, and
the training parameters. Finally, we present our experimental
results and compare the performance of our Transformer NN
model with several alternative NN models.

1) Dataset Generation: As mentioned earlier in Sec-
tion V-A, we conduct our experiments using the setup shown
in Figure 2. The power traces are captured, via the Chip-
Whisperer Husky platform by sampling at 105 MS/s, from
the digital back-end of the oscillator-based ADC implemented
on the ARTIX-7 FPGA of the CW305 board operating at a
supply voltage of 0.9 V and clock frequency of 40 MHz.

The dataset is generated for the oscillator-based ADC con-
figured with a resolution of the output B = 8 bits, covering
all 256 possible digital output values. For each digital output
value, we perform R = 100 repetitions of data collection
(power trace capturing) to account for variations due to device
behavior, noise, and environmental conditions, but with the
aforementioned fixed voltage (0.9 V) and clock frequency (40
MHz) of the FPGA, resulting in a total dataset size of 25600
trace-output pairs (X,Y ). Each power trace X contained
exactly L = 1024 uniformly captured samples.

2) Transformer NN model Architecture and Training pa-
rameters: Our Transformer NN model architecture is de-
scribed in the last row of Table I. The model starts by
applying PCA to reduce each ADC power trace X with length
L = 1024 samples to trace X ′ with L′ = 512 scalar tokens.
This step significantly decreases the computational complexity
of the model, yet preserving essential trace characteristics.
Each scalar token x′

t ∈ X ′ is embedded into a learned latent
vector space with an embedding width of dmodel = 64. A
special classification ([CLS]) token is prepended to facilitate
global information aggregation. Next, the model employs four
Transformer encoder layers (NL = 4), each consisting of a
MHSA module with 8 heads and a position-wise FFN with
dimension 128.

The model architecture is completed with a Dense layer
containing 8 neurons and a sigmoid activation function for
bit-wise prediction. The AdamW optimizer is utilized with a
learning rate of 5 × 10−4, batch size of 16, dropout rate of
0.1, and the model is trained for 150 epochs to ensure robust
convergence.

3) Experimental Results and Comparison: In Figure 3, we
present the accuracy of our Transformer NN model (the green
bar) in comparison to other models such as CNN, RNN,
GAN, TCN, and LSTM. Every bar shows the accuracy of the
corresponding model indicated on the x-axis. The architectures
of all models are described in Table I. For fair comparison,
the data pre-processing and the training dataset are the same
for all models, i.e., all models are trained with the same
dateset of 25600 trace-output pairs (X,Y ) and every trace is
reduced in length with the aforementioned PCA. Moreover, the
accuracy of all models is evaluated on the same test dataset
with unseen power consumption traces, collected under the
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TABLE I
MODEL ARCHITECTURES AND TRAINING PARAMETERS USED FOR BENCHMARKING POWER-TRACE-BASED INFERENCE OF ADC OUTPUT VALUES

Model Type Layers Optimizer Learning Rate Batch Size Epochs

CNN Conv1D(32, 5) → ReLU → MaxPool(2) → Conv1D(64, 5) → ReLU → GlobalAvgPool → Dense(8) → Sigmoid Adam 1e-3 32 60
RNN SimpleRNN(64) → Dense(8) → Sigmoid Adam 1e-3 32 110
GAN Generator: Dense(256) → ReLU → Dense(1024)

Discriminator: Dense(256) → ReLU → Dense(1) → Sigmoid Adam 1e-4 64 170
TCN TCN(64, kernel size=3, dilations=[1,2,4]) → Dense(8) → Sigmoid Adam 1e-3 32 140
LSTM LSTM(64) → Dense(8) → Sigmoid Adam 1e-3 32 170
Transformer Tokenize → Positional Encoding → 4x Encoder(MHSA(8 heads), FFN(128)) → Dense(8) → Sigmoid AdamW 5e-4 16 150
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Fig. 3. Accuracy of different machine learning models in predicting ADC
outputs from power traces.
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Fig. 4. The accuracy of our Transformer NN, TCN, and LSTM models under
varying ADC operating conditions, i.e., different supply voltages (0.8 V, 0.9
V, 1.0 V, 1.1 V) and clock frequencies (20 MHz, 40 MHz, 80 MHz). In bar
chart (b), the red box highlights the conditions (i.e., 0.9 V, 40 MHz) under
which the training dataset is obtained.

same FPGA voltage (0.9 V) and clock frequency (40 MHz)
as the training data. The accuracy results, shown in Figure 3,
clearly indicate that our Transformer NN model outperforms
the other models by consistently achieving higher accuracy,
thus justifying our choice of a Transformer type of NN model

for effective inference of Oscillator-based ADC output values
from power consumption traces.

To evaluate the robustness of our Transformer NN model,
we asses its accuracy to infer ADC output values from power
consumption traces that are captured under ADC operating
conditions different from the conditions at which the afore-
mentioned training dataset is generated. More specifically,
we vary the FPGA clock frequency using three values, i.e.,
20 MHz, 40 MHz, and 80 MHz as well as we vary the
FPGA supply voltage using four values, i.e., 0.8 V, 0.9 V,
1.0 V, and 1.1 V. Changes in the frequency and voltage alter
the timing of switching activities in the ADC digital back-
end circuit, thereby affecting the power consumption traces.
Nevertheless, the fundamental pattern of switching activity
remains consistent.

The bars in Figure 4 show the accuracy of the three best-
performing models, identified from Figure 3 (our Transformer
NN, TCN, and LSTM), across the aforementioned varying
ADC operating conditions. As a reference point, the red box
in Figure 4(b) highlights the accuracy of the three models on
traces captured under the same ADC operating conditions as
the traces used for the training. The green bars in Figure 4
clearly indicate the high robustness of our Transformer NN
model because its accuracy remains very high even under
varying ADC operating conditions. In contrast, the gray bars
indicate that the TCN and LSTM models are not robust
because their accuracy drops down significantly in comparison
to the reference point.

VI. CONCLUSIONS

In this paper, we introduced TraceFormer, a Transformer-
based method specifically designed to extract numerical
weights from Analog In-Memory Computing (AIMC) tiles
through power side-channel analysis targeting analog-to-
digital converters (ADCs). Recognizing ADCs as inherent
vulnerabilities within AIMC architectures, we developed a
structured two-phase methodology. In the first phase, a Trans-
former neural network is trained to accurately decode ADC
power consumption traces into their corresponding digital
output values. In the second phase, we presented an input-
controlled weight isolation method using one-hot encoded in-
puts to individually isolate and extract each weight embedded
within an AIMC tile.

We validated TraceFormer experimentally using an FPGA-
implemented Oscillator-based ADC, demonstrating that our
proposed method significantly outperforms other neural net-
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work models, including CNN, RNN, GAN, TCN, and LSTM
architectures, in terms of both accuracy and robustness. Ad-
ditionally, TraceFormer showed superior generalization under
varying operational conditions, including changes in supply
voltage and FPGA clock frequency.

Our findings underline the vulnerability of AIMC-based
systems due to ADC components, clearly identifying them
as critical leakage points susceptible to power side-channel
attacks. Future research directions include exploring and im-
plementing robust countermeasures, as well as extending the
applicability of TraceFormer to additional types of ADCs and
diverse AIMC hardware configurations.
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