
Exploiting Resource-constrained Parallelism
in Hard Real-Time Streaming Applications

Jelena Spasic, Di Liu and Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, The Netherlands
Email: {j.spasic, d.liu, t.p.stefanov}@liacs.leidenuniv.nl

Abstract—In this paper, we study the problem of exploiting
parallelism when a hard real-time streaming application modeled
as a Synchronous Data Flow (SDF) graph is mapped onto a Multi-
Processor System-on-Chip (MPSoC) platform. We propose a new
unfolding graph transformation and an algorithm that adapts the
parallelism in the application according to the resources in an
MPSoC by using the unfolding transformation. We evaluate the
efficiency of our unfolding graph transformation and the perfor-
mance and time complexity of our algorithm in comparison to the
existing approaches. Experiments on a set of real-life streaming
applications demonstrate that: 1) our unfolding transformation
gives shorter latency and smaller buffer sizes when compared to
the related approaches; and 2) our algorithm finds a solution
with smaller code size, smaller buffer sizes and shorter latency
in 98% of the experiments, while meeting the same performance
and timing requirements when compared to an existing approach.

I. Introduction

Modern Multi-Processor System-on-Chip (MPSoC) platforms
offer high processing power through many processing elements
available on a chip. At the same time, modern streaming ap-
plications have high computational requirements and hard real-
time constraints. To meet the computational demands and timing
requirements of these modern streaming applications, the parallel
processing power of MPSoC platforms has to be exploited effi-
ciently. Exploiting the available parallelism in an MPSoC platform
to guarantee performance and timing constraints is a challenging
task. This is because it requires the designer to expose the right
amount of parallelism available in the application and to decide
how to allocate and schedule the tasks of the application on the
available processing elements such that the platform is utilized effi-
ciently and the timing constraints are met. Several parallel Models-
of-Computation (MoCs), e.g. Synchronous Data Flow (SDF) [1]
and Cyclo-Static Dataflow (CSDF) [2], have been adopted as
the parallel application specification. Within a parallel MoC, an
application is represented as a task graph with concurrently exe-
cuting and communicating tasks. Thus, the parallelism is explicitly
specified in the model.

However, the given initial parallel application specification of-
ten is not the most suitable one for the given MPSoC platform.
This is because application developers mainly focus on realizing
certain application behavior while the computational capacity of
the MPSoC platform is often not fully taken into account. To better
utilize the underlying MPSoC platform, the initial specification of
an application, i.e., the initial task graph, should be transformed to
an alternative one that exposes more parallelism while preserving
the same application behavior. This can be achieved through an
unfolding transformation where the tasks from the initial graph
are replicated in the equivalent graph a certain number of times,
determined by unfolding factors. In such a way, replicas corre-
sponding to a task in the initial graph process different data, thereby
exploiting data-level parallelism. The unfolding graph transforma-
tions proposed so far: 1) introduce additional tasks for managing
data among replicas [3], [4], which introduces communication and
scheduling overhead; 2) do data reordering or increase rates of data
production/consumption on channels [5], [6], which causes an in-
crease of buffer sizes of data communication channels between the
tasks and an increase of the application latency. Thus, special care
should be taken during the unfolding transformation to avoid all
the unnecessary overheads. Moreover, having more tasks’ replicas

than necessary results in an inefficient system due to overheads in
code and data memory, scheduling and inter-tasks communication
[4], [5]. Thus, the right amount of parallelism (tasks’ replicas),
i.e., the proper values of unfolding factors, depending on the
underlying MPSoC platform, should be determined in a parallel
application specification to achieve maximum performance and
timing guarantees.

Therefore, in this paper, we address the following problems: (1)
How to efficiently unfold a given initial graph of an application
to avoid unnecessary communication/scheduling overheads and
unnecessary increases in buffer sizes and the application latency?,
and (2) How to find a proper unfolding factor of each task in
the initial graph, such that the obtained alternative graph exposes
the right amount of parallelism that maximizes the utilization of
the available processors in an MPSoC platform under hard real-
time scheduling? The specific contributions of this paper are the
following:
• We propose a new unfolding graph transformation for SDF

graphs which results in graphs with shorter application la-
tency and smaller buffer sizes compared to the related ap-
proaches [3], [4], [6], [5], as shown in Sec. VII.

• We propose a new algorithm for finding a proper value for the
unfolding factor of each task in a graph when mapping the
graph on a platform such that the platform is utilized as much
as possible under hard real-time scheduling.

• We show, on a set of real-life streaming applications, that in
more than 98% of the experiments, our unfolding graph trans-
formation and algorithm result in a solution with a shorter
latency, smaller buffer sizes and smaller values for unfolding
factors compared to the solution obtained from [5] while the
same performance and timing requirements are satisfied.

Scope of work. In this work, we assume that a given SDF graph is
acyclic. This limitation comes from the hard real-time scheduling
framework [7] we use to schedule an SDF graph. However, even
with this limitation our approach is still applicable to many real-life
streaming applications because a recent work [8] has shown that
around 90% of streaming applications can be modeled as acyclic
SDF graphs. In addition, our approach does not unfold stateful
tasks and input/output tasks. A stateful task is a task which current
execution depends on its previous execution, thus those executions
cannot be run in parallel. Input and output tasks are the tasks
connected to the environment, hence they are not unfolded. We
consider systems with distributed program and data memory to
ensure predictability of the execution at runtime and scalability.
We assume that the communication infrastructure used for inter-
processor communication is predictable, i.e., it provides guaranteed
communication latency. We use the worst-case communication
latency to compute the worst-case execution time of a task, which
in our approach includes the worst-case time needed for the task’s
computation and the worst-case time needed to perform inter-task
data communication on the considered platform.

II. RelatedWork
[3] proposes an Integer Linear Programming (ILP) based ap-

proach for maximizing the throughput of an application modeled as
an SDF graph by exploiting data parallelism when mapping the ap-
plication on a platform with fixed number of processors. However,
an ILP-based approach suffers from an exponential worst-case time
complexity. To overcome the time complexity issue of the approach
in [3], [4] separates the task replication and the allocation of repli-
cas. However, decomposing the problem into two strongly related

954978-3-9815370-6-2/DATE16/ c©2016 EDAA

problems and solving them separately has a negative impact on the
solution quality. In addition, the maximum data-level parallelism
is revealed in the application without considering the platform
constraints. In contrast, in our approach, we solve the problem of
task replication and the mapping of replicas simultaneously while
taking into account the platform constraints. Both approaches [3]
and [4] use splitter (S) and joiner (J) tasks to distribute and merge
data streams processed by replicas, see Fig. 2(a). Those tasks intro-
duce additional communication overhead as data streams have to be
sent to them and to the replicas. Moreover, the splitter/joiner tasks
have to be considered in the process of mapping and scheduling of
tasks. In contrast, in our approach, we do not introduce additional
tasks for data management, but we propose a new transformation
on SDF in Sec. V where the data is sent by replicas of the
original tasks only to replicas which need the data for computation.
Thus, we avoid the overhead of scheduling splitter/joiner tasks and
duplicated data transfers, as shown in Sec. VII.

[6] proposes a throughput driven transformation of an appli-
cation modeled as an SDF graph for mapping the application
on a platform. The graph transformation method in [6] increases
the rates of data production/consumption and hence increases the
buffer capacities needed to store the data, see Fig. 2(b). In addition,
to enable unfolding of tasks, multiple firings of a certain task in
the initial graph are combined into one firing of the corresponding
task in the transformed graph, see the increased execution times
of tasks in Fig. 2(b), which leads to an increase in latency. In
contrast, our transformation technique does not increase the rates
of data production/consumption on communication channels and
does not combine multiple task firings into one firing which in turn
leads to shorter application latency and smaller buffer sizes of the
communication channels, as shown in Sec. VII.

The closest to our work, in terms of scope and methods proposed
to efficiently utilize the parallelism of an application mapped onto
resource-constrained platform is the work in [5]. The authors in
[5] propose an approach for exploiting just-enough parallelism
when mapping a streaming application modeled as an SDF graph
on a platform with fixed number of processing elements. The
graph transformation method in [5] transforms an initial SDF graph
to functionally equivalent CSDF graph while keeping the same
rates of data production/consumption on communication channels,
see Fig. 2(c). However, the transformation approach in [5] is not
efficient in terms of application latency and buffer sizes of the
communication channels, as shown in Sec. VII. Moreover, the
proposed algorithm in [5] for finding the values of unfolding factors
and the mapping of task replicas does not reveal the right amount of
parallelism, but it reveals more parallelism than needed and hence
the platform is unnecessarily overloaded, as shown in Sec. VII.
In contrast, the approach we propose unfolds a graph by doing
more aggressive token-flow analysis leading to shorter application
latency and smaller buffer sizes. In addition, our approach finds
smaller unfolding factors for tasks which leads to less memory
needed to store the code of replicas and less memory to implement
communication channels between the replicas.

III. Background
In this section, we first introduce the application model, i.e.,

the SDF MoC. After that we review the scheduling framework
proposed in [7], which we use to schedule tasks in the SDF graph.

A. Synchronous Data Flow (SDF)
An application modeled as an SDF [1] is a directed graph

G = (V, E) that consists of a set of actors V which communicate
with each other through a set of communication channels E. Actors
represent a certain functionality of the application, while commu-
nication channels are FIFOs representing data dependencies and
transferring data tokens between the actors. Every output channel
eu of an actor τi has a predefined integer token production rate xu

i .
Analogously, a token consumption rate on every input channel eu of
an actor τi is a predefined integer yu

i . In addition, for each actor τi,
we associate a Worst-Case Execution Time (WCET) Ci, where Ci
contains the worst-case computation time and the worst-case data-
communication time needed to read/write data on the input/output
channels of actor τi. An important property of the SDF model is the
ability to derive at design-time a schedule for the actors. In order to
derive a valid static schedule for an SDF graph at design-time, it has

τ1 τ3τ2 τ4 τ5

e1 e2 e3 e4

Fig. 1. An SDF graph G.

to be consistent and live. An SDF graph G is said to be consistent
if a non-trivial repetition vector �q = [q1, q2, · · · , qN]T ∈ NN exists.
The smallest non-trivial repetition vector is called basic repetition
vector. An entry qi ∈ �q represents the number of invocations of
actor τi in a graph iteration of G. If a deadlock-free schedule can
be found, G is said to be live.

Fig. 1 shows an example of an SDF graph. For instance, actor
τ2 has WCET C2 = 8 and its token production rate x2

2 on channel
e2 is 2. The repetition vector of G in Fig. 1 is �q = [1, 1, 2, 1, 1]T .
Throughout this paper, all SDF graphs are assumed to be consistent
and live.

B. Hard Real-Time Scheduling of (C)SDF
In [7], a real-time strictly periodic scheduling (SPS) framework

for acyclic CSDF graphs is proposed. The CSDF MoC [2] is the
superset of the SDF MoC where each CSDF actor produces/con-
sumes a variable but predefined number of data tokens within a
production/consumption sequence. Similar to the SDF MoC, the
necessary condition for the existence of a valid periodic schedule
for a given CSDF graph is to have a non-trivial repetition vector
�q. Two examples of a CSDF graph are given in Fig. 2(c) and in
Fig. 2(d).

In the framework in [7], every actor τi in a CSDF graph G is
converted to an implicit-deadline periodic task τi = (S i,Ci,Di,Ti)
by computing the task parameters. Parameter S i is the start time
of τi in absolute time units, Ci is the WCET, Di is the deadline
of τi in relative time units and Di = Ti, and Ti is the task period
(where Ti ≥ Ci) in relative time units. To execute graph G in strictly
periodic fashion, period Ti for each actor τi is computed as in [7]:

Ti =
lcm(�q)

qi
· s,∀τi ∈ V, (1)

s =

⌈
maxτ j∈V {C j · q j}

lcm(�q)

⌉
, (2)

where lcm(�q) is the least common multiple of all repetition entries
in �q. These derived actor periods ensure that each actor τi executes
qi times in every graph iteration period, also called hyperperiod.
Note that periods computed by Eq. (1) are the minimum periods
for actors scheduled by SPS and that there exist other larger valid

periods for actors by taking any integer s >

⌈
maxτ j∈V {C j ·q j}

lcm(�q)

⌉
. Once

the actor periods are computed, we can compute the utilization of
actor τi, denoted as ui, ui = Ci/Ti, where ui ∈ (0, 1]. For a graph G,
uG is the total utilization of G given by:

uG =
∑
τi∈V

ui =
∑
τi∈V

Ci

Ti
. (3)

The total utilization of a graph directly determines the minimum
number of processors needed to schedule the graph.

The throughput of each actor τi can be computed as 1/Ti.
The throughput of a graph G when its actors are scheduled as
strictly periodic tasks is determined by the period of the output
actor and is equal to 1/Tout. The authors also provide in [7] a
method for calculating the latency of a CSDF graph scheduled in a
strictly periodic fashion. In addition, the framework computes the
minimum buffer size for each channel in a graph such that actors,
i.e., tasks, can be executed in strictly periodic fashion.

Converting the actors to periodic tasks (as described above) en-
ables the application of the well-developed hard real-time schedul-
ing theory [9], and hence, fast analytical calculation of the min-
imum number of processors needed to schedule the tasks in a
CSDF. In real-time systems, tasks can be scheduled on processors
by using global, hybrid, or partitioned scheduling algorithms [9].
However, global and hybrid scheduling algorithms require task
migration, and thus introduce additional run-time overheads and
memory overhead on distributed memory systems. The other class

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 955

τ1

τ3,0

τ2,1

τ4 τ5

τ3,2

τ3,1

τ2,0

S1 J1 S2 J2

(a) Equivalent of G in Fig. 1 after the transformation in [3], [4]

τ1

τ3,0

τ2,1

τ4 τ5

τ3,2

τ3,1

τ2,0

(b) Equivalent of G in Fig. 1 after the transformation in [6]

τ1

τ3,0

τ2,1

τ4 τ5

τ3,2

τ3,1

τ2,0

(c) Equivalent of G in Fig. 1 after the transformation in [5]

τ1

τ3,0

τ2,1

τ4 τ5

τ3,2

τ3,1

τ2,0

(d) Equivalent of G in Fig. 1 after our transformation

Fig. 2. Equivalent graphs of the SDF graph in Fig. 1 by unfolding actor τ2
by factor 2 and τ3 by factor 3.

of scheduling algorithms are partitioned algorithms which do not
require task migration, hence they have low run-time overheads.
Therefore, in this paper, we consider the partitioned scheduling
algorithms. With partitioned scheduling, tasks are first allocated to
processors. Then, the tasks on each processor are scheduled using
a uniprocessor (hard) real-time scheduling algorithm.

IV. Motivational Example

In the first part of this section, we motivate the need for our
new unfolding graph transformation. The throughput of graph G
given in Fig. 1 when scheduled under SPS [7] is the same as
the throughput obtained under self-timed scheduling [10] and it
is equal to 1

24
. Note that an unfolding graph transformation is

used to increase the application throughput if it is allowed by the
hardware platform on which the application is executed. Let us
assume that actors τ2 and τ3 of graph G in Fig. 1 are unfolded
by factors 2 and 3, respectively, in order to increase the throughput
of G. Fig. 2 shows four functionally equivalent graphs obtained
after applying the unfolding transformations proposed by [3], [4]
– see Fig. 2(a), by [6] – see Fig. 2(b), and by the transforma-
tion in [5] – see Fig. 2(c), while the graph given in Fig. 2(d)
is obtained by applying our transformation described in Sec. V.
Our transformation method unfolds an SDF graph by doing more
aggressive data token flow analysis with the aim to spread equally
the workload of an actor during the hyperperiod and run in parallel
as much replicas of the actor as possible. Table I gives for all four
equivalent graphs of G the throughputRout of the output actor, actor
τ5, the maximum latency Lin→out on an input-output path, the total
size M, of the communication buffers, the total code size CS , and
the total number of processors m needed to schedule the graphs
under SPS and the self-timed scheduling while achieving the same

TABLE I
Results for G transformed by different transformation approaches.

Approach
SPS [7] [10]

Rout[
1
μs

] Lin→out[μs] M[B] CS [kB] m Rout[
1
μs

] Lin→out[μs] M[B] CS [kB] m

[3], [4] 1/8 128 50 40 5 1/8 67 31 40 12
[6] 1/8 176 66 36 5 1/8 93 57 36 8
[5] 1/8 80 32 36 5 1/8 76 24 36 8
our 1/8 56 24 36 5 1/8 62 21 36 8

TABLE II
Results forG transformed and mapped on 2 processors by different approaches.

Approach Rout[
1
μs

] Lin→out[μs] M[B] CS [kB] m

[5] 1/18 180 31 44 2
our 1/18 108 16 32 2

throughput Rout. We can see from the table that by applying our
unfolding transformation we can obtain, under SPS, 2.29, 3.14,
and 1.43 times shorter latency and 2.08, 2.75, and 1.33 times
smaller buffers than the unfolding methods in [3] and [4], [6], and
[5], respectively. The number of processors needed to schedule
the graph obtained after the transformation under SPS is equal
for all the transformation methods. Under self-timed scheduling
[10] we obtain 1.08, 1.5, and 1.23 times shorter latency, while
buffers are smaller 1.47, 2.71, and 1.14 times compared to the
related approaches. Assuming one-to-one mapping for the self-
timed scheduling, we need the same number of processors to
schedule the unfolded graph obtained by the methods in [6] and
[5], and 1.5 times less processors than the unfolding methods in
[3] and [4]. For both scheduling algorithms we obtain equal code
size as the unfolding methods in [6] and [5], and 1.11 times smaller
code size than the methods in [3] and [4]. From Table I, we see that
our unfolding transformation approach presented in Sec. V is more
efficient than the approaches in [3], [4], [6], and [5].

So far, we considered only the unfolding transformation. Now,
we would like to focus on the algorithm for finding the proper
unfolding factors for actors when a graph is mapped onto resource-
constrained platform and scheduled by a hard real-time scheduler
such that the throughput of the graph is maximized. Here, we want
to compare our algorithm in Sec. VI with the approach in [5],
because only that approach, among the related approaches, exploits
the parallelism in an application under hard real-time scheduling.
For example, in order to schedule graph G in Fig. 1 on a platform
with 2 processors while maximizing the throughput under hard
real-time scheduling, the approach in [5] finds a vector of unfolding

factors �f = [1, 2, 4, 1, 1]. However, there exists a smaller vector of
unfolding factors, i.e., �f = [1, 1, 3, 1, 1], such that G is schedulable
on 2 processors and the throughput is maximized. This smaller

vector �f is found by our algorithm in Sec. VI. Table II gives the
throughput Rout, latency Lin→out, buffer sizes M and code size CS
when G is unfolded and mapped on m = 2 processors by applying
the approach in [5] and by applying our algorithm presented in
Sec. VI. We can see from the table that by applying our algorithm
we obtain under SPS 1.67 times shorter latency, 1.94 times smaller
buffers, and 1.38 smaller code size than the approach in [5]. From
these results and the results given in Table I, we clearly show
the necessity and usefulness of the graph unfolding transformation
presented in Sec. V, and the algorithm for finding proper values for
the unfolding factors presented in Sec. VI.

V. New Unfolding Transformation of SDF Graphs

Our new unfolding transformation method is given in Algo-
rithm 1. The algorithm takes an SDF graph G and a vector of

unfolding factors �f and produces an unfolded graph G′, which is a
CSDF graph. The initial SDF graph and its unfolded version given
in the form of a CSDF graph are functionally equivalent, i.e., both
of them generate the same sequence of output data tokens for a
given sequence of input data tokens. The algorithm consists of three
phases. The first phase is given in lines 1 to 4 in Algorithm 1. Given
that the execution semantics of the SDF model allows any integer
multiple of the basic repetition vector also as a valid repetition
vector, in line 1 of Algorithm 1 the basic repetition vector �q of

G is replaced by �q f = lcm(�f) ·�q, where lcm(�f) is the least common

multiple of all elements in �f . Then in lines 2 to 4, for each channel
eu in G, a matrix d is constructed containing as many columns as
the number of tokens produced/consumed on the channel during
one iteration of G with repetition vector �q f . Each column in d

956 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Algorithm 1: Procedure to unfold an SDF graph.

Input: An SDF graph G = (V, E), a vector of unfolding factors �f .
Output: The equivalent CSDF graph G′ = (V′, E′).

1 Take �q f = [lcm(�f) · q1, · · · , lcm(�f) · qN] as a repetition vector of G;
2 for communication channel eu = (τi, τ j) ∈ E do
3 Get production rate prd and consumption rate cns on eu;

4 Construct a matrix d, d[0][t] = p, d[1][t] = c, t ∈ [0, prd · q f
i − 1],

p is the index of τi firing which produces tth token, c is the index
of τ j firing which consumes tth token on eu;

5 V′ ← ∅, E′ ← ∅;
6 for actor τi ∈ V do
7 for k = 1 to fi do
8 Add replica τi,k to V′;

9 for communication channel eu = (τi, τ j) ∈ E do
10 for replica τi,k of τi do
11 for replica τ j,l of τ j do
12 Add e′u = (τi,k , τ j,l) to E′;

13 for t = 0 to prd · q f
i − 1 do

14 d[0][t] = d[0][t] mod fi, d[1][t] = d[1][t] mod f j;

15 for communication channel eu = (τi, τ j) ∈ E do
16 Get production rate prd and consumption rate cns on eu;
17 Create empty/zero matrices Pi,k with size f j × qi,k , k ∈ [0, fi − 1];
18 Create empty/zero matrices C j,l with size fi × q j,l, l ∈ [0, f j − 1];
19 for h = 0 to qi,0 − 1 do
20 for k = 0 to fi − 1 do
21 Initialize a prod. counter seq. cntprod of length f j to 0;
22 for o = 0 to prd − 1 do
23 cntprod[d[1][h · k · prd + o]] =

cntprod[d[1][h · k · prd + o]] + 1;

24 for l = 0 to f j − 1 do
25 Pi,k[l][h] = cntprod[l];

26 for h = 0 to q j,0 − 1 do
27 for l = 0 to f j − 1 do
28 Initialize a cons. counter seq. cntcons of length fi to 0;
29 for o = 0 to cns − 1 do
30 cntcons[d[0][h·l·cns+o]] = cntcons[d[0][h·l·cns+o]]+1;

31 for k = 0 to fi − 1 do
32 C j,l[k][h] = cntcons[k];

33 for k = 0 to fi − 1 do
34 for l = 0 to f j − 1 do
35 if all entries in row Pi,k[l][] are 0 then
36 Delete a channel e′u connecting replicas τi,k and τ j,l;

37 else
38 Associate production sequence Pi,k[l][] and

consumption sequence C j,l[k][] with e′u = (τi,k , τ j,l);

39 return G′;

contains in row 0 an index p, d[0][t] = p, which is the index of the
firing of the producer actor, p ≥ 0, which produces the tth token,
and an index c in row 1, d[1][t] = c, representing the index of the
firing of the consumer actor, c ≥ 0, which consumes the tth token
on eu. Constructing matrix d for channel e2 of graph G in Fig. 1

when �f = [1, 2, 3, 1, 1] is given in Fig. 3, lines 2 to 4.

In the second phase the topology of the equivalent CSDF graph
G′ is created, which is given in lines 5 to 14 in Algorithm 1. In
the equivalent CSDF graph G′, every actor is replicated a certain
number of times, as determined by the unfolding vector, lines 6 to
8. Then each channel eu in the initial graph is replicated a certain
number of times in the equivalent graph such that each replica of
the producer on eu is connected to each replica of the consumer
on eu, as given in lines 9 to 12 of Algorithm 1. The motivation
behind unfolding is to equally distribute the workload of an actor
in the initial graph by running in parallel replicas corresponding
to that actor. The workload of an actor within one graph iteration
is determined by the corresponding repetition value of the actor.
Thus, each replica τi,k ∈ G′ of an actor τi ∈ G will have the
repetition qi,k:

1

 0

0

0

1

11 2 2 3 3 4 4 5 5

1098765432 11

�

�
4

0

0

0

1

11 0 0 1 1 0 0 1 1

102102102 2

�

�

���� �
1

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

1

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

3

2

13

14

15

32

. . .

16

. . .

III

II

I	

	
��
�� 	
��
���

. . .

���� �

����

����

����
39

	

	
��
�� 	
��
���

. . .

. . .

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

Fig. 3. Unfolding channel e2 from the graph in Fig. 1 by using Algorithm 1

when �f = [1, 2, 3, 1, 1].

qi,k =
q

f
i

fi
=

qi · lcm(�f)

fi
. (4)

For example, after the unfolding of the SDF graph in Fig. 1 with

the unfolding vector �f = [1, 2, 3, 1, 1] we obtain the graph shown in
Fig. 2(d) with the repetition vector �q′ = [6, 3, 3, 4, 4, 4, 6, 6], where
q2,0 = q2,1 =

1·lcm(1,2,3,1,1)
2

= 3. Lines 13 to 14 convert the firing
production/consumption indexes in d[0][t]/d[1][t] for each token t
produced/consumed on channel eu into the indexes corresponding
to the index k of the replica which produces/consumes t. This is
illustrated for channel e2 in Fig. 3, lines 13 and 14.

Lines 15 to 39 represent the third phase of Algorithm 1 and
they derive the production and consumption sequences for new
channels and perform final placement of the new channels between
the corresponding actor replicas. More specifically, for each source
replica τi,k and destination replica τ j,l of a channel, a production
matrix Pi,k and consumption matrix C j,l is created from matrix d
in lines 15 to 32. The index of each row in a production matrix
Pi,k corresponds to the index l of a destination replica τ j,l. The
index of each column in a production matrix Pi,k corresponds to
the firing index of source replica τi,k. Elements in a production
matrix of a source replica contain the number of tokens produced
by a certain firing of that replica. Similar holds for elements in
a consumption matrix. The created matrices P2,0, P2,1, C3,0, C3,1,
C3,2 for the source replicas τ2,0, τ2,1 and destination replicas τ3,0,
τ3,1, τ3,2 on channel e2 are given in Fig. 3. For example, the value
0 in element P2,0[2][0] says that 0 tokens are produced by the 0th

firing of source replica τ2,0 for the destination replica τ3,2. Once
these matrices are constructed, the production and consumption
sequences on channel replicas are extracted from the corresponding
rows in matrices, as given in lines 33 to 38 in Algorithm 1. For
example, the production sequence on the channel between τ2,0 and
τ3,1 in Fig. 2(d) is extracted from row P2,0[1][] in matrix P2,0 and is
equal to [1, 1, 0]. The extracted production/consumption sequences
on replicas of channel e2 can be seen in Fig. 2(d). The unfolded
graph G′ is returned in line 39 of Algorithm 1.

VI. The Algorithm for Finding Proper Unfolding Factors
In order to efficiently utilize the parallelism available in an ap-

plication when mapping the application on a resource-constrained
platform under hard real-time scheduling, proper unfolding factors
for actors of the application have to be determined. Therefore,
in this section, we present an algorithm which derives the proper
unfolding factors which maximize the utilization of the platform,
i.e., maximize the application throughput.

The algorithm is given in Algorithm 2. It takes an SDF graph
G, where the actors are scheduled by SPS [7], a platform with m
processors, a scheduling algorithm A [11], an allocation heuristic
H [12] and a quality factor ρ. A quality factor ρ ∈ (0, 1] determines
how much of the platform processing resources we want to utilize,
with ρ = 1 corresponding to full utilization. The algorithm returns

the best solution vector of unfolding factors �f best.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 957

Algorithm 2: Finding proper unfolding factors for an SDF
graph mapped onto resource-constrained platform.

Input: An SDF graph G, the number of processors in a platform m,
quality factor ρ, a scheduling algorithm A, an allocation
heuristic H.

Output: Vector of unfolding factors �f best .

1 �f = [1, 1, · · · , 1]; G′ = G;

2 Compute the upper bound �̂f of �f by Eq. (3) in [5];
3 Get uG′ of G′ by Algorithm 3 when scheduled by A and H on m;

4 uGbest = uG′ ; �f best = �f ;
5 Find the bottleneck actor τb,k in G′;
6 while uG′ < ρ · m and fb < f̂b do
7 fb = fb + 1;
8 Get G′ by unfolding G by Algorithm 1;
9 Get uG′ of G′ by Algorithm 3 when scheduled by A and H on m;

10 if uG′ > uGbest then
11 uGbest = uG′ ; �f best = �f ;

12 Find the bottleneck actor τb,k in G′;

13 return �f best .

Algorithm 3: Procedure to find the utilization of a CSDF
graph mapped onto resource-constrained platform.

Input: A CSDF graph G′, the number of processors in a platform m, a
scheduling algorithm A, an allocation heuristic H.

Output: Graph utilization uG′ .
1 Calculate s by Eq. (2); calculate Ti by using s in Eq. (1);
2 Calculate uG′ by Eq. (3);
3 while G′ is not schedulable on m by A and H do
4 s = s + 1;
5 Calculate Ti by using s in Eq. (1); calculate uG′ by Eq. (3);

6 return uG′ .

Line 1 in Algorithm 2 initializes each unfolding factor of an
actor in G to 1 and G′ to G. Then, the upper bound f̂i of unfolding
factor fi for each actor τi in G is computed in line 2 in Algorithm 2
by using Eq. (3) in [5]. Line 3 finds the utilization of graph G′
when G′ is scheduled on m processors by invoking Algorithm 3.
The best utilization of G′ is initialized in line 4 to be the first
schedulable solution on m processors found by Algorithm 3 in line
3. Line 5 finds the bottleneck actor in G′. The bottleneck actor τb,k
is the actor with the heaviest workload during one hyperperiod,
i.e., Cb,k · qb,k = maxτi,k∈V ′ {Ci,k · qi,k}. If multiple actors have the
same maximum workload, then the one with the smallest code size
is selected to be the bottleneck. If the current utilization uG′ does
not meet the quality requirement checked in line 6, the unfolding
factor fb of the bottleneck actor τb,k is increased in line 7 and
the graph is unfolded by using Algorithm 1 in line 8. Note that
stateful actors and input and output actors are not unfolded, i.e.,
the upper bound on their unfolding factors is 1. The utilization uG′
of the unfolded graph G′ mapped on m processors is calculated in
line 9 by Algorithm 3. If the current utilization uG′ is higher than
the best utilization in line 10, then in line 11 the best utilization
becomes the one found in line 9 and the best solution vector of
unfolding factors becomes the current vector of unfolding factors.
Line 12 finds the bottleneck actor in the unfolded graph G′. Lines
6 to 12 are repeated and the algorithm terminates when either a
pre-specified quality factor ρ is satisfied (i.e., uG′ ≥ ρ · m) or the
unfolding factor of a bottleneck actor exceeds its upper bound f̂b
(i.e., fb ≥ f̂b).

We see that Algorithm 2 uses Algorithm 3 for finding the
utilization of the unfolded graph G′ when mapped on a platform
with m processors. Algorithm 3 takes the unfolded CSDF graph
G′, a platform with m processors, a scheduling algorithm A [11]
and an allocation heuristic H [12] as inputs. Line 1 calculates
periods of actors in G′ scheduled by SPS [7] by using Eq. (1) and
Eq. (2) in Sec. III-B. Then, the utilization uG′ of G′ is calculated
in line 2 by using Eq. (3). As we mentioned in Sec. III-B, actor
periods computed by Eq. (1) and Eq. (2) represent the minimum
periods when the actors are scheduled under SPS on a platform
with unlimited number of processors. It may happen that these
minimum periods lead to a graph which is not schedulable on a

TABLE III
Benchmarks used for evaluation.

Application |V | |E| Application |V | |E|
Discrete cosine transform (DCT) 8 7 Filterbank 85 99
Fast Fourier transform (FFT) 17 16 Serpent 120 128
Time delay equalization (TDE) 29 28 MPEG2 23 26
Data encryption standard (DES) 53 60 Vocoder 114 147
Bitonic Sorting 40 46

FMRadio 43 53
Channel Vocoder 55 70

platform with only m processors. Hence, in line 3 by using the
utilization uG′ calculated in line 2 we check if G′ can be scheduled
on m processors by using the corresponding schedulability test for
A and H [9]. If G′ is not schedulable on the platform, we decrease
uG′ until G′ becomes schedulable by increasing the actor periods
Ti. This is done in lines 4 and 5 in Algorithm 3. Once the graph
G′ becomes schedulable on m processors by A and H, Algorithm 3
returns the utilization of the unfolded graph G′ in line 6.

VII. Evaluation
We present two experiments to evaluate the techniques proposed

in Sec. V and Sec. VI. In the first experiment, we evaluate the
efficiency of our unfolding transformation in comparison to the
unfolding transformation methods in [3], [4], [6], and [5]. In the
second experiment, we evaluate the efficiency of Algorithm 2
presented in Sec. VI in terms of performance and time complexity
by comparing our approach to the related approach in [5]. The
experiments were performed on the real-life applications from the
StreamIt benchmarks suit [8], given in Table III. The results of the
evaluations are shown in Fig. 4, Fig. 5, and Fig. 6. In all these
figures, each vertical line shows the variations in the corresponding
results among all the applications. The upper and lower ends of
a vertical line represent the maximum and minimum values of the
corresponding result while the marker at the middle of each vertical
line represents the geometric mean of the result. Note that the Y
axis in Fig. 4 to Fig. 6 has a logarithmic scale. We run all the
experiments on an Intel Core i7-2620M CPU running at 2.70 GHz
with Linux Ubuntu 12.4.

A. Efficiency of the Proposed Unfolding Transformation
In this section, we evaluate the performance of our unfolding

transformation method proposed in Sec. V by comparison to the
related unfolding transformation methods in [3], [4], [6], and [5].
In this experiment, first we use Algorithm 2 to find a vector of
unfolding factors for each application in Table III mapped on a
platform with 64 processors with partitioned First-Fit Decreasing
Earliest Deadline First (FFD-EDF) scheduler and quality factor
ρ = 0.9. Then, for each application, we use the found vector of
unfolding factors to unfold the application graph by applying our
transformation method and the related transformation methods [3],
[4], [6], [5]. Finally, we use the SPS framework in [7] to calculate
the latency, buffer sizes and code size when the unfolded graphs
are scheduled by FFD-EDF on 64-processor platform. The ratios
between the results obtained by related transformation methods
and our transformation in terms of application latency (L), buffer
sizes (M) and code size (CS) are given in Fig. 4. We can see that
our method outperforms all the related methods, and delivers on
average 2.82, 3.95, and 1.43 times shorter latency and 1.98, 2.5,
and 1.08 times smaller buffers than the method in [3] and [4], [6],
and [5], respectively. Although the methods in [3] and [4] introduce
additional actors for data management, the average increase in the
total code size is only 1%. The other two transformation methods,
[6] and [5], have the same code size as our method. Note that all
the methods achieve the same application throughput.

B. Performance of Algorithm 2
We evaluate the performance of Algorithm 2 by comparison to

the related approach in [5]. For each application app in Table III,
we construct 28 system configurations (app, m, ρ) with number
of processors m ∈ {2, 4, 8, 16, 32, 64, 128}, and utilization quality
ρ ∈ {0.8, 0.85, 0.9, 0.95}. We run Algorithm 2 with FFD-EDF
scheduler for each (app, m, ρ) configuration to obtain a vector

of unfolding factors �f best. Then, for each configuration, we unfold

the corresponding application graph by the obtained vector �f best

by using Algorithm 1. Finally, we use the SPS framework in [7]
to calculate the latency of an application, buffer sizes and code
size when the unfolded graphs are scheduled by FFD-EDF on

958 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

 1

 10

L M CS

R
at

io
s

=
 r

el
at

ed
/o

ur

latency L, buffer size M, code size CS

 [3],[4]
 [6]
 [5]

Fig. 4. Comparison of our unfolding transfor-
mation to the approaches in [3], [4], [6], [5].

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128

T
ot

al
 e

xe
cu

tio
n

tim
e

(in
 s

ec
on

ds
)

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Running time (in seconds) of Algorithm 2

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

2 4 8 16 32 64 128

T
ot

al
 e

xe
cu

tio
n

tim
e

ra
tio

 =
 o

ur
/[5

]

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Execution time ratio (lower is better)

Fig. 5. Results of time evaluation of our proposed approach in comparison to the approach in [5]

 1

 10

2 4 8 16 32 64 128

C
od

e
si

ze
 r

at
io

 =
 [5

]/o
ur

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(a) Code size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

B
uf

fe
r

si
ze

 r
at

io
 =

 [5
]/o

ur

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(b) Buffer size ratio (higher is better)

 1

 10

2 4 8 16 32 64 128

La
te

nc
y

ra
tio

 =
 [5

]/o
ur

Number of processors

 ρ = 0.95
 ρ = 0.9

 ρ = 0.85
 ρ = 0.8

(c) Latency ratio (higher is better)

Fig. 6. Results of performance evaluation of our proposed approach in comparison to the approach in [5].

the corresponding platform. We perform the same experiment by
running the related algorithm proposed in [5] and using the SPS
framework in [7] for each (app, m, ρ). The obtained ratios for the
total code size, total buffer sizes, and latency between the approach
in [5] and our approach are given in Fig. 6(a), Fig. 6(b), and
Fig. 6(c), respectively. We can see that by using Algorithm 2 we
can achieve up to 17.85 times smaller code size (see Fig. 6(a),
ρ=0.95, m=32), up to 24.4 times smaller buffers (see Fig. 6(b),
ρ=0.95, m=32) and up to 11.47 times shorter latency (see Fig. 6(c),
ρ=0.95, m=32) than the approach in [5]. Note that both approaches
meet the same throughput requirements. Regarding the buffer sizes,
we obtain in 5 experiments out of 308 experiments larger buffer
sizes by up to 1.16 times than the approach in [5] (see for example
Fig. 6(b), ρ=0.85, m=64). However, for all these experiments we
do less unfolding, so we obtain smaller code size. In the case of
latency, in 2 experiments out of 308 we get latency which is by
2% larger than the corresponding latency when the approach in [5]
is applied (see Fig. 6(c), m=8). However, in these two cases, we
obtain smaller code size and smaller buffer sizes than the approach
in [5].

C. Time Complexity of Algorithm 2
We evaluate the efficiency of our algorithm for finding proper

values of unfolding factors in terms of the execution time of our
Algorithm 2 to find a solution. The execution times for different
quality factors and different number of processors in a platform
are given in Fig. 5(a). We compare these execution times with the
corresponding execution times of the related approach in [5]. The
comparison is given in Fig. 5(b).

As can be seen from Fig. 5(a), for platforms containing up to 16
processors, our Algorithm 2 takes in the worst case 32 seconds to
find a solution, and less than 1 second on average for all values of
quality factor ρ. For a platform with 32 processors, the execution
time of our algorithm is 5 minutes in the worst case, and up to
4 seconds on average. In the case of a 64-processor platform our
algorithm needs 25 minutes in the worst case to find a solution,
and up to 53 seconds on average. Finally, for a platform with 128
processors Algorithm 2 takes 88 minutes in the worst case and up to
9 minutes on average to find a solution. In addition, it can be seen in
Fig. 5(b) that our approach is on average up to 8 times slower than
the approach in [5] which is acceptable given that our approach

delivers solutions of better quality, as shown in Sec. VII-B, within
a matter of minutes.

VIII. Conclusions
In this paper, we presented a new unfolding graph transformation

and an algorithm which uses the transformation while exploiting
the right amount of parallelism when mapping a streaming applica-
tion modeled by an SDF graph on a resource-constrained platform
under hard real-time scheduling. The experiments on a set of real-
life applications showed that our proposed techniques deliver, in
a matter of minutes, solutions with smaller code size, smaller
buffer sizes and shorter application latency while meeting the same
performance and timing requirements as the related approaches.

References

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[2] G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. Signal Process.,
vol. 44, no. 2, pp. 397–408, 1996.

[3] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in PLDI, 2008.

[4] S. M. Farhad et al., “Orchestration by approximation: mapping stream
programs onto multicore architectures,” in ASPLOS, 2011.

[5] J. T. Zhai, M. Bamakhrama, and T. Stefanov, “Exploiting just-enough par-
allelism when mapping streaming applications in hard real-time systems,”
in DAC, 2013.

[6] A. Stulova, R. Leupers, and G. Ascheid, “Throughput driven transforma-
tions of synchronous data flows for mapping to heterogeneous MPSoCs.”
in ICSAMOS, 2012.

[7] M. Bamakhrama and T. Stefanov, “On the hard-real-time scheduling of
embedded streaming applications,” DAES, vol. 17, no. 2, pp. 221–249,
2013.

[8] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
PACT, 2010.

[9] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, p. 35, 2011.

[10] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs,” IEEE
Trans. on Computers, vol. 57, no. 10, pp. 1331–1345, 2008.

[11] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

[12] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: A survey,” in Approximation algorithms for
NP-hard problems, 1996, pp. 46–93.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 959

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

