
Semi-partitioned Scheduling and Task Migration in
Dataflow Networks

Emanuele Cannella

Semi-partitioned Scheduling and Task Migration in
Dataflow Networks

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 11 oktober 2016
klokke 10.00 uur

door

Emanuele Cannella
geboren te Udine, Italië

in 1983

Promotor: Prof. dr. Ed F. Deprettere Universiteit Leiden
Co-Promotor: Dr. Todor P. Stefanov Universiteit Leiden

Promotion Committee: Prof. dr. Peter Marwedel Technische Universität Dortmund
Prof. dr. Luigi Raffo Università di Cagliari
Dr. Andy Pimentel Universiteit van Amsterdam
Prof. dr. Aske Plaat Universiteit Leiden
Prof. dr. Harry Wijshoff Universiteit Leiden
Prof. dr. Joost Kok Universiteit Leiden

Semi-partitioned Scheduling and Task Migration in Dataflow Networks
Emanuele Cannella. -
Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright c○ 2016 by Emanuele Cannella. All rights reserved.

Cover designed by Shanshan Yang.

This dissertation was typeset using LATEX and version controlled using Git.

Printed by CPI-Koninklijke Wöhrmann – Zutphen.

Al nostro angelo Silvana
e al mitico Franz

Contents

Table of Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Trends in Embedded MPSoC Design . 3

1.1.1 Programming for Multiprocessors: Models of Computation . . 4
1.1.2 Communication Infrastructures: Networks-on-Chip 8

1.2 Challenges in Embedded MPSoC Design 10
1.2.1 System Adaptivity . 10
1.2.2 Timing Requirements . 12
1.2.3 Cost . 15
1.2.4 Energy Efficiency . 16

1.3 Problems Addressed in this Thesis . 17
1.3.1 Best-Effort Systems . 17
1.3.2 Hard Real-Time Systems . 18

1.4 Research Contributions . 19
1.4.1 Exploiting Task Migration to achieve System Adaptivity in Best-

Effort Systems . 19
1.4.2 Exploiting Semi-partitioned Approaches in Hard Real-Time

Scheduling of (C)SDF Graphs . 21
1.5 Thesis Organization . 22

2 Background 23
2.1 Dataflow Models of Computation . 24

2.1.1 (Homogeneous) Synchronous Dataflow ((H)SDF) 24
2.1.2 Cyclo-Static Dataflow (CSDF) . 26
2.1.3 Polyhedral Process Network (PPN) 28

2.2 Real-time Scheduling Theory . 31
2.2.1 Real-time periodic and sporadic task models 31
2.2.2 System model . 31
2.2.3 Multiprocessor Real-Time Scheduling Algorithms 32

viii Contents

2.2.4 Uniprocessor Schedulability Analysis 33
2.2.5 Multiprocessor Schedulability Analysis 34
2.2.6 Partitioning Heuristics . 36
2.2.7 EDF-fm Semi-partitioned Algorithm 37
2.2.8 EDF-os Semi-partitioned Algorithm 41

2.3 HRT Scheduling of Acyclic CSDF Graphs [BS11, BS12] 42

3 PPN Communication on Networks-on-chip 49
3.1 Problem Statement . 50
3.2 Contributions . 52
3.3 Related Work . 52
3.4 PPN Communication Approaches . 54

3.4.1 Virtual Connector approach (VC) 55
3.4.2 Virtual Connector with Variable Rate approach (VRVC) 57
3.4.3 Request-driven approach (R) . 60

3.5 Case Studies . 61
3.5.1 Sobel filter . 62
3.5.2 M-JPEG encoder . 63
3.5.3 Platform setup . 63

3.6 Experimental Results . 65
3.6.1 Inter-tile communication efficiency 65
3.6.2 System adaptivity support . 67

3.7 Discussion . 69

4 Process Migration Mechanism in a Mapped PPN 71
4.1 Problem Statement . 71
4.2 Contributions of this Chapter . 72
4.3 Related Work . 72
4.4 Proposed Migration Approach . 74
4.5 Process Migration . 75

4.5.1 Migratable PPN process structure 77
4.5.2 Process migration mechanism . 81

4.6 Experiments and Results . 83
4.6.1 Process migration benefits and overhead 84

4.7 Discussion . 86

5 Semi-partitioned Scheduling of CSDF-modeled Streaming Applications 87
5.1 Proposed Extension of the Scheduling Framework of [BS11, BS12] . . . 89

5.1.1 Choice of the EDF-fm Semi-partitioned Algorithm 89
5.1.2 Implications of Using EDF-fm . 90

5.2 Problem Statement . 90
5.3 Contributions . 91
5.4 Related Work . 94
5.5 Soft Real-time Scheduling Analysis . 94

5.5.1 Earliest Start Times in Presence of Tardiness 94

Contents ix

5.5.2 Minimum Buffer Sizes in Presence of Tardiness 97
5.6 FFD-SP Task Assignment Heuristic . 98
5.7 Evaluation . 101
5.8 Discussion . 104

6 Energy Efficient Semi-Partitioned Scheduling of SDF Graphs 105
6.1 Problem Statement . 106
6.2 Contributions . 106
6.3 Scope of work . 108

6.3.1 Assumptions . 108
6.3.2 Limitations . 109

6.4 Related work . 110
6.5 System Model . 113
6.6 Example of SRT Scheduling of an SDF Graph 113
6.7 Proposed Semi-partitioned Algorithm: EDF-ssl 114

6.7.1 Assignment Phase . 117
6.7.2 Execution Phase . 119
6.7.3 Tardiness Bounds under Fixed Processor Speed 120
6.7.4 Tardiness Bounds under PWM Scheme 122

6.8 Start times and buffer sizes under EDF-ssl 125
6.9 Evaluation . 128

6.9.1 Power Model . 128
6.9.2 Energy per Iteration Period . 129
6.9.3 Experimental Results . 130

6.10 Discussion . 134

7 Summary and Discussion 135
7.1 Thesis Summary . 135
7.2 Discussion . 137

7.2.1 Assessing the migration mechanism in an industrially- relevant
case study . 137

7.2.2 Application of Chapters 5 and 6 to DaedalusRT 139
7.2.3 Application models considered in Chapters 3 to 6 142

Bibliography 145

List of abbreviations 159

Samenvatting 161

List of publications 163

Curriculum Vitae 165

Acknowledgments 167

List of Figures

1.1 System-level design methodology. 3
1.2 Example of MoC-based application specification (a) and mapping to a

platform with 4 PEs (b). 5
1.3 Comparison of the MoCs considered in this thesis. 7
1.4 Structure of a NoC composed of 6 tiles with a regular 2D mesh topology. 9
1.5 Sketch of the hardware/software stack of a computing system. 11
1.6 Software stack proposed to achieve adaptivity in BE systems. 20

2.1 Example of an SDF graph composed of actors A1, A2, A3 and edges e1, e2. 25
2.2 Example of a CSDF graph. 27
2.3 Example of a PPN topology and internal structure of process. 29
2.4 EDF-fm assignment of the task set considered in Example 2.2.1. 40
2.5 Release pattern of jobs of task τ3 between processors π1 and π2, accord-

ing to the share assignment of τ3 in Figure 2.4. 41
2.6 Hard real-time scheduling of the CSDF graph in Figure 2.2 on page 27

derived using the methodology of [BS11, BS12]. 45

3.1 Producer-consumer pair which communicates through FIFO buffer B,
and corresponding mapping onto a NoC-based platform. 51

3.2 Producer-consumer pair using the virtual connector method. 54
3.3 Pseudocode of the VC approach. 56
3.4 Producer-consumer implementation when using VRVC and R ap-

proaches. 56
3.5 Communication sequence of a producer-consumer pair, using the

VRVC approach. 59
3.6 Pseudocode of the VRVC approach. 60
3.7 Pseudocode of the Request-driven (R) approach. 61
3.8 PPN specification of the Sobel filter. 62
3.9 PPN specification of the M-JPEG encoder. 63
3.10 Part of the NoC platform structure. 64
3.11 Structure of middleware- and network- level messages. 64
3.12 Fixed mappings for Sobel (a) and M-JPEG (b) to test the different PPN

communication approaches. 65

xii List of Figures

3.13 Total execution time of the M-JPEG and Sobel applications obtained
with different MW approaches, and performance comparison with
customized systems based on point-to-point connections. 66

3.14 Traffic injected into the NoC by executing Sobel with different MW
approaches. 67

3.15 Execution time and generated traffic as a function of the process mapping. 68

4.1 Software stack proposed to achieve adaptivity in BE systems. 74
4.2 Example of a migration procedure. 77
4.3 Structure of PPN process P2, and corresponding basic code structure

used to map P2 onto the considered execution platform. 78
4.4 Structure of migratable process Pmig. 80
4.5 M-JPEG process scheduling when running on a single tile. 84
4.6 M-JPEG process scheduling while migrating P2 using the proposed

migration mechanism. 84

5.1 Scheduling framework proposed in [BS11, BS12]. 88
5.2 Scheduling framework proposed in this chapter. 91
5.3 Scheduling framework under both HRT and SRT schedulers. 93
5.4 Example of the conversion of a set of CSDF actors to a real-time periodic

task set using the methodology proposed in [BS11, BS12]. 96
5.5 Worst-case scheduling of source actor Ai when deriving the start time

Si→j of the destination actor in presence of tardiness. 97

6.1 Energy-efficient scheduling technique proposed in this chapter. 107
6.2 Example of the approach proposed in Chapter 5 to schedule an SDF

graph with a scheduler that provides SRT guarantees. 115
6.3 Share assignment considered in Example 6.7.1 116
6.4 Job executions of τ1 = (C1 = 3, T1 = 3), as defined in Example 6.7.1,

according to the share assignment of Figure 6.3 116
6.5 Share assignments considered in Example 6.7.2. 119
6.6 PWM scheme execution. 123
6.7 Supply function Z(t). 123
6.8 SDF actors As and Ad with dependency over eu. 125
6.9 Analysis of the communication between data-dependent actors when

both source and destination actors are implemented as migrating tasks. 126

7.1 PPN model of the H.264 decoder application. 138
7.2 Abstracted PPN specification of the H.264 decoder application. 138
7.3 Structure of the execution platform used in our demo and allocation of

process replicas to tiles. 139
7.4 Example of a process migration performed in our demo. 140
7.5 Overview of the DaedalusRT design flow. 141

List of Tables

2.1 Summary of mathematical notation. 23
2.2 Correspondence between dataflow and real-time theory notations re-

sulting from the methodology of [BS11, BS12]. 47

3.1 Execution times (in clock cycles) of Sobel functions 62
3.2 Execution times (in clock cycles) of M-JPEG functions 63

4.1 Middleware table example . 76

5.1 Comparison of different allocation/scheduling approaches. 102

6.1 Comparison of different share allocation/scheduling approaches. . . . 131

Chapter 1

Introduction

ADVANCES in technology have added new features and functionalities to most of
vehicles, homes, industrial facilities, and many other applications that form the

basis of our society. For instance, many houses nowadays are endowed with security
camera systems to monitor the premises of the house itself. These systems are composed
of distributed security smart cameras, which are connected to a server where the
recorded images are stored. As another example, in recent years several companies are
making significant research and development efforts to implement autonomous driving
cars (e.g. Google [Woo], General Motors [Rho]). As a third example, state-of-the-art
operating rooms feature devices that help surgeons to perform minimally-invasive
surgeries, less traumatic for patients. During the surgical operation, these devices
visualize the organs and tissues on which the surgery is performed, together with the
position of surgical instruments, using for instance X-rays. The devices which allow
this visualization are termed live medical imaging devices.

In all the examples above, computing systems are enclosed into products, build-
ings, or facilities, to which they provide additional functionalities. These computing
systems are called embedded systems. For instance, in autonomous driving cars, an
embedded system is in charge of planning the motion of the car and the braking and
steering actions. As the above examples show, embedded systems are tightly coupled
to the environment in which they operate. Moreover, most embedded systems share
other characteristics, such as:

- They are designed to implement a well-defined set of functionalities, known at
design time;

- They must be dependable, because they often operate in safety-critical environ-
ments;

- They must provide hard real-time guarantees, i.e., their output must be correct
and also produced within a certain time frame.

These characteristics set embedded systems apart from general purpose systems, such
as Personal Computers, which show much greater flexibility in terms of functionality
and much lesser emphasis on real-time guarantees and dependability.

Embedded systems can be divided in two categories, depending on the type of

2 Chapter 1. Introduction

functionality that they provide:
∙ Control systems wait for input events (or signals) from the environment and

react to these events accordingly. These systems are used, for instance, in
industrial automation.

∙ Streaming systems process a continuous, possibly infinite stream of data from
the environment. These system find application, for instance, in audio and
video processing.

In this thesis, we focus on embedded streaming systems. Examples of streaming
applications range from audio/video encoding and decoding (e.g., YouTube), signal
processing, computer vision [VAJ+09], medical imaging, navigation systems, security
camera systems, and many others.

Complex embedded systems such as the ones that control autonomous driving
cars are in fact composed of several sub-systems which communicate among each
other. In the autonomous driving cars example, part of these sub-systems belong to
the category of streaming systems, and the other part belong to the control category.
For instance, autonomous driving cars gather an enormous quantity of data, which
comes in the form of continuous streams, from cameras and laser sensors mounted
on the car itself. These streams of data must be continuously refined and processed
in order to perform motion planning (i.e., identify the optimal path and speed that
the vehicle should follow) and collision avoidance (i.e., detect and avoid incoming
unexpected obstacles). These decisions are made by streaming sub-systems, and
communicated to other sub-systems (of control type), which make the car actually
steer, brake, or accelerate. The analyses and techniques presented in this thesis target
the sub-systems that belong to the streaming category.

As mentioned above, systems that control autonomous driving cars implement
motion planning and collision avoidance algorithms that have extremely high com-
plexity. In addition, these algorithms must produce their output in a short and
predictable time, such that the car can react quickly to external events (consider, for
instance, a person that suddenly crosses a street in front of the car; the car must stop
as soon as possible). The high complexity of the implemented algorithms and the
requirement of a short execution time challenge designers to achieve high system
performance. This is a requirement shared by many modern embedded systems. In
fact, over the years, embedded systems have shown a constant demand for increasing
performance.

Until the mid-2000s, most computing systems were implemented as uniprocessor
architectures, and the aforementioned demand for increasing performance was ad-
dressed by enhancing the computational power of the (single) processor itself [HP07].
However, the performance increase between successive generations of uniprocessors
has incurred a major slowdown in the early 2000s [Sut], mainly due to: (i) dimin-
ishing returns of novel processor design solutions; (ii) very slow increase between
processor generations of clock frequency due to leakage power issues; (iii) growing
disparity of speed between processor and memory. Therefore, in order to push sys-
tem performance even further, chip manufacturers since the mid-2000s have shifted
their research and development efforts to multiprocessor architectures [HP07]. This
is a technology trend that has affected both general purpose and embedded sys-

1.1. Trends in Embedded MPSoC Design 3

Electronic System-Level Synthesis

Mapping

System

Implementation

Execution Platform

Model
Analysis Model (CSDF)Application

Model

Figure 1.1: System-level design methodology.

tem, and is here to stay. Actually, more and more architectures proposed by both
research institutes and industry show an increasing count of processing elements
(PEs1). In fact, nowadays, embedded system designers often integrate in a single chip
multiple processors, memories, interconnections, and other hardware peripherals
to form a so-called Multiprocessor System-on-Chip (MPSoC) [JTW05]. This disser-
tation describes design methodologies and techniques targeted at such embedded
MPSoCs. An early example of such embedded MPSoCs is the Trimedia TM1000 [Tri],
where a general purpose microprocessor is combined with several multimedia co-
processors. More recent examples of MPSoCs that find application in the embedded
domain include the 64-PEs Adapteva Epiphany [VEMR14], the 72-PEs TILE-Gx72
from EZchip [TIL] and the 256-PEs Kalray MPPA-256 [dDAB+13].

1.1 Trends in Embedded MPSoC Design

In the previous section we have explained the importance of embedded systems in
our society and motivated the emergence of MPSoCs in the embedded domain. We
have also pointed out that modern embedded MPSoCs demand increasingly higher
performance. In addition to this increase in performance, the complexity of modern
embedded MPSoCs has also risen.

As the complexity of MPSoCs is constantly increasing, nowadays the design
of these systems must be performed at the right abstraction level. In particular,
design at gate-level and register-transfer level (RTL) is no longer effective. A higher
abstraction level, namely system-level, is necessary to design modern embedded
MPSoCs [Hen03]. As represented in Figure 1.1, at system level designers devise a
system by specifying the execution platform model, the application model, and the
mapping of the application to the execution platform. In particular, the execution
platform model describes the type and number of processors available in the system,
and which kind of memories and interconnections are present. The application is

1In this thesis, we use the terms “processor” and “PE” interchangeably.

4 Chapter 1. Introduction

modeled as a set of tasks that can be distributed to multiple processors. Moreover, the
application model describes how these tasks communicate and synchronize among
each other. Finally, the mapping specifies how the application model is mapped to
the execution platform model. For instance, the mapping describes: (i) how tasks are
distributed among the processors of the execution platform; (ii) how several tasks,
mapped on a single processor, are scheduled; (iii) how communication primitives
used in the application model are converted to corresponding execution platform
primitives. Then, when application, execution platform and mapping are specified,
an Electronic System-Level Synthesis tool (e.g., [NSD08]) generates in an automated
way the detailed hardware description (e.g., at RTL) and the software running on
each processor of the system.

In general, in order to achieve high performance, the models of the execution
platform and the application should be closely related For instance, the Von Neu-
mann architecture matches perfectly with an application specified using a sequential
program (e.g., using the C programming language). If the system performance does
not meet the requirements, designers have to modify the execution platform, software
and/or mapping specification in order to improve the achieved performance level.

Since embedded systems are now shifting from uniprocessors to multiprocessors,
several changes in the design methodology are required. In particular, the two
main problems that designers face are: (i) how to model the applications such that
the multiple processing resources available in modern execution platforms can be
exploited; and (ii) how to connect processors in the execution platform, which is
especially complicated as the number of processors in systems is constantly increasing.
The current trends to solve these two problem are described in Section 1.1.1 and 1.1.2,
respectively.

1.1.1 Programming for Multiprocessors: Models of Computation

As mentioned earlier, in order to achieve the desired performance on MPSoCs, em-
bedded software shall be specified having in mind the parallelism of the execution
platform. In particular, applications have to be decomposed in portions that can be
executed in parallel. Moreover, designers shall be able to reason about how many
processing resources to utilize, and how to distribute the application workload among
these resources. Finally, the actual code that will run on the considered execution
platform has to be generated, preferably in an automated way given the complexity
of modern MPSoCs.

Old-fashioned design flows based only on board support packages and high-level
programming interfaces fail to support the aforementioned design activities in a
rigorous and efficient way [HHBT09]. The de-facto solution to overcome this issue
is to use parallel (or concurrent) Models of Computation (MoCs) [Lee99]. Design
approaches that exploit MoCs are called Model-based Designs. In particular, MoCs
support the design process by allowing to:

1. Expose the parallelism available in an application;
2. Perform Design Space Exploration;
3. Generate software for the considered execution platform in an automated way.

1.1. Trends in Embedded MPSoC Design 5

v_in

init_v_in

DCT VLE

v_out

Q

(a) HSDF specification of the M-JPEG en-
coder application

PE1

interconnect

PE2

PE3 PE4

v_in

init_v_in
DCT

VLE

v_out Q

(b) Mapping of M-JPEG
tasks to 4 PEs

Figure 1.2: Example of MoC-based application specification (a) and mapping to a platform with 4 PEs
(b).

All of these activities are instrumental to tackle the design complexity of modern
embedded multiprocessor systems. In the following, we describe how these activities
are facilitated by MoCs. We conclude this section with an introduction to the MoCs
considered in this thesis.

Exposing the available application parallelism

By using a parallel MoC, designers decompose applications into tasks capable of
performing computation in parallel. The parallel MoC, in particular, defines the rules
by which these tasks communicate and synchronize among each other. By contrast,
the actual computation performed by the tasks is specified using a host language, for
instance C.

As many MoCs exist, designers choose the MoC most suitable to the considered
application domain. In this dissertation we focus on streaming applications, which
are widespread in the embedded domain. For streaming applications, dataflow MoCs
are the most appropriate because their semantics allow to express the application par-
allelism in a natural way. An example of a streaming application specified according
to a dataflow MoC is shown in Figure 1.2(a). In particular, the figure shows a Motion
JPEG (M-JPEG) encoder application specified using the Homogeneous Synchronous
Dataflow (HSDF) MoC [LM87b]. The HSDF MoC is described in greater detail in
Section 2.1.1. As shown in Figure 1.2(a), in a dataflow MoC applications are usually
specified in the form of directed graphs in which graph nodes represent the tasks of
the application (in the example, v_in, Q, VLE, . . .) and graph edges represent inter-task
data dependencies.

Performing Design Space Exploration

Dataflow MoCs are not only useful to specify the parallelism available in streaming
applications. In fact, they also facilitate the Design Space Exploration (DSE) process

6 Chapter 1. Introduction

[PEP06]. In a nutshell, DSE consists of evaluating alternative design points until
(some) objective criteria are met. Each design point consists of a particular execution
platform configuration used to implement the desired functionality, and of a well-
defined scheduling of the application onto the considered execution platform.

As the execution platform configuration is concerned, several design parame-
ters can be varied, such as the number of processing elements (PEs), the memory
subsystems, or the interconnection infrastructure. After the execution platform config-
uration has been defined, the MoC-based application specification allows designers to
specify the scheduling2 of the application onto the execution platform in a rigorous
way [SB09]. Application scheduling consists in defining where and when each task of
the application is executed. More precisely, scheduling decisions can be divided in:

∙ Spatial scheduling (or mapping): it determines the assignment of application
tasks to processors.

∙ Temporal scheduling: if more than one tasks are assigned to a PE, it determines
the order of execution of the tasks on the PE, and when each task executes such
that all precedence constraints are met.

Both spatial and temporal scheduling can be performed at design-time (static ap-
proach) or run-time (dynamic approach). For instance, Figure 1.2(b) shows a possible
static mapping of the M-JPEG application specified in Figure 1.2(a) to a platform
with four PEs. Notice that tasks VLE and v_out are mapped to PE3. Since v_out is
data-dependent from VLE (see Figure 1.2(a)), it must always be scheduled on PE3
after VLE.

To summarize, referring to the system-level design methodology shown in Fig-
ure 1.1, given a fixed application specification, a point in the design space is de-
termined by defining the specification of the execution platform, together with the
mapping of the application tasks to the processors of the execution platform.

Once a point in the design space is defined, as an execution platform configuration
and a specific spatial/temporal scheduling of the application, the formal semantics
of MoCs allow designers to evaluate it. A design point can be evaluated according
to many metrics such as performance, memory requirements, and power consump-
tion. For instance, MoC-based design allows to evaluate system performance using
analytical models (e.g. [SB09, GGS+06]) or simulations (e.g. [PEP06]). Based on these
evaluations, at the end of the DSE process it is possible to choose a design point that
is optimal according to the considered objective criteria.

Generating Code in an Automated Way

Once the spatial and temporal scheduling of the application are defined, the MoC-
based application specification allows to generate the code to be run on each processor
of the target MPSoC in an automated way [HHBT09, NSD08]. This is because MoCs
define without ambiguity the behavior of each task and the communication among
them.

2The interested reader is referred to [Pin16] for an introduction of scheduling problems and techniques
that occur in many real-world domains, beyond the embedded system domain considered in this thesis.

1.1. Trends in Embedded MPSoC Design 7

MoCs considered in this thesis

In addition to the HSDF MoC used in the example of Figure 1.2(a), other popular
examples of dataflow MoCs include Synchronous Dataflow (SDF) [LM87b], Polyhe-
dral Process Networks (PPN) [VNS07], and Cyclo-Static Dataflow (CSDF) [BELP96].
All of these MoCs are described in Chapter 2 of this thesis. These dataflow MoC share
three main characteristics. First, they are determinate [Kah74], i.e., the order in which
the nodes of the graph are scheduled has no influence on the result of the computation.
Second, as their expressiveness is concerned, they are not Turing complete. This is a
limitation required to guarantee the third characteristic: these MoCs are decidable.
The decidability of a MoC represents the extent to which designers can analyze, at
compile-time, properties of an application such as:

∙ Absence of deadlocks: given a certain set of spatial/temporal scheduling deci-
sions, it can be ensured that the application will never deadlock.

∙ Boundedness: given a certain set of spatial/temporal scheduling decisions, an
upper bound of the required size of buffers used to implement inter-task data
dependencies can be derived. As a result, at run-time neither buffer overflow
nor underflow can occur.

∙ Throughput guarantee: the throughput achieved by the system at run-time will
never be lower than a certain bound which can be determined analytically.

Due to these convenient characteristics, in this dissertation we assume that applica-
tions are specified using one of the MoCs mentioned above. A comparison of the
considered MoCs is provided in Figure 1.3, adapted from [SGTB11] and [Zha15]. In
the figure, MoCs are compared according to three criteria [SGTB11]: (i) expressiveness
and succinctness indicate which systems can be modeled using the considered MoC
and how compact these models are; (ii) implementation efficiency evaluates the com-
plexity of the scheduling problem and the (code) size of the resulting schedules; (iii)
analyzability, as mentioned earlier, refers to the availability of analysis and synthesis
algorithms and their computational complexity. As shown in Figure 1.3, there is no
“best” MoC among the ones considered in this thesis, because in general expressive-
ness and analyzability are inversely related. Therefore, in this dissertation we will
motivate the choice of one MoC over the others depending on the different addressed
problems.

Expressiveness and

succinctness

Implementation

efficiency
Analyzability

PPN

CSDF

SDF

HSDF

higher

lower

Figure 1.3: Comparison of the MoCs considered in this thesis.

8 Chapter 1. Introduction

Note that, beside the MoCs considered in this thesis, other more expressive
dataflow MoCs exist. The interested reader is referred to [BDLT13] and to [SGTB11].
In particular, [SGTB11] provides a MoC comparison more complete than the one
given in Figure 1.3. The comparison given in [SGTB11] includes MoCs that can
express dynamic application behavior. For instance, such MoCs allow parameters
of the application to be changed at run-time, at the expense of a lower analyzability.
By contrast, the MoCs considered in this dissertation cannot express such dynamic
behavior of applications, favoring a superior analyzability.

1.1.2 Communication Infrastructures: Networks-on-Chip

As mentioned in the beginning of this chapter, since the mid-2000s research com-
munities and industry have shifted their focus from uniprocessor to multiprocessor
architectures, for both general purpose and embedded systems. In the beginning,
these multiprocessor architectures were composed of a small number of processors,
typically two to four (e.g., AMD 64 Athlon X2, Intel Core Duo). Over time this has
changed, leading in recent years to architectures with dozens or even hundreds of
processors [HDV+11, VEMR14, dDAB+13]. These architectures are referred to as
massively parallel.

As the number of processors in execution platforms grows, it becomes evident
that traditional on-chip interconnections and memory subsystems are no longer
adequate. For instance, using a shared bus to connect dozens of processors to a global
shared memory would result in unacceptable performance degradation due to high
contention [BB04, BDM02, AMC+07].

Based on this observation, many research papers since the early 2000s have sug-
gested the use of a scalable communication infrastructure that consists of an on-chip
packet-switched network of interconnects, generally known as Network-on-Chip
(NoC) [BB04, BDM02]. Nowadays, this suggestion has been translated into many
commercially available (massively parallel) multiprocessors, that use NoCs as their
communication infrastructure [VEMR14, dDAB+13, Ram]. Moreover, as the choice
of the memory subsystem is concerned, “traditional” shared memory systems have
been replaced by completely distributed memories [VEMR14] or to memories shared
only within a cluster, as in [dDAB+13]. Although shared memory systems are still
widespread in the embedded domain, they suffer from scalability problems, and
NoC interconnection, together with distributed memories, are considered the most
potential way to achieve scalability.

In its most common form, a NoC has the regular 2D mesh topology shown in
the right part of Figure 1.4 [KJS+02]. The basic building blocks of a NoC-based
multiprocessor are tiles, routers (denoted by R in Figure 1.4), and network links. We
briefly describe these components in the following. Each tile, as shown in the left
part of Figure 1.4, usually contains: (i) a processing element (PE), together with its
data memory (DM) and instruction memory (IM); (ii) a Network Interface (NI); (iii)
an adapter between the PE and the NI (PE-to-NI adapter). The PE is responsible to
perform the actual computation of data, whereas the NI allows the bi-directional
communication of the tile with the rest of the NoC. Communication over the NoC is

1.1. Trends in Embedded MPSoC Design 9

performed using messages, which represent the unit of communication between tiles.
In fact, when a message has to be sent outside the tile, the NI converts it into packets
and performs the actual packet transmission from the tile to the router attached to it.
Conversely, when a message has the considered tile as destination, the NI performs
the reverse actions, i.e., it receives incoming packets and combines them to form the
actual received message.

In most NoC implementations, the NI is endowed with input and output buffers
for messages. Input buffers are used to allow the NI to receive a burst of messages
from the NoC, and avoid congesting the network if the PE of the tile cannot process
these messages quickly. Similarly, output buffers are useful when the PE produces
messages to be sent over the NoC at a fast rate, but the network is congested and
cannot immediately accept these messages.

tile00

R

tile01

R

tile02

R

tile10

R

tile11

R

tile12

R

IM

PE

DM

PE-to-NI

adapter

NI

Figure 1.4: The left part of the figure shows the internal structure of a tile. In each tile, the processing
element (PE) performs computations using its data memory (DM) and instruction memory (IM).
Communication with the rest of the NoC is handled by the Network Interface (NI) and the adapter
between the PE and the NI (PE-to-NI adapter). The right part of the figure depicts the structure of a
NoC composed of 6 tiles with a regular 2D mesh topology. Each tile is directly connected only to its
corresponding router, and each router is directly connected only to its neighbor routers.

Within the NoC, routers are responsible for dispatching the packets from the
source tile (i.e., the tile which sends the message) to the destination tile (i.e., the tile
which receives the message), according to defined routing rules. Finally, network
links allow the communication among tiles and routers, and among different routers
of the NoC. They are represented by bidirectional arrows in the right part of Figure 1.4.

Many NoC architectures have been proposed since the early 2000s. Popular
examples include ×pipes [BB04], Æthereal [RGR+03], Nostrum [KJS+02], SoCBUS
[WL03], Hermes [MCM+04]. From the point of view of the quality of service provided
by different NoC architectures, we can distinguish between:

∙ Best-Effort NoCs (e.g., ×pipes): in these NoCs, due to network contention,
latency fluctuations for packet delivery can be experienced [BB04] and, in
general, no guaranteed latency bound can be given.

∙ Guaranteed service NoCs (e.g., Æthereal): these NoCs can provide, for in-
stance, an upper bound of the latency incurred by messages that traverse the
network.

Clearly, for hard real-time applications, in which the timeliness of the computation
is as important as its correctness, NoCs with guaranteed services are the preferred

10 Chapter 1. Introduction

design choice. In fact, Chapters 5 and 6 of this thesis, which target hard real-time
systems, assume communication infrastructures with guaranteed services. However,
for applications with looser timing requirements best-effort NoCs can suffice and lead
to other benefits compared to guaranteed service NoCs (e.g., smaller area and cost).
Chapters 3 and 4 of this thesis, which are aimed at best-effort systems, consider a
best-effort NoC as communication infrastructure.

1.2 Challenges in Embedded MPSoC Design

As described in the beginning of Section 1.1, the design of an embedded MPSoC is a
process that entails several steps. The process starts with the definition of the required
system functionality (using an application model), together with the specification of
the execution platform on which the application will run. After a series of refinement
steps, the design process is completed when a detailed description of the system
hardware (e.g., at RTL) and of the software running on each processor is obtained.

The design trends described in Section 1.1, namely the widespread adoption of
MoC-based design and scalable NoC interconnections, represent emerging design
methodologies aimed at achieving high system performance on multiprocessor ar-
chitectures. Ensuring high system performance, however, is not the only objective of
embedded system designers. In the following sections we list other desirable features,
specific to embedded systems, that are considered in this dissertation.

1.2.1 System Adaptivity

With the term “system adaptivity” we refer to the ability of the system to adapt to
changing conditions imposed by the environment. These conditions are represented
by parameters that can be divided in two classes:

1. Parameters belonging to the application. These parameters affect the way
in which the application is executed. For instance, the resolution of a video
decoding application is commonly represented by two parameters that specify
the height and width of frames.

2. Parameters describing the status of the execution platform. For instance, a
parameter can specify the number of active processors in the system.

In Chapters 3 and 4 of this thesis, we achieve system adaptivity in response to
changes of the second set of parameters, the ones which describe the status of the
execution platform. For example, refer again to the system sketched in Figure 1.2(b)
on page 5, where the M-JPEG encoder application is mapped to a system composed
of four PEs. Notice that each PE of the system is executing one or more tasks of the
M-JPEG application. Then, two examples of scenarios that require system adaptivity,
and can be handled by the techniques described in Chapters 3 and 4 of this thesis, are
the following.
EX1: The system is battery-powered and the battery charge is running low. The

user may decide to turn off a certain number of PEs to reduce the energy
consumption of the system. This may result in a decreased quality of service of

1.2. Challenges in Embedded MPSoC Design 11

the M-JPEG application (e.g., reduced rate of video encoding). In addition, this
scenario requires the system to migrate tasks that are running on PEs that will
be switched off to the PEs that will be kept active, i.e., to change task mapping
at run-time.

EX2: One or more PEs of the system may become permanently faulty. In this scenario,
in order to maintain the functionality of the system, tasks mapped on faulty
PEs must be migrated to functional PEs.

Note that system adaptivity can be implemented in a computing system in different
ways. Consider the hardware/software stack in Figure 1.5, which abstracts the
structure of a computing system. At the top of this stack there is the application layer.
As mentioned in Section 1.1.1, in the case of embedded multiprocessors, applications
are specified using a MoC. Generally, these applications are scheduled on the system
by an Operating System (OS), represented by the middle layer in the figure. The OS
acts as an interface between the application layer and the hardware layer, which lays at
the bottom of the stack in Figure 1.5.

Applications

Operating System

Hardware

Figure 1.5: Sketch of the hardware/software stack of a computing system. The dashed area highlights
the interface between the application layer and the OS layer.

In this thesis we consider approaches that provide system adaptivity at the inter-
face between the application layer and the OS layer, as highlighted by the dashed
area of Figure 1.5. In this context, approaches that provide system adaptivity already
exist in the literature [NVC10, Gab09, BABP06, AACP08, NKG+02]. Most of them
allow, to a lesser or greater extent, to change the mapping of the application tasks at
run time, therefore they allow task migration. As mentioned in the examples EX1
and EX2 above, task migration is an essential requirement to guarantee system adap-
tivity as considered in this dissertation. However, we argue that existing solutions
present shortcomings in either the extent to which system adaptivity is supported, or
in the scalability of the proposed approaches. In this dissertation we address these
shortcomings.

Note that several other research works target system adaptivity by considering
that the parameters of applications can change. They allow this change of parameters
directly at the application level [BB01, SGTB11, BDLT13]. In order to do so, they use
adaptive MoCs that can model the possibility to change the parameters of applications
at run-time [ZNS11,Zha15]. The variation of application parameters at run-time is also
referred to as mode change. In this thesis, we do not explicitly consider such adaptive
MoCs mainly for two reasons. The first reason is that in some cases applications

12 Chapter 1. Introduction

simply do not show inherent (algorithmic) adaptivity, i.e., their parameters are fixed
and do not change. The second reason is that we want to encompass the cases in which
system adaptivity is required in response to faults detected in the execution platform.
These cases cannot be easily expressed by using an adaptive MoC. Moreover, if an
adaptive MoC is used to model applications, the techniques presented in Chapters 3
and 4 of this thesis may be used as a way to change the mapping of tasks at run-time,
consequently to a mode change.

1.2.2 Timing Requirements

As mentioned earlier, in many cases embedded systems must satisfy timing require-
ments in their execution. Based on the importance of these timing requirements,
embedded systems can be divided in the following categories.

∙ Hard Real-time (HRT) Systems: in these systems, failing to meet timing re-
quirements results in system failure.

∙ Soft Real-time (SRT) Systems: within this category, failing to meet timing
requirements results in degraded system performance.

∙ Best-Effort (BE) Systems: in these systems timing requirements are not speci-
fied and systems run at the best of their capacity.

Clearly, HRT systems pose a more difficult challenge to embedded designers
because they require an additional constraint, timing requirements, to be satisfied. In
these systems the result of the computation must be provided within a certain time
interval, otherwise it is useless. In some cases, violation of timing constraints may
result in catastrophic consequences. Among embedded systems, HRT requirements
are extremely common [Mar11]. In the special case of embedded streaming systems
(the scope of this dissertation), timing requirements that are typically guaranteed
are throughput and latency. Throughput refers to the amount of output tokens that
the application can produce in a defined time period. Latency measures the time
elapsed between the arrival of an input token in the system and the production of the
corresponding output token by the system.

A large variety of scheduling techniques which guarantee HRT behavior for
multiprocessor systems have been proposed over the years. In the remainder of this
section, we will categorize the most widely adopted techniques to guarantee HRT
constraints using the following three classes.

∙ Class I - Scheduling techniques based on direct analysis of the dataflow MoC
specification of applications.

∙ Class II - Scheduling techniques based on classical real-time scheduling analysis
[DB11, BBB15].

∙ Class III - Scheduling techniques that convert dataflow MoC-specified appli-
cations into real-time task sets compatible with classical real-time scheduling
analysis.

Each of these classes is briefly introduced in what follows.

1.2. Challenges in Embedded MPSoC Design 13

Class I - HRT Guarantees by analyzing Dataflow MoC Application Specifica-
tions

This class comprises most of the techniques in the literature which guarantee hard
real-time behavior of dataflow applications. Relevant examples of this class are
the approaches described in [LH89, MB07, GGS+06, SB09]. Techniques belonging to
this class require applications to be specified according to a dataflow MoC with high
analyzability. For this reason (recall Figure 1.3 on page 7), these approaches do not use
the PPN MoC to specify the applications. This is because performing an analysis of
timing guarantees directly on a PPN model is rather difficult, if not impossible, due to
the complexity of communication patterns which can occur in PPN models3 [Zha15].

Contrary to PPNs, for HSDF, SDF, and CSDF graphs analysis of timing guarantees
is possible. Recall that by using a dataflow MoC an application is represented as
a directed graph, where graph nodes represent tasks of the application and graph
edges represent inter-task data dependences. Then, several techniques belonging to
Class I derive certain hard real-time guarantees by analyzing the properties of the
application graph. For instance, [MB07] considers applications specified using an
SDF graph [LM87b]. This graph is converted to an equivalent HSDF graph [LM87b],
for which the maximum achievable throughput can be determined analytically. In
fact, the maximum achievable throughput of an HSDF graph is the inverse of its
Maximum Cycle Mean (MCM) [Das04]. However, note that this throughput analysis
is only applicable to the derived HSDF graph, which is often exponentially larger in
size compared to the original SDF graph [LM87b]. To avoid the exponential explosion
of the problem size, other techniques avoid the conversion of the original SDF graph
to the equivalent HSDF graph [GGS+06]. They, instead, explore the state-space of the
given SDF graph to calculate the maximum achievable throughput.

Note that all the scheduling techniques belonging to Class I share a significant
drawback: in order to provide certain timing properties, a complex design space
exploration is needed to determine the minimum number of processors required to
schedule the application(s) and the mapping of tasks to these processors. With regard
to this drawback, techniques belonging to Class II and III, which are presented in the
following, show higher efficiency.

Class II - HRT Guarantees using Classical Real-time Scheduling

The second class of scheduling techniques uses results from classical hard real-time
scheduling theory for multiprocessors [DB11, BBB15]. These techniques consider
application models which are more restrictive than the dataflow MoC considered in
Class I. In fact, scheduling techniques of Class II analyze programs in which tasks
conform to a certain real-time task model. The most influential example of such task
models is the periodic real-time task, which was introduced in the seminal work [LL73]
of Liu and Layland. In this model, each task is invoked in a strictly periodic way.
Each task invocation is called a job, and each job must be completed before a certain

3However, note that there exist techniques which can convert a PPN to its input-output equivalent
CSDF graph, see Chapter 3 of [Zha15].

14 Chapter 1. Introduction

deadline. In the simplest form of a periodic real-time task model, called Implicit
Deadline Periodic model, the deadline of a job coincides with the release time of the
successive job of the same task. Moreover, all tasks in the system are independent
among each other, i.e., jobs of a task do not depend on the completion of any jobs
of any other tasks in the system. Under all these assumptions, given the Worst-
Case Execution Time (WCET) of each task in the system, [LL73] proves that a simple
schedulability test ensures that no deadline will ever be missed under the Earliest
Deadline First (EDF) scheduling algorithm. In addition, [LL73] proves that EDF is
optimal for uniprocessor systems, i.e., if the periodic task set can be scheduled by any
other scheduling algorithm, then it can also be scheduled by EDF4.

However, when the scheduling analysis shifts from uniprocessor to multiprocessor
systems EDF loses its optimality. In general, scheduling algorithms that consider
multiple processors not only have to assign priorities among jobs of different tasks,
but they also have to decide on which processor each task must be executed (spatial
scheduling). This fact adds another dimension to the scheduling problem, making it
more complex. Several scheduling algorithms for multiprocessor systems have been
proposed in the literature [DB11, BBB15]. Based on the way they allocate tasks to
processors, most of the proposed approaches can be classified in either partitioned or
global scheduling algorithms.

Under global scheduling algorithms, all the tasks can migrate among all the
processors. Such algorithms can be optimal for multiprocessor systems, which means
that they can fully exploit the available computational resources (see for instance
[BCPV96]). However, this comes at the cost of high scheduling overheads due to
excessive task preemptions and migrations. Partitioned scheduling algorithms, by
contrast, incur no migration overhead because each task is statically allocated to a
single processor. Moreover, they incur much lower preemption overheads compared
to optimal global scheduling algorithms. However, partitioned algorithms are not
optimal. This implies that, in general, these algorithms may require twice as many
processors to schedule certain sets of tasks compared to an optimal global scheduler
[LDG04].

Recently, a third class of algorithms, called hybrid scheduling algorithms, has
been proposed. Among hybrid scheduling algorithms, semi-partitioned algorithms
(e.g., [ABD08, AEDC14]) have gained significant attention within the real-time re-
search community. Under semi-partitioned algorithms, most of the tasks are statically
allocated to processors and only a subset of the tasks is allowed to migrate among dif-
ferent processors. Migrating tasks follow a migration pattern derived at design-time.
Thus, semi-partitioned approaches represent a “middle ground” between partitioned
and global scheduling algorithms. In general, semi-partitioned scheduling algorithms
require less processors than partitioned algorithms to schedule certain task sets. At
the same time, these algorithms do not incur large task migration and preemption
overheads like global scheduling algorithms [BBA11].

Note that most of the scheduling techniques that fall into Class II share a com-
mon drawback: they assume that the tasks of the applications comply with a rather

4In other words, no other scheduling algorithm can outperform EDF in terms of schedulability of
periodic task sets on uniprocessors.

1.2. Challenges in Embedded MPSoC Design 15

simple task model, for instance the independent periodic task model. These simple
task models are not easily applicable to dataflow applications, in which tasks are
dependent among each other. However, the scheduling techniques of Class II provide
the following advantages:

∙ The minimum number of processors needed to schedule a certain task set, and
the assignment of tasks to processors, can be derived in a fast analytical way.

∙ Temporal isolation5 among different applications is guaranteed.
∙ Applications can be loaded at run-time in the system, provided that the schedu-

lability test pertaining to the adopted scheduling algorithm is satisfied.

Class III - HRT Guarantees by converting Dataflow MoC Application Specifica-
tions to Real-time Task Sets

In recent years, several approaches that bridge the gap between dataflow MoCs and
real-time task models have been proposed [God98, BS11, BS12, LA10, BTV12]. In these
approaches, applications are specified using a dataflow MoC where, as mentioned
earlier, tasks have data dependencies. Then, these MoC-based application specifica-
tions are converted to a set of tasks which comply with some real-time task model,
usually independent among each other. Finally, based on the obtained (independent)
real-time task set, the scheduling approaches of Class III apply algorithms from hard
real-time scheduling theory [DB11, BBB15] to determine in a fast and analytical way
the minimum number of processors that guarantee the required performance and the
mapping of tasks to processors.

In this thesis, in particular, we consider the scheduling technique proposed in
[BS11, BS12]. The analysis of [BS11, BS12] accepts, as input, applications specified as
acyclic CSDF graphs [BELP96]. The choice of this kind of MoC to specify the input
applications makes the result of [BS11,BS12] applicable to most streaming applications.
In fact, it has been shown in [TA10] that around 90% of streaming applications can
be modeled as acyclic SDF graphs. Note that acyclic SDF graphs are a subset of the
acyclic CSDF graphs considered in [BS11, BS12]. Note also that throughout this thesis,
unless otherwise specified, we will assume all considered (C)SDF graphs to be acyclic.

In a nutshell, the core of the analysis in [BS11, BS12] is the conversion of the input
application(s) into a set of independent periodic real-time tasks. This conversion
is explained in Section 2.3 of this thesis. Then, based on the derived independent
periodic real-time task set, partitioned scheduling algorithms from multiprocessor
real-time scheduling theory (recall Class II of scheduling techniques described earlier)
are used to derive the number of processors required to execute the application(s)
and guarantee the desired timing requirements.

1.2.3 Cost

Embedded systems are sold in massive quantities, for instance in consumer electronics
and cars. In these contexts, keeping the cost of the system competitive is of vital

5Temporal isolation refers to the ability to start and stop applications in the system without violating
the timing requirements of the other applications.

16 Chapter 1. Introduction

importance. Therefore, an embedded system designer is required to make an effective
use of the available hardware resources. When designing an embedded system, two
possible scenarios may occur. In the first scenario the hardware platform is yet to be
designed and the designer shall utilize the least amount of resources to implement
the required functionality. In the second scenario, the hardware platform is already
given, and the designer shall exploit the available hardware resources efficiently by
implementing as many useful applications as possible on the given hardware.

As described in Section 1.4.2, one of the contributions of this thesis is aimed
at improving the exploitation of hardware resources in HRT embedded streaming
systems.

1.2.4 Energy Efficiency

The challenge of power management (and therefore of energy management) of mod-
ern computing systems has been explicitly recognized by the International Technology
Roadmap for Semiconductors (ITRS) report of 2013 [Int13]. The ITRS report points
out, in particular, that among successive technology generations transistor density
doubles, while cost-effective heat removal from chips remains almost flat. This means
that in the near future chips will become increasingly powerful and rich in terms of
hardware resources. However, in these chips, power and energy management will
play an increasingly important role due to the limitations in dissipating heat.

Improper power management can affect a computing system in mainly two ways.
First, by requiring a huge amount of energy to perform the desired computation.
Second, by generating excessive heat, which must be somehow dissipated in order
to avoid hardware failures due to high temperatures. These concerns are even more
significant in the case of embedded systems. This is because several embedded
systems are battery powered and therefore cannot afford to consume huge amounts
of energy. Also, many embedded systems operate in safety-critical environments
where system failures could lead to catastrophic consequences.

Several energy and power-efficient techniques have been proposed in the literature.
These techniques mainly employ two mechanisms to reduce power consumption:
Voltage/Frequency Scaling (VFS) and Power Management (PM) [Jha01]. VFS reduces
dynamic power consumption by adjusting the voltage and operating frequency of
processors. Conversely, PM exploits idle times of processors by switching them to
a sleep mode. In multiprocessor systems, VFS and PM techniques can be applied
at the granularity of the single PE (so-called per-core VFS/PM), of the whole system
(so-called global VFS/PM), or at an intermediate level, by dividing the chip in clusters
(also called voltage islands) in which VFS/PM can be applied independently from the
rest of the system. Clearly, per-core VFS/PM provides greater flexibility in devising
power/energy management techniques and algorithms compared to clustered or
global approaches. However, many recent research works (e.g., [DA10,SJPL08,Lee09])
and several industrial examples (e.g., [HDV+11, dDAB+13]) have shown that for
massively parallel architectures per-core VFS/PM incurs large hardware overheads
and therefore is not a feasible solution.

As mentioned in Section 1.4.2, in this thesis we take this indication into account,

1.3. Problems Addressed in this Thesis 17

therefore we propose an approach that uses a VFS technique to improve the system
energy efficiency.

1.3 Problems Addressed in this Thesis

Having summarized the design trends and challenges pertaining to the embedded
system domain (in Section 1.1 and Section 1.2), we proceed now to define the problems
addressed in this dissertation.

In this thesis we consider two different categories of systems, based on the im-
portance of their timing requirements, as mentioned in Section 1.2.2: Best-Effort
(BE) and Hard Real-Time (HRT) systems. Given the very different nature of BE and
HRT systems, we exploit different MoCs and analysis techniques according to the
considered category of systems. The problems addressed in the context of BE systems
differ, as well, from the problems considered for HRT systems. Research problems
concerning BE systems are presented in Section 1.3.1, whereas those regarding HRT
systems are presented in the Section 1.3.2.

All the research problems addressed in this thesis, however, consider carefully the
trends in embedded multiprocessor design presented in Section 1.1.1 and Section 1.1.2,
which we summarize in the following two points.

1. Model-based Design is an instrumental methodology to tackle the complexity
of modern embedded multiprocessor systems. This is valid for both BE and
HRT embedded systems.

2. For emerging massively parallel architectures, research and industry trends
are shifting towards NoC-based interconnections and distributed memories.
This choice is necessary to guarantee design scalability.

1.3.1 Best-Effort Systems

In the context of BE systems, this thesis addresses the problem of providing system
adaptivity, one of the design challenges mentioned in Section 1.2, by means of
dedicated software components. We consider the following design decisions in
order to allow system adaptivity.

∙ We model applications using the most expressive and succinct MoC mentioned
in Section 1.1.1, namely the PPN MoC (recall the comparison among MoCs
considered in this thesis, shown in Figure 1.3 on page 7). As mentioned earlier,
timing analysis for PPN MoC is very difficult, if not impossible, but this is not a
concern for BE systems because no timing requirements are specified.

∙ We consider a NoC-based architecture, as shown in the right part of Figure 1.4
on page 9, with completely distributed memories. We assume that tiles of the
NoC can only access their own memory. Therefore, if tile b requires some data
produced by tile a, this data has to be explicitly sent over the NoC from tile
a to tile b, in the form of a message. This kind of design is found in many
NoCs proposed by the research community (e.g., ×pipes [BB04]), to guarantee
scalability and minimize hardware cost.

18 Chapter 1. Introduction

∙ We aim at providing system adaptivity by allowing to change the mapping
of tasks to processors at run-time, i.e., by implementing a mechanism of task
migration.

Assuming the three design decisions listed above, the problem of providing system
adaptivity on NoC-based architectures yields to the following two research questions.

∙ Research question 1. Although the PPN MoC is suitable to be implemented
on distributed architectures, the semantics of PPNs and the structure of NoC
interconnections do not exactly match. Therefore, in this thesis we provide an
answer to this question: how to implement the semantics of the PPN MoC on
NoC-based platforms in an efficient way?

∙ Research question 2. Assuming that an answer to the research question above
is given, how can we implement a task migration mechanism which respects
the PPN MoC semantics and can be deployed to a NoC-based architecture
with completely distributed memories? In particular, in order to reduce the
overhead incurred by task migration, we consider task migration using code
replication, where the code of the migrating task is copied on all the PEs that
may execute the task at run-time.

1.3.2 Hard Real-Time Systems

In the context of HRT systems, in this dissertation we use the methodology proposed
in [BS11, BS12] as a basis and research driver. As mentioned in Section 1.2.2, the
methodology of [BS11, BS12] is particularly appealing because it allows designers to
derive analytically the amount of resources (e.g., number of PEs, memories) necessary
to execute a set of applications, specified as acyclic CSDF graphs, with guaranteed
hard real-time behavior.

So far, in [BS11, BS12] and in all the scheduling methodologies mentioned in Class
III of Section 1.2.2, only partitioned or global scheduling algorithms from multipro-
cessor hard real-time theory [DB11, BBB15] have been considered. Advantages and
drawbacks of both of these approaches have been already mentioned in Section 1.2.2,
under Class II methodologies. In the context of emerging embedded multiprocessor
architectures, where memory is usually distributed, global scheduling algorithms
incur an additional drawback which we explain in the following. As mentioned
in Section 1.3.1, in order to reduce the overhead of task migration on distributed
memory architectures the code of each migrating task is copied to all the PEs that may
execute that task at run-time. In the case of global scheduling algorithms this means
that the code of all tasks must be replicated on all PEs, resulting in a huge memory
overhead. By contrast, partitioned scheduling algorithms do not incur any memory
overhead because all tasks are statically allocated. However, they are not optimal for
multiprocessor systems.

Semi-partitioned algorithms represent a middle ground between partitioned and
global scheduling algorithms. Under these algorithms, task migration is allowed.
However, only a few tasks are allowed to migrate and therefore need to replicate their
code in distributed memory architectures. Therefore, semi-partitioned algorithms
seem to be more applicable to such architectures, compared to global scheduling

1.4. Research Contributions 19

algorithms, because they do not incur the excessive memory overhead of global ap-
proaches mentioned in the paragraph above. In this thesis we focus, especially, on
semi-partitioned approaches with restricted migrations. In these approaches, migra-
tions can happen at job boundaries only, i.e., when a job is released on a PE, it cannot
migrate to another PE until its completion. This is a favorable feature in distributed
memory systems, because allowing migrations only at job boundaries reduce the
amount of data (state) to be transferred from one processor to the next.

The scheduling methodology of [BS11,BS12] shows that an application, modeled as
an acyclic CSDF graph, can be scheduled using a hard real-time partitioned schedul-
ing algorithm as a set of real-time periodic tasks. In this thesis, we extend that
scheduling methodology of [BS11,BS12] by allowing semi-partitioned scheduling
algorithms with restricted migrations to execute streaming applications using real-
time scheduling techniques. . In particular, in this thesis we provide an answer to the
following two questions. Can semi-partitioned approaches with restricted migra-
tions be exploited to achieve a more efficient utilization of the available hardware
resources (see the design challenge in Section 1.2.3)? And, can such approaches be
used together with VFS techniques to improve the energy efficiency of the system
(see the design challenge in Section 1.2.4)?

1.4 Research Contributions

The contributions of this thesis address the research questions presented in Section 1.3.
The common trait of the techniques proposed in this dissertation is the exploitation
of task migration. Our proposed techniques apply task migration in a specific way
depending on the considered category of systems (BE or HRT). In fact, the techniques
proposed for BE systems allow task migration to occur at any time, triggered by the
user or by the environment (e.g., by a hardware fault). By contrast, techniques aimed
at HRT systems perform task migration according to a precise temporal and spatial
pattern defined by the adopted semi-partitioned scheduling algorithm. For instance,
a task may be allowed to migrate periodically between two processors, alternating
the first and the second processor in the execution of successive jobs of the same task.
This results in an equal division of the workload of the task among the two considered
processors.

The research contributions of this thesis are divided in two parts:
∙ The first part (Chapters 3 and 4) is aimed at best-effort systems. Its contributions

are summarized in Section 1.4.1.
∙ The second part (Chapters 5 and 6) is aimed at hard real-time systems. Its

contributions are summarized in Section 1.4.2.

1.4.1 Exploiting Task Migration to achieve System Adaptivity in
Best-Effort Systems

In the first part of this thesis, namely Chapters 3 and 4, we propose the software stack
depicted in the left part of Figure 1.6. Within this stack, we introduce an intermediate

20 Chapter 1. Introduction

layer called middleware. This layer stays in between the applications, specified as
PPN processes, and the underlying OS. The middleware layer represents the main
contribution of the first part of this thesis, and is aimed at allowing adaptivity in
BE systems.

PPN

communication

PPN

Processes

Process

migration

Operating System

Application(s)

Middleware

tile0

tile2

tile1

tile3

Software Stack Hardware Platform

P1

P2 P3

Figure 1.6: Software stack (left) proposed to achieve adaptivity in BE systems. The middleware layer is
denoted by the shaded area. The stack is deployed on each tile of the hardware platform (right).

As shown in Figure 1.6, the middleware layer comprises two components, which
are inter-dependent. The first component, presented in Chapter 3, addresses the
problem of PPN Communication on NoC-based platforms with distributed memories.
More precisely, it converts PPN communication primitives to the corresponding
execution platform primitives. We propose and investigate several approaches to
efficiently implement PPN Communication on NoCs. The proposed approaches differ
in the extent of the required synchronization among tiles of the NoC. However, all of
these approaches allow PPN process to communicate regardless of the actual spatial
mapping of processes to processors, i.e., they are mapping independent. This is a
fundamental requirement in order to maintain the functionality of the system in case
of task/process migration(s).

The second component of the middleware layer is proposed in Chapter 4 and
implements the Process Migration6 mechanism. We devise a process migration mech-
anism that complies with the following requirements. The first requirement is that
process migration, once triggered, must be completed within a certain known time
frame. We refer to such property as predictability. The second requirement is that task
migration can be triggered in the system at any time. Finally, the third requirement is
that the code necessary to allow task migration must be generated in an automated
way, without the manual intervention of the designer. The efficiency and applicability
of the proposed software stack is shown in a real-life case study in Chapter 4.

6In this thesis, we will use the terms task and process interchangeably. In this case, we refer to process
migration because we allow migration of PPN processes.

1.4. Research Contributions 21

1.4.2 Exploiting Semi-partitioned Approaches in Hard Real-Time
Scheduling of (C)SDF Graphs

In the second part of this thesis, namely Chapters 5 and 6, we study the applicability
of semi-partitioned approaches in hard real-time scheduling of (C)SDF graphs. Our
contributions extend the scheduling framework of [BS11, BS12], which considers only
partitioned scheduling approaches.

In particular, in Chapter 5 we make the following contributions.

∙ Contribution 1. We extend the framework of [BS11, BS12] such that soft real-
time (SRT) scheduling algorithms can be used to schedule the tasks of an
application specified as a (C)SDF graph. Under SRT schedulers, tasks can miss
their deadlines by a bounded value called tardiness. Despite that, our approach
can still provide hard real-time guarantees to the input/output interfaces of
the application with the environment.

∙ Contribution 2. Based on the previous point, we consider the SRT semi-partitioned
scheduler EDF-fm [ABD08] (Earliest Deadline First based where tasks can be
either fixed or migrating) to schedule the applications. For this semi-partitioned
approach, we propose a task allocation heuristic that is aimed at:

- reducing the minimum number of processors required to schedule the
applications compared to a pure partitioned scheduling algorithm;

- keeping low the memory and latency overhead caused by the SRT sched-
uler compared to a pure partitioned scheduling algorithm.

∙ Contribution 3. We show on a set of real-life benchmarks that our semi-partitioned
approach can lead to significant benefits by reducing the number of processors
required to schedule a given application, compared to a partitioned approach,
while achieving the same throughput. However, this reduction in number of
required processors comes at the cost of increased memory requirements and
latency of applications.

In Chapter 6 we show that semi-partitioned approaches can achieve higher energy
efficiency compared to partitioned ones. Chapter 6 builds upon Contribution 1 of
Chapter 6. In particular, it makes the following contributions.

∙ Contribution 1. We propose a novel SRT semi-partitioned scheduling algorithm
with restricted migrations, called EDF-ssl (Earliest Deadline First based semi-
partitioned stateless), which is targeted at streaming applications. EDF-ssl
is designed to be used in combination with VFS techniques, and exploits the
presence of stateless tasks7 to improve the energy efficiency of the system.

∙ Contribution 2. We use EDF-ssl in combination with a VFS technique, assuming
that VFS is supported globally over the considered set of processors (i.e., not
per-core) with a discrete set of operating voltage/frequency modes. We derive
the conditions that ensure a valid scheduling of the tasks of applications in two
cases:

7A task is called stateless if it does not keep an internal state between two successive jobs. A more formal
definition of this property for the considered MoCs is given in Section 2.1.

22 Chapter 1. Introduction

- First, when we use the lowest frequency which guarantees schedulability
and is supported by the system.

- Second, when we use a periodic frequency switching scheme that preserves
schedulability and can achieve higher energy savings.

In general, our proposed EDF-ssl allows an even distribution of the utilization
of tasks among the available processors. In turn, this enables processors to
run at a lower frequency, which yields to lower power (and, therefore, energy)
consumption.

∙ Contribution 3. We show that, compared to a purely partitioned scheduling
approach, our technique achieves the same application throughput with signifi-
cant energy savings (up to 64%) when applied to real-life streaming applications.
These energy savings, however, come at the cost of higher memory requirements
and latency of applications.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview
of the MoCs considered in this thesis, some relevant analysis techniques and results
from real-time scheduling theory, and the methodology for hard real-time scheduling
of (C)SDF graphs proposed in [BS11, BS12]. All of these concepts and techniques are
instrumental to understand the contributions of this thesis.

Chapters 3 to 6, which present the contributions of this dissertation, are written in
a self-contained way. This means that each of these chapters includes an introduction
and related work section specific to the addressed research problem. We summarize
the content of each of these chapters in the list below.

∙ Chapter 3 describes the first component of the middleware layer (recall Fig-
ure 1.6 on page 20) that we propose to achieve system adaptivity in BE systems.
The first middleware component implements the communication of PPN pro-
cesses on NoC-based architectures in an efficient way.

∙ Chapter 4 proposes the process migration mechanism for PPNs on NoC-based
architectures, which represents the second component of the middleware layer
in Figure 1.6.

∙ Chapter 5 describes our semi-partitioned scheduling approach for CSDF graphs
with HRT constraints.

∙ Chapter 6 presents the final contribution of this thesis, which is based on a
novel semi-partitioned scheduling algorithm (EDF-ssl) together with a VFS
technique aimed at improving the system energy efficiency.

Finally, Chapter 7 draws some conclusions based on the results of this thesis and
suggest possible directions for future work.

Chapter 2

Background

IN this chapter, we introduce the mathematical notations, definitions, concepts,
and existing theoretical results that are necessary to understand the contributions

of this thesis.

We first provide in Table 2.1 a summary of the mathematical notations used in this
thesis.

Symbol Meaning
N The set of natural numbers excluding zero
N0 N ∪ {0}
Z The set of integers
|x| The cardinality of a set x
x̂ The maximum value of x

mod The integer modulo operator
xV An x-partition of a set V (see Definition 2.2.6)

Table 2.1: Summary of mathematical notation.

Then, in Section 2.1, we describe in further detail the MoCs used in this disserta-
tion. A preliminary introduction of these MoCs was given earlier in Section 1.1.1. In
addition, in Section 2.2 we present results and definitions from hard real-time schedul-
ing theory that are instrumental to understand our contributions in the context of
HRT systems (Chapters 5 and 6). Finally, in Section 2.3 we describe the methodology
for hard real-time scheduling of CSDF graphs proposed by [BS11, BS12]. In fact, our
contributions presented in Chapters 5 and 6 represent an extension of the framework
proposed in [BS11, BS12], therefore a thorough introduction to that framework is
necessary.

24 Chapter 2. Background

2.1 Dataflow Models of Computation

As mentioned in Section 1.1.1, dataflow MoCs represent a good match for streaming
applications because they allow to express the parallelism available in these kind
of applications in a natural way. In this thesis we consider the MoCs described in
Sections 2.1.1-2.1.3, namely (H)SDF, CSDF, and PPN. In both (C|H)SDF1 and PPN
MoCs applications are specified in the form of directed graphs in which graph nodes
represent the tasks (active entities) of the application and graph edges represent inter-
task data dependencies. In (C|H)SDF, nodes of the application graph are called actors,
whereas nodes in a PPN are called processes. The actor-based MoCs considered in this
thesis, (H)SDF and CSDF, are presented in Sections 2.1.1 and 2.1.2, respectively. These
MoCs are used to specify the input applications in the techniques for HRT systems
proposed in Chapters 5 and 6. The process-based MoC considered in this thesis, PPN,
is described in Section 2.1.3 and is used to specify applications in the approaches
proposed for best-effort (BE) systems, which are presented in Chapters 3 and 4.

2.1.1 (Homogeneous) Synchronous Dataflow ((H)SDF)

The Synchronous Dataflow (SDF) MoC is introduced in [LM87b]. Under this MoC,
an application is modeled as a directed multigraph G = (A, E) where A is the set of
actors and E is the set of edges. Actors represent tasks of the application and edges
represent inter-task data dependencies. Actors communicate over edges generating a
stream of data, which is divided in atomic data objects called tokens. An edge eu ∈ E
represents a first-in first-out (FIFO) buffer and is defined by a tuple eu = (Ai, Aj).
This tuple means that the edge is directed from actor Ai (called source) to actor Aj
(called destination). We define input and output actors of graph G as follows.

Definition 2.1.1. (Input actor). An input actor of graph G is an actor that receives the
input stream of the application from the environment.

Definition 2.1.2. (Output actor). An input actor of graph G is an actor that produces
the output stream of the application to the environment.

An execution of an actor Ai ∈ A is called a firing or invocation. In this thesis we
denote the jth invocation (with j ∈ N0) of actor Ai as Ai,j. Invocation Ai,j can begin
its execution only if enough input data is present on all its input edges. During one
invocation, actor Ai consumes input data from all its input edges, processes this data
according to a function fi, and writes the output data to its output edges. The amount
of data read/written from/to each input/output edge is fixed, known at compile-time
and it is called consumption/production rate. For each Ai ∈ A we can define a set of
predecessor and successor actors, denoted by prec(Ai) and succ(Ai), respectively. These
sets are defined as follows.

prec(Ai) = {Aj ∈ A : ∃eu = (Aj, Ai)} (2.1)
succ(Ai) = {Aj ∈ A : ∃eu = (Ai, Aj)} (2.2)

1For the sake of brevity, we identify CSDF, SDF and HSDF MoCs with the acronym (C|H)SDF.

2.1. Dataflow Models of Computation 25

A1 A2 A3
24 1 2e1 e2

Figure 2.1: Example of an SDF graph composed of actors A1, A2, A3 and edges e1, e2. Numbers over the
edges indicate the production/consumption rates of source/destination actors of that edge. For instance,
each invocation of actor A2 consumes 2 tokens from e1 and produces 1 token to e2.

We assume that any input actor Ain has no predecessors and any output actor Aout
has no successors, i.e., prec(Ain) = ∅ and succ(Aout) = ∅. Moreover, we can define
for each Ai ∈ A a set of input and output edges, denoted by inp(Ai) and out(Ai),
respectively.

An example of an SDF graph is shown in Figure 2.1. The numbers over the edges
indicate the production/consumption rates of source/destination actors of that edge.
Consider edge eu = (Ai, Aj). The production rate of source actor Ai over edge eu is
denoted by xu

i . Conversely, the consumption rate of destination actor Aj over edge eu
is denoted by yu

j . For instance, each invocation of actor A1 in Figure 2.1 produces 4
tokens to e1, and each invocation of actor A2 consumes 2 tokens from the same edge.
Therefore, x1

1 = 4 and y1
2 = 2.

A special case of the SDF MoC is the Homogeneous SDF (HSDF), that is an
SDF in which all the production/consumption rates of all the actors are equal to
one. An example of an HSDF graph is given in Figure 1.2(a) on page 5, where
production/consumption rates of actors are omitted because they are all equal to one.

Since streaming applications process continuous streams of data, we are interested
in determining a schedule of the SDF graph that can continue indefinitely, using a
finite amount of memory to implement the FIFO channels corresponding to the edges
of the graph. Such a schedule can be derived at compile-time if the SDF graph is
consistent and deadlock-free.

An SDF graph G is consistent [LM87a] if its balance equation, given below, has a
positive integer solution.

ΓG ·~q =~0 (2.3)

In the expression above, ΓG ∈ Z|E|×|A| is called topology matrix and ~q is called
repetition vector. The topology matrix is constructed as follows:

Γuj =


xu

j if actor Aj produces on edge eu

−yu
j if actor Aj consumes from edge eu

0 otherwise.

(2.4)

In particular, the repetition vector with the smallest norm is called basic repetition
vector. In this thesis, unless otherwise specified, we will utilize the basic repetition
vector of a graph to perform our analyses. The meaning of the repetition vector
is the following. If every actor Ai of the graph is fired qi times, where qi is the ith
component of the repetition vector, then the net change of the number of tokens in
the FIFO channels is zero.

26 Chapter 2. Background

For the example in Figure 2.1, the topology matrix ΓG is given below.

ΓG =

[
4 −2 0
0 1 −2

]
Its (basic) repetition vector ~qG, derived using Equation (2.3), is:

~qG =
[
qA1 , qA2 , qA3

]T

= [1, 2, 1]T

Note that any vector~q′ obtained by multiplying the basic repetition vector ~qG by a
positive natural number is also a repetition vector of G, i.e., it satisfies Equation (2.3).
Note also that the existence of a positive integer solution to Equation (2.3) is only a
necessary condition to execute an SDF graph indefinitely with a periodic schedule.
Another condition that must be satisfied is the absence of deadlocks, which can be
verified by constructing a periodic admissible schedule [LM87a] of the graph. An
SDF graph that has no deadlock is called deadlock-free, or live. An important property
of the SDF MoC is that the consistency and liveness of an SDF graph can be verified
at compile-time. In this thesis we consider only consistent and live SDF graphs.

2.1.2 Cyclo-Static Dataflow (CSDF)

The Cyclo-static Dataflow (CSDF) MoC [BELP96] is a generalization of SDF. Similar
to SDF, a CSDF graph G = (A, E) also consists of a set of actors A and a set of edges
E. However, contrary to SDF, the behavior of CSDF actors is cyclic, as explained in
the following.

Each CSDF actor Ai has a certain number of phases, denoted by Ωi. The execution
of each phase ϕ is associated with a certain function fi(ϕ). Therefore, we can define
an execution sequence [fi(0), fi(1), · · · , fi(Ωi − 1)] which links each phase to the
corresponding executed function. Moreover, production/consumption rates for each
output/input edge are also defined for each phase. Thus, for each actor Ai, the
following sequences can be defined.

∙ Consumption sequence for each input edge eu:

[yu
i (0), yu

i (1), · · · , yu
i (Ωi − 1)]

∙ Production sequence for each output edge eu:

[xu
i (0), xu

i (1), · · · , xu
i (Ωi − 1)]

Notice that the length of all these sequences is Ωi, the number of phases.
Phases of a CSDF actor Ai are executed in a cyclic fashion. That is, during invoca-

tion Ai,n (with n ∈ N) of actor Ai, function fi((n) mod Ωi) is executed. Similarly, for
each input edge eu, yu

i ((n) mod Ωi) tokens are consumed and for each output edge eu,

2.1. Dataflow Models of Computation 27

A1 A2 A3
[1] [1,2] [0,3]

e1 e2

[1]

Figure 2.2: Example of a CSDF graph.

xu
i ((n) mod Ωi) tokens are produced. The cumulative number of tokens consumed

by invocations Ai,0 to Ai,n of actor Ai from its input edge eu is denoted by:

Yu
i (n) =

n

∑
l=0

yu
i (l) (2.5)

Similarly, the cumulative number of tokens produced by invocations Ai,0 to Ai,n of
actor Ai to its output edge eu is denoted by:

Xu
i (n) =

n

∑
l=0

xu
i (l) (2.6)

Similar to the SDF case, we are interested in finding an indefinite, periodic schedule
of a CSDF graph G. As shown in [BELP96], a repetition vector~q of G is given by:

~q = Θ ·~r, with Θik =

{
Ωi if i = k
0 otherwise

(2.7)

where~r = [r1, r2, · · · , r|A|]
T is a positive integer solution of the balance equation

Γ ·~r =~0 (2.8)

and where the topology matrix Γ ∈ Z|E|×|A| is defined by

Γuj =


Xu

i (Ωj − 1) if actor Ai produces on edge eu

−Yu
i (Ωj − 1) if actor Ai consumes from edge eu

0 otherwise.
(2.9)

Example 2.1.1. An example of a CSDF graph is shown in Figure 2.2. The graph
indicates the production/consumption sequences of the actors over the edges of the
graph. For instance, actor A2 has consumption sequence [1, 2] over e1 and production
sequence [0, 3] over e2. From Equations (2.7)-(2.9), we derive the repetition vector~q as
shown below.

Γ =

[
1 −3 0
0 3 −1

]
,~r =

3
1
3

 , Θ =

1 0 0
0 2 0
0 0 1

 , and~q =

3
2
3


Based on this repetition vector~q, we can derive a static non-preemptive schedule

for the CSDF graph in Figure 2.2 that can be repeated forever using bounded buffers.
The following schedule possess this property.

Schedule 1: A1 A1 A1 A2 A2 A3 A3 A3 = 3A1 2A2 3A3 (2.10)

28 Chapter 2. Background

Note that alternative schedule exists.
For a consistent and live (H)SDF or CSDF graph G = (A, E), given the repetition

vector~q of the graph, we can define the concept of actor iteration and graph iteration
as shown below.

Definition 2.1.3. (Actor iteration). An actor iteration is the invocation of an actor Ai
for qi times.

Definition 2.1.4. (Graph iteration). A graph iteration is the invocation of every actor
Ai for qi times.

Stateless Actors

In this thesis, we will use the concept of stateless and stateful actors. This concept
is common to both the (H)SDF and CSDF MoCs. Formally, any (C|H)SDF actor is
stateless because the relation between tokens consumed and produced during an
invocation is defined by a function, as mentioned earlier. Needless to say, a function
does not have a state. However, sometimes it is necessary to model actors for which
the result of the current invocation is dependent from the data produced in the
previous invocations. In the (C|H)SDF MoC, these dependencies from previous
invocations are modeled using self-edges. On these self-edges, an invocation can
write data tokens that represent the actor “state” and that can be read by successive
invocations. A formal definition of stateless actors is given below.

Definition 2.1.5. (Stateless actor). A (C|H)SDF actor is called stateless if it has no
self-edges used to model its state.

Consequently, stateful actors are defined as follows.

Definition 2.1.6. (Stateful actor). A (C|H)SDF actor is called stateful if it has self-edges
used to model its state.

2.1.3 Polyhedral Process Network (PPN)

The Polyhedral Process Network (PPN) [VNS07] MoC is used in this thesis mainly in
the context of best-effort systems (Chapters 3 and 4). The PPN MoC is a special case
of the Kahn Process Network (KPN) MoC proposed in [Kah74]. A PPN is a directed
multigraph G defined as a tuple G = (𝒫 , 𝒞), where:

∙ 𝒫 = {P1, P2, · · · , P|𝒫|} is a set of processes;
∙ 𝒞 = {ch1, ch2, · · · , ch|𝒞|} is a set of FIFO channels.

Processes in 𝒫 represent tasks of an application and they communicate among each
other using FIFO channels in 𝒞. An example of PPN is depicted in Figure 2.3(a). Each
PPN process has a set of input ports (for instance, process P2 has input ports IP1 and
IP2) and a set of output ports (P2 has only one output port, OP1), through which the
process reads and writes data. Channels connected to the input and output ports
of a process P are called input and output channels, and denoted by ICP and OCP,
respectively.

2.1. Dataflow Models of Computation 29

for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 if (condition)

 READ(in1, IP1);

 else

 READ(in1, IP2);

 out = F(in1);

 WRITE(out, OP1);

}}

IP1

IP2

OP1

(a) (b)

P1

P2

P3

ch1

ch2
ch3

OP1

OP2

OP1

IP1

IP2

IP1

Process P2

Figure 2.3: In sub-figure (a), an example of a PPN topology composed of processes P1, P2, P3 and FIFO
channels ch1, ch2, ch3. Processes read/write data tokens from/to channels using input/output ports,
which are denoted by dots. Sub-figure (b) shows the internal structure of process P2 of sub-figure (a). As
in all PPN processes, the structure of P2 is based on nested for-loops.

Similar to KPN processes, PPN processes are synchronized through the FIFO
channels, that is, processes that attempt to read from an empty FIFO will block
(blocking read). However, contrary to KPNs, in PPNs FIFO buffers have bounded
size, therefore processes are also forced to block when trying to write to a full FIFO
(blocking write).

Note that in PPNs control and synchronization are completely distributed, which
allows to change the mapping of processes to PEs at run-time with minor effort.
We leverage this advantage in our proposed techniques aimed at achieving system
adaptivity in NoC based MPSoCs, see Chapters 3 and 4.

Another restriction with respect to the KPN MoC is that in PPNs processes have
a precise structure. As shown in Figure 2.3(b) for process P2, the execution of a
PPN process is defined using nested for-loops. Each execution of a PPN process
corresponds to a certain value of the for-loop iterators. The value of these iterators
can be represented as a vector~I, called iteration vector. For P2, the iteration vector is
~I = [i, j].

Each PPN process executes as follows. First, the process reads data from (a subset
of) its input ports. The subset of input ports from which data is read depends on
the value of the iteration vector. For instance, process P2 reads data from IP1 if the
condition2 in Figure 2.3(b) is satisfied, otherwise data is read from IP2. Then, the input
data is processed by a function (in P2, this is represented by the line out = F(in1)).
This function represents the computational behavior of the process. Finally, the
process writes the produced data to (a subset of) its output ports. The subset of output
ports to which data is written depends, again, on the value of the iteration vector.

2Conditions used to determine whether an input/output port has to be read/written can contain any
affine relation of the loop iterators, static parameters, and constants.

30 Chapter 2. Background

Note that, similar to the actor-based MoCs presented in Sections 2.1.1 and 2.1.3, the
relation between input and output data of a process is defined by a function, which is
by definition stateless. In order to model processes for which the result of the current
iteration is dependent from the data produced in the previous iterations, one can use
self-channels. On these self-channels, an iteration can write data tokens that represent
the process “state” and that can be read by successive iterations. This state is therefore
stored outside the process itself. However, note that the set of input/output ports
which is read/written by the PPN process is derived based on its iteration vector~I.
Therefore, the iteration vector is in fact the only state of the PPN process.

Automatic derivation from SANLPs

The restrictions imposed by the PPN MoC compared to the KPN MoC lead to the
following important property: any sequential application specified as a Static Affine
Nested Loop Program (SANLP) can be automatically converted to an equivalent
parallel PPN specification [VNS07]. An SANLP can be defined as follows (from
[Mei10]).

Definition 2.1.7. (Static Affine Nested Loop Program (SANLP)). An SANLP is a program
where each program statement is enclosed by one or more loops and if-statement,
and where:

- loops have a constant step size;
- loops have bounds that are affine expressions of the enclosing loop iterators,

static program parameters, and constants;
- if-statements have affine conditions in terms of the loop iterators, static program

parameters, and constants;
- index expression of array references are affine expressions of the enclosing loop

iterators, static program parameters, and constants;
- data flow between statements in the loop is explicit, which prohibits that two

statements that contain function calls communicate through shared variables
invisible at the SANLP level.

In particular, in this thesis we use the pn compiler [VNS07] to automatically
convert static affine nested loop programs (SANLPs) to parallel PPN specifications and
to determine the buffer sizes that guarantee deadlock-free execution. Although the
pn compiler imposes some restrictions on the specification of the input application, a
large set of streaming applications can be effectively specified as SANLPs. In addition
to the case studies considered in Chapters 3 and 4, SANLPs can model applications
from various domains, such as image/video processing (JPEG2000, H.264), sound
processing (FM radio, MP3), and scientific computation (QR decomposition, stencil,
finite-difference time-domain). Moreover, a recent work [TA10] has shown that most
of the streaming applications can be specified using the Synchronous Data Flow (SDF)
model [LM87b]. The PPN model is more expressive than SDF, thus it can as well be
used effectively to model most streaming applications.

2.2. Real-time Scheduling Theory 31

2.2 Real-time Scheduling Theory

In this section, we introduce in a formal way the real-time periodic task model and
important schedulability results for multiprocessor systems. This task model and
analysis techniques are instrumental to the approaches we present in Chapters 5 and
6. Finally, we describe the notation and theoretical results of two semi-partitioned
scheduling algorithms which are leveraged in our work: EDF-fm [ABD08] and EDF-
os [AEDC14].

2.2.1 Real-time periodic and sporadic task models

Under the real-time periodic task model, a task is defined by a 4-tuple τi = (Ci, Ti, Si, Di),
where Ci is the worst-case execution time (WCET) of the task, Ti is the task period, Si
is the start time of the task, and Di is the deadline of the task. A periodic task τi starts
at time Si and is recurrent, with a constant inter-arrival time Ti. That is, a periodic
task τi is invoked at time instants ri,k = Si + kTi, for all k ∈ N0. Each invocation
of τi is called a job. The kth job of τi is denoted by τi,k. Job τi,k must complete its
execution before time di,k = ri,k + Di. In this thesis, we assume that tasks have implicit
deadlines, i.e., Di = Ti for each task τi. In this case, the absolute deadline of job τi,k is
di,k = Si + (k + 1)Ti is coincident with the arrival of job τi,k+1. We denote the actual
completion time of τi,k as zi,k. We assume that tasks can be preempted at any time.
The demand of a real-time periodic task is defined as follows.

Definition 2.2.1. (Demand of a periodic real-time task). The demand of a periodic real-
time task τi in the interval [t0, tc) is the total time in which jobs of τi are executed in
[t0, tc). This demand is denoted by dmd(τi, t0, tc).

In Section 2.3, we summarize the scheduling technique [BS11, BS12] on which our
proposed approaches aimed at HRT systems are based. That scheduling technique
considers an input application modeled as an acyclic (C)SDF graph with N actors.
Then, this (C)SDF model of the application is converted to a set Γ = {τ1, τ2, · · · , τN}
of N real-time periodic tasks. In general, tasks in Γ do not have the same start time,
i.e., Γ is an asynchronous task set. The utilization of task τi ∈ Γ is ui = Ci/Ti and the
total utilization of the task set Γ is UΓ = ∑τi∈Γ ui.

The sporadic task model is a generalization of the periodic task model. Jobs
released by a sporadic task must be separated in time by a minimum inter-arrival
interval Ti.

2.2.2 System model

In this thesis, we consider homogeneous multiprocessor systems. That is, in the con-
sidered systems all the processors are identical and the speed of execution of tasks
on processors is the same. In particular, we consider a system composed of a set
Π = {π1, π2, · · · , πM} of M homogeneous processors.

32 Chapter 2. Background

2.2.3 Multiprocessor Real-Time Scheduling Algorithms

In this section we describe some concepts and results from real-time scheduling
analysis which are instrumental to the approaches proposed in this thesis. We focus
on scheduling algorithms which handle periodic real-time task sets.

Multiprocessor scheduling algorithms try to solve two problems [DB11]:
1. The allocation problem, namely on which processor(s) jobs of a task should

execute;
2. The priority problem, or when, and in what order with respect to jobs of other

tasks, each job should execute.
Based on the way in which scheduling algorithms approach the allocation problem,
they can be categorized in:

∙ No migration. Each task is allocated to only one processor, and no migration is
allowed.

∙ Task-level migration. Different jobs of the same task can execute on different
processors. However, each job can only be executed on one processor. These
approaches are said to have restricted migrations.

∙ Job-level migration. A single job can migrate and be executed on different pro-
cessors. However, parallel execution of a job is not allowed, i.e., the same job
cannot be executed in parallel on two or more processors.

Algorithms that allow any task to migrate, either at task-level or at job-level, are
termed global. By contrast, the algorithms that do not allow migration at any level
are called partitioned.

Depending on how scheduling algorithms solve the priority problem, they can
be classified in:

∙ Fixed task priority. Each task has a single fixed priority applied to all of its jobs.
∙ Fixed job priority. The jobs of a task may have different priorities, but each job

has a single static priority. An example of this class is the Earliest Deadline First
(EDF) [LL73] scheduling described in Section 2.2.4.

∙ Dynamic job priority. A single job may have different priorities during its execu-
tion. An example of this class is Least Laxity First (LLF) scheduling.

We proceed our discussion by introducing some useful definitions from [DB11].

Definition 2.2.2. (Feasibility of a task set). A task set is said to be feasible with respect to
a given system if there exist some scheduling algorithm that can schedule all possible
sequences of jobs that may be generated by the task set on that system without missing
any deadline.

Definition 2.2.3. (Optimal scheduling algorithm). A scheduling algorithm is said to be
optimal with respect to a system and a task model if it can schedule all of the task sets
that comply with the task model and are feasible on the system.

Definition 2.2.4. (Schedulability of a task and of a task set). A task τ is referred to as
schedulable according to a given scheduling algorithm 𝒜 if its worst-case response
time under 𝒜 is less than or equal to its deadline. Similarly, a task set is referred to as
schedulable under a given scheduling algorithm if all of its tasks are schedulable.

2.2. Real-time Scheduling Theory 33

Real-time scheduling theory provides analytical schedulability tests to verify the
schedulability of a task set Γ under scheduling algorithms 𝒜. A schedulability test
is termed sufficient if all task sets that are deemed schedulable according to the test
are in fact schedulable [DB11]. Similarly, a schedulability test is termed necessary
if all the task sets that are deemed unschedulable according to the test are in fact
unschedulable. Finally, a schedulability test that is both sufficient and necessary is
called exact.

For implicit deadline periodic task sets, an useful performance metric of both
uniprocessor and multiprocessor scheduling algorithms is the worst-case utilization
bound, as defined below.

Definition 2.2.5. (Worst-case utilization bound (from [DB11])). The worst-case utilization
bound U𝒜 for a scheduling algorithm 𝒜 is the minimum utilization of any implicit
deadline task set that is only just schedulable under 𝒜.

From this definition, it follows that every implicit deadline task set Γ with total
utilization UΓ ≤ U𝒜 is schedulable under 𝒜. Therefore, the condition:

UΓ ≤ U𝒜 (2.11)

can be used as a sufficient (not necessary) schedulability test for task set Γ under
scheduling algorithm 𝒜.

2.2.4 Uniprocessor Schedulability Analysis

Arguably, the two most popular scheduling algorithms for uniprocessor systems
are Earliest Deadline First (EDF) and Rate Monotonic (RM). These two scheduling
algorithms are described below.

Earliest Deadline First (EDF)

The EDF scheduling algorithm was proposed in the seminal paper [LL73] of Liu
and Layland. Under EDF a task is assigned the highest priority if the deadline of
its current job is the nearest. Ties are broken arbitrarily. An exact schedulability test
under EDF for implicit deadline periodic task sets is given in the following theorem.

Theorem 2.2.1. Under EDF, an implicit deadline periodic task set Γ is schedulable on one
processor if the total utilization of Γ is less than or equal to one:

UΓ = ∑
τi∈Γ

ui ≤ 1 (2.12)

Note that EDF is optimal on uniprocessor systems. That is, if a task set is feasible
on such a system, it is also schedulable under EDF.

34 Chapter 2. Background

Rate Monotonic (RM)

Under the Rate Monotonic (RM) scheduling algorithm, each task has a fixed priority.
In particular, for any two tasks τi and τj, if the period of τi is shorter than the period
of τj then the priority of τi is higher that that of τj.

Such a priority assignment is optimal in the sense that no other fixed task priority
assignment rule can schedule a task set which cannot be scheduled by RM [LL73].
However, contrary to EDF, RM is in general not optimal on uniprocessors (see Defini-
tion 2.2.3) for real-time periodic task sets.

2.2.5 Multiprocessor Schedulability Analysis

As mentioned in Section 1.2.2, the scheduling problem on multiprocessors is much
more complex than on uniprocessor systems. In order to find a solution to this prob-
lem, a plethora of scheduling algorithms for hard real-time multiprocessor systems
have been proposed in the literature [DB11, BBB15]. Each scheduling algorithm has
its advantages and its drawbacks compared to the others, and in fact there is no
scheduling algorithm that outperforms the rest in all aspects.

Optimal Global Scheduling Algorithms

On a system comprised of M homogeneous processors, hard real-time scheduling
algorithms that achieve a worst-case utilization bound of M exploit job-level mi-
grations and dynamic job priority (recall the classification of scheduling algorithms
given in Section 2.2.3). Examples of such algorithms include PFAIR [BCPV96] and
LLREF [CRJ06]. Under these optimal global scheduling algorithms, an exact schedu-
lability test for an implicit deadline periodic task set Γ on M processors is:

UΓ = ∑
τi∈Γ

ui ≤ M (2.13)

that is, any implicit deadline periodic task set with total utilization less than or equal
to M is schedulable on M processors. Based on the above equation, we can derive the
minimum number of processors MOPT required by an optimal scheduling algorithm
to schedule an implicit deadline periodic task set Γ:

MOPT = ⌈UΓ⌉ (2.14)

Note that other global scheduling algorithms do not achieve optimality, for in-
stance Global EDF (GEDF).

Partitioned Scheduling Algorithms

Unfortunately, optimal global scheduling algorithms entail high migration and pre-
emption overheads. To avoid such overheads, designers often choose partitioned
approaches, where no migration is allowed. Partitioned scheduling approaches are

2.2. Real-time Scheduling Theory 35

composed of two phases, an assignment phase and an execution phase. Under parti-
tioned approaches, as the name suggests, in the first phase a schedulable partition of the
initial task set is created. In general, a partition of a set V is defined as a grouping of
its elements into non-empty subsets, in such a way that every element is included in
one and only one of the subsets. We provide a definition using mathematical notation
below.

Definition 2.2.6. (Partition of a set). Let V be a set. An x-partition of V is a set, denoted
by xV, where:

xV = {xV1, xV2, · · · , xVx},

such that each subset xVi ⊆ V, and:

xVi ̸= ∅ ∀ xVi and
x⋂

i=1

xVi = ∅ and
x⋃

i=1

xVi = V.

As mentioned earlier, in the case of partitioned scheduling algorithms, we are
interested in obtaining a schedulable partition of a task set, which is defined below.

Definition 2.2.7. (Schedulable partition of a task set). Let Γ be a set of periodic real-time
tasks. A schedulable partition xΓ is a partition of Γ that complies with Definition 2.2.6
and guarantees that each subset of xΓ is schedulable on one processor under the
considered local scheduling algorithm.

In particular, consider a task set Γ and an x-partition xΓ of Γ. Assume that each
subset xΓj ∈ xΓ is assigned to a separate processor and it is scheduled by a local
uniprocessor scheduler 𝒜. Then, using the schedulability test provided by Condi-
tion (2.11), we have that Γ is schedulable using 𝒜 on each processor if:

∑
τi∈xΓj

ui ≤ U𝒜, ∀ xΓj ∈ xΓ (2.15)

where U𝒜 is the worst-case utilization bound of 𝒜, as defined in Definition 2.2.5. For
instance, the worst-case utilization bound of EDF is UEDF = 1 [LL73], therefore we
have that Γ is schedulable using Partitioned EDF (PEDF) if:

∑
τi∈xΓj

ui ≤ 1, ∀ xΓj ∈ xΓ (2.16)

Then, in the second phase, at run-time, the local (uniprocessor) scheduler 𝒜 is
used to schedule the subset of the partition which is assigned to each processor.

From the above discussion, it is clear that the first phase of a partitioned scheduling
approach is in fact an instance of the classical bin-packing problem [Joh73]. In the
bin-packing problem, items of different sizes must be packed into the least amount of
bins, which have a certain capacity. In partitioned scheduling, in an analog way, tasks
with different utilizations must be partitioned into the least amount of processors.
The “capacity” of each processor is determined by the worst-case utilization bound

36 Chapter 2. Background

U𝒜 of the local scheduling algorithm. The equivalence of partitioning schemes and
the bin-packing problem leads to the following two limitations.

Limitation 1. An optimal solution to the bin-packing problem is one that min-
imizes the number of bins required to pack the items. Analogously, an optimal
partitioning of the set of tasks is one that requires the least amount of processors to
assign all tasks, while guaranteeing schedulability on all processors. In both cases,
finding an optimal solution is NP-hard [GJ79]. In order to tackle the NP-hardness of
the problem, several heuristics have been proposed [Joh74] to find approximate solu-
tions. We provide an overview of the most commonly used heuristics in Section 2.2.6.
These heuristics are rather simple and fast, but they do not guarantee the optimality
of the provided solution.

Limitation 2. Consider a system composed of M processors. Even if we determine
the optimal partitioning of tasks to processors, no partitioned scheduling algorithm
can guarantee the worst-case utilization bound of M (recall Equation (2.13)) provided
by optimal global algorithms. In general, the worst-case utilization bound of a
partitioned scheduling algorithm on M processors can reach at most (M + 1)/2
[ABD08]. This phenomenon is termed utilization loss and implies that partitioned
algorithms cannot, in general, exploit the available processing resources in an optimal
way. In fact, a partitioned approach may require twice as many processors to schedule
certain task sets compared to an optimal global scheduler.

In the rest of this dissertation, we refer to the two above limitations as bin-packing
issues.

2.2.6 Partitioning Heuristics

Consider a set Γ of N tasks (items) and a set Π of M homogeneous processors (bins).
Each processor uses a local scheduler 𝒜 with worst-case utilization bound U𝒜, and
each task τi has utilization ui. As mentioned in Limitation 1 of Section 2.2.5, an
optimal partitioning of the task set Γ is a partitioning that uses the least amount of
processors and satisfies Condition (2.15). Deriving such optimal partitioning, which
is an instance of the bin-packing problem, is NP-hard. Given the complexity of
this problem, several heuristics have been proposed to solve it. In the following,
we summarize some of the most common heuristics used to solve the partitioning
problem. These heuristics assign each task τi ∈ Γ to a certain processor πk ∈ Π by
considering one task at a time, following a certain sequence. For First-Fit, Best-Fit and
Worst-Fit, in particular, the current task to be assigned is determined by following the
order of tasks appearance in Γ, e.g., τ1 is assigned first and τN last.

All the partitioned heuristics described in what follows utilize the concept of
processor utilization, defined below.

Definition 2.2.8. (Utilization of a processor). Let Γk denote the set of tasks currently
assigned to processor πk. Then, the utilization σk of processor πk is equal to the sum
of the utilizations of the tasks assigned to πk, i.e.:

σk = ∑
τi∈Γk

ui (2.17)

2.2. Real-time Scheduling Theory 37

Note that, in the beginning of all partitioned heuristics listed below, Γk = ∅ and
σk = 0 for each πk.

∙ First-Fit (FF). A task τi is assigned to the lowest-indexed processor πk that can
contain it. That is, the index k of πk is determined by:

k = min{j | ui + σj ≤ U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

∙ Best-Fit (BF). A task τi is assigned to a processor πk such that πk will have the
minimal residual utilization (U𝒜 − σk) after the assignment. That is, the index k
of πk is determined by:

k = min{j |
(
ui + σj

)
is closest to, without exceeding, U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

∙ Worst-Fit (WF). A task τi is assigned to a processor πk such that πk will have
the maximal residual utilization (U𝒜 − σk) after the assignment.

k = min{j |
(
ui + σj

)
is minimal and does not exceed U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

Recall that for EDF the worst-case utilization bound U𝒜 is UEDF = 1 (see Equa-
tion (2.16)).

As shown in [Joh73], these heuristics achieve better performance if they are pre-
ceded by a sorting of the input task set. Usually, the input task set is sorted by
decreasing utilization. The approaches composed of a first phase, which sorts the
input task set by decreasing utilization, and a second phase, which applies one of
the aforementioned heuristics (FF, BF, WF), are termed First-Fit Decreasing (FFD),
Best-Fit Decreasing (BFD), and Worst-Fit Decreasing (WFD), respectively.

The performance of a partitioning heuristic can be measured by its approximation
ratio. Let OPT(Γ) be the number of processors needed by an optimal partitioning
scheme to assign a certain task set Γ. Consider a certain partitioning heuristic H,
which requires H(Γ) processors to assign the same task set Γ. Then, the approximation
ratio of H, denoted by ℛH , ensures that for any task set Γ:

H(Γ) ≤ ℛH · OPT(Γ) (2.18)

The approximation ratios for FF, BF, and FFD are 17/10, 17/10, and 11/9, respec-
tively [CGJ96, GJ79, Yue91].

2.2.7 EDF-fm Semi-partitioned Algorithm

As summarized in Section 2.2.5, global scheduling algorithms can be optimal for
multiprocessor systems leading to a full exploitation of the available processors.

38 Chapter 2. Background

However, they incur high migration and preemption overheads, which may limit
their applicability. Moreover, they incur significant memory overhead in distributed
memory systems, as explained in Section 1.3.2. By contrast, partitioned approaches as
PEDF show low preemption overheads and neither migration nor memory overheads.
However, they are affected by bin-packing issues and in general may not exploit the
available processing resources in an optimal way.

In Chapters 5 and 6 of this thesis we consider semi-partitioned scheduling algo-
rithms, which represent a middle ground between global and partitioned algorithms.
As mentioned in Chapter 1, under semi-partitioned algorithms most of the tasks are
statically allocated to processors and only a subset of the tasks is allowed to migrate
among different processors. Migrating tasks follow a migration pattern derived at
design-time. Semi-partitioned algorithms aim at ameliorating the bin-packing issues
of partitioned scheduling without incurring the excessive overheads of global schedul-
ing. In particular, in Chapter 5 we exploit the EDF-fm scheduling algorithm [ABD08],
which is described in the rest of this section. We recall that the name EDF-fm comes
from the fact that the algorithm is based on EDF and allows tasks to be either fixed
or migrating. By contrast, in Chapter 6 we propose a novel scheduling algorithm,
EDF-ssl which is based on some concepts and properties of the EDF-os scheduling
algorithm [AEDC14] summarized in Section 2.2.8.

As mentioned in Section 1.4.2, EDF-fm can have great benefits for distributed
memory MPSoCs. However, it provides only soft real-time guarantees to the sched-
uled tasks. Since many definitions of soft real-time behavior exist, we provide below
the definition of a SRT algorithm adopted in this thesis.

Definition 2.2.9. (Soft Real-Time (SRT) scheduling algorithm). A scheduling algorithm
is said to be SRT when it allows tasks to miss their deadlines by a bounded value
called tardiness.

Note that EDF-fm falls into this definition of SRT algorithm. In particular, under
EDF-fm we can compute a bound of the tardiness of each task. A definition of
tardiness bound is given below.

Definition 2.2.10. (Tardiness bound). A task τi is said to have a tardiness bound ∆i if
each job τi,k of τi does not miss its deadline di,k by more than ∆i. That is, denoting the
completion time of job τi,k by zi,k:

zi,k ≤ (di,k + ∆i), ∀k ∈ N0

We describe now the EDF-fm scheduling algorithm, as presented in [ABD08], in
greater detail. In EDF-fm, tasks can be either fixed or migrating. Migrating tasks
migrate between exactly two processors, with the restriction that migration can
only happen at job boundaries. The EDF-fm approach consists of two phases: the
assignment phase and the execution phase, which are summarized in what follows.

Assignment phase

Consider the following definitions:

2.2. Real-time Scheduling Theory 39

Definition 2.2.11. (Task share). A task τi is said to have a share si,k on πk when a part
si,k of its utilization ui is assigned to πk.

In turn, the task fraction of task τi on processor πk is defined as follows.

Definition 2.2.12. (Task fraction). Given si,k, πk executes a fraction ϕi,k =
si,k
ui

of τi’s
total execution requirement.

In the assignment phase each task is assigned to either one processor (fixed task)
or two processors (migrating task). In particular, the assignment phase assigns tasks
in sequence to processors. Since EDF-fm uses EDF as local scheduling algorithm, the
capacity of each processor πk (the maximum utilization that can be assigned to it) is 1
(see Equation (2.12) on page 33), therefore the condition:

σk ≤ 1, ∀πk ∈ Π (2.19)

must be satisfied.
In particular, in the assignment phase tasks are assigned to a processor πk until its

capacity is exhausted. Recall that σk denotes the total utilization assigned to processor
πk (see Definition 2.2.8). In the case of EDF-fm, σk is equal to the sum of shares assigned
to πk:

σk , ∑
τi∈Γk

si,k (2.20)

where Γk is the set of tasks with non-zero shares on πk.
If a task τi cannot entirely fit on processor πk, then a share si,k = 1 − σk of its

utilization is assigned to πk. This makes sure that, after this assignment, σk = 1, i.e.,
πk is fully utilized. The remaining utilization si,k+1 = (ui − si,k) of τi is assigned to
the next processor, πk+1. The assignment phase of EDF-fm ensures that at most two
migrating tasks are assigned to any processor (see an example in Figure 2.4).

Moreover, on a processor with two migrating tasks (τi and τj), EDF-fm requires

that the sum of the migrating tasks’ utilization (denoted by σ
mig
k) does not exceed one:

σ
mig
k = ui + uj ≤ 1, (2.21)

This condition is automatically satisfied if the maximum utilization of any task is
limited to 1/2, given the fact that at most two migrating tasks can be assigned to a
single processor. However, tasks that exceed this utilization limit can still be scheduled
by EDF-fm, provided that Condition (2.21) is respected on all the processors. Note
that if no limit on maximum task utilizations is set, EDF-fm is not optimal, because it
cannot fully exploit the available processors for all possible input task sets.

Example 2.2.1. Given the task set {τ1 = (C1=3, T1=10), τ2 = (2, 5), τ3 = (2, 5), τ4 =
(1, 2), τ5 = (1, 2), τ6 = (2, 5), τ7 = (1, 2)}, the EDF-fm algorithm derives the task
assignment shown in Fig. 2.4. For instance, task τ3 cannot entirely fit onto π1 in
Fig. 2.4, thus its utilization is split between π1 and π2 with shares s3,1 = 3/10 and
s3,2 = 1/10, respectively.

40 Chapter 2. Background

S1,1=3/10

S3,1=3/10

S3,2=1/10

S4,2=1/2

S5,2=2/5

S5,3=1/10

Processor p1 Processor p2 Processor p3

S2,1=2/5

S6,3=2/5

S7,3=1/2

1

0

Figure 2.4: EDF-fm assignment of the task set considered in Example 2.2.1. Tasks τ1, τ2, τ4, τ6, and τ7
are fixed, i.e., their whole utilization is assigned to a single processor. For instance, task τ1 has utilization
u1 = 3/10 and the share s1,1 of τ1 on π1 is equal to its whole utilization, that is, s1,1 = u1. By contrast,
tasks τ3 and τ5 are migrating tasks. Their shares on processors are highlighted with a shaded area. For
instance, τ3 cannot entirely fit onto π1, thus its utilization is split between π1 and π2 with shares
s3,1 = 3/10 and s3,2 = 1/10, respectively.

Execution phase

The execution phase employs a simple online scheduling algorithm that is derived
from EDF and ensures bounded tardiness with a minimal overhead compared to a
canonical EDF scheduler. Let τi be a migrating task that migrates between processor
πk and πk+1. Then, jobs belonging to a task τi are assigned at run-time such that in
the long run the fraction of τi’s workload executed on πk (πk+1) is close to ϕi,k (ϕi,k+1).
This result is achieved by leveraging results from PFAIR scheduling [BCPV96]. We
recall that EDF-fm allows only restricted migrations. As explained in Section 2.2.3,
this means that different jobs of the same task can execute on different processors.
However, each job can only be executed on one processor.

For instance, according to the share assignment depicted in Figure 2.4, task τ3
releases its jobs on processors π1 and π2 according to the pattern shown in Figure 2.5.
Task τ3 releases a job every period T3, either to π1 or to π2. On average 1 out of 4
jobs of τ3 are assigned to π2 and the remaining 3 jobs are assigned to π1. In the long
run (the release pattern continues indefinitely), the number of jobs released on π1 are
three times the number of jobs released on π2. This is due to the fact that the share
s3,1 of τ3 assigned to π1 is three times larger than the share s3,2 of τ3 assigned to π2.

Jobs released on a processor are prioritized among each other using a local EDF
scheduler. The job release pattern of migrating tasks under EDF-fm, mentioned above,
prevents the overloading on processors in the long run. However, it creates temporary
overloading on processors, which in turn leads to tardiness. In particular, when two
migrating tasks, τi and τj, are assigned to πk, the tardiness bound under EDF-fm for a
fixed task τu assigned to the same processor is given by:

∆(τu) =
Ci · (ϕi,k + 1) + Cj · (ϕj,k + 1)− Tu · (1 − σk)

1 − si,k − sj,k
(2.22)

where Ci and Cj are the worst-case execution times of τi and τj (as defined in Sec-
tion 2.2.1), and Tu is the period of task τu. Finally, σk is the total utilization assigned

2.2. Real-time Scheduling Theory 41

t

p2

p1

50 10 15 20 25 30 35 40

T3

. . .

. . .

job release

Figure 2.5: Release pattern of jobs of task τ3 between processors π1 and π2, according to the share
assignment of τ3 in Figure 2.4.

to πk, i.e., the sum of fixed tasks’ utilization and migrating tasks’ shares allocated to
πk (see Equation (2.20)). Note that in Equation (2.22) the tardiness bound of EDF-fm
is denoted as ∆(τu), whereas in Definition 2.2.10 we denote the tardiness bound of
a task τu as ∆u. Throughout this thesis, we will use the latter notation if the context
makes clear that ∆u is the tardiness bound of task τu.

In contrast with fixed tasks, in EDF-fm migrating tasks do not miss any deadline,
therefore their tardiness bound is zero.

2.2.8 EDF-os Semi-partitioned Algorithm

In order to tackle the sub-optimality of the EDF-fm scheduling algorithm, Anderson
et al. in [AEDC14] propose EDF-os (EDF-based optimal semi-partitioned scheduling).
In what follows, we summarize the features of EDF-os which are leveraged in our
EDF-ssl scheduling algorithm presented in Chapter 6.

Similar to EDF-fm, EDF-os is also a SRT scheduling algorithm (see Definition 2.2.9).
These two algorithms share some definitions and concepts, but EDF-os introduces
modifications to both the assignment and execution phases of EDF-fm to achieve
optimality. As in EDF-fm, under EDF-os tasks can be either fixed or migrating, with
migrations only allowed at job boundaries. However, in EDF-os migrating tasks
are allowed to migrate among any number of processors, not only between two
processors as in EDF-fm. Each task τi is assigned a (potentially zero) share si,k of the
available utilization of a processor πk, following Definition 2.2.11.

If task τi is migrating, it has non-zero shares on several processors. If τi is fixed, it
has non-zero shares on a single processor. The assignment phase in EDF-os ensures
that the cumulative sum of the shares of a task over all the processors equals the task
utilization, that is:

ui =
M

∑
k=1

si,k

where M is the total number of processors in the system. Similar to EDF-fm, the total
utilization assigned to processor πk is denoted by σk and derived using Equation (2.20).

42 Chapter 2. Background

Also under EDF-os, the total utilization assigned to a processor must always be equal
to or lower than the available processor utilization (which is 1). That is, for each
processor πk:

σk ≤ 1 (2.23)

Condition (2.23) above is ensured by the assignment phase of EDF-os to avoid the
over-utilization of any processor in the long run. In fact, Condition (2.23) is identical
to Condition (2.12) used in EDF-fm.

In the execution phase, EDF-os enforces that, in the long run, the fraction of
workload generated by task τi on πk is equal to the task fraction ϕi,k, given by Def-
inition 2.2.12. Similar to EDF-fm, this long-run workload distribution according to
task fractions is obtained by leveraging results from Pfair scheduling [BCPV96]. In
particular, out of the first ν consecutive jobs released by τi, EDF-os ensures that the
number of jobs released on processor πk is between ⌊ϕi,k · ν⌋ and ⌈ϕi,k · ν⌉ (Property 1
in [AEDC14]). In turn, out of any c consecutive jobs of a migrating task τi, the number
of jobs released on πk (indicated as ci,k) is bounded by the following expression:

ci,k ≤ ϕi,k · c + 2 (2.24)

The above expression is given by Property 6 in [AEDC14]. For a more detailed
explanation of assignment rules for jobs of migrating tasks, the reader is referred
to [ABD08] and [AEDC14].

Tardiness bounds for both fixed and migrating tasks under EDF-os are derived
in [AEDC14]. We do not report these bounds because they are not relevant for the
contributions of this thesis.

2.3 HRT Scheduling of Acyclic CSDF Graphs [BS11,
BS12]

As mentioned in Section 1.2.2 (on page 15, under Class III of scheduling algorithms),
several approaches that bridge the gap between dataflow MoCs and real-time task
models have been proposed in recent years. In this thesis, in particular, among these
approaches we consider the scheduling technique proposed in [BS11, BS12].

Bamakhrama and Stefanov in [BS11, BS12] consider applications specified as
acyclic CSDF graphs and show that the set of N actors A = {A1, A2, · · · , AN} of
an input CSDF graph G can be converted to a set of N real-time periodic tasks
ΓG = {τ1, τ2, · · · , τN}. This conversion allows a designer to apply algorithms from
hard real-time scheduling theory to derive in a fast and analytical way the minimum
number of processors that guarantee the required performance of an application and
the partitioning of tasks to processors.

In particular, for each actor Ai ∈ A of the input CSDF graph, the analysis in
[BS11, BS12] derives the parameters of the corresponding real-time periodic task
τi = (Ci, Ti, Si), where Ci is the WCET of the task, Ti is the task period, Si is the start
time of the task (as described in Section 2.2.1). In the rest of this section, we describe
how these parameters (Ci, Ti, Si) are derived. Then, we show how the size of buffers

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 43

which implement inter-task communication over edges can be derived. Finally, we
summarize the correspondence between the dataflow notation for the input CSDF
graph G and the real-time theory notation for the derived periodic task set ΓG.

WCET of Actors (Ci)

The analysis in [BS11,BS12] begins with the computation of the WCET Ci of each CSDF
actor Ai. The value of Ci is derived as follows. First, the WCET Ci,k of each phase k of
actor Ai is computed. This WCET includes both the worst-case communication and
computation time required by phase k of Ai, and is calculated using the following
equation:

Ci,k = CR · ∑
el∈inp(Ai)

yl
i(k) + CW · ∑

er∈out(Ai)

xr
i (k) + CC

i (k) (2.25)

In Equation (2.25), CR (CW) represents the worst case time needed to read (write) a
single token from (to) an input (output) channel in the considered hardware platform;
yl

i(k) (xr
i (k)) is the number of tokens read (written) by actor Ai from (to) edge el (er) by

phase k of Ai; inp(Ai) (out(Ai)) is the set of input (output) edges of Ai; and CC
i (k) is

the worst-case computation time of phase k of actor Ai. Note that CC
i (k) includes also

the worst-case overhead incurred by the underlying scheduler (e.g., EDF), following
the analysis of [Dev06].

The WCET Ci of actor Ai is derived by finding the maximum value among the
WCET Ci,k of each phase k of Ai, that is:

Ci =
Ωimax

k=1
(Ci,k) (2.26)

where Ci,k is obtained using Equation (2.25).
Given the WCET Ci of each actor Ai in G, we can represent the WCETs of all actors

in G using the WCET vector ~C, where each component Ci of ~C is the WCET of actor
Ai.

Minimum Period of Actors (Ti)

Based on the properties of the graph and on the WCET of actors given by Equa-
tion (2.26), the minimum period Ti ∈ N of actor Ai can be calculated using the
following expression:

Ti =
Q
qi

⌈
η

Q

⌉
(2.27)

where qi is the number of repetitions of actor Ai per graph iteration, η = maxAi∈A{Ci qi}
(recall that Ci is the WCET of Ai), and Q = lcm{q1, q2, · · · , qN}.

The period Ti of actor Ai, obtained using Equation 2.27, is minimum. However, in
some cases a designer may want longer periods of actors. These longer periods can
be derived by multiplying the minimum period of each actor by a positive integer
factor constant among all actors.

44 Chapter 2. Background

Given the period Ti of each actor Ai in G, we can represent the periods of all actors
in G using the period vector ~T, where each component Ti of ~T is the period of actor
Ai.

Example 2.3.1. Consider again the CSDF graph shown in Figure 2.2 on page 27. We
have already derived in Section 2.1.2 the repetition vector of the graph ~q = [3, 2, 3].
Assume that its WCET vector is ~C = [C1, C2, C3] = [1, 2, 2]. Then, it follows that η = 6
and ~T = [T1, T2, T3] = [2, 3, 2].

In general, the derived period vector ~T satisfies the condition:

q1T1 = q2T2 = · · · = qNTN = H (2.28)

where H is referred to as iteration period, and represents the duration needed by the
graph to complete one iteration (recall Definition 2.1.4 on page 28).

Earliest Start Times of Actors (Si)

The earliest start time Sj ∈ N0 of an actor Aj is derived using the following expression:

Sj =

{
0 if prec(Aj) = ∅
maxAi∈prec(Aj)

(
Si→j

)
if prec(Aj) ̸= ∅

(2.29)

where:

Si→j =

min
t∈[0,Si+H]

{
t : prdS

[Si ,max(Si ,t)+k)
(Ai, eu) ≥ cnsS

[t,max(Si ,t)+k]
(Aj, eu), ∀k = 0, 1, · · · , H

}
(2.30)

where:
∙ H is the iteration period as defined by Equation (2.28);
∙ Si is the start time of a predecessor actor Ai;

and the two functions (prdS, cnsS) used in Expression 2.30 are defined as follows.

Definition 2.3.1. (Cumulative production function for start times calculation). The cumu-
lative production function used to derive start times is denoted by prdS

[ts ,t f)
(Ai, eu)

and represents the total number of tokens produced by actor Si to edge eu during the
time interval [ts, t f).

Definition 2.3.2. (Cumulative consumption function for start times calculation). The cumu-
lative consumption function used to derive start times is denoted by cnsS

[ts ,t f]
(Aj, eu)

and represents the total number of tokens consumed by actor Aj from edge eu during
the time interval [ts, t f].

Note that, for the purpose of computing the start times of actor Aj, the cumulative
production function prdS(Ai, eu) assumes that token production happens as late as

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 45

3

8

43

0

t

A2

A1

A3

5

S1

T1

0 10 15

1 2 3 4 5

0 1 2

0 1 2

S2 T2

S3

6 7

job

release

job

deadline

Figure 2.6: Hard real-time scheduling of the CSDF graph in Figure 2.2 on page 27 derived using the
methodology of [BS11, BS12]. For instance, the derived period of A1 is T1 = 2 and the start time of A1
is S1 = 0. This means that the first invocation of A1 is released at time 0, and the successive invocations
are released periodically, every 2 time units. The schedule continues indefinitely, only its initial part is
shown.

possible, i.e., at the deadline of each invocation of predecessor actor Ai. Conversely,
the cumulative consumption function cnsS(Aj, eu) assumes that token consumption
happens as early as possible, i.e., at the release of each invocation of actor Aj. These
assumptions, which make the calculation of actor start times safe, are emphasized by
the superscript S in prdS and cnsS.

Given the start time Si of each actor Ai in G, we can represent the start times of all
actors in G using the start time vector ~S, where each component Si of ~S is the start
time of actor Ai.

Example 2.3.2. In Example 2.3.1, assuming a WCET vector ~C = [1, 2, 2] we derived the
period vector ~T = [2, 3, 2] of the graph G shown in Figure 2.2 on page 27. Then, based
on Expression (2.29) we derive the earliest start time vector ~S = [0, 3, 9]. Therefore,
the real-time periodic task set corresponding to G is completely defined as:

ΓG = {τ1 = (C1 = 1, T1 = 2, S1 = 0), τ2 = (2, 3, 3), τ3 = (2, 2, 9)}

Given the complete specification of the obtained real-time periodic task set, a designer
can apply algorithms from hard real-time scheduling theory to derive in a fast and
analytical way the minimum number of processors that guarantee the required perfor-
mance of an application and the partitioning of tasks to processors. For instance, the
total utilization UΓG is 13/6, therefore even an optimal global scheduling algorithm
would require at least 3 processors to schedule ΓG (see Equation (2.14)).

The periodic schedule of G, resulting from the derived task set ΓG, is visualized in
Figure 2.6. In the figure, notice that the first invocation of each actor Ai is released at
the start time Si, obtained using Expression (2.29). Then, successive invocations of
each actor Ai are released periodically, according to the actor’s period Ti.

46 Chapter 2. Background

Minimum Buffer Sizes

Given the period Ti and start time Si of each actor Ai ∈ A, the minimum size bu of
the buffer which implements the communication over edge eu = (Ai, Aj) is given by:

bu = max
k∈[0,1,··· ,H]

 prdB

[Si ,max{Si ,Sj}+k]
(Ai, eu)− cnsB

[Sj ,max(Si ,Sj)+k)
(Aj, eu)

 (2.31)

where:
∙ H is the iteration period as defined by Equation (2.28);
∙ Si and Sj are the start times actors Ai and Aj, respectively;

and the two functions (prdB, cnsB) used in Expression 2.30 are defined as follows.

Definition 2.3.3. (Cumulative production function for buffer sizes calculation). The cumu-
lative production function used to derive buffer sizes is denoted by prdB

[ts ,t f]
(Ai, eu)

and represents the total number of tokens produced by actor Si to edge eu during the
time interval [ts, t f].

Definition 2.3.4. (Cumulative consumption function for buffer sizes calculation). The cumu-
lative consumption function used to derive buffer size is denoted by cnsB

[ts ,t f)
(Aj, eu)

and represents the total number of tokens consumed by actor Aj from edge eu during
the time interval [ts, t f).

Note that, for the purpose of computing the buffer size bu, the cumulative pro-
duction function prdB(Ai, eu) assumes that token production happens as early as
possible, i.e., at the release of each invocation of predecessor actor Ai. Conversely,
the cumulative consumption function cnsB(Aj, eu) assumes that token consumption
happens as late as possible, i.e., at the deadline of each invocation of actor Aj. These
assumptions, which make the calculation of buffer sizes safe, are emphasized by the
superscript B in prdB and cnsB.

Correspondence Between Dataflow and Real-Time Theory Notations

The analysis in [BS11, BS12] creates a one-to-one correspondence between actor Ai of
the input CSDF graph G and real-time periodic task τi of the derived periodic task
set ΓG. In this thesis, we will leverage either the dataflow notation for the (C)SDF
graph G (see Sections 2.1.1 and 2.1.2) or the real-time theory notation for the periodic
task set ΓG (see Section 2.2.1), depending on the problem we want to address. For
the sake of clarity, Table 2.2 shows the correspondence between these two notations.
Recall that we denote the jth invocation of actor Ai as Ai,j (with j ∈ N0), therefore
Ai,0 represents the first invocation of actor Ai. Note that, in Table 2.2, the earliest start
time and latest completion time of an invocation Ai,j refer to the schedule generated
by the methodology of [BS11, BS12].

Note that Chapter 5 and 6 of this thesis extend the methodology of [BS11, BS12].
Therefore, in those chapters the correspondence between dataflow and real-time
theory notations shown in Table 2.2 is used extensively.

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 47

Dataflow notation for G Real-time notation for ΓG
Actor Ai Task τi

Invocation Ai,j of Ai Job τi,j of τi
Earliest start time of Ai,0 Start time Si of τi
Earliest start time of Ai,j Release time ri,j of τi,j

Latest completion time of Ai,j Deadline di,k of τi,j

Table 2.2: Correspondence between dataflow and real-time theory notations resulting from the method-
ology of [BS11, BS12].

In addition, both Chapter 5 and 6 use the concept of stateless real-time periodic
tasks. In general, a task is said to be stateless if it complies to the definition below.

Definition 2.3.5. Stateless task (general). A task is said to be stateless if it does not keep
an internal state between two successive jobs.

Using the methodology of [BS11, BS12], we recall that each task τi corresponds to
actor Ai of the input CSDF graph G. Therefore

Definition 2.3.6. Stateless task (in [BS11, BS12]). In the scheduling technique of [BS11,
BS12], a task τi is said to be stateless if it corresponds to a (C)SDF actor Ai which is
stateless (i.e., Ai complies to Definition 2.1.5 on page 28).

48 Chapter 2. Background

Chapter 3

PPN Communication on
Networks-on-chip

Most of the work presented in this chapter has been published in [CDS11].

IN this chapter and in the following one, Chapter 4, we present techniques which
are aimed at achieving system adaptivity1 in the context of best-effort systems. In

order to make the system adaptive, our approach provides a mechanism by which
application processes can migrate among processors at run-time.

Our approach takes into account the emerging trends in the design of embedded
MPSoCs that are described in Sections 1.1.1 and 1.1.2. That is, we base our technique
on the following two assumptions:

1. As the methodology used to specify applications is concerned, we consider
an approach based on a Model of Computation. In particular, we adopt the
PPN MoC, which is presented in Section 2.1.3. In PPNs, memory, control,
and synchronization are completely distributed, which allows to change the
mapping of processes to PEs at run-time with minor effort.

2. Regarding the choice of communication infrastructures, we assume that PEs
in our systems are interconnected by a Network-on-Chip (NoC). Some of the
advantages of NoCs are described in Section 1.1.2. In the context of system
adaptivity, in particular, we argue that NoCs are appropriate because NoCs are
generic, i.e., the same NoC-based platform can be used to run different applica-
tions or to run the same application with a different mapping of processes. As
mentioned in Section 1.1.2, we consider NoC-based platforms which comprise
several processing elements, organized in tiles.

From the above discussion, it follows that the PPN MoC and NoC-based intercon-
nections, among other advantages, can favor system adaptivity in embedded MPSoCs.

1Recall the explanation of our understanding of the term “system adaptivity”, given in Section 1.2.1 on
page 10.

50 Chapter 3. PPN Communication on Networks-on-chip

However, there is a mismatch between the communication primitives allowed in
NoC-based execution platforms and the semantics of the PPN MoC. Therefore, in this
chapter we investigate and propose several approaches to overcome this mismatch.
All of the proposed approaches are aimed at implementing PPN communication on
NoCs considering system adaptivity as a driving objective. Moreover, they do not
require specific hardware support from the NoC-based platform to realize inter-tile
communication among PPN processes. The approaches presented in this chapter
represent different possible implementations of the first component of the middleware
layer that is proposed in this thesis (see Figure 1.6 on page 20) to achieve system
adaptivity on NoC-based MPSoCs.

The remainder of this chapter is organized as follows. Section 3.1 continues
the introduction by stating the addressed research problem. A summary of the
contributions of this chapter and a list of related work is provided in Sections 3.2 and
3.3, respectively. The proposed and investigated approaches for PPN communication
on NoCs are described in detail in Section 3.4. The applications used to evaluate the
different approaches are explained in Section 3.5 followed by the performance results
in Section 3.6. Note that in the rest of this chapter, for the sake of brevity, we will
refer to an “approach for implementing PPN communication on NoCs” as a “PPN
communication approach”.

3.1 Problem Statement

The main problem addressed in this chapter is the implementation of an efficient
approach to implement PPN communication on Network-on-Chip platforms. The
first requirement that we consider is that this approach must respect the PPN commu-
nication semantics (recall Section 2.1.3). That is, processes must block on read, when
trying to get data tokens from an empty FIFO, and block on write, when trying to write
data tokens to a full FIFO. Moreover, we want our communication approach to be
application-independent and oriented to system adaptivity.

The communication and synchronization problem when mapping PPNs on a NoC
is depicted in Fig. 3.1, showing a producer P and a consumer C connected through a
communication FIFO buffer B. We denote the size of buffer B as size(B). Unless oth-
erwise specified, throughout this thesis we will express the size of buffers in number
of tokens. If both producer and consumer can directly access the status register of
this FIFO buffer, to check if it is empty or full, implementing the PPN semantics is
straightforward. However, in this chapter we consider NoC implementations with
no direct remote memory access, that is, those NoCs in which a processing element
has direct access only to the local memory of its tile. In this scenario, processes P
and C, if mapped onto different tiles, cannot access the same piece of memory and
they can only exchange tokens through the network. Thus, the FIFO buffer B has
to be split on the producer tile and/or on the consumer tile. We denote the buffer
allocated on the producer tile and consumer tile as BP and BC, respectively. Note
that, as will be shown in one of our proposed PPN communication approaches (see
Section 3.4.1), it is not necessary that both these buffers actually exist. However, in

3.1. Problem Statement 51

Figure 3.1: The top part of the figure illustrates a producer-consumer pair which communicates through
FIFO buffer B. The bottom part of the figure shows how this pair of processes can be mapped onto a
NoC-based platform. The FIFO buffer B has to be split on the producer tile and/or on the consumer
tile using two software FIFOs, namely BP and BC. Note that the approach presented in this chapter is
independent of the considered NoC structure.

general, if size(B) is the minimum buffer size that guarantees deadlock-free execution
of the original PPN graph, the size of BP and BC must be necessarily set such that
size(BP) + size(BC) ≥ size(B). In this expression, if either BP or BC does not exist, its
size is set to zero.

We aim at implementing the PPN semantics without a dedicated support from the
underlying hardware architecture that allows checking for the status of the remote
FIFO buffers. For instance, in Figure 3.1, process P cannot check the status of BC,
and process C cannot check the status of BP. Moreover, we do not require support
for multiple hardware FIFOs on each NoC tile. Each tile is endowed with only two
hardware FIFOs2, one for incoming messages and one for outgoing messages, both
of which reside in the Network Interface (NI). However, we rely on the ability to
transfer data, in both directions, from these hardware FIFO buffers to the software
FIFOs (e.g., BP and BC in Figure 3.1) which implement the channels of our PPN and
are accessed by the PPN processes.

As the consumer can access the status of BC, implementing the blocking read is
trivial because every time C wants to access BC and this buffer is empty, the consumer
just has to wait until tokens arrive from the producer tile. However, since the producer
can only access the status of BP, implementing the blocking on write behavior is more
difficult. The producer must know that the remote buffer BC is not full before sending
tokens to C over the NoC. Several techniques can be considered to inform the producer
about the status of the buffer on the consumer side. We compare the communication
approaches that we have investigated in Section 3.4.

As a final requirement of our proposed techniques, we demand that our PPN
communication approaches allow processes to be mapped on any tile of the system,
without the need to change the actual code structure of the PPN application processes.

2These hardware FIFOs are not shown in Figure 3.1 to avoid clutter.

52 Chapter 3. PPN Communication on Networks-on-chip

An example of such structure is shown in Fig. 2.3(b) on page 29. In particular, we
want the communication primitives of PPN processes (READ, WRITE) to remain
generic, without the notion of process mapping or hardware platform primitives. At
run-time, these generic PPN primitives are then converted by the PPN communication
approaches to corresponding hardware platform primitives which take into account
the actual mapping of processes in the system. This is because the mapping of
processes in the system can change due to a task migration.

3.2 Contributions

The contribution of this chapter is two-fold. First, we propose different PPN communi-
cation approaches that allow applications specified as PPNs to be executed efficiently
on NoC-based platforms. The PPN communication approaches support any possible
mapping of PPN processes in the system. Second, we ensure that these PPN commu-
nication approaches allow the run-time remapping capability of processes among the
tiles of the NoC, thus enabling system adaptivity as considered in this thesis.

3.3 Related Work

Kahn Process Networks (KPNs) [Kah74] is a widely studied model of computation
used to specify concurrent stream-based applications. The KPN MoC is a superset of
the PPN MoC considered in this chapter, therefore in the following paragraphs we
list some works, which target KPNs, that are related to the problem addressed in this
chapter.

Previous research on the use of KPNs in multiprocessor embedded systems has
mainly focused on the design of frameworks which employ that MoC as a model for
application specification [NSD08, NKG+02, KKJ+08], and which aim at supporting
and optimizing the mapping of KPN processes on the nodes of a reference plat-
form [BHHT10, HSH+09]. In [NSD08, NKG+02], different methods and tools are
proposed to generate, in an automated way, KPN application specifications from
sequential programs written in C/C++. Design space exploration tools and per-
formance analysis are then usually employed for optimizing the mapping of the
generated KPN processes on a reference platform. Then, in the successive design
phase, software synthesis for multi-processor systems [KKJ+08, HSH+09] and/or
architecture synthesis for FPGA platforms [NSD08] is performed.

The approaches described above, which map applications modeled as KPNs to
hardware platforms tailored to the application KPN specification, have a strong
coupling between the application and the hardware platform. Running a different ap-
plication on the generated platform would not be possible or, even if possible, would
give bad performance results. In this chapter, we adopt a different approach because
we start with the assumption that we have a platform equipped with homogeneous
cores well interconnected with a NoC. We provide a PPN API for this platform which
implements inter-tile communication among PPN processes. Most importantly, the

3.3. Related Work 53

PPN processes’ code remains the same in all possible mappings of the processes. This
is achieved by the proposed PPN communication approaches, that convert the generic
PPN communication primitives to corresponding hardware platform primitives that
follow the actual mapping of processes in the system.

This approach, where software synthesis relies on the high level APIs provided by
the reference platform for facilitating the programming of a multiprocessor system,
can be seen in other works in the literature. In fact, the trend from single core design
to many core design has forced the research community to consider inter-processor
communication issues for transferring data among the cores. One of the emerged
message passing communication API is Multicore Association’s Communication
API (MCAPI) [MCA] that targets the inter-core communication in a multicore chip.
MCAPI is the light-weight (low communication latencies and memory footprint)
implementation of message passing interface APIs such as Open MPI [ope]. However,
these MPI standards do not allow an efficient implementation of KPN (or PPN)
semantics [DDF11] because building these semantics on top of their primitives incurs
an additional overhead that may be disadvantageous.

The communication and synchronization problem when implementing KPNs
on multi-processor platforms without hardware support for FIFO buffers has been
considered in [NMSD09] and [HSH+09]. In [NMSD09] the receiver-initiated method
has been proposed and evaluated for the Cell BE platform. On the same hardware
platform, [HSH+09] proposes a different protocol, which makes use of mailboxes and
windowed FIFOs. The difference with our work presented in this chapter is that we
actually compare a number of approaches to implement the KPN semantics, and that
we deal with a different kind of platform, with no Direct Memory Access support.

In [DDF11] the active virtual connector approach has been proposed and evaluated
analytically, whereas our results are obtained by experiments on a real implementation.
Moreover, in this chapter we propose yet another approach, namely virtual connector
with variable rate.

The authors in [NGWK09] address the problem of implementing the KPN seman-
tics on a NoC. However, in their approach the NoC topology is customized to the
needs of the application at design time and network end-to-end flow control is used
to implement the blocking write feature. In [NGWK09] no run-time task remapping
is allowed, because the hardware platform is generated assuming a specific (fixed)
mapping of KPN tasks. By contrast, in our work the PPN communication approaches
allow run-time remapping of processes and, in turn, system adaptivity.

An approach to guarantee blocking write behavior for KPN processes on NoCs
is also used in [Gab09]. In that work, a FIFO buffer that implements a KPN channel
is allocated on the tile of the consumer process. Then, before sending data tokens,
the producer process uses a dedicated operating system communication primitive
which guarantees that the remote FIFO buffer is not full. Compared to this kind of
protocol, the communication approaches described in this chapter assume a more
active behavior of the consumer processes to guarantee the blocking on write behavior.
That is, in our approaches the consumer process actively sends back to the producer
some messages to inform the producer about the status of the remote FIFO buffer. We
actually propose and evaluate three kinds of communication approaches, which re-

54 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.2: Producer-consumer pair using the virtual connector method. Compared to Figure 3.1, notice
that the producer tile does not contain any software FIFO for the considered channels. However, the
producer process P uses a credit variable for each channel to keep track of the status of the FIFOs residing
on the consumer tile.

quire the consumer process to be active to a different extent (in terms of the amount of
messages sent back to the producer process). The experimental results of Section 3.6.1
show that the communication approach which requires the most proactive behavior
of the consumer achieves higher performance compared to the others.

3.4 PPN Communication Approaches

This section presents the different approaches that we have explored for the implemen-
tation of PPN processes communication and synchronization on a tiled NoC-based
hardware platform. Three PPN communication approaches are proposed and inves-
tigated: Virtual Connector approach (VC), Virtual Connector with Variable Rate ap-
proach (VRVC), and Request-driven approach (R). Basically, the proposed approaches
differ in the frequency of acknowledgment messages sent from the consumer process
to the producer process regarding the status of the consumer FIFO buffers.

In all of the approaches described in what follows, system adaptivity is taken into
account by using dedicated tables that list, among other information, the current3

mapping of producer and consumer processes for each channel of the PPN graph.
We refer to such tables as middleware tables. The current mapping of producer and
consumer processes is checked when the PPN primitives (i.e., READ, WRITE in
Figure 2.3(b) on page 29) are converted to the corresponding hardware platform
primitives, such that tokens and synchronization messages are sent to the right tiles
in the system. The middleware tables can be updated at run-time, ensuring correct
communication in case of remapping of processes.

3.4. PPN Communication Approaches 55

3.4.1 Virtual Connector approach (VC)

In the Virtual Connector approach, which is depicted in Fig. 3.2, for each channel
in the original PPN graph we add a virtual4 one in the opposite direction. This
virtual connector is used for acknowledging the producer about the status of the
FIFO buffer on the consumer tile. We adapted this approach, previously proposed
in [DDF11], to the needs of our system implementation. In [DDF11], the proposed
communication approach is active, meaning that it is implemented using separate
threads which deal with the PPN communication, while our approach is static, with
no separate threads dedicated to communication. Although a comparison of the
static and active implementations may be worthwhile to do, in this chapter we adopt
the static approach with the argument that the scheduling and synchronization of
an additional thread dedicated to PPN communication will introduce an additional
overhead due to the scheduling and context switching times.

For each channel in the original PPN graph we instantiate a software FIFO buffer
on the consumer tile. The size of this buffer is set to the value of the original buffer size
in the PPN graph. On the producer tile there are no software FIFOs when using this
approach because tokens can be directly sent over the network via the NI. The PPN
blocking write behavior is implemented by using a credit-system which guarantees that
enough locations are free in the FIFO buffers of the consumer processes. Therefore,
referring back to Fig. 3.1, in this approach for each channel i, size(BC

i) = size(Bi) and
size(BP

i) = 0.
In our implementation, we store on the producer side a variable for each channel,

called credit, which represents the number of free slots in the remote FIFO buffer
implementing that channel. At startup, the credit is set to the size of the remote FIFO
(crediti = size(BC

i)), because all of its slots are free5. For each token sent over the
network by the producer, the credit of the corresponding channel is decreased by one.
The producer is allowed to send tokens over the network only if the credit is positive,
otherwise it blocks. This implements the blocking write behavior. At the consumer
side, for every token consumed from that channel, a virtual token (VT) is sent back
to the producer via the virtual connector. For every virtual token received on the
producer tile, the credit of the corresponding channel is increased by one. This way
the producer is constantly updated about the status of the remote FIFO buffers.

Read and Write communication primitives

The read and write primitives use an auxiliary function called process_NI_msgs(). This
function is used in the read primitive when the calling process is blocked on read,
and in the write primitive when it is blocked on write. The process_NI_msgs() function
checks the status of the NI buffer for incoming messages. If the buffer is not empty, it

3Although a task migration mechanism is not provided in this chapter, our proposed PPN communica-
tion approaches must allow the spatial mapping of tasks to change at run-time.

4These channels are said to be virtual because they are not used to communicate actual data.
5This holds unless there are initial tokens in BC . In such a case, the value of crediti is decreased by the

number of initial tokens.

56 Chapter 3. PPN Communication on Networks-on-chip

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 while (fifo[CH1] is empty)

2 process_NI_msgs();

3 fifo_get(in1, fifo[CH1]);

4 send_virtual_token(CH1);

read(token,ch)

1 while (credit[CH3]==0)

2 process_NI_msgs();

3 decrease_credit[CH3];

4 send_token(out,CH3);

write(token,ch)

Figure 3.3: Pseudocode of the VC approach. The left part of the figure shows an example of structure of a
PPN process. The right side provides the pseudocodes of read and write PPN primitives as implemented
in the VC communication approach.

Figure 3.4: Producer-consumer implementation: when using the VRVC approach, the producer receives
back virtual tokens (a); when using the R approach, it receives requests (b).

processes one message at a time, until all the incoming messages are consumed, in the
following way. If the message is an incoming token for channel i, it stores the token
in the software FIFO which implements channel i. If, instead, it is a virtual token for
channel j, it consumes the token and increases the credit of channel j.

Read primitive. In the VC approach, the read primitive (used to read a token from
channel ch) performs the following sequence of actions.

1. It checks if the FIFO buffer corresponding to ch contains data tokens (blocking
read behavior). If the FIFO is empty, it keeps executing the auxiliary function
process_NI_msgs() until the FIFO is no longer empty.

2. At this point, the FIFO corresponding to ch contains data tokens. Then, the
read primitive gets a token from the FIFO.

3. Finally, a virtual token is sent back to the consumer process to acknowledge
that a token has been read from the FIFO.

These actions are implemented in the read primitive in Fig. 3.3. Lines 1-2 imple-
ment the blocking read. If the FIFO buffer corresponding to the calling channel (in

3.4. PPN Communication Approaches 57

the example, CH1) is empty, process_NI_msgs() is executed until new tokens for that
channel reach the NI input buffer. Lines 3 and 4 complete the read primitive: the token
is transferred from the software FIFO to in1, and a virtual token is sent back to the
producer side of CH1. This is actually performed by putting in the NI outgoing buffer
a message representing a virtual token for channel CH1.

Write primitive. In the VC approach, the write primitive (used to write a token to
channel ch) performs the following sequence of actions.

1. It checks if the credit corresponding to channel ch is equal to zero (blocking
write). In this case, it keeps executing the auxiliary function process_NI_msgs()
until the the credit is no longer zero.

2. At this point, the credit corresponding to ch is greater than zero. Then, the
credit is decreased by one to consider the fact that in the next step a token will
be sent, over the NoC, to the consumer.

3. Finally, the token is sent to the consumer over the NoC.
These actions are implemented in the write primitive in Fig. 3.3. Lines 1-2 imple-

ment the blocking write behavior. If the credit is zero, process_NI_msgs() is executed.
If virtual tokens for the blocked channel are received, the credit is then increased
and this condition unblocks the write to that channel. Lines 3-4 complete the write
procedure. The credit for the considered channel is decreased, and the token is sent
over the network, which is done by putting in the NI outgoing buffer a message
representing this token, and then letting the NI to perform the actual transfer over
the NoC6.

3.4.2 Virtual Connector with Variable Rate approach (VRVC)

This approach represents a variant of the virtual connector described in Section 3.4.1.
The basic idea is that instead of sending one virtual token to the producer for every
token consumed from channel i, the consumer sends it after ni consumed tokens,
where ni is a parameter that can be set such that 1 ≤ ni ≤ size(Bi), where size(Bi) is
the buffer size in the original PPN graph. The credit variable for channel i will then
be increased by ni for every virtual token received for that channel. This approach
leads to a reduced traffic on virtual connectors, which can be beneficial in NoC
implementations to avoid congestion of messages.

Since the sending back of virtual tokens does not happen for every consumed
token, in some cases the PPN graph properties require to store, also at the producer
side, tokens for the channels in order to avoid deadlocks. We provide an explanation
of this phenomenon in Example 3.4.1.

Example 3.4.1. Consider the scenario depicted in Figure 3.5, where producer process
P is connected to consumer process C through a channel ch, implemented by a FIFO
buffer B. Assume that, for channel ch, the parameter n of the VRVC approach is set to
size(B), the size of buffer B in the original PPN graph. As mentioned earlier, FIFO
buffers are required both on the producer and on the consumer tile. We denote these
FIFO buffers as BP and BC, respectively. Assume that the size of these buffers are

6For a brief description of how messages are sent over the NoC, please refer to Section 1.1.2.

58 Chapter 3. PPN Communication on Networks-on-chip

size(BP) = (size(B)− 1) and size(BC) = size(B). We will eventually show that this
assumption is necessary.

We recall that, in the original PPN graph, the size of a certain FIFO buffer B is
computed by the pn compiler [VNS07] such that deadlocks cannot occur due to a lack
of space in B. The size of buffer B derived by pn is minimum, that is, at run-time it
may happen that B is required to store a number of token equal to its size to avoid a
deadlock. Therefore, since FIFO buffer B in the VRVC approach is split over BP and
BC, in order to avoid deadlocks it is necessary that at any time up to size(B) tokens
can be stored over BP and BC. Denoting the number of tokens stored in buffer BP

and BC at time instant t as tkns(BP, t) and tkns(BC, t), respectively, we have that, over
time,

(
tkns(BP, t) + tkns(BC, t)

)
can grow up to size(B).

At run-time, the communication between producer process P and consumer pro-
cess C may follow the sequence of macro-steps shown in Figure 3.5 and explained
below.

- Step (1). This step represents system startup. The credit variable of channel
ch is initialized to size(B). The number of tokens stored in BP and BC are both
zero.

- Step (2). After a series of size(B) tokens sent by P, and not consumed by C
(recall that, in PPNs, control is completely distributed, so this scenario may
occur), the credit variable for channel ch is zero and tkns(BC) = size(B).

- Step (3). Consumer C consumes size(B)− 1 tokens, such that, at time instant
t3, tkns(BC, t3) = 1. However, no virtual token is sent back to P because the
parameter n of the VRVC approach is set to size(B) and only size(B)− 1 tokens
have been consumed.

At the end of Step (3) the total number of tokens stored in BP and BC is 1, that is,(
tkns(BP, t3) + tkns(BC, t3)

)
= 1. However, as mentioned earlier, over time the total

number of tokens stored over BP and BC should be able to grow up to size(B), to
avoid deadlocks. Now, if consumer process C does not consume the last token present
in BC, producer process P cannot send tokens to C. Therefore, P must be able to store
up to size(B)− 1 tokens in BP, a scenario which is considered in the next step.

- Step (4). This step represents the scenario in which P, at time instant t4 > t3,
has stored size(B)− 1 tokens in BP, and C has only one token left in BP. Now,
since

(
tkns(BP, t4) + tkns(BC, t4)

)
= size(B), we are sure that process P cannot

cause a deadlock due to lack of space in tkns(BP) and tkns(BC). Eventually, C
will consume the last token left in BC and send a virtual token back to P, which
will increase the credit variable for the corresponding channel and allow new
token transfers over the NoC from P to C.

From the scenario described in Example 3.4.1 it follows that FIFO buffers are
needed on both the producer and the consumer side. Note that Example 3.4.1 con-
siders a worst-case scenario in the communication between producer and consumer
processes. Therefore, the derived size of the buffers, (size(B)− 1) for BP and size(B)
for BC, is sufficient for all possible scenarios which may arise at run-time.

The pseudocode of the VRVC communication approach is shown in Fig. 3.6.
Compared to the VC approach, the behavior of process_NI_msgs(), which is used in

3.4. PPN Communication Approaches 59

original PPN:

VRVC approach:

P Cch

P Cch
BP BC

tkns(BP)

0

0

0

size(B)-1

credit(ch)

size(B)

0

0

0

Step

(1)

(2)

(3)

(4)

Time

t1

t2

t3

t4

tkns(BC)

0

size(B)

1

1

B

Figure 3.5: Communication sequence of a producer-consumer pair, using the VRVC approach, requiring
storing of tokens on both the producer and consumer tile. The table in the lower part of the figure shows,
at different steps of the communication sequence, the credit value associated to the considered channel,
and the number of tokens stored in the producer FIFO buffer BP and consumer FIFO buffer BC.

both the read and write primitives, changes with regard to the processing of virtual
tokens. The first difference is that whenever a virtual token for channel i is received,
process_NI_msgs() consumes it and increases the credit of channel i by the parameter ni.
The second difference is that when a virtual token is received and the corresponding
FIFO buffer is not empty, as many available tokens as possible are sent to the consumer
tile, until the credit for that channel allows so. The credit variable is decreased,
accordingly, by the number of tokens sent to the consumer tile.

In the read primitive shown in Fig. 3.6, lines 1-2 implement the blocking read
behavior, similarly to the VC approach. However, the rest of the primitive is different.
In line 3, a token is read from the FIFO buffer which implements channel CH1. Line 4
uses an auxiliary variable, tkns_cns[CH1], which keeps track of the number of tokens
consumed from CH1 since the last virtual token sent back (for the corresponding
channel) to the producer tile. This auxiliary variable is initialized to zero at startup
and is increased for every token consumed by the process from channel CH1. In lines
5-7, when this variable reaches the parameter nCH1, a virtual token is sent back to the
producer tile and tkns_cns[CH1] is reset to zero.

Similarly to the VC approach, in the write primitive of VRVC shown in Fig. 3.6,
lines 1-2 implement the blocking write behavior. When the control reaches line 3,
we are sure that the corresponding FIFO is not full. Then, in the auxiliary function
store_or_send, the token is either stored in the FIFO buffer corresponding to CH3 (if
the credit variable associated to CH3 is zero) or sent over the NoC to the consumer

60 Chapter 3. PPN Communication on Networks-on-chip

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 while (fifo[CH1] is empty)

2 process_NI_msgs();

3 fifo_get(in1, fifo[CH1]);

4 tkn_cns[CH1]++;

5 if (tkn_cns[CH1]==nCH1) {

6 send_virtual_token(CH1);

7 tkn_cns[CH1]=0; }

read(token,ch)

1 while (fifo[CH3] is full)

2 process_NI_msgs();

3 store_or_send(out, CH3);

write(token,ch)

Figure 3.6: Pseudocode of the VRVC approach. The left part of the figure shows an example of structure
of a PPN process. The right side of the figure provides the pseudocodes of read and write PPN primitives
as implemented in the VRVC communication approach.

tile (if the credit variable is greater than zero).

3.4.3 Request-driven approach (R)

This method is very similar to the approach used in [NMSD09] for realizing communi-
cation among KPN processes on the Cell BE platform [KDH+05]. In the request-driven
approach, the transfer of tokens from the producer tile to the consumer tile is initiated
by the consumer. This means that every time the consumer is blocked on a read at a
given FIFO channel, it sends a request to the producer to send new tokens for that
channel. The producer, after receiving this request, sends as many tokens as it has in its
software FIFO implementing that channel.

Since also in this case we need to store tokens both on the producer side and on
the consumer side, we need software FIFO structures on both sides. The size of these
buffers is set, for each channel i, to match the size of the buffer in the original PPN
graph (Bi), therefore ∀i ∈ {1, · · · , |𝒞|} size(BP

i) = size(BC
i) = size(Bi). This condition

guarantees deadlock-free execution on the NoC because: (i) the FIFO buffer residing
on the producer tile (BP) is large enough to avoid deadlocks caused by block on write
on the producer side; (ii) after a request sent by the consumer process, BC is large
enough to store the maximum amount of tokens stored in BP. The structure of a
producer-consumer pair using the R approach is shown in Fig. 3.4, case (b). Since
the consumer buffer of a channel is empty when a request is made, and given that
the FIFO buffers for that channel have the same size on both sides, there is always
enough space to store tokens sent by the producer as a consequence of the request.

Fig. 3.7 shows the pseudocode of this PPN communication approach. Similarly
to the other communication approaches, it makes use of the auxiliary function pro-
cess_NI_msgs() to process incoming messages of tokens or requests. In the R approach,
this function is in charge of reacting to a received request message for a channel

3.5. Case Studies 61

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 if (fifo[CH1] is empty)

2 send_request(CH1);

3 while (fifo[CH1] is empty)

4 process_NI_msgs();

5 fifo_get(in1, fifo[CH1]);

read(token,ch)

1 while (credit[CH3]==0)

2 process_NI_msgs();

3 fifo_put(out, fifo[CH3]);

4 process_NI_msgs();

write(token,ch)

Figure 3.7: Pseudocode of the Request-driven (R) approach. The left part of the figure shows an example
of structure of a PPN process. The right side of the figure provides the pseudocodes of read and write
PPN primitives as implemented in the request-driven communication approach.

with the immediate sending of all the tokens contained in the software FIFO that
implements that specific channel.

The blocking on read behavior is implemented in lines 1-4 of the read primitive in
Fig. 3.7. When the software FIFO of the calling channel is empty, a request is sent to
the producer tile of that channel, and the processor keeps executing process_NI_msgs()
until a message of tokens for the calling channel arrives. The blocking on write is
implemented in lines 1-2 of the write primitive. When the FIFO of the calling channel
(in the example, CH3) is full, the processor keeps executing process_NI_msgs() until a
request for that channel arrives. Line 4 of the write primitive allows a faster response
to requests for tokens from consumer processes. In fact, if line 2 of the write primitive
is not executed, i.e, if the calling channel is not full, process_NI_msgs() is anyway
executed in line 4, leading to a faster response to token requests.

3.5 Case Studies

We evaluate the three PPN communication approaches presented in Section 3.4 on two
applications, specified as PPNs, with extremely different communication/computation
characteristics. The reason is that we want to compare the overhead of the PPN
communication approaches between two extremes. The application described in Sec-
tion 3.5.1 represents the first extreme, when the computation/communication ratio is
low and the PPN topology is complicated. The case study described in Section 3.5.2,
on the other extreme, is computation dominant and with relatively simple PPN topol-
ogy. We describe briefly the two case studies in order to get a better understanding of
the obtained results. In Section 3.5.3 we also provide an overview of the platform that
we use to run the experiments.

62 Chapter 3. PPN Communication on Networks-on-chip

readPixel

gradientX gradientY

absValue

writePixel

1
3

399
2

397
398

139
7

39
9

19
9320

1

1 1

1

Figure 3.8: PPN specification of the Sobel filter.

Table 3.1: Execution times (in clock cycles) of Sobel functions

Process Execution time (c.c.)
readPixel 5
gradientX 31
gradientY 31
absValue 118

writePixel 5

3.5.1 Sobel filter

The Sobel application is an edge-detection algorithm for digital images. Its PPN
graph is shown in Fig. 3.8, where the number written over each edge indicate the
minimal buffer sizes (expressed in data tokens) needed for that channel, in order
to process a 200x122 pixel input image without deadlocks. The PPN processes of
this application are very lightweight in terms of computation. The numbers of clock
cycles (c.c.) required for one execution of each function are summarized in Table 3.1.
The most computationally intensive process is absValue, which sums the absolute
values of the outputs of the gradientX and the gradientY processes and normalizes
the result. For all of the channels in the graph, the size of exchanged tokens is 4
bytes, and the number of written tokens is 23760. From these metrics it is clear that
the Sobel application is largely communication-dominant. Therefore, even before
running the actual experiments, we expect this application to perform poorly on NoC-
based hardware platforms, where communication is more costly than on platforms
with dedicated, point-to-point interconnections. However, we use this example
to represent the class of applications in which the communication dominates the
computation.

3.5. Case Studies 63

Figure 3.9: PPN specification of the M-JPEG encoder.

Table 3.2: Execution times (in clock cycles) of M-JPEG functions

Process Execution time (c.c.)
initVideoIn 18

videoIn 1910
DCT 126386

Q 69238 (avg)
VLE 46688 (avg)

videoOut 1292 (avg)

3.5.2 M-JPEG encoder

The PPN specification of this application is shown in Fig. 3.9. The size of tokens,
corresponding to different channels, ranges between 16 and 1024 bytes. All of the
channels are written 128 times, except the output of initVideoIn which is written only
once. The numbers of clock cycles required for the execution of each function of the
M-JPEG application are summarized in Table 3.2. This application shows a much
simpler communication and synchronization pattern compared to Sobel, and it also
has a much higher computation/communication ratio.

3.5.3 Platform setup

The system on which we evaluate our PPN communication approaches is based on
a 2x2 mesh of tiles, connected via a custom-built Network-on-Chip. We choose this
kind of NoC because, as mentioned in Section 1.1.2, it is the most common and widely
studied topology of NoC. However, note that our proposed PPN communication
approaches do not depend on the topology of the NoC. Each tile is composed of a
MicroBlaze processor, with its program and data memories, and a Network Interface.
The platform does not support remote memory access. The system runs at the
frequency of 100 MHz.

Each processor has multi-tasking capabilities thanks to the use of the Xilkernel
operating system, a lightweight, customizable kernel provided by Xilinx. In case
of many-to-one mapping, i.e. when more than one process are mapped on the same
processor, the scheduling is data-driven. This means that a process keeps executing
successive iterations until it blocks in reading or writing (recall the PPN process
structure of Figure 2.3(b) on page 29). When the process blocks, it yields the processor
control to the next process in the ready queue, using round-robin.

64 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.10: (Part of) the NoC platform structure. The full structure of the adopted NoC structure is a
2x2 mesh of tiles.

MW-level

messages

message(CH)

request(CH)

n_tokensCH tkn_n...tkn_1

n_tokens

-CH

token(CH)

virtual token(CH)

tokenCH

-CH

R approach

VC approach

NoC-level

messages
n_flitsdest_tile MW_message

Figure 3.11: Structure of middleware- and network- level messages.

As shown in Fig. 3.10, the Network Interface contains only two hardware FIFOs,
one for messages which are incoming from the NoC, and one for messages that
have to be injected in the NoC. The processor is able to quickly access the status of
the incoming hardware FIFO, via a dedicated signal, to see if there are messages to
be forwarded from the NI buffer to the software FIFO buffers that implement the
channels of the PPN graph. In the opposite direction, when a message has to be sent
over the NoC, the processor forwards data from its data memory to the outgoing NI
hardware FIFO, then the NI injects the message in the network, with the appropriate
header (destination tile and payload size fields). The messages are sent over the NoC
using wormhole switching (as in [BB04]). As shown in Fig. 3.10, routers (R0 and R1)
use input buffering to store incoming flits (flow control digits, which represent the
granules into which messages are split). Moreover, in our implementation the routers
use a simple round-robin arbitration policy.

The actual structure of the different kind of messages that are sent over the NoC
is represented in Fig. 3.11, for the VC and R approaches. At NoC-level, the message
comprises a NoC header, that indicates the destination tile and the size of the payload,
and the payload itself, which we refer to as the middleware (MW)-level message. The

3.6. Experimental Results 65

Figure 3.12: Fixed mappings for Sobel (a) and M-JPEG (b) to test the different PPN communication
approaches.

structure of MW-level messages depends on the PPN communication approach. In
R, a request for channel number i is implemented as a single flit, with value −i. A
message used for transferring tokens, instead, has a header composed of two flits
(channel number, number of sent tokens) and a payload with the sent tokens. The
field that indicates the number of sent tokens (n_tokens) is necessary because this
number is determined at run-time, when a request for that channel is received. The
structure of MW-level messages in VC is very similar, the only difference being that
there is no need for a n_tokens field because in this method sending several tokens in
one message is not allowed, i.e. n_tokens is always equal to one.

3.6 Experimental Results

The platform described in Section 3.5.3 has been implemented on a Xilinx Virtex-5
FPGA prototyping board. We run the two application case studies of Sections 3.5.1
and 3.5.2, with all the PPN communication approaches proposed in Section 3.4, and
obtain the results described below.

3.6.1 Inter-tile communication efficiency

In order to compare the efficiency of inter-tile communication of the different PPN
communication approaches, we execute the two case study applications with the
fixed mappings shown in Fig. 3.12. We chose these mappings because they expose
the maximum amount of inter-tile communication, therefore the obtained results are
largely dependent on the efficiency of the considered PPN communication approach.

We found, experimentally, that the parameter ni of the VRVC approach gives the
best performance when set to its maximum value, i.e. when ∀i ∈ {1, · · · , Nch} ni =
BC

i . The performance results, summarized in Fig. 3.13(a), show a large difference of
execution time for the Sobel application when using different PPN communication
approaches. However, in the M-JPEG case all of the communication approaches yield
similar results, due to the much higher computation over communication ratio of

66 Chapter 3. PPN Communication on Networks-on-chip

VC VRVC R
0

10

20

30

40

50

60
M-JPEG
Sobel

communication approaches

to
ta

l e
xe

cu
tio

n
tim

e
(M

 c
.c

.)

(a) Total execution time for different MW ap-
proaches.

VC VRVC R
0
2
4
6
8

10
12
14
16
18

M-JPEG
Sobel

communication approachessl
o

w
do

w
n

co
m

pa
re

d
to

 P
-2

-P

(b) Slowdown for different MW approaches.

Figure 3.13: Sub-figure (a) shows the total execution time of the M-JPEG and Sobel applications obtained
with different MW approaches. Notice the large difference of execution time for the Sobel application
depending on the used MW approach. By contrast, the execution time for M-JPEG is not affected by
the choice of MW approach. Sub-figure (b) compares the performance obtained using our NoC-based
platform, together with the proposed MW approaches, with the performance of a customized systems
based on point-to-point connections. Notice the large slowdown of the NoC-based implementation for
the communication-dominant application, Sobel.

that application. The VC approach performs much better, compared to the others, in
the Sobel application, because its implementation does not require storing of tokens
on the producer tile. This leads to a faster communication process, because it avoids
the double copy (output variable → software FIFO → NI buffer) that is necessary in
the other cases. We argue that the obtained results may change for NoC platforms
with Direct Memory Access (DMA) cores, that can benefit more from sending several
tokens with one message, as allowed in the VRVC and R approaches.

In order to evaluate the overhead occurred by using the NoC interconnection and
our PPN communication approaches, we implemented customized point-to-point
systems, for both Sobel and M-JPEG applications, as a baseline reference. In point-to-
point systems, generated using the ESPAM tool [NSD08], a dedicated hardware FIFO
is instantiated for each channel of the PPN graph. In this way, the hardware platform
perfectly matches the PPN MoC semantics. Obviously, customized point-to-point
implementations do not allow for system adaptivity, because all the design decisions
(e.g.: process mapping) have to be made at design time. It is clear that in our NoC
system we sacrifice performance (especially for communication intensive applications)
for adaptivity, the ability of managing the system at run-time, and generality, since the
system is able to execute any kind of PPN application. The performance slowdown,
when comparing the NoC-based systems with the point-to-point systems is shown in
Fig. 3.13(b). It is noticeable that while the Sobel application is highly penalized in the
execution on our NoC system, the M-JPEG application performs well because of its
higher computation/communication ratio and its regular communication pattern. The
reason why the PPN communication on the NoC platform is less efficient, compared
to customized point-to-point systems, is mainly twofold. The first reason is that in

3.6. Experimental Results 67

VC VRVC R
0

500

1000

1500

2000

2500

3000 Total NoC traffic
Application data
traffic

communication approaches

T
ot

al
 e

xc
ha

ng
ed

 tr
af

fic
 (

kf
lit

s)

Figure 3.14: Traffic injected into the NoC by executing Sobel with different MW approaches.

communicating on the NoC, several PPN channels have to share the same physical
channel (the NoC link). The second reason is that in the NoC case we have to use
software FIFOs on the producer and on the consumer side, which require additional
memory copy operations which would be unnecessary in the case of adoption of
hardware FIFOs.

Another important metric when executing applications on a NoC is the amount
of generated control traffic overhead. In the VC case, for instance, this overhead is
represented by the NoC-level and MW-level headers, together with all the traffic
generated by the virtual tokens. Ideally, a PPN communication should be designed to
generate as less control traffic overhead as possible.

Focusing on the Sobel application, since it has the most complex communication
pattern, we profiled the amount of traffic injected in the network, depending on the
PPN communication approach that is used. The results, depicted in Fig. 3.14, show
that the amount of traffic injected in the NoC (that is, including message headers,
messages sent over virtual channels, or requests messages) is much larger than the
actual application data traffic. This is because the size of tokens in the Sobel applica-
tion is extremely small, i.e., only 4 bytes. Note also that the VC approach injects much
more total traffic into the NoC compared to the R approach. This large difference can
be explained by two factors. The first factor is the overhead of message headers. On
the one hand, in the VC method, each token travels in the NoC with its own header.
On the other hand, in the R case, the producer sends as many token as present in
its software FIFO, in the same message and therefore with the same header. The
second factor is that the traffic on virtual channels in VC is much more than the traffic
generated by requests in R. This is because in the VC approach a virtual token is sent
back to the producer for every consumed token, while in the R approach the requests
are made less frequently, just when the consumer is blocked on reading.

3.6.2 System adaptivity support

All the proposed PPN communication approaches (VC, VRVC, R) allow to change at
run-time the mapping of PPN processes to tiles of the system. Process remapping is

68 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.15: Execution time and generated traffic as a function of the process mapping. Only inter-tile
communication links are depicted.

allowed because all the PPN communication approaches exploit a middleware table,
which keeps track of the source and destination tiles of each channel of the PPN. We
recall that these tables are used to convert the generic PPN primitives (see for instance
READ, WRITE in Figure 2.3(b) on page 29) to the corresponding hardware platform
communication primitives, where the source tile and destination tile of a channel are
precisely specified. When a remapping of processes is performed, the middleware
tables are changed accordingly.

Note that the actual mechanism used to perform run-time remapping of processes
is proposed and explained in the next chapter, Chapter 4. However, the approaches
presented in this chapter ensure that, once the remapping procedure is completed,
PPN processes can communicate correctly also in the new spatial mapping.

The possibility of choosing a different mapping at run-time can be exploited
by run-time management algorithms, or simply by the user of the system, to trade
between performance and other metrics, such as power. For instance, in Fig. 3.15
we show the performance results obtained with different mappings of the M-JPEG
application. For each mapping, Fig. 3.15 shows the total execution time (Texe) and
total exchanged traffic over the NoC (NoC traffic). Mapping (a) in the figure has only
one active tile, whereas mapping (b) requires two active tiles. Therefore, we can infer
that mapping (a) is more power efficient than mapping (b), also because the former
uses no power to communicate over the NoC. However, Texe achieved by mapping
(b) is almost half of the one of mapping (a), thus mapping (b) is preferable when the
system has to provide high performance. Finally, by comparing mapping (b) and (c)
in Fig. 3.15, we see that exploring more than two tiles when mapping the M-JPEG
application has only marginal performance benefits.

3.7. Discussion 69

3.7 Discussion

From the experimental results reported in Section 3.6.1 we can quantitatively compare
the three PPN communication approaches proposed and evaluated in this chapter. For
each communication approach, we summarize the advantages (+) and disadvantages
(−) in the following list.

∙ Virtual Connector (VC):
+ Outperforms all the other approaches (VRVC, R) for applications with low

computation over communication ratio;
− Requires a credit-based system, with frequent synchronization between

producer and consumer processes.
∙ Virtual Connector with Variable Rate (VRVC):

+ Achieves slightly higher performance than the R approach for applications
with low computation over communication ratio;

− Requires a credit-based system, and synchronization between producer
and consumer processes with a frequency which depends on a parameter
that can be tuned.

∙ Request-driven (R):
+ Simpler implementation compared to the other approaches, without a

credit-based system and with less synchronization points;
+ Achieves performance nearly identical to VC and VRVC when the compu-

tation over communication ratio is high;
− Achieves low performance for applications in which the computation over

communication ratio is low.
From the above comparison, it follows that if a designer needs to map a PPN ap-

plication with low computation over communication ratio on a NoC based execution
platform and with a static mapping, the VC approach is preferable.

However, when run-time remapping of processes is necessary, the VC approach is
less appealing because it requires frequent synchronization between producer and
consumer processes. This is especially true when process remapping is needed to
achieve fault tolerance, with process migrations that can be triggered at any time
by hardware faults. Note that with our proposed middleware we want to address
also this kind of scenario. Therefore, in Chapter 4, we propose a process migration
mechanism which is based on the R approach. In fact, as mentioned above, R has
two main advantages. First, it has less synchronization points between producer
and consumer processes, and it is easy to implement. Second, it achieves identical
performance for applications with high computation over communication ratio, the
kind of applications which are more likely to be executed on NoC platforms.

70 Chapter 3. PPN Communication on Networks-on-chip

Chapter 4

Process Migration Mechanism
in a Mapped PPN

Most of the work presented in this chapter has been published in [CDM+12].

IN Chapter 3 we investigated several approaches that allow to execute applications
specified as PPNs on Network-on-Chip (NoC) based MPSoCs. The approaches

presented in Chapter 3 represent alternative implementations of the first component
of our proposed middleware1, introduced in Section 1.4.1 and depicted in the software
stack of Figure 1.6 on page 20. The first component of our middleware, PPN Commu-
nication, allows PPN processes to communicate in NoC based MPSoCs, regardless
of the mapping of processes to the available PEs. This is a necessary property in
order to achieve system adaptivity by means of process migration. However, it is also
necessary to define how to perform the transition between the current mapping and
the next desired one. That is, we have to provide a mechanism to perform process
migration. In our approach, this mechanism is implemented by the second component
of our proposed middleware shown in Figure 1.6, namely Process Migration, which
is proposed in this chapter. We recall that the techniques proposed in Chapter 3 and
this chapter are aimed at best-effort systems.

4.1 Problem Statement

In this chapter, we address the problem of defining and implementing a process
migration mechanism, targeted at PPN processes on NoCs, that satisfies the following
three requirements:

1We recall that the proposed middleware is aimed at achieving system adaptivity in embedded NoC
based MPSoCs by exploiting process migration.

72 Chapter 4. Process Migration Mechanism in a Mapped PPN

1. Once the process migration is triggered, it has to be completed within a certain,
known time frame. We refer to this property as predictability.

2. The process migration can be triggered in the system at any time. We consider
this requirement because we want to cover the scenario in which process
migration is needed in response to a hardware fault, for which the moment of
occurrence is unknown.

3. The code used to allow process migration has to be generated automatically,
without the manual intervention of the designer. This is needed to relieve
designers from the time-consuming and error-prone task of inserting the code
necessary to allow task migration by hand.

4.2 Contributions of this Chapter

We devise and develop a predictable process migration mechanism that allows run-
time process remapping among the tiles of the NoC, which is a fundamental require-
ment for system adaptivity. The peculiarity of our solution is that, leveraging the
PPN operational semantics and process structure, the migration can actually start at
any point during the execution of the main body2 of a process without the need of
moving a large state. Moreover, an upper bound of the process migration overhead
can be found, based on the PPN topology and FIFO buffer sizes. Finally, the code
used to allow process migration is minimally invasive with respect to the original
code structure and can be generated in a completely automated way.

4.3 Related Work

Run-time resource management is a widely studied topic in general purpose dis-
tributed systems scheduling [CJK88]. In particular, process migration mechanisms
[Smi88, MDP+00], have been developed and evaluated in this context to enable dy-
namic load distribution, fault resilience, and improved system administration and
data access locality. In recent years, run-time management is gaining popularity and
finding applications also in multiprocessor embedded systems. This domain imposes
tight constraints, such as cost, power, and predictability, that run-time management
and process migration mechanisms must consider carefully. [NVC10] provides a
survey of run-time management examples in state-of-the-art academic and industrial
MPSoCs, together with a generic description of run-time manager features and design
space.

Our work is focused on a specific component of run-time management strategies,
namely the process migration mechanism. Papers which specifically address process
(or task) migration implementation in MPSoCs can also be found in the literature.
The closest to our work is [Gab09], in which the goals of scalability and system
adaptivity are achieved through a distributed task migration decision policy over a

2With the term “main body” we mean that a migration can happen during most of the execution time
of a process. This concept will be explained in greater detail in Section 4.5.1.

4.3. Related Work 73

purely distributed-memory multiprocessor. Similar to our approach, their platform
is programmed using a process network MoC. However, in their approach the
actual task migration can take place only at fixed points, which correspond to the
communication primitive calls. Our approach, instead, enables migration at any point
in the execution of the main body of processes. This leads to a faster response time to
migration decisions, which is preferable for instance in case of hardware faults.

Other task migration approaches are explained and quantitatively evaluated
in [BABP06] and [AACP08]. Dynamic task re-mapping is achieved at user-level
or middleware/OS level, respectively. In both these approaches, the user needs to
define checkpoints in the code where the migration can take place. This can require
a consistent manual effort from the designer which is not needed in our approach.
Moreover, a relevant difference with respect to our work is the inter-task communi-
cation implementation, which exploits a shared memory system. We argue that our
approach, which uses purely distributed memory, can perform better in emerging
MPSoC platforms since it provides better scalability.

Finally, the authors in [NKG+02] propose an MPSoC hardware and software
architecture template that allows the system to change the mapping of applications’
tasks at run-time. Compared to the work presented in this chapter, their approach
uses a distributed shared memory to implement inter-task communication. That is,
in their execution platform a process can read data tokens directly from the memory
of a different processor. As mentioned earlier, by contrast, our approach uses com-
pletely distributed memories, with the goal of providing better scalability in emerging
MPSoCs.

It is worth noting that the process migration mechanism presented in this chapter
has been devised and implemented within the MADNESS EU FP7 Project, in close
cooperation with DIEE, University of Cagliari, and ALaRI, Faculty of Informatics,
University of Lugano. The mentioned migration mechanism, initially presented in
[CDM+12], has been used as base infrastructure for other works within the MADNESS
project [MTR+12, DCT+13]. In particular, in his PhD dissertation [Der15], Derin has
proposed migration techniques that are complementary to the one described in this
chapter. In Chapter 5 of [Der15], the author makes the following contributions which
are closely related to the process migration mechanism of [CDM+12].

- First, he shows how software self-testing routines, capable of detecting faults,
can be coupled with the migration mechanism of [CDM+12].

- Second, he devises a task migration hardware module that is included in each
tile of the NoC-based MPSoC. In case of a fault, this task migration hardware
is in charge of extracting the state of processes from the faulty tile to make it
available to the resource manager of the MPSoC.

- Third, he proposes an alternative way of handling faults at the PPN application
level. In [CDM+12], when a PPN process is interrupted by a fault, the execution
is resumed on another tile by rolling back to the beginning of the interrupted
iteration of the PPN process. Chapter 5 of [Der15] provides also a different way
of fault recovery, that resumes the execution on a different tile by rolling forward
to the PPN process iteration that follows the interrupted iteration. This yields to

74 Chapter 4. Process Migration Mechanism in a Mapped PPN

a simpler task migration hardware implementation, although the application
output can be temporarily incorrect.

The remainder of the chapter is organized as follows. In Section 4.4, we summarize
the assumptions of our system adaptivity approach and we provide an overview of
our proposed process migration mechanism. Then, in Section 4.5, we describe the
proposed process migration mechanism in greater detail. Finally, Section 4.6 con-
cludes this chapter reporting the experiments performed to test our process migration
mechanism, and the achieved results.

4.4 Proposed Migration Approach

In the following paragraphs we recall some assumptions, related to the structure of
the MPSoCs that are considered by our approach, that have an important influence
on our proposed process migration mechanism. Then, we provide an overview of the
migration mechanism itself.

The starting assumption of our system adaptivity approach, as depicted in the right
part of Figure 1.6 on page 20, is that we target an MPSoC composed of tiles, connected
by a NoC, with completely distributed memories and no direct remote memory access.
This means that the processing element of a tile can only directly access the content of
its own local memory. All the communication and synchronization between processes
mapped on different tiles can only happen using messages sent over the NoC.

Our approach for realizing system adaptivity consists of deploying the processes
of the application(s) modeled as PPNs over the NoC-based MPSoC and allowing their
run-time remapping to adapt the system to the changing operating conditions such as
variation in quality of service requirements, availability of resources, or power budget
constraints. In particular, system adaptivity in our system is supported by using the
dedicated middleware highlighted in the software stack in the left part of Figure 1.6
on page 20. For reasons of convenience, we copy Figure 1.6 on page 20 in Figure 4.1.

PPN

communication

PPN

Processes

Process

migration

Operating System

Application(s)

Middleware

tile0

tile2

tile1

tile3

Software Stack Hardware Platform

P1

P2 P3

Figure 4.1: Software stack (left) proposed to achieve adaptivity in BE systems. The middleware layer is
denoted by the shaded area. The stack is deployed on each tile of the hardware platform (right).

At the top of the software stack, applications are specified as a set of PPN processes,
which are implemented as separate threads. An example of a thread representing a

4.5. Process Migration 75

PPN process is given in Figure 2.3(b) on page 29. However, in our work the basic
structure of PPN processes will be modified to ease the realization of a predictable
process migration mechanism, as described in Section 4.5.

At the bottom of the software stack in Figure 1.6 on page 20, the operating system
(OS) is responsible for all kinds of process management (process creation, deletion,
setting its priority, suspending or resuming it). These features are essential for the
run-time management of the system, and in particular to perform process migrations.
Moreover, each processor has multi-tasking capabilities thanks to the OS. In case
of many-to-one mapping, i.e., when more than one process are mapped on the same
processing element (PE), the scheduling is data-driven. This means that a process
keeps executing successive iterations until it blocks in reading or writing (recall the
PPN process structure of Figure 2.3(b) on page 29). When the process blocks, it yields
the processor control to the next process in the ready queue in a round-robin fashion.

In between the applications and the operating system, in this thesis we propose the
middleware which is highlighted in Figure 1.6 on page 20, which comprises two main
components. The first one is PPN communication, which realizes the communication
and synchronization between processes located in separate tiles, according to the PPN
semantics. This middleware component has been already described in Chapter 3. The
second component is Process migration, which is mainly responsible for the following
activities, performed during the migration of processes:

- Coordinates the creation and deletion of processes among different tiles;
- Guarantees the correct transfer of the process’ state during process migration.

The second component of our proposed middleware is the main subject of this chapter.

4.5 Process Migration

This section details the proposed mechanism to perform migrations of PPN processes
over NoC-based MPSoC systems. It is a fundamental part of the middleware depicted
in Figure 1.6 on page 20 because it defines how to perform run-time remapping of
processes. This, in turn, allows designers to implement system adaptivity strategies.

The migration mechanism depends on the considered communication approach.
As a starting assumption to devise the migration mechanism, we consider the request-
driven (R) communication approach described in Section 3.4.3. This choice is made
because the R approach leads to a considerably easier implementation of the migra-
tion mechanism since it requires less synchronization points. At the same time, it
gives performance comparable to the other approaches for computation-dominant
applications, as shown in Section 3.6.1.

We recall that to take into account the run-time remapping of processes over the
NoC, each PE stores in its local memory a middleware table which is used during
the conversion of the generic PPN communication primitives (i.e., READ, WRITE in
Figure 2.3(b) on page 29) to the corresponding hardware platform primitives, such
that the messages are sent to the right tiles in the system. A simple diagram showing
the migration of a PPN process is depicted in Figure 4.2. An example of a middleware
table generated for the initial mapping in Figure 4.2 is given in Table 4.1. For each

76 Chapter 4. Process Migration Mechanism in a Mapped PPN

Table 4.1: Middleware table example

ch prod(ch), cons(ch) map(prod(ch)), map(cons(ch))
1 P1, P2 tile0, tile1
2 P2, P3 tile1, tile2

channel of the PPN, the table lists which processes are the producer and consumer of
that channel, together with the current mapping of producer and consumer processes
in the system. Auxiliary information, for instance requests that are pending when a
process migration is triggered, is also saved for each channel.

Mainly two kinds of process migration mechanism are considered in the literature,
namely process replication and process recreation. In process replication, the program
code of a migratable process is copied in each tile that may execute it, thereby creating
replicas of the process. When a process needs to be migrated from one tile to another,
the process is suspended on the first tile and restarted on the second. The state of the
process must be copied from the first tile to the second because the process cannot be
just restarted from scratch.

The second kind of process migration mechanism is based on the so-called process
recreation. In this case, if a migration is needed, the process is killed on the initial tile
(it runs) and created on another tile by moving both the process code and state. The
OS/middleware in this case must support dynamic loading of processes to processors.
This way, only one instance of the process code exist at a given time in the system.

The process replication mechanism is less efficient in terms of memory usage,
compared to process recreation. Yet, it offers significant advantages such as easier
implementation and faster migration procedure. Thus, for our proposed process
migration mechanism we choose process replication because we aim at guaranteeing
a quick completion of the migration procedure. Moreover, the memory constraint in
our system is not critical.

Consider again the simple diagram in Figure 4.2, which shows the migration of a
PPN process. Even though it is a simple example, it can be easily generalized for more
complex PPN topologies. The diagram highlights the tiles involved in the process
migration procedure, which are referred to as:

- the source tile, namely the tile which runs the process before the migration
takes place;

- the destination tile, which is the tile that will execute the process after the
migration;

- the predecessor tile(s), which run(s) the predecessor process(es);
- the successor tile(s), which execute(s) the successor process(es).

The structure of PPN processes, modified to allow migration at any point dur-
ing the execution of the process main bodies, and the proposed process migration
mechanism are presented in the following two subsections.

4.5. Process Migration 77

tile0

P1

tile1 tile2

P3P2

B1
P B1

C
B2

P B2
C

tile3

P2

B1
C

B2
P

Resource
Manager

migration

Predecessor tile Source tile Successor tile

Destination tile

’

ch1 ch2

P1 P2 P3
PPN

topology

Figure 4.2: Example of a migration procedure. The PPN topology considered in this example is shown
in the top part of the figure. The initial mapping of this PPN is the following: process P1 on tile0, P2
on tile1, P3 on tile tile2. The resource manager (denoted by a dashed box) triggers the migration of P2
from tile1 to tile3 by sending a specific control message to tile1. This control message is forwarded by
tile1 to all the tiles involved in the migration. Control messages are represented by dashed arrows. To
perform the actual migration, a few more steps are required. First, process P2 is suspended on tile1 and
its iteration vector is transferred to tile3. Second, the state of the input and output channels of P2 on
tile1 (the content of BC

1 and BP
2) are also moved to tile3. Finally, the migration procedure is completed

by starting the replica of P2 on tile3. This replicas is denoted by P′
2.

4.5.1 Migratable PPN process structure

Our goal is to allow the migration to occur at any time during the execution of the
process main body, which means that a migration can happen during most of the
execution time of a process, as will be explained later in this section. In turn, this
improves the latency incurred from the moment that a migration is triggered to its
completion. To this end, we extend the NI of a tile with the ability to generate an
interrupt for the processing element when a message with a specific tag is received.
This extension is made because the detection of migration commands by polling at
specific migration points in the code may cause undesired latency in the migration
procedure.

In the scenario depicted in Figure 4.2, process P2 is migrated from tile1 to tile3.
The original structure of the code of P2, as generated by the pn compiler, is reported
in Figure 4.3(a). This structure of process P2 hides all the details of the actual mapping
of P2 onto the execution platform.

In particular, to perform such mapping, the PPN communication primitives of P2

78 Chapter 4. Process Migration Mechanism in a Mapped PPN

for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 READ(in, IP1);

 out = F2(in1);

 WRITE(out, OP1);

 }

}

Process P2

ch1

ch2

(a) Structure of PPN process P2.

for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 cd(ch1);

 ld(in, ch1);

 sr(ch1);

 out = F2(in1);

 cr(ch2);

 st(out, ch2);

 sd(ch2);

 }

}

Mapped Process P2

ch1

ch2

(b) Basic code structure of the mapped process P2.

Figure 4.3: Sub-figure (a) shows the structure of PPN process P2 in Figure 4.2. Sub-figure (b) depicts
the basic code structure used to map P2 onto the considered execution platform. Notice that PPN
communication primitives have been refined into several execution platform primitives.

must be converted to (a set of) communication primitives of the execution platform.
This conversion is a problem already studied in the literature [LvdWD01]. Typical
communication and synchronization primitives of an execution platform are the
following3:

∙ Check Data (cd): Checks if there are available data tokens in the considered
FIFO buffer. Otherwise, it stalls the calling process.

∙ Check Room (cr): Checks if there is available space in the considered FIFO
buffer. Otherwise, it stalls the calling process.

∙ Load Data (ld): Transfers a token from the considered FIFO buffer to the local
space of the process.

∙ Store Data (st): Transfers a token from the local space of the process to the
considered FIFO buffer.

∙ Signal Room (sr): After a ld operation, it signals that (additional) room is
available in the considered FIFO buffer.

∙ Signal Data (sd): After a st operation, it signals that (additional) data is available
in the considered FIFO buffer.

To derive an efficient mapping of PPN processes to an execution platform, design-
ers have to consider the structure of the execution platform itself. For instance, it is
fundamental to know whether the FIFO buffers which implement the channels of a
certain process are located in a shared memory or in the local memory of the PE that
executes that process.

In our approach, as shown in Figure 4.2, each process can only access the local
memory of its tile. The transfer of tokens among tiles of our execution platform is

3Using the notations of [LvdWD01].

4.5. Process Migration 79

handled by the request-driven middleware approach, as mentioned earlier. Therefore,
each process reads and writes tokens only from/to its local memory. In this scenario,
the READ and WRITE PPN communication primitives are typically converted to the
aforementioned primitives of the execution platform in the following way.

READ =⇒ cd → ld → sr (4.1)

WRITE =⇒ cr → st → sd (4.2)

Using the above conversion of communication primitives, we derive the imple-
mentation of PPN process P2 onto the considered execution platform. The structure of
such implementation is shown in Figure 4.3(b). We will refer to the structure shown
in Figure 4.3(b) as basic mapped process structure. Since we require that migration may
happen at any point within the execution of the processes main body, a modification
of the process structure is required. In the rest of this section, we will explain why
this modification is required and in what it consists.

In order to maintain correct functionality of the application, the state of the whole
PPN must be consistent before and after a process migration has occurred. We divide
the state of the PPN in two components, as follows:

1. State of PPN processes. As explained in Section 2.1.3, the only internal state of
a PPN process is its iteration vector~I, which represents the value of the for-loop
iterator variables.

2. State of PPN channels. The state of a channel in the PPN is represented by the
tokens which are currently stored in the FIFO buffers which implement that
communication channel.

Regarding the second component of the PPN state listed above, note that a PPN
channel ch is actually implemented by two FIFO buffers in the request-driven com-
munication approach which is considered in this chapter. One of these buffers reside
on the tile on which the producer of ch is mapped, whereas the other resides on the
tile in which the consumer of ch is mapped (recall Figure 3.4 on page 56). Therefore,
when migrating a process P from its source tile to its destination tile, two components
of the PPN state have to be migrated:
ST1: The iterator vector of P. For instance, the iterator vector of the process depicted

in Figure 4.4 is~I = [i, j].
ST2: The state of the input and output channels of P residing on the source tile of

P. This state is in fact represented by the content of the input and output FIFO
buffers connected to P. For example, refer to Figure 4.2, which illustrates the
migration of process P2 from tile1 to tile3. If, when the migration is performed,
FIFO buffers BC

1 and BP
2 on tile1 contain tokens, their content has to be moved

to the destination tile, tile3, into the corresponding FIFO buffers.
Having defined the state that has to be transferred during a process migration, we

comment and describe the migratable PPN process structure shown in Figure 4.4 in
the following. We denote this migratable process as Pmig. When Pmig starts, in line 1
of Figure 4.4, it checks if the migration flag is set. If the checking is positive, then this
means that a migration has been performed, so the process state is reloaded.

80 Chapter 4. Process Migration Mechanism in a Mapped PPN

1 if (migration) resumeState;

2 for (i=i0; i<M; i++){

3 for (j=j0; j<N; j++){

4 cd(ch1);

5 ld(in, ch1);

6 out = F2(in1);

7 cr(ch2);

8 st(out, ch2);

9 sd(ch2);

10 sr(ch1);

11 } reset j0;

 }

Migratable Process Pmig

migration

disabled

main body:

migration

allowed

Figure 4.4: Structure of migratable process Pmig. Compared to the basic mapped process structure of
Figure 4.3(b), the order of the execution platform communication and synchronization primitives is
changed. This allows migrations to be performed at any point within the main body of the Pmig (lines
4-8).

Both state components listed above (ST1, ST2) are transferred from the source tile
to the destination tile upon migration. If the migration flag is false, then this means
that the process Pmig starts from scratch, with empty input and output FIFOs and
i0 = j0 = 0.

Lines 2 and 3 differ from the basic mapped process structure in Figure 4.3(b)
because the iterators inside the for loops do not start from zero in case of migration.
Instead, they start from the values i0 and j0, which represent the iteration at which
the process was interrupted by the migration while running on the source tile. After
the first complete execution of the inner for loop, starting from j0, the value of j0 is set
to zero in line 11 such that the next execution of the inner loop starts correctly with
j = 0.

Moreover, the order in which communication and synchronization primitives are
executed in Pmig differ from the one used in the basic mapped process structure of
Figure 4.3(b). In fact, the execution platform primitives that implement the PPN READ
primitive of Pmig (i.e., cd, ld, and sr) are not executed in a continuous sequence. They
are, instead, executed in lines 4, 5, and 10, respectively, with several other operations
occurring between ld and sr.

The reordering of execution platform communication primitives has already been
studied in [LvdWD01]. The work in [LvdWD01] defines rules by which the reordering
preserves the correctness of the execution of the mapped PPN process. The migratable
process structure Pmig in Figure 4.4 complies with the rules defined in [LvdWD01].

Recall that the actual release of memory locations is performed by the sr operation,
which consumes the data token from the FIFO by increasing the read pointer. This
operation takes place only outside the main body of Pmig, in line 10. Then, if a
migration is triggered before the sr operation, Pmig can be correctly resumed on the
destination tile since it will read again the same input token, because the read pointer
is unchanged. Similarly, the sd operation that concludes the WRITE primitive is
executed at the end of the mapped PPN process, outside its main body. Finalizing the

4.5. Process Migration 81

READ and WRITE operations at the end of an iteration allows the process migration
to happen anywhere within lines 4-8 correctly. Note that, in case of multiple input
or output channels, the sd and sr operations of all channels are performed together
right after the main body of the process, in order to update the state of Pmig and of
the FIFO buffers in the shortest possible time.

Process migration cannot happen in the migratable process Pmig within the lines
9-11 and 2-3 because that will cause an inconsistency in the state of the PPN. This
is because lines 9 and 10 can be considered as an update of the output and input
FIFOs state, while lines 11, 2 and 3 represent an update of the state of Pmig. If, for
instance, a migration happens after the FIFO state update but before the iterator
set update, the following scenario will occur: (i) the state of the input and output
FIFOs connected to Pmig are modified as if the current iteration was successfully
completed; (ii) Pmig restarts the current iteration from the beginning, because the
iteration vector was not updated accordingly. This condition will certainly cause a
deadlock. Although the process migration cannot happen within lines 2-3 and 9-11,
note that these sections represent a minimal part of the process execution, because
performing the sd and sr operations and updating the iterator set is a matter of a few
simple instructions. Therefore, disabling the migration within these sections does not
increase the migration latency significantly.

The principle behind the proposed migratable process structure is that the state
of the PPN must be consistent and up-to-date when a migration is performed. This
allows the PPN to correctly resume its execution, with the migrated process mapped
on the destination tile. Leveraging the PPN process structure, our approach does not
require the designer to specify the context that has to be transferred upon migration
as in [BABP06]. This burden is neither moved to the OS/middleware level as in
[AACP08]. Determining the state to be migrated is not needed because the PPN
state simply consist of the two components (ST1, ST2) described above. Moreover,
our approach does not need designer-generated checkpoints/migration points. The
resource manager in Figure 4.2 can interrupt the process execution at any time during
the execution of the process main body. The migrated process will then resume its
execution from the beginning of the interrupted iteration. On the one hand, this
implies that if the migration is triggered in the middle of the function execution, the
time spent in computation since the start of the iteration is lost. On the other hand,
this approach leads to a more efficient implementation and predictable migration
response time, which we consider more important for our goals.

4.5.2 Process migration mechanism

The migration mechanism requires actions from all the tiles depicted in Figure 4.2.
Note that, in the figure, a resource manager is in charge of taking the migration decision.
How the resource manager makes this decision is out of the scope of this thesis
because we focus only on the process migration mechanism itself. Our contributions
are in fact complementary to other research works (see [DKF11, AK09, LKwP+10,
Gab09, SSHT06]) which provide techniques to determine if a process migration is
necessary and/or beneficial and, in that case, the actual destination tile of the process

82 Chapter 4. Process Migration Mechanism in a Mapped PPN

that has to be migrated.
When a migration decision is taken by the resource manager, it initiates the

migration by sending a specific control message to the source tile. The source tile then
forwards this control message to the destination, predecessor and successor tiles to
inform them that the migration procedure has been initiated.

The control messages which notify the involved tiles for the start of the process
migration contain the ID of the migrated process and the new mapping of that process.
On all of the involved tiles, and on the resource manager, the middleware tables are
then updated taking into account the new mapping of the migrated process.

For each of the tiles involved in the migration procedure, the detailed list of
required actions are explained below.

Actions on the source tile

The behavior of the source tile depends on whether the tile is functional or faulty.
∙ In case the source tile is functional, the migrating process is stopped on the PE

of the tile and the two state components, ST1 and ST2 mentioned in Section 4.5.1,
are moved to the destination tile. These state components are transferred by
means of dedicated messages sent over the NoC. Moreover, the middleware ta-
ble is updated as described above. The source tile takes also care of propagating
the migration decision to the other tiles involved in the migration procedure.
This propagation is depicted by the dashed arrows in Figure 4.2.

∙ In case the source tile is faulty, the actions described in the previous point are
emulated by a dedicated hardware IP, as proposed in [DCT+13].

Actions on the destination tile

The destination tile receives a specific message for process activation. The migration
procedure is handled by creating the required software FIFOs and by activating the
replica of the migrated process using the corresponding OS call. Before the process
replica is started, the migration flag is set to 1 so that the state of the migrated process
is resumed (see line 1 in Figure 4.4). This implies that the input and output FIFOs
connected to the migrated process are copied, and the iterator set (in the figure, i0 and
j0) are set such that the execution starts from where it was suspended on the source
tile. The middleware table is also updated in the way described above.

Actions on predecessor tile(s)

On these tiles, the only required step is the update of the middleware tables according
to the new mapping of the migrated process. This way, new tokens meant for the
migrated PPN process will be sent to the destination tile.

A corner case of the communication between the migrated process and its pre-
decessor processes may happen when the migrating process has sent a request for
new tokens just before the migration command arrives. For instance, it may happen
that process P2 in Figure 4.2 has sent a request for tokens to P1 just before receiving

4.6. Experiments and Results 83

the migration command from the resource manager. If that request has been served,
before the migration command reached the predecessor tile, it means that new tokens
are either traversing the NoC or they are already stored in the source tile. The prede-
cessor tile in this case has to send another interrupt-generating message to the source
tile, in order to force the forwarding of these data tokens to the destination tile.

Actions on successor tile(s)

Similarly, the successor tiles have to update their middleware tables so that successors
of the migrating process will send new requests for data tokens to the destination
tile. A particular case in the protocol between successor processes and the migrated
process is represented by requests which are sent to the source tile just before the
migration command arrives at the source tile. Each successor process checks if its
requests have been served before the arrival of the migration command. If this is not
the case, the successor tile has to send an interrupt-generating message to the source
tile, in order to force the redirection of requests from the source tile to the destination
tile.

4.6 Experiments and Results

In this section, we assess the benefits and overhead of the process migration mecha-
nism proposed in this chapter. We perform our experiments on the same hardware
platform setup used in Chapter 3, which is described in Section 3.5.3.

The setup of this experiment is shown in the left part of Figure 4.6. We use as a
case study the M-JPEG application described in Section 3.5.2. Tile1 initially runs all
M-JPEG processes, which are listed in Figure 3.15, in a sequential way. P1 is derived
by merging initVideoIn and videoIn processes, P2 and P3 represent respectively the
DCT and Q processes, and P4 is obtained by merging the VLE and videoOut processes.
We use the M-JPEG application as a case study because, compared to the Sobel appli-
cation, M-JPEG processes are coarse-grained with high computation/communication
ratio and therefore M-JPEG represents better the kind of applications which are likely
to be mapped on a NoC-based MPSoC. The scheduling of the M-JPEG processes on
Tile1 before the migration is represented in Figure 4.5. Scheduling charts have been
obtained using the GRASP [HvdHBL10] trace visualization tool to plot the informa-
tion gathered at run-time. The trace shows the periodic scheduling which is obtained
when all the processes are mapped on one tile and the scheduling policy is round-
robin with yielding (yielding occurs when a process is blocked on reading or writing).
The buffer size of each FIFO channel is set to two tokens in this experiment. In this
scenario, the process scheduling iterates in the following way. First, P1 executes two
times, until it blocks on writing because its output buffer is full. Then P2 is scheduled.
It completes two iterations, consuming the tokens created by P1 and producing two
tokens for P3. It then blocks while reading its input FIFO which is empty by then.
Similarly, P3 and P4 execute twice before blocking on read. This scheduling repeats
until the end of the application execution if no migration is performed.

84 Chapter 4. Process Migration Mechanism in a Mapped PPN

(x103 c.c.)

Figure 4.5: M-JPEG process scheduling when running on a single tile. The scheduling policy is round-
robin, with yielding when a process is blocked on reading or writing. The buffer size of each FIFO
channel is two. These conditions lead to the periodic schedule (P1, P1, P2, P2, P3, P3, P4, P4), which
continues indefinitely until the end of the application if no migration is performed.

tile2

tile1

P4P3

P2 P1

Resource
Manager

@ t1

@ t2

t1 t2 (x103 c.c.)

Figure 4.6: M-JPEG process scheduling while migrating P2 using the proposed migration mechanism.
Until time τ1, all processes are mapped on tile1. At time τ1, the resource manager requires process P2 to
migrate from tile1 to tile2. By using our interrupt-driven migration mechanism, the migration request
is handled promptly. Process P2 can be restarted on tile2 within a predictable amount of time, in this
case represented by the time interval (τ2 − τ1).

4.6.1 Process migration benefits and overhead

System adaptivity requires the ability to change the process mapping at runtime in
a predictable and efficient way. To illustrate the benefits of our migration approach
presented in Section 4.5, we compare our proposed migration mechanism, driven
by interrupt-generating control messages, with a migration approach based on fixed
migration points.

In the latter case, process migration can take place only at fixed points in the code.
For instance, referring again to Figure 4.5, the arrows over the bars of process P2

represent the start of an iteration of that process (for the sake of clarity, see line 4 in
Figure 4.4). Assume that these points correspond to migration points, namely where
the process checks if migration-messages have been sent by the resource manager.
Given that the migration request can reach Tile1 at any time, the latency of the actual
process migration can vary. In the best case, the migration request reaches the tile
right before the migration check point. In the worst case, the migration request arrives

4.6. Experiments and Results 85

just after the migration check point, for instance the one which is reached around
clock cycle 275,000 in Figure 4.5. The actual migration would not take place until the
next migration check point of P2, which happens to be after 2 executions of P3, P4
and P1, and one execution of P2. In this simple case, an upper bound of the process
migration response time can be found, based on the process scheduling, which in
turn depends on the workload of processes, the buffer sizes and the scheduling policy.
In more complex cases, where the scheduling on one tile is affected by the scheduling
on other tiles because of data dependencies, even finding an upper bound for the
response time practically would not be possible.

By contrast, the interrupt-driven migration mechanism that we propose in Sec-
tion 4.5 has a predictable behavior. As shown in Figure 4.6, the system has a faster
response time to migration requests. At time τ1, which is the worst case for the
fixed point migration strategy discussed above, the resource manager sends a control
message which triggers the migration of process P2 to Tile2. The process can be
restarted on the destination tile within a predictable amount of time represented by
the difference (τ2 − τ1). This is the time it takes the source tile and the destination tile
to execute the steps described in Section 4.5.2, such as the movement of the iteration
vector of P2 and the content of the FIFO connected to P2, followed by the activation
of P2 on the destination tile. This migration overhead in time, (τ2 − τ1), as shown in
Figure 4.6, is much smaller than a single execution of the DCT function in process
P2. The migration procedure in this example actually takes less than 12% of a single
execution of the DCT process.

Note that an upper bound of the migration procedure overhead can be derived for
guaranteed throughput (GT) NoCs. In fact, the migration duration Tmig of a process
P ∈ 𝒫 can be split in two main components:

Tmig(P) = TstateMig(stateSize(P)) + TprocAct (4.3)

TprocAct is a constant value which represents the time required to activate the migrated
process using OS system calls, to update the middleware table, and complete all the
actions described in Section 4.5.2 on the destination tile. TstateMig is the time it takes to
transfer the state from the source to the destination tile. Its worst case, for GT NoCs,
depends only on the state size. The largest state size occurs when both the input and
output FIFO buffers connected to the migrating process P are full. This worst-case
value can then be derived from the PPN topology and buffer sizes:

max(stateSize(P)) = ∑
ch∈IOCP

size(B(ch)) (4.4)

where IOCP = ICP ∪ OCP as defined in Section 2.1.3, size(B(ch)) is the size of the
buffer which represents the channel ch on the source tile. The value size(B(ch)) is
obtained by multiplying the number of tokens of B(ch) by the token size of a channel
ch. An upper bound of the migration time Tmig of a process P can be calculated using
max(stateSize(P)) in Equation (4.3).

Our interrupt-driven migration mechanism incurs the worst-case overhead when
a migration request arrives just before the end of a function execution in a process that

86 Chapter 4. Process Migration Mechanism in a Mapped PPN

has to be migrated. In this case, the migration still takes place in a predictable amount
of time but the process execution has to roll back to the beginning of the interrupted
iteration. In this scenario, all the time spent in the function execution is wasted.

4.7 Discussion

From the experimental results and analysis provided in Section 4.6.1 we can con-
clude that the migration mechanism proposed in this chapter complies with the
requirements set in the problem statement of Section 4.1. In particular, our proposed
migration mechanism possess the following properties:

∙ It is predictable, that is, when a migration is triggered, it will be completed within
a certain time frame given by Equation (4.3);

∙ Thanks to the modified code structure of PPN processes proposed in Sec-
tion 4.5.1, a migration can be triggered at any time during the process main
body.

∙ Referring again to Section 4.5.1, the code needed to allow the proposed migra-
tion mechanism can be generated in a completely automated way.

Finally, note that the experimental results of Section 4.6.1 show that our proposed
process migration mechanism is efficient. In fact, the overhead incurred to complete a
process migration is experimentally shown to be negligible compared to the overall
execution time of the application.

Chapter 5

Semi-partitioned Scheduling of
CSDF-modeled Streaming
Applications

Most of the work presented in this chapter has been published in [CBS14].

THIS chapter and the following one, Chapter 6, present two methodologies that
exploit semi-partitioned scheduling algorithms, in the context of hard real-time

streaming systems, using the scheduling analysis proposed in [BS11, BS12] as a
basis and research driver. In particular, the semi-partitioned approach proposed
in this chapter is aimed at reducing the number of processors required to schedule
those applications which incur bin-packing issues under the partitioned scheduling
approach of [BS11, BS12]. We recall that by bin-packing issues we mean that those
applications require, using a partitioned scheduling approach, more processors than
the minimum achievable by a global optimal scheduler.

In order to clarify the contributions of this chapter, we depict in Figure 5.1 the
scheduling framework proposed in [BS11, BS12]. As input to this framework, the
designer provides the application model, in the form of a (C)SDF graph with N
actors (see Analysis Model in Figure 5.1). Then, Step 1 converts the N actors of the
input application into N periodic real-time tasks and derives the minimum size of
the buffers which implement inter-task communication. Throughout this chapter,
we refer to this conversion as scheduling analysis of [BS11, BS12]. This conversion is
described in Section 2.3, and assumes that a hard real-time (HRT) scheduler will be
used to execute the derived task set. In particular, Step 1 derives:

I The worst-case execution time (WCET) Ci of each task, using Equation (2.26)
on page 43.

II The period Ti of each task, using Equation (2.27) on page 43.

88 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Scheduling Analysis

of [BS11,BS12]

Analysis

Model:

(C)SDF

Complete Task Set and Buffers Specification:

({Ci}, {Ti}, {Si}, {bu})

Designer Input

(HRT scheduler)
Task Assignment

No. of

Processors

Task

Mapping

Temporal and

Buffering Spec.

1

2

I IVIIIII

Figure 5.1: Scheduling framework proposed in [BS11, BS12]. Step 1 of the framework converts the
input application, modeled as a CSDF graph, to a corresponding set of real-time periodic tasks. The
obtained real-time periodic task set is completely specified, i.e., the WCET I , period II , and start
time III of each task are known, together with the required size of buffers IV through which the tasks
communicate. Then, based on the WCET and period of tasks, and on the designer’s choice of HRT
scheduling algorithm, Step 2 derives the required number of processors and the assignment of task to
processors. At this point, the system is completely specified.

III The start time Si of each task, using Equation (2.29) on page 44.
IV The size bu of each buffer, which implements the communication over edge eu

= (Ai, Aj). This size is obtained using Equation (2.31) on page 46.

The next step, Step 2 (Task Assignment), derives the minimum number of proces-
sors required to schedule the application and the assignment of tasks of the application
to processors, using the HRT partitioned approach (see Section 2.2.5) chosen by the
designer. The assignment is based on the WCET and period of each task (parameters
I and II above) derived in Step 1 .

At the end of Step 2 , the system is completely specified. The system specification
consists of the following components.

∙ Number of Processors. It represents the number of processors required to sched-
ule the application (obtained in Step 2).

∙ Task Mapping. It describes the assignment of application’s tasks to processors
(obtained in Step 2).

∙ Temporal and Buffering Specification. It describes the parameters of the task
set, together with the size of buffers which implement inter-task data communi-
cation (all of which are obtained in Step 1).

5.1. Proposed Extension of the Scheduling Framework of [BS11,BS12] 89

5.1 Proposed Extension of the Scheduling Framework
of [BS11,BS12]

So far, the scheduling framework of [BS11, BS12] (see Figure 5.1) considers only
hard real-time partitioned scheduling algorithms. Partitioned scheduling algorithms
incur neither migration overhead nor memory overhead because each task is statically
allocated to a single processor. However, these algorithms are affected by bin-packing
issues [Joh73], as described in Section 2.2.5. That is, if no limit on the maximum task
utilization of a task set is imposed, partitioned algorithms may require twice as many
processors compared to an optimal global scheduler [LDG04]. Therefore, for some
applications, the number of processors required by partitioned approaches is larger
than the number of processors required by optimal global schedulers.

However, also optimal global schedulers present drawbacks. Recall, from Sec-
tion 2.2.5, that under optimal global scheduling algorithms all the tasks can migrate
among all the processors. Such algorithms can fully exploit the available computa-
tional resources (refer again to Section 2.2.5, and in particular to Expression (2.13) on
page 34). However, their optimality comes at the cost of high scheduling overheads
due to excessive task preemptions and migrations. Moreover, modern MPSoCs typi-
cally have distributed memories in order to avoid the unpredictability of accessing
shared resources. Therefore, using a global scheduler on such distributed memory
systems implies that the code of each task has to be replicated1 on all the processors,
incurring a large memory overhead.

Semi-partitioned algorithms represent a middle ground between global and par-
titioned scheduling algorithms. In fact, under semi-partitioned approaches, most
of the tasks are statically allocated to processors, and only a subset of the tasks is
allowed to migrate among different processors. Migrating tasks follow a migration
pattern derived at design-time. By allowing a (usually small) subset of tasks to mi-
grate, semi-partitioned scheduling algorithms can mitigate the bin-packing effects
that affect partitioned approaches. As a result, semi-partitioned algorithms require
less processors than partitioned algorithms to schedule certain task sets. At the
same time, these algorithms do not incur large memory overheads and task migra-
tion/preemption overheads like global algorithms. For these reasons, in this chapter
we extend the scheduling framework of [BS11, BS12] in order to support a semi-
partitioned approach. In the next section we explain the reasons why, among the
various semi-partitioned schedulers, our proposed approach uses EDF-fm [ABD08].
We recall that the name EDF-fm comes from the fact that the algorithm is based on
EDF and allows tasks to be either fixed or migrating.

5.1.1 Choice of the EDF-fm Semi-partitioned Algorithm

Several semi-partitioned scheduling algorithms have been proposed [ABD08,DYGR10,
GCS11, KY08, AT06]. These algorithms can be classified based on when migrations

1We assume task migration using code replication, as shown in Chapter 4, because in distributed
memory MPSoC systems it guarantees faster completion of the migration procedure.

90 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

are allowed to occur. In restricted-migration approaches [ABD08, DYGR10, GCS11]
migrations can happen at job boundaries only. In unrestricted-migration (or portioned)
approaches, migrations can happen at any time during a job execution. We argue that
the restricted-migration class of semi-partitioned schedulers is the most suitable for
distributed memory MPSoCs. This is because migrating at job boundaries reduces
the amount of data (state) to be transferred from one processor to the next. Moreover,
if the task does not keep an internal state between two successive jobs (i.e., it corre-
sponds to a stateless dataflow actor, as defined in Definition 2.3.6 on page 47), no state
migration is needed.

Within the class of restricted-migration semi-partitioned approaches, EDF-fm
[ABD08] is particularly suited to distributed memory systems because in that ap-
proach a migrating task is allowed to migrate only between two processors (contrary
to [DYGR10, GCS11], in which migrating tasks may span among all the processors).
This property reduces substantially the memory overhead caused by replicating
the task code. In addition, EDF-fm uses a fast utilization-based schedulability test
(contrary to [DYGR10, GCS11]), that can be easily executed at run-time for incom-
ing applications. For the reasons explained above we employ EDF-fm in the work
presented in this chapter.

5.1.2 Implications of Using EDF-fm

Although EDF-fm can have great benefits for distributed memory MPSoCs, it provides
hard real-time guarantees only for migrating tasks and soft real-time (SRT) guarantees
for fixed tasks. Recall that, by Definition 2.2.9 on page 38, this means that fixed tasks
can miss their deadlines by a bounded value called tardiness. As a consequence, the
scheduling analysis of [BS11, BS12] can not be used directly because it assumes that a
hard real-time (HRT) scheduler will schedule the derived task set, such that all task
deadlines are met. It follows that the scheduling framework depicted in Figure 5.1
has to be modified.

Although our proposed semi-partitioned approach uses a SRT scheduling algo-
rithm, in this chapter we provide a technique which ensures that the input/output
interfaces with the environment are not affected by the deadline misses which may
occur to the tasks of the application. That is, we can provide HRT guarantees to the
input and output interfaces of the application with the environment.

5.2 Problem Statement

The scheduling analysis of [BS11, BS12] shows that an application, modeled as an
acyclic CSDF graph, can be scheduled using a hard real-time partitioned scheduling
algorithm as a set of real-time periodic tasks. In this chapter, we investigate the
applicability of the soft real-time semi-partitioned scheduling algorithm EDF-fm
to the scheduling analysis of [BS11, BS12]. In order to do so, we need to modify
that scheduling analysis in a way that soft real-time scheduling algorithms can be
supported. Overall, our semi-partitioned approach is aimed at reducing the number

5.3. Contributions 91

Scheduling Analysis

of [BS11,BS12]

Analysis

Model:

(C)SDF

WCET and Period of Tasks:

({Ci}, {Ti})

Task Start Times

and Buffer Sizes

({Si}, {bu})

EDF-fm Task Assignment

Task

Mapping

No. of

Processors

Temporal and

Buffering Spec.

Tardiness

Bound of

Tasks {Di}

SRT Analysis

1

2

3

I

IVIII

II

I II

Figure 5.2: Scheduling framework proposed in this chapter, which assumes that the SRT scheduling
algorithm EDF-fm will schedule the derived task set, instead of the HRT partitioned schedulers considered
in Figure 5.1. The part of the scheduling framework above the dashed line is identical to the scheduling
framework in Figure 5.1. However, in Step 1 only the WCET I and period II of each task are
derived. This is because the start times III of tasks and required size of buffers IV through which the
tasks communicate can only be derived when the tardiness bound ∆i of each task τi is known. Step 2
of the scheduling framework derives the minimum number of processors, the assignment of tasks to
processors, and the tardiness bounds of tasks. Based on these tardiness bounds, Step 3 derives the task
start times and buffer sizes. At this point, the system is completely specified.

of processors required to schedule the applications that incur bin-packing issues under
the partitioned scheduling approach of [BS11, BS12]. We recall that by bin-packing
issues we mean that these applications require more processors under the partitioned
scheduler compared to a global optimal scheduler.

5.3 Contributions

In order to address the problem stated in Section 5.2, we propose the scheduling
framework shown in Figure 5.2. This scheduling framework is a modification of the
one used in [BS11, BS12] and reported in Figure 5.1. The changes in the design flow
are necessary in order to use the SRT semi-partitioned scheduler EDF-fm instead of a
HRT partitioned approaches, as assumed in [BS11, BS12].

92 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Consider Step 1 of the design flow in Figure 5.1. That step converts the input
application, modeled as a CSDF graph, into a set of real-time periodic tasks. In par-
ticular, it derives the complete specification of the tasks set (WCET I , period II ,
start time III of each task) and the size of the buffers IV which implement inter-task
data dependencies. This analysis assumes that the derived periodic task set will be
scheduled by a HRT scheduling algorithm, i.e., no task will miss any deadline. There-
fore, as shown in Figure 5.1, the scheduling analysis of [BS11, BS12] can derive the
complete Temporal and Buffering Specification of the system - composed of parameters
I , II , III , and IV - in a single step. In what follows, we will refer to such scheduling

analysis, which assumes hard real-time scheduling, as HRT approach.
As a first contribution of this chapter, we show that this scheduling analysis can

be extended to support SRT schedulers, once the tardiness bound2 ∆i of each task τi
is known. In practice, the components of the Temporal and Buffering Specification of the
system (I , II , III , and IV) cannot be derived in a single step, but in the following
three steps of Figure 5.2.

∙ Step 1 derives the WCET and period of tasks (components I and II), based
on the input application model. These components are not affected by the
tardiness of tasks.

∙ Step 2 assigns the tasks to processors, according to the rules of the chosen SRT
scheduling algorithm (in this case, EDF-fm). The outputs of this step are the
required number of processor, the assignment of tasks to processors, and the
tardiness bound ∆i of each task τi.

∙ Step 3 , given the value of ∆i of each task τi, derives the earliest task start times
and minimum buffer sizes (III and IV in Figure 5.2) that guarantee the existence
of a valid schedule of the given application. Valid schedule means that, even in
presence of task tardiness, tasks can be released periodically and neither buffer
underflow nor overflow can occur.

In what follows, we will refer to the scheduling analysis which assumes a SRT
scheduler as SRT approach. In this chapter, we show that the SRT approach achieves the
same throughput of the HRT approach, albeit requiring larger buffers and increased
application latency. In Figure 5.3 we compare the HRT and SRT approaches. The
mentioned increase in the size of buffers is visualized in Figure 5.3(b) using red color.
By appropriately increasing the size of buffers, the analysis presented in this chapter
guarantees that the interfaces of the environment with the application (see I and O
in Figure 5.3(b)) can execute in a strictly periodic way with neither underflow nor
overflow on input and output buffers (see bin and bout in Figure 5.3(b)), also when SRT
schedulers are used. This means that the input/output interfaces are not affected by
the deadline misses which may occur to the tasks of the application, i.e., I and O
in Figure 5.3(b) can execute with HRT guarantees.

Then, using the result of the first contribution, we focus on a specific SRT semi-
partitioned scheduling algorithm, namely EDF-fm [ABD08]. As mentioned in Sec-
tion 5.2, we consider EDF-fm instead of the partitioned approaches adopted in
[BS11,BS12] because we want to reduce the number of processors required to schedule

2See Definition 2.2.10 on page 38.

5.3. Contributions 93

HRT scheduler

Asrc I O Asnk

A1

A2

bin bout

(a) Analysis under HRT schedulers (e.g., [BS11,
BS12])

SRT scheduler

Asrc I O Asnk

A1

A2

bin bout

(b) Analysis under SRT schedulers (our ap-
proach)

Figure 5.3: Scheduling framework under HRT (a) and SRT (b) schedulers. Sub-figure (a) represents
the scheduling analysis of [BS11, BS12] which considers only HRT schedulers. By contrast, sub-figure
(b) depicts the scheduling analysis when SRT schedulers are used. This kind of schedulers allow tasks
to miss their deadlines up to a certain value. As shown in this chapter, real-time guarantees can be
still provided to the interfaces with the environment (denoted by I and O). However, the SRT approach
requires larger size of buffers (as highlighted in red in sub-figure (b)).

the applications that incur bin-packing issues under that partitioned approach. As a
second contribution of this chapter, we propose a novel task assignment heuristic,
called FFD-SP (First Fit Decreasing followed by semi-partitioning), that replaces the
ones proposed in [ABD08] that are intended for independent task sets. FFD-SP is
executed in Step 2 in Figure 5.2. We propose this novel task assignment heuristic for
the reason described in the following paragraph.

As shown in Figure 5.2, the derivation of task start times and buffer sizes in Step 3
depends on the value of the tardiness bounds of tasks. In general, the more tasks
are affected by tardiness, the more task start times need to be postponed. This has
a direct effect on the latency of the application. Moreover, as the number of tasks
with tardiness increases, so does the size of buffers required to implement inter-task
communication. To summarize, the number of tasks affected by tardiness has a direct
impact on the overhead in application latency and buffer sizes of the SRT approach
compared to the HRT approach. This effect is not considered by the task assignment
heuristics proposed in [ABD08] because those heuristics are intended for independent
tasks. Our proposed FFD-SP heuristic is aimed at reducing the number of required
processors, compared to the HRT approach, while keeping a low buffer size and
latency overhead when the EDF-fm algorithm is used.

Finally, as a third contribution, we show on a set of real-life benchmarks that our
SRT approach can lead to significant benefits by reducing the number of processors
required to schedule the applications that incur in bin-packing issues under the HRT
approach of [BS11, BS12]. At the same time, both our SRT approach and HRT ap-
proaches achieve the same application throughput. However, our experiments show
that the SRT approach incurs an increase in memory requirements and application
latency. Therefore, our SRT semi-partitioned approach is especially appealing for sys-
tems in which the throughput constraint is more important than memory or latency
constraints.

94 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

5.4 Related Work

To the best of our knowledge, real-time semi-partitioned scheduling algorithms have
never been studied when mapping streaming applications with inter-task data de-
pendencies to MPSoCs. In fact, existing semi-partitioned solutions [ABD08, DYGR10,
GCS11, KY08, AT06] only consider sets of independent tasks. In the real-time commu-
nity, however, techniques different from pure partitioning to assign data-dependent
application tasks to a multiprocessor platform have already been devised. Existing
approaches which are close to our work are [LA09] and [LA10] by Liu and Anderson.
These approaches use a global scheduler which, similar to our case, satisfies soft
real-time requirements. In particular, [LA09] describes a way to guarantee bounded
tardiness of an application specified as a pipeline of tasks under a SRT global sched-
uler. A strong limitation in [LA09] is that only simple pipeline application topologies
are handled, contrary to our approach that can handle more complex topologies
like CSDF graphs. In [LA10], the same authors extend their analysis to guarantee
bounded task tardiness in more complex application graph topologies, such as Pro-
cessing Graph Method (PGM) graphs. However, the work in [LA10] does not address
the calculation of minimum buffer sizes, which is an important metric to evaluate the
practicability of the approach. In contrast, the calculation of buffer sizes is supported
by our approach.

5.5 Soft Real-time Scheduling Analysis

In this section, we present the first main contribution of this chapter. Our contribution
is based on the scheduling analysis of [BS11, BS12] (see Section 2.3), which converts a
CSDF to a set of periodic tasks, assuming that a HRT scheduler is used to schedule
the derived task set. We show that such scheduling analysis can be modified in a
way that SRT schedulers can be used to execute the derived periodic task set. The
SRT scheduler considered in this chapter is the EDF-fm algorithm, whose per-task
tardiness bound is given by Equation (2.22) on page 40. Note, however, that the results
obtained in this section are valid for any SRT scheduler which provides bounded task
tardiness. Our solution extends the analysis of [BS11, BS12] by deriving new earliest
start times for each task (Section 5.5.1) and minimum buffer sizes (Section 5.5.2) that
can handle task tardiness and still allow a periodic release of each task. Within the
design flow proposed in Figure 5.2, this derivation of task start times and buffer sizes
is performed in Step 3 .

5.5.1 Earliest Start Times in Presence of Tardiness

In order to derive the earliest start times in presence of tardiness, we leverage some
concepts which are explained in Chapter 2 of this thesis. We summarize these concepts
below.

∙ Under hard real-time scheduling of acyclic CSDF graphs (Section 2.3), when
computing the earliest start times of actors we use the cumulative produc-

5.5. Soft Real-time Scheduling Analysis 95

tion/consumption functions defined in Definitions 2.3.1 and 2.3.2 on page 44,
namely:

– prdS
[ts ,t f)

(Ai, eu), which represents the total number of tokens produced

by actor Si to edge eu during the time interval [ts, t f);
– cnsS

[ts ,t f]
(Aj, eu), which represents the total number of tokens consumed

by actor Aj from edge eu during the time interval [ts, t f].
∙ By Definition 2.2.10 on page 38, under a SRT scheduler, a task τi does not miss

each of its deadlines by more than its tardiness bound ∆i.
In what follows, we will use the concept of as late as possible (ALAP) completion

schedule in case of tardiness, which is defined below.

Definition 5.5.1. (ALAP completion schedule in case of tardiness). The ALAP completion
schedule considers that all invocations Ai,j (jobs τi,j) of an actor Ai (task τi) incur the
maximum tardiness ∆i, therefore complete at zi,k = di,k + ∆i (where di,k represents
the absolute deadline of job τi,j, as defined in Section 2.2.1).

Then, consider that actor Aj has a data dependency from actor Ai through edge
eu. In addition, assume that both Ai and Aj may be affected by tardiness. In order to
derive the earliest start time of actor Aj, Equation (2.30) on page 44 has to be modified
in order to capture the worst-case schedule of Ai and Aj, as shown in the following
proposition.

Proposition 5.5.1. In presence of task tardiness, bounded by ∆i for source actor Ai and by
∆j for destination actor Aj, the earliest start time Si→j of actor Aj due to its dependency from
Ai through edge eu, under a valid schedule, is given by:

Si→j = min
t∈[0,Si+∆i+H]

{
t : prdS

[Si+∆i ,max(Si+∆i ,t)+k)
(Ai, eu) ≥ cnsS

[t,max(Si+∆i ,t)+k]
(Aj, eu)

∀k = 0, 1, · · · , H
}

(5.1)

where H is the iteration defined by Equation (2.28).

Proof. If actors Ai and Aj may be affected by tardiness, Equation (2.30) on page
44 can not be applied in its original form to derive earliest actor start times. In
order to illustrate this fact, we copy in Figure 5.4(a) the CSDF graph used as an
example in Chapter 2. The corresponding hard real-time schedule, derived using the
methodology of Section 2.3 in absence of tardiness, is shown in Figure 5.4(b). Note
that in Figure 5.4(b) the start times of actors are calculate using Equation (2.29), which
in turn exploits Equation (2.30).

Now, for instance, assume that actor A1 may be affected by tardiness because it
is scheduled by a SRT scheduler. Then, if invocation A1,2 in Figure 5.4(b) completes
later than its deadline, invocation A2,1 of A2 (that depends on the completion of A1,2)
cannot be released at time t = 6. It follows that the start time of actor A2 has to be
changed.

96 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

A1 A2 A3
[1] [1,2] [0,3]

e1 e2

[1]

(a) Example of a CSDF graph (extracted from Sec-
tion 2.1.2).

3

8

43

0

t

A2

A1

A3

5

S1

T1

0 10 15

1 2 3 4 5

0 1 2

0 1 2

S2 T2

S3

6 7

job

release

job

deadline

A1,2

A2,1

(b) Real-time periodic task set (extracted from Section 2.3)) obtained from
the above CSDF graph.

Figure 5.4: Example of the conversion of a set of CSDF actors to a real-time periodic task set using the
methodology proposed in [BS11, BS12]. As explained in Section 2.3, the three actors of the CSDF graph
depicted in sub-figure (a) can be scheduled as three real-time periodic tasks, as shown in sub-figure (b).

The worst-case scenario of the execution of Ai and Aj to derive the earliest start
time Si→j in case of tardiness occurs when the source actor Ai completes its jobs as
late as possible, i.e., according to its ALAP completion schedule (see Definition 5.5.1).

As shown in Figure 5.5, the ALAP completion schedule of actor Ai can be repre-
sented by a fictitious actor Ãi, which has the same period as Ai, no tardiness, and
start time S̃i = Si + ∆i. At run-time, any invocation of Ai, even if delayed by the
maximum allowed tardiness ∆i, will never complete later than the corresponding
invocation of Ãi. Notice that invocations Ãi,k of Ãi are strictly periodic, because they
incur no tardiness.

By contrast, in the worst-case scenario to determine Si→j, Aj is executed as early
as possible, so we assume that all invocations Aj,k of Aj are not affected by tardiness.
Then, the earliest start time that guarantees the absence of blocking of Aj in its
execution, even for the worst-case production and consumption patterns of Ai and Aj,
is found by evaluating Equation (2.30) with Ãi as source actor and Aj as destination
actor. This scenario is captured by Equation (5.1). Note that any completion of an
invocation Ai,k of Ai earlier than its corresponding worst-case Ãi,k results in an earlier
production of tokens, such that the inequality in Equation (5.1) still holds for all
k ∈ [0, 1, · · · , H]. Similarly, if any of the invocations of Aj is affected by tardiness,
the token consumption is executed later and Equation (5.1) guarantees that enough

5.5. Soft Real-time Scheduling Analysis 97

~

tSi

Ai

Ai
Di

Si
~

job release job deadline

Ai,0 Ai,1 Ai,2 Ai,3 Ai,4

Figure 5.5: Worst-case scheduling of source actor Ai, with tardiness ∆i, when deriving the start time
Si→j of destination actor Aj. In the worst case, all invocations of actor Ai incur the maximum tardiness
∆i. This schedule can be represented by a fictitious actor Ãi, which has the same period as Ai, no
tardiness, and start time S̃i = Si + ∆i.

tokens will be available to be read. �

Note also, from Equation (5.1), that the start time Si→j of actor Aj due to its
dependency from Ai is only affected by the tardiness bound ∆i of the source actor.
In addition, when actor Aj has several predecessors, the start time Sj has to be set
to the maximum of the start times Si→j given by Equation (5.1) considering each
predecessor in isolation, as captured by Equation (2.29) on page 44.

5.5.2 Minimum Buffer Sizes in Presence of Tardiness

Similarly to Section 5.5.1, in order to derive minimum buffer sizes we also utilize the
concept of tardiness bound under a SRT scheduler, defined in Definition 2.2.10 on
page 38. In addition, we use the cumulative production and consumption functions
of CSDF actors defined in Definitions 2.3.3 and 2.3.4 on page 46, namely:

∙ prdB
[ts ,t f]

(Ai, eu), which represents the total number of tokens produced by

actor Ai to edge eu during the time interval [ts, t f];
∙ cnsB

[ts ,t f)
(Aj, eu), which represents the total number of tokens consumed by

actor Aj from edge eu during the time interval [ts, t f).
Then, similar to Section 5.5.1, consider that actor Aj has a data dependency from

actor Ai through edge eu, and both Ai and Aj may be affected by tardiness. Based on
the above definitions, and given the actor start times calculated leveraging Proposi-
tion 5.5.1, the following proposition captures the worst-case scheduling of Ai and Aj
when deriving the minimum buffer sizes in case of task tardiness.

Proposition 5.5.2. In presence of task tardiness, bounded by ∆i for source actor Ai and
by ∆j for destination actor Aj, the minimum buffer size bu of a communication channel eu
connecting Ai and Aj, under a valid schedule, is given by:

bu(Ai, Aj) = max
k∈[0,1,··· ,H]

{
prdB

[Si ,max(Si ,Sj+∆j)+k]
(Ai, eu) −

cnsB

[Sj+∆j ,max(Si ,Sj+∆j)+k)
(Aj, eu)

}
(5.2)

98 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Proof. To get the minimum buffer size in presence of task tardiness, we consider the
worst-case scenario that would result in the maximum buffer requirement for channel
eu. This worst-case scenario occurs when: (i) all the invocations Aj,k of the destination
actor Aj complete with the maximum tardiness (i.e., Aj is executed according to its
ALAP schedule, see Definition 5.5.1); (ii) none of the invocations of the source actor
are affected by tardiness.

We can then prove Proposition 5.5.2 with a procedure similar to the one used
in the proof of Proposition 5.5.1. We associate the worst-case completion of all the
invocations Aj,k to a fictitious actor Ãj. Actor Ãj is strictly periodic, with no tardiness,
constant period T̃j = Tj and start time S̃j = Sj + ∆j. Then, the minimum buffer
requirement of the communication channel eu is found by evaluating Equation (2.31)
on page 46 with Ai as source actor and Ãj as destination actor. This scenario is
captured by Equation (5.2).

Note that any earlier completion of any of the iterations of Aj would not increase
the buffer size requirement. This is because an earlier completion of Aj would re-
sults in an earlier consumption of tokens from channel eu. Similarly, any delayed
completion of an iteration of Ai would result in a delayed production of tokens to the
considered channel. Thus, the derived value of bu is sufficient. �

Note that Equations (5.1) and (5.2) can also be used to analyze the interfaces
between the external data provider and consumer (I and O in Figure 5.3(b)) and the
input and output actors of the application (Ain, Aout). Compared to the HRT approach
shown in Figure 5.3(a), in the SRT approach of Figure 5.3(b) Ain and/or Aout may
experience tardiness. In this case, Equations (5.1) and (5.2) derive delayed start time
of the external consumer O and larger buffer sizes of bin and bout such that both I
and O can execute strictly periodically with neither buffer overflow nor underflow
occurring on bin and bout.

5.6 FFD-SP Task Assignment Heuristic

The analysis provided in Section 5.5 extends the scheduling framework of [BS11,
BS12] by calculating different task start times and buffer sizes, depending on the
tardiness bounds of tasks. This way, the derived task set can be scheduled by any
SRT scheduling algorithm. In this section, we present the second main contribution
of this paper, which is focused on a particular SRT scheduling algorithm, namely
EDF-fm [ABD08]. We recall that the most of the theoretical results regarding the
EDF-fm algorithm are summarized in Section 2.2.7 of this thesis.

In our contribution, we propose a task assignment heuristic that does not follow
the sequential approach common to all the heuristics proposed in [ABD08]. In fact,
as explained in Section 2.2.7, the heuristics in [ABD08] assign tasks to processors
in a sequential way, which means that in most cases processors have migrating
tasks assigned to them. In turn, this makes most tasks in the system affected by
tardiness. Actor tardiness imposes larger buffer sizes (according to Proposition 5.5.2)
and postponed start times of successor actors (according to Proposition 5.5.1). Overall,

5.6. FFD-SP Task Assignment Heuristic 99

this leads to larger memory requirements and increased application latency. Our
proposed heuristic is executed in Step 2 of the design flow in Figure 5.2.

In contrast to the heuristics in [ABD08], our proposed heuristic, called FFD-SP,
starts to consider semi-partitioning only when the First-fit Decreasing (FFD) heuristic
[Joh73] (see Section 2.2.6) fails to assign a certain task in the system. The proposed
task assignment heuristic accepts as input the number of processors M onto which the
task set Γ has to be assigned. Then, the assignment of tasks to processors in FFD-SP
proceeds as follows. At first, the set of stateful actors Γs is constructed and tried to
be assigned to the processors using FFD. Stateful actors are considered first in our
heuristics because this way they are fixed to a processor and at run-time there is no
need to migrate their state.

Then, FFD-SP tries to assign the remaining (stateless) actors using FFD. Only
when FFD fails, semi-partitioning is considered. This way, the number of processors
with migrating tasks is likely to be less. Recall from Section 2.2.7 that, under EDF-
fm, on processors which runs migrating tasks, fixed tasks are affected by tardiness.
Therefore, by reducing the number of processors with migrating tasks, FFD-SP tries
to reduce the number of fixed tasks with tardiness. When a task τ has to be semi-
partitioned, its utilization is divided into two shares, s1(τ) and s2(τ). In particular,
FFD-SP tries to assign the largest share possible s1(τ) from the remaining available
utilization on processors; then, it tries to find the best fit for the remaining share s2(τ),
in order to leave larger “chunks” of processor available utilizations to remaining
(unallocated) tasks.

Our proposed FFD-SP assignment heuristic is reported in Algorithm 1. As men-
tioned earlier, at first Algorithm 1 builds Γs, the set of stateful actors, which are then
assigned using the FFD heuristic (lines 1-4).

Then, considering task τ ∈ (Γ − Γs), the algorithm tries to assign task τ to one of
the processors using FFD (lines 6-8). If FFD does not succeed, the algorithm tries to
divide the utilization of task τ in two shares, s1(τ) and s2(τ). Traversing the processor
list in decreasing order of available utilization, a share s1(τ) = 1 − σ(π′) is tried to
be mapped on processor π′ (lines 9-12). In line 10, the term σ(π′) denotes the total
utilization assigned to π′. For the sake of clarity, this notation is slightly different from
the one given in Equation (2.20) on page 39. If the assignment of s1(τ) is successful,
the algorithm attempts to map share s2(τ) = u(τ)− s1(τ) by traversing the list of
processors in increasing order of available utilization (lines 13-17).

Note that our FFD-SP heuristic may fail to assign tasks to the considered set of
processors. In fact, at the first execution of Algorithm 1, the number of processors
M is set to MOPT, the number of processors required by an optimal scheduler (see
Equation (2.14) on page 34). If the task set cannot be assigned to M processors, M is
increased by one and Algorithm 1 is executed again until a successful assignment is
found.

The algorithm makes use of the sp_assign function to try and assign task shares.
As shown in Algorithm 2, this function checks three conditions (see line 1):

1. There must be enough available utilization on the processor to accommodate
the share. Similarly to Algorithm 1, the term σ(π) denotes the total utilization
assigned to π.

100 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Algorithm 1: FFD-SP task assignment heuristic.
Input: The number of processors M, a task set Γ = {τ1, τ2, · · · , τN} of N periodic tasks.
Result: True and an M-partition describing the task assignment onto M processors if Γ is

schedulable, False otherwise.
Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};1
Assign tasks in Γs using FFD;2
if Γs cannot be assigned then3

return False;4

for τ ∈ (Γ − Γs, sorted in decreasing utilization) do5
Try to assign task τ using First-Fit heuristic;6
if First-Fit is successful then7

continue;8

for π′ ∈ (Π sorted in decr. available utilization) do9
s1(τ) = 1 − σ(π′);10
Assigned = False;11
if sp_assign(s1(τ), π′)==True then12

s2(τ) = u(τ)− s1(τ);13
for π′′ ∈ (Π sorted in incr. available utilization) do14

if sp_assign(s2(τ), π′′)==True then15
Assigned = True;16
break;17

if Assigned==False then18
Revert assignment of s1(τ) to π′;19

else20
break;21

if Assigned==False then22
return False;23

Optimize the obtained partition;24
return True;25

Algorithm 2: sp_assign function.
Input: The share s of task τ to be assigned, a processor π.
Result: True if s can be assigned to π, False otherwise.
if (σ(π) + s ≤ 1) and (σmig

current(π) + u(τ) ≤ 1) and (nmig_tasks < 2) then1
Assign s to π;2
return True;3

else4
return False;5

2. In case another migrating task has already been mapped on processor π, Con-
dition (2.21) in Section 2.2.7 must be satisfied. Note that in Algorithm 2 the
term σ

mig
current(π) denotes the total utilization of migrating tasks assigned to π.

3. The number of migrating tasks nmig_tasks assigned to processor π must be less
than 2 (as required by the EDF-fm algorithm).

When an M-partition (see Definition 2.2.6 on page 35) has been successfully found,

5.7. Evaluation 101

the FFD-SP heuristic tries to optimize it (line 24 in Algorithm 1). The optimization
consists in re-assigning the migrating task shares, whenever possible, to processors
to which less fixed tasks are assigned. This way, less fixed tasks are affected by
tardiness, leading to lower application latency and buffer size requirements. Note
that in Algorithm 1 the first share of a migrating task s1(τ) is set to the largest possible
value, given the current available utilization of processors. This in turns makes the
second share of each migrating task s2(τ) as small as possible, making the process of
optimization of the partition more effective.

5.7 Evaluation

We evaluate our semi-partitioned scheduling approach using the StreamIt bench-
marks considered in [ZBS13], for which we employ the unfolding technique described
in [ZBS13] to derive larger CSDF graphs with improved throughput. Among these
benchmarks, seven applications require, under the partitioned FFD allocation scheme,
more processors than an optimal scheduler. This set of applications is listed in Ta-
ble 5.1. In this section we compare the number of required processors, memory require-
ments, and application latencies obtained with three different allocation/scheduling
approaches: (i) Partitioned EDF with FFD heuristic; (ii) Semi-partitioned EDF-fm, with
our proposed FFD-SP heuristic; (iii) Semi-partitioned EDF-fm, with the LUF (Lowest
Utilization First) heuristic proposed in [ABD08]. These approaches are denoted in
Table 5.1 with FFD, FFD-SP, and LUF, respectively.

Note that all the approaches in Table 5.1 lead to the same application throughput.
This is because the throughput of an application depends on the period of its sink actor,
which is unchanged in our analysis even in presence of task tardiness. In addition, we
choose to compare the results of the LUF heuristic with our FFD-SP heuristic because,
among the heuristics proposed in [ABD08], LUF achieves the smallest number of
processors.

The MOPT column in Table 5.1 lists the number of processors required by an
optimal scheduler (for instance [BCPV96]) to execute the considered applications.
MOPT is obtained using Equation (2.14).

Let us focus on the comparison between the partitioned approach (FFD, described
in Section 2.2.6) and our proposed semi-partitioned approach (FFD-SP, proposed in
Section 5.6). We note that the FFD approach results in a number of processors (MFFD)
which is on average 17.6% greater than the number required by an optimal scheduler
(see column MFFD

MOPT
). In contrast, our FFD-SP algorithm requires on average only

2.1% more processors (see column MSP
MOPT

), while maintaining the same throughput.
This means that our proposed approach can exploit the available processors more
efficiently, getting significantly closer to the results obtained by optimal schedulers
(see columns MSP and MOPT). However, this comes at two costs.

The first cost is the increase of memory requirements. For each benchmark, column
memFFD reports the memory required by the partitioned approach, expressed in bytes.

102 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Table
5.1:C

om
parison

ofdifferentallocation/scheduling
approaches.

B
enchm

ark
O

PT
Partitioned

(FFD
)

Sem
i-partitioned

(FFD
-SP)

Sem
i-partitioned

(LU
F)

M
O

P
T

M
FFD

M
FFD

M
O

P
T

m
em

FFD
[B]

L
FFD

[c.c.]
M

S
P

M
S

P
M

O
P

T

m
em

S
P

m
em

FFD

L
S

P
L

FFD
M

L
U

F
m

em
L

U
F

m
em

FFD

L
L

U
F

L
FFD

FFT
24

30
1.25

144680
192512

26
1.083

1.413
1.483

26
1.485

1.676
B

eam
form

er
26

28
1.077

14492
60912

26
1.0

1.145
1.474

26
1.229

1.606
TD

E
20

25
1.25

516282
1127175

20
1.0

1.560
1.396

21
1.722

1.860
D

E
S

26
33

1.269
3381

33088
27

1.038
1.138

1.218
28

1.684
1.862

M
P

E
G

2
8

9
1.125

61909
138240

8
1.0

1.290
1.217

9
3.014

3.432
B

itonic
11

13
1.182

2374
2275

11
1.0

1.139
1.185

11
1.413

1.395
S

erpent
39

42
1.077

59815
370296

40
1.026

1.012
1.074

39
1.068

1.479
average

-
-

1.176
-

-
-

1.021
1.243

1.292
-

1.659
1.902

5.7. Evaluation 103

It is derived using the following expression:

memFFD =
N

∑
i=1

CSS(τi) +
|E|

∑
i=1

bHRT
u (5.3)

where N is the number of tasks, CSS(τi) is the code and stack size of task τi (which
represents actor Ai of the input CSDF graph G), E is the set of edges in G, bHRT

u is
the size of the buffer that implements the communication over edge eu. The value
of bHRT

u assumes no task tardiness and is obtained using Equation (2.31) on page 46.
Compared to FFD, in FFD-SP the memory requirements increase due to both the size
of buffers, that have to be enlarged to handle task tardiness, and the code and stack
size overhead of task replicas, which are necessary in case of migrating tasks. The
memory requirement in FFD-SP is denoted by memSP and calculated as follows.

memSP =
MSP

∑
i=1

∑
τj∈Γi

CSS(τj) +
|E|

∑
i=1

bSRT
u (5.4)

where MSP is the number of processors required by the semi-partitioned approach,
Γj is the set of tasks with non-zero shares on processor πj, and bSRT

u is the size of the
buffer that implements the communication over edge eu, calculated using Equation 5.2.
Note that Equation (5.4) differs from Equation (5.3) because in the SP approach a task
can have shares on different processors.

In Table 5.1 the overhead of our proposed FFD-SP over FFD, in terms of memory
requirements, is expressed by the ratio memSP

memFFD
. On average, our proposed approach

requires 24.3% more memory compared to FFD.
The second cost is the increase in applications’ latency, due to the postponement of

task start times needed to handle task tardiness. Column LFFD shows the applications’
latency, expressed in clock cycles, under FFD. These values are derived using the
latency analysis described in Section 4.7 of [Bam14]. In order to derive the application
latency under FFD-SP, denoted by LSP, we use the same analysis from [Bam14], con-
sidering the task start times obtained by our SRT approach (described in Section 5.5.1).
Then, we add to that latency value the tardiness (which can be potentially null) of the
output actor of the application. The latency increase of our FFD-SP over FFD is on
average 29.2% (see column LSP

LFFD
).

Finally, to evaluate the efficiency of our proposed FFD-SP heuristic, we compare
its results with LUF. The memory requirements and application latencies under
LUF are derived following the same procedures used for FFD-SP. We can see from
the last two columns of Table 5.1 that over the considered benchmarks the EDF-fm
approach with the LUF heuristic incurs a much larger memory overhead (on average
+65.9%, see column memLUF

memFFD
) and latency increase (on average +90.2%, see column

LLUF
LFFD

) compared to FFD. Moreover, we note that for most applications the number
of required processors is equal or greater when using LUF (MLUF) compared to our
FFD-SP (MSP), with the exception of the Serpent application. Only in that example,
the LUF outperforms our FFD-SP due to the characteristics of the task set. This means

104 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

that for most of the benchmarks our FFD-SP heuristic is equally or more efficient
than LUF in exploiting the available processing resources.

5.8 Discussion

The theoretical analysis provided in Section 5.5 proves that streaming applications
modeled as acyclic CSDF graphs can be scheduled using any soft real-time scheduler,
providing hard real-time guarantees on the input/output interfaces between the
application and the environment.

Using the theoretical results of Section 5.5, in Section 5.6 we propose a novel
heuristic that is aimed at reducing the number of required processors while keeping a
low buffer size and latency overhead when the EDF-fm SRT scheduling algorithm is
used. Section 5.7 shows that on a set of real-life applications, our approach can reduce
the number of processors required to schedule these applications, guaranteeing the
same throughput. However, compared to a HRT partitioned approach, our semi-
partitioned SRT approach incurs an overhead in terms of memory requirements (on
average, 24.3%) and application latency (on average, 29.2%).

Chapter 6

Energy Efficient
Semi-Partitioned Scheduling of
SDF Graphs

Most of the work presented in this chapter has been published in [CS16].

AS mentioned in Section 1.2.4, energy efficiency is one of the emerging challenges
of the modern embedded MPSoCs design, for several reasons. For instance,

in battery-powered devices, energy efficiency can guarantee longer battery life. In
general, energy-efficient design decreases heat dissipation and, in turn, improves
system reliability.

To address the energy efficiency challenge many techniques have been proposed
in the past decade in the embedded system community. As explained in Section 1.2.4,
these techniques exploit Voltage/Frequency Scaling (VFS) of processors and have
been applied to both streaming applications and periodic independent real-time tasks
sets. These VFS techniques can be classified as offline and online. Offline VFS uses
parameters such as the worst-case execution time (WCET) and the period of tasks
to determine, at design-time, appropriate voltage/frequency modes for processors
and how to switch among them, if necessary. Online VFS exploits the fact that at
run-time some tasks can finish earlier than their WCET and determines, at run-time,
the voltage/frequency modes to obtain further energy savings.

In this chapter, we devise an approach to exploit VFS of processors, to minimize
the energy consumption of streaming applications with throughput constraints. We
do so by reusing the scheduling analysis proposed in Chapter 5, which considers
the soft real-time (SRT) EDF-fm scheduling algorithm. However, in this chapter we
propose a novel SRT semi-partitioned scheduling algorithm, different from EDF-fm,
which allows an even distribution of the utilization of tasks among the available
processors. In turn, this enables processors to run at a lower frequency, which yields

106 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

to lower energy consumption. In particular, our proposed SRT semi-partitioned
algorithm is based on restricted migrations, for the practical reasons explained in the
introduction of Chapter 5.

Although the scheduling algorithm used in our VFS scheduling approach is SRT,
our proposed approach can provide HRT guarantees to the input/output interfaces
of the application with the environment. This property is ensured by the scheduling
analysis proposed in Chapter 5, which is reused in this chapter. Therefore, the results
of this chapter can be applied in the context of hard real-time streaming systems.

6.1 Problem Statement

To the best of our knowledge, the potential of semi-partitioned scheduling with
restricted migrations together with VFS techniques to achieve lower energy con-
sumption has not been completely explored. Therefore, in this chapter, we study
the problem of energy minimization when mapping streaming applications with
throughput constraints using such semi-partitioned approach. Our technique consid-
ers homogeneous multiprocessor systems in which voltage and frequency scaling is
supported with a discrete set of operating voltage/frequency modes.

6.2 Contributions

As the main contribution of this chapter, we propose a VFS semi-partitioned schedul-
ing technique aimed at streaming applications with throughput constraints. Our
proposed schedling technique is depicted in Figure 6.1. As mentioned earlier, our
technique builds upon the results of Chapter 5. In that chapter, we showed that a
SRT semi-partitioned scheduler (EDF-fm) can be used to schedule actors of a (C)SDF
graph as real-time periodic tasks.

The dependencies of the technique proposed in this chapter with the scheduling
analysis of Chapter 5 are highlighted by dashed boxes in Figure 6.1. These boxes
include steps that are identical to the scheduling framework in Figure 5.2. In particular,
in both figures:

∙ In Step 1 , we use the scheduling analysis of [BS11, BS12] to derive the WCET
(I) and period (II) of each task, based on the characteristics of the input
application model. Throughout this chapter, we will refer to such derivation as
scheduling analysis of [BS11, BS12]. Recall, from Chapter 5, that parameters I
and II do not depend on the (potential) tardiness of tasks.

∙ In Step 3 , we assume that the periodic tasks will be scheduled by a SRT
scheduling algorithm, which provides a certain tardiness bound ∆i of each task
τi. Then, based on these tardiness bound values, Step 3 derives valid start
times of tasks (III), and sizes of the buffers (IV) which implement inter-task
communication.

The differences of our VFS semi-partitioned technique shown in Figure 6.1, with
regard to semi-partitioned approach of Chapter 5, are the following.

6.2. Contributions 107

Scheduling Analysis

of [BS11,BS12]

Analysis

Model:

SDF

WCET and Period of Tasks:

({Ci}, {Ti})

Task Start Times

and Buffer Sizes

({Si}, {bu})

EDF-ssl

Task Assignment

Temporal and

Buffering Spec.

Tardiness

Bound of

Tasks {Di}

SRT Analysis

1

2

3

I

IVIII

II

No. of

Processors,

VFS scheme

Task

Mapping

Figure 6.1: Energy-efficient scheduling technique proposed in this chapter. Our proposed scheduling
technique starts with Step 1 , where the scheduling analysis of [BS11, BS12] is used to derive the
WCET (I) and period (II) of each task, based on the characteristics of the input application model.
Step 2 uses as input the derived WCET and period of tasks, together with the considered number of
active processors and VFS scheme (parameters provided by the designer). This step derives the Task
Mapping and the tardiness bound of each task, based on the EDF-ssl scheduling algorithm proposed
in this chapter. In turn, given the tardiness bound of tasks, Step 3 derives valid start times of tasks
(III) and sizes of the buffers IV that implement inter-task communication. Therefore, after Step 3 , the
complete Temporal and Buffering Specification is known. The steps enclosed in the dashed boxes reuse
part of the scheduling framework shown in Figure 5.2 and represent the dependency of this chapter from
the theoretical results of Chapter 5.

1. The scheduling algorithm used to schedule the tasks on the system is different.
Chapter 5 uses the EDF-fm SRT semi-partitioned scheduling algorithm. By
contrast, in this chapter, we propose a novel semi-partitioned scheduling algo-
rithm, called EDF-ssl (Earliest Deadline First based semi-partitioned stateless),
which is targeted at streaming applications where some of the tasks may be

108 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

stateless1. In the presence of stateless tasks, our proposed EDF-ssl scheduler
can be effectively used to achieve higher energy efficiency compared to existing
partitioned and semi-partitioned approaches.

2. The scheduling framework shown in Figure 6.1 does not support VFS (i.e., all
processors run at the highest frequency), and provides as output the minimum
number of processors required to schedule the application. By contrast, in
Figure 6.1, the number of available processors, and the VFS mode used in the
system, are provided by the designer (see inputs of Step 2). This is because, to
achieve higher energy efficiency, it may be beneficial to distribute the tasks of
the application on a number of processors greater than the minimum required.

3. The scheduling analysis described in Chapter 5 can accept, as input, applica-
tions modeled as CSDF graphs (see Analysis Model in Figure 5.2). By contrast,
we restrict the VFS scheduling approach presented in this chapter only to
SDF graphs, which are a subset of CSDF graphs. This is because our semi-
partitioned technique can only be beneficial if there are actors for which succes-
sive invocations can be executed in parallel. Actors that possess such property
are, by definition, not allowed in the CSDF model of computation. However,
they are allowed in the SDF model.

Note that, in order to perform the SRT Analysis of Step 3 in Figure 6.1, the
tardiness bound of each task is required. Therefore, in this chapter we derive the
tardiness bounds guaranteed by our proposed EDF-ssl scheduler. In particular, we
derive these bounds in two cases. First, when using the lowest frequency which
guarantees schedulability and is supported by the system. Second, when using a
periodic frequency switching scheme that preserves schedulability and can achieve
higher energy savings. In general, our EDF-ssl allows an even distribution of the
utilization of tasks among the available processors. In turn, this enables processors
to run at a lower frequency, which yields to lower power consumption. Moreover,
compared to a purely partitioned scheduling approach, our experimental results show
that our technique achieves the same application throughput with significant energy
savings (up to 64%) when applied to real-life streaming applications. These energy
savings, however, come at the cost of higher memory requirements and latency of
applications.

6.3 Scope of work

The assumptions and limitations which define the scope of our work are listed in
what follows.

6.3.1 Assumptions

Our work is built on some assumptions that we describe and motivate below.

1See Definition 2.3.6 on page 47.

6.3. Scope of work 109

First, we consider systems with distributed program and data memory. As men-
tioned in Section 1.1.2, this choice of memory subsystem is needed to ensure pre-
dictability of the execution at run-time (since PEs do not have to access shared re-
sources to perform the computation), and scalability.

Second, we consider semi-partitioned scheduling, which is a hybrid between two
extremes, partitioned and global scheduling. As shown in Chapter 5, semi-partitioned
scheduling can ameliorate the bin-packing issues of partitioned scheduling when
applied to streaming applications. At the same time, semi-partitioned scheduling
does not incur the excessive memory and migration overheads of global scheduling.

Third, we assume that the system’s communication infrastructure is predictable,
i.e., it provides guaranteed communication latency. This assumption is needed be-
cause Step 1 in Figure 6.1 uses the scheduling analysis of [BS11,BS12] (see Section 2.3)
to derive WCET and period of each task, based on the characteristics of the input
analysis model. This derivation requires the worst-case communication latency to
compute the WCET of a task. The WCET of a task includes the worst-case time
needed for the task’s computation, the worst-case time needed to perform inter-task
data communication on the considered platform and the worst-case overhead of the
underlying scheduler, as explained in Section 2.3 (see, in particular, Equation (2.26)
on page 43).

6.3.2 Limitations

The research problem addressed in this chapter, described in Section 6.1, is extremely
complex. In order to make it more tractable, our approach considers certain limitations.
However, we argue that even under these limitations many hardware platforms and
applications can be handled by our proposed VFS scheduling technique. In what
follows, we list the limitations considered in our proposed approach.

First, we assume that applications are modeled as acyclic SDF graphs. Although
this assumption limits the scope of our work, our analysis is still applicable to the
majority of streaming applications. In fact, a recent work [TA10] has shown that
around 90% of streaming applications can be modeled as acyclic SDF graphs.

Second, we assume that the hardware platform supports a discrete set of operat-
ing VFS modes. Moreover, we assume that the operating voltage/frequency mode can
only be changed globally over the considered set of processors. Our technique, there-
fore, finds applicability in hardware platforms that apply the same voltage/frequency
mode to all the processors of the system (e.g., the OMAP 4460, as in [ZR13]). Note
that our proposed technique does not consider per-core VFS, therefore it may be less
beneficial for systems which support this kind of VFS granularity. However, per-core
VFS is deemed unlikely to be implemented in next generation of many-core systems,
due to excessive hardware overhead [DA10].

Third, our technique uses offline VFS because we do not exploit the dynamic slack
created at run-time by the earlier completion of some tasks. This choice is motivated
by the following two reasons. (i) Online VFS may require VFS transitions for each
execution of a task. Since we consider applications in which tasks execute periodically,
with very short periods, online VFS would incur significant transitions overhead. For

110 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

instance, the period of tasks in the applications that we consider can be as low as 100
µs. Since the VFS transition delay overhead of modern embedded systems is in the
range of tens of µs [P+13], the overhead of online VFS would be substantial with such
short task periods. (ii) Moreover, the existence of a global frequency for the whole
voltage island renders online VFS less applicable. This is because online VFS would
only be effective if all cores in the voltage island have dynamic slack at the same time.

6.4 Related work

Several techniques addressing energy minimization for streaming applications have
already been proposed in the literature. Among these, the closest to our work are
[WLL+11, SDK13, HMGM13]. [WLL+11] considers applications modeled as Directed
Acyclic Graphs, applies certain transformation on the initial graph and then generates
task schedules using a genetic algorithm, assuming per-core VFS. [SDK13] assumes
that applications are modeled as SDF graphs, and is composed of an offline and
online VFS phases, to achieve energy optimization. As shown in Section 6.7, our
approach exploits results from the real-time scheduling theory that allow, in the
presence of stateless tasks, to set the global system frequency to the lowest value
which guarantees schedulability and is supported by the system. Both [WLL+11]
and [SDK13] cannot in general make the system execute at the lowest frequency
that supports schedulability because they use pure partitioned assignment of tasks
to processors and non-preemptive scheduling. Finally, [HMGM13] considers both
per-core and global VFS but assumes applications modeled as Homogeneous SDF
graphs, and that the task mapping and the static execution order of tasks is given. By
contrast, our approach handles a more expressive MoC and does not assume that the
initial task mapping is given.

In addition, several techniques to achieve energy efficiency for systems executing
periodic independent real-time tasks have been proposed. Among these techniques,
the ones presented in [DA10] and [SJPL08] are closely related to our approach be-
cause they consider global VFS. The authors in [DA10] study the problem of energy
minimization when executing a periodic workload on homogeneous multiprocessor
systems. Their approach, however, considers pure partitioned scheduling. As we
show in this chapter, pure partitioned scheduling can not achieve the highest possible
energy efficiency. In our approach, instead, we consider semi-partitioned scheduling
and we show that this approach yields significant energy savings compared to a pure
partitioned one. The authors in [SJPL08] also address the problem of energy minimiza-
tion under a periodic workload with real-time constraints. However, their approach
allows migration of tasks at any time and to any processor. Therefore, their approach
considers global scheduling of tasks. As explained earlier, in distributed memory
systems global task scheduling entails high overheads, in terms of required memory
and number of required preemptions and migrations of tasks. Our approach consid-
ers semi-partitioned scheduling in order to reduce such overheads, while obtaining
higher energy efficiency than pure partitioned approaches.

Similar to our work, other related approaches exploit task migration to achieve

6.4. Related work 111

energy efficiency, such as [HXW+10] and [Zhe07]. In [HXW+10], the authors re-
allocate tasks at run-time to reduce the fragmentation of idle times on processors.
This in turn allows the system to exploit the longer idle times by switching the
corresponding processors off. As explained earlier, in our approach we do not exploit
run-time processor transitions to the off state because such transitions incur high
overheads, especially when running dataflow tasks which have short periods.

The approach presented in [Zhe07] is closely related to ours because it leverages
a semi-partitioned approach, where tasks migrate with a predictable pattern, to
achieve energy efficiency. The author in [Zhe07] presents a heuristic to assign tasks
to processors in order to obtain an improved load balancing. When tasks cannot
entirely fit on one processor, they are split in two shares which are assigned to two
different processors. Our work differs from [Zhe07] in two main aspects. First, we
allow tasks with heavy utilization to be divided in more than two shares. This can
yield to much higher energy savings compared to the technique proposed in [Zhe07].
Second, we allow job parallelism, i.e., we allow the concurrent execution on different
processors of jobs of the same task. This, in turn, contributes to an improved balancing
of the load among processors, which allows us to apply voltage and frequency scaling
more effectively, as will be shown in Section 6.7. Moreover, the applicability of the
analysis proposed in [Zhe07] to task sets with data dependencies, as in our case, is
questionable. In fact, the semi-partitioned scheduling algorithm underlying [Zhe07]
is identical to the one proposed by Anderson et al. in [ABD08]. As the latter paper
shows, under this semi-partitioned scheduling algorithm tasks can miss deadlines
by a value called tardiness, even when VFS is not considered. Since in our case tasks
communicate data, to guarantee that data dependencies among tasks are respected
this tardiness must be analyzed. However, an analysis of task tardiness is not given
by [Zhe07].

As mentioned earlier, the approach we propose in our work exploits the concurrent
execution on different processors of jobs of the same task. In a similar fashion, related
works that exploit parallel execution of a task on different processors to achieve
energy efficiency are [W+10] and [Lee09]. In [W+10] the authors exploit the data
parallelism available in the input application. That is, jobs of an application are
divided in sub-jobs which process independent subsets of the input data. These sub-
jobs can therefore be executed independently and concurrently on different processors,
obtaining a more balanced load on processors, which in turn allows a more effective
scaling of voltage and frequency of processors. The approach presented in [W+10],
however, incurs a drawback in the case of distributed memory architectures. In fact,
the mentioned sub-jobs of the application can be seen as separate instances of the
input application, which execute independent chunks of input data. This means
that, in distributed memory architectures, the code of the whole application has to
be replicated on all the processors which execute these sub-jobs. By contrast, in
our approach only certain tasks of the input application have to be replicated (only
migrating tasks), which reduces significantly the memory overhead of our approach
compared to the one in [W+10]. An approach similar to [W+10] has been proposed by
the authors in [Lee09]. The technique presented in [Lee09] also divides computation-
intensive tasks to sub-tasks which can be concurrently executed on multiple cores.

112 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

As in [W+10], this yields to a more balanced load on processors, and in turn allows
the system to run at a lower frequency. Moreover, the authors in [Lee09] consider
systems with discrete set of operating frequencies. Similar to our technique, when the
lowest frequency which guarantees schedulability is not supported by the system,
the analysis in [Lee09] employs a processor frequency switching scheme to obtain
this lowest frequency and still meet all deadlines. However, our analysis is different
from [Lee09] in several aspects. First, when assigning sub-tasks load to the available
processors, [Lee09] considers only symmetric distribution of the load of a task to
different processors. In contrast, in our proposed approach, as shown in Example
6.7.2 in Section 6.7, in order to obtain optimal energy savings we allow an asymmetric
distribution of the load of certain tasks to the available processors. Second, two
major differences concern the derivation of the periodic VFS switching scheme that
guarantees schedulability. The first difference is that the analysis in [Lee09] does not
account for the overheads incurred when performing VFS transitions. By contrast,
our analysis take this realistic overhead into account. The second difference is that
in [Lee09] such periodic VFS switching scheme is derived in order to meet all the
deadlines of tasks. This requires the system to perform very frequent VFS transitions,
especially when tasks have short periods as in our case. Conversely, in our approach
we allow some task deadlines to be missed, by a bounded amount. This allows our
approach to perform much fewer VFS transitions. As VFS transitions incur time and
energy overhead in realistic systems, our approach guarantees higher effectiveness
compared to [Lee09].

The semi-partitioned scheduling that we propose, EDF-ssl, allows only restricted
migrations. Notable examples of existing semi-partitioned scheduling algorithms
with restricted migrations are EDF-fm [ABD08] and EDF-os [AEDC14], which are
described in Sections 2.2.7 and 2.2.8 of this thesis. Our EDF-ssl algorithm inherits
some properties from EDF-fm and EDF-os. The closest to our EDF-ssl is EDF-os
because it allows migrating tasks to run on two or more processors, not strictly on
two as in EDF-fm. The fundamental difference between EDF-os and our proposed
EDF-ssl lays in the kind of applications that are considered by these two scheduling
algorithms. In EDF-ssl we consider applications in which some of the tasks may
be stateless and therefore can execute different jobs of the same task in parallel, if
released on different processors. By contrast, EDF-os considers applications modeled
as sets of tasks where all tasks are stateful. This means that different jobs of the same
task cannot be executed concurrently. As explained in detail in Section 6.7, this fact
prevents EDF-os from achieving energy-optimal results when streaming applications
have stateless tasks with high utilization. This phenomenon is also described in the
experimental results section (Section 6.9.3). Similar to our work, analyses of schedul-
ing algorithms that allow jobs within a single task to run concurrently are presented
in [EA11, YA14]. However, both these works consider global scheduling algorithms
which, as mentioned earlier, entail high overheads especially in distributed memory
architectures. In addition, in both [EA11] and [YA14] the potential of exploiting job
parallelism to achieve higher energy efficiency is not explored.

6.5. System Model 113

6.5 System Model

In this section, we define the system model used in this chapter. As in Chapter 5,
we consider a system composed of a set Π = {π1, π2, · · · , πM} of M homogeneous
processors. In this chapter, however, we assume that processors are endowed with
VFS capability. In particular, as explained in the beginning of this chapter, we consider
the problem of mapping applications to systems in which all the cores belong to the
same voltage/frequency island. This means that any processor in the system either
runs at the same “global” frequency and voltage level, or is idle. Each idle processor
has no tasks assigned to it and consumes negligible energy. We assume that the
system supports only a discrete set Φ = {F1, F2, · · · , FN} of N operating frequencies,
where the maximum frequency is FN = Fmax. To ease the explanation of our analysis,
based on this maximum frequency Fmax we define the normalized system speed as
follows.

Definition 6.5.1. (Normalized speed). Given a frequency F at which the system runs,
this system is said to run at a normalized system speed α = F/Fmax.

This definition creates a one-to-one correspondence between any frequency at
which the considered system runs and its normalized speed. We will exploit this
correspondence throughout this chapter. Given the set of supported frequencies
Φ, by applying Def. 6.5.1 we obtain a set of supported normalized system speeds
𝒩𝒮 = {α1, α2, · · · , αN}, where αN = αmax = 1.

6.6 Example of SRT Scheduling of an SDF Graph

In this section, we provide an example of the scheduling technique shown in Figure 6.1.
This example will be used in the remainder of this chapter. We recall that the dashed
boxes in Figure 6.1 represent the dependencies of the scheduling analysis proposed
in this chapter from the theoretical results of Chapter 5. Based on the characteristics
of the input application model, the steps contained in the dashed boxes are used to
obtain the complete temporal and buffering specification of the task set, i.e., the WCET,
period, and start time of actors, together with the size of the buffers that implement
inter-task communication. Altogether, these steps convert the SDF model of the input
application to a set of real-time periodic tasks which can be scheduled by an SRT
scheduler.

In particular, Step 1 in Figure 6.1 uses the scheduling analysis of [BS11, BS12]
(described in Section 2.3) to derive the WCET and period of tasks. More in detail, it
uses Equation (2.26) on page 43 to derive the WCET of tasks and Equation (2.29) on
page 44 to calculate their periods.

Step 2 in Figure 6.1 requires as input the obtained WCET and period of actors.
In addition, it assumes that the number of available processors in the system and
the VFS scheme are given (for instance, by the designer). Using these inputs, Step 2
derives the mapping of tasks to processors and the tardiness bound of each task. In

114 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

the next sections, we will describe how the task mapping and tardiness bound of
tasks are derived under our proposed EDF-ssl scheduler.

Assuming that the tardiness bound of each task is known, Step 3 applies the the-
oretical results from Chapter 5 to derive the earliest start times of tasks and minimum
sizes of the buffers that implement inter-task data communication.

In the example provided below, we describe in greater detail how periods and
start times of tasks are derived, in Step 1 and Step 3 in Figure 6.1, respectively.

Example 6.6.1. Consider the SDF graph shown in Figure 6.2(a), which has three
actors (A1, A2, A3) with WCET indicated between parentheses (C1=2, C2=3, C3=2)
and production/consumption rates indicated above the corresponding edges. In
Step 1 in Figure 6.1, using Equation (2.27) on page 43, we derive the following
minimum periods: T1=T3=6 and T2=3, as shown in Figure 6.2(b). Then, suppose that
the underlying SRT scheduling algorithm guarantees tardiness bounds ∆1=1, ∆2=2
(as indicated in Figure 6.2(a) and visualized in Figure 6.2(b)), whereas ∆3=0.

In Step 3 in Figure 6.1, using these tardiness bounds, we apply Proposition 5.5.1
on page 95 and derive the earliest start times Si shown in Figure 6.2(b). For instance,
note that S2=7 ensures that any invocation of A2 will always have enough data to
read as soon as it is released. This holds even when all the invocations of A1 incur the
largest tardiness ∆1, i.e., they execute according to the ALAP completion schedule
(see Definition 5.5.1 on page 95).

6.7 Proposed Semi-partitioned Algorithm: EDF-ssl

In this section we describe our proposed semi-partitioned scheduler, called EDF-ssl.
In EDF-ssl, only stateless tasks (recall Definition 2.3.6 on page 47) are allowed to be
migrated. We enforce this condition because migrating the internal state of a stateful
task can be prohibitive in a distributed memory system. Note that under EDF-ssl
task migrations can only happen at job boundaries. Once a job is released on a certain
processor, it cannot migrate to another one. Moreover, EDF-ssl exploits the fact that
migrating tasks are stateless by allowing successive jobs to execute in parallel on
different processors. For instance, in Figure 6.4(b), jobs τ1,0 and τ1,1 are executed on
two different processors and can execute in parallel.

With our EDF-ssl we want to show that, in the presence of stateless tasks, semi-
partitioned scheduling can be used to improve energy efficiency, while achieving the
same application throughput compared to purely partitioned scheduling. To achieve
better energy efficiency it may be beneficial to run processors at voltage/frequency
levels lower than the maximum. The following example shows that under certain
conditions the classical partitioned VFS techniques (e.g., [AY03]) are not effective.
Moreover, existing semi-partitioned approaches do not exploit the presence of some
stateless tasks in the considered applications and therefore cannot be applied to
achieve energy efficiency, if these stateless tasks have high utilization.

Example 6.7.1. Consider a single stateless task τ1 = (C1 = 3, T1 = 3). The task
utilization is u1 = 1. In this case, existing partitioned VFS techniques can not be

6.7. Proposed Semi-partitioned Algorithm: EDF-ssl 115

A1
(2)

A2
(3)

A3
(2)

24 1 2

D1 D2

e1 e2

(a) Simple example of an SDF graph. The WCET of
actors are indicated between parentheses. The pro-
duction/consumption rates of actors are indicated
above the corresponding edges.

4

D2

3

0

t

A2

A1

A3

5

S1 T1

D1

0 10 15

1 2 3

0 1 2

0

S2 T2 S3

tardiness

bound
job

deadline

job

release

20

(b) Derived periodic task set and minimum start times. Up arrows represent job
releases, down arrows represent task deadlines. The schedule of all actors continues
indefinitely.

Figure 6.2: Example of the approach proposed in Chapter 5 to schedule an SDF graph with a scheduler
that provides SRT guarantees. The SDF actors in sub-figure (a) are scheduled as real-time periodic tasks
in sub-figure (b). Task periods (T1, T2, T3) are derived using the methodology of [BS11,BS12]. Then, the
analysis proposed in Chapter 5 considers the tardiness bounds guaranteed by the SRT scheduler to each
task. In this figure, the tardiness bounds of actors τ1 and τ2 are ∆1 and ∆2, respectively. Using these
bounds, the analysis proposed in Chapter 5 derives valid start times (S1, S2, S3) of actors such that all
tasks can be released periodically without any buffer underflow.

effective, because τ1 can only be assigned to one processor and this processor must
run at its highest voltage/frequency level, because u1 = 1. Moreover, even existing
semi-partitioned approaches cannot distribute the utilization of τ1 over more than
one processor, as shown in the following. Assume that to improve energy efficiency
the utilization of τ1 has to be split over two cores, π1 and π2, running at half of the
maximum frequency, i.e., at normalized processors speed α = 1/2. Note that under
these conditions the schedulability test given by Inequality (2.23) on page 42 has to be
changed according to the current normalized processor speed.

We enforce therefore σ1 ≤ α and σ2 ≤ α. The resulting assignment of shares of τ1
is shown in Figure 6.3.

In this scenario, the problem of EDF-os is that it does not consider job parallelism.
This means that job τi,k+1 of a migrating task τi has to wait for the completion of the
previous job τi,k. For instance, in Figure 6.4(a), job τ1,0 is released on π1 at time 0. Since
α = 1/2, τ1,0 finishes at time 6. Therefore job τ1,1, although released at time 3 on π2,

116 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Proc. p1 Proc. p2

0

1

1/2

S1,1=1/2 S1,2=1/2

Figure 6.3: Share assignment considered in Example 6.7.1. The utilization u1 = 1 of a single migrating
task τ1 is split into two shares s1,1 = 1/2 and s1,2 = 1/2. Shares s1,1 and s1,2 are assigned to processors
π1 and π2, respectively.

t60 153 9 12 18

C

C

Cp1

p2 t1,1

t1,0 t1,2

D(t1,0)

D(t1,1)

D(t1,2)

job

release

job

deadline

tardiness

bound C
job

completion

(a) Job executions according to EDF-os rules. Since EDF-os does not
consider job parallelism, the tardiness of successive jobs of task τ1 grows
unboundedly, as shown in red in this figure.

t60 153 9 12 18

p1

p2 t1,1

t1,0 t1,2

D(t1,0)

D(t1,1)

D(t1,2)

t1,3

D(t1,3)

C C

C C

(b) Job executions according to EDF-ssl rules. EDF-ssl does consider
job parallelism, allowing jobs released by migrating task τ1 to execute in
parallel. This leads to bounded tardiness for all jobs of τ1.

Figure 6.4: Job executions of τ1 = (C1 = 3, T1 = 3), as defined in Example 6.7.1, according to the
share assignment of Figure 6.3. Up arrows indicate job releases, down arrows indicate job deadlines.
Black rectangles indicate job completion. Although the WCET of τ1 is 3 time units, each job of τ1 takes 6
time units to complete because processors π1 and π2 run at normalized processor speed α = 1/2.

has to wait until time 6 to start executing. As shown in Figure 6.4(a), although jobs of
τ1 are assigned alternatively to π1 and π2, the tardiness ∆ incurred by successive jobs
of τ1 increases unboundedly. Our EDF-ssl avoids this linkage between processors by
allowing jobs released by a migrating task to execute in parallel, exploiting the fact
that migrating tasks are assumed to be stateless. As depicted in Figure 6.4(b), this
leads to bounded tardiness for all jobs of τ1.

Under our EDF-ssl, necessary (but not sufficient) conditions to guarantee schedu-

6.7. Proposed Semi-partitioned Algorithm: EDF-ssl 117

lability are the following. First, the total utilization of the task set Γ cannot be higher
than the total available utilization on processors: UΓ ≤ α · M, where M is the number
of available processors in the system and assuming that they all run at the same
normalized speed α ≤ 1. Second, α must be greater than the utilization of any stateful
task in Γ: α ≥ us,max, where us,max is the utilization of the heaviest stateful task in
Γ. This is because stateful tasks are fixed, and any processor to which the utilization
us,max > α is assigned will be overloaded. We merge the above two conditions in the
following expression, which provides necessary higher and lower bounds for α:

max{UΓ/M, us,max} ≤ α ≤ 1 (6.1)

We now proceed with a detailed description of our EDF-ssl. As in all semi-
partitioned approaches (e.g., [ABD08, AEDC14]), EDF-ssl is composed of two phases,
an assignment phase and an execution phase, which are described in Section 6.7.1 and
Section 6.7.2, respectively. Tardiness bounds guaranteed under EDF-ssl are derived in
Section 6.7.3, for the case of processors running at a fixed normalized speed α. Finally,
Section 6.7.4 presents a processor speed switching technique, called “Pulse Width
Modulation (PWM) scheme”, that provides a certain normalized speed in the long
run. Tardiness bounds are derived also for the latter scenario.

6.7.1 Assignment Phase

The assignment phase of EDF-ssl tries to find an assignment of tasks to processors
that reduces the number of tasks with tardiness. This is because, as described in
Chapter 5, many tasks with tardiness result in high overheads in terms of application
latency and buffer sizes.

Note that under EDF-ssl processors can run at a normalized speed α lower than 1.
Therefore, to avoid overloading processors in the long run, we modify the schedula-
bility test given by Condition (2.23) on page 42 as follows:

σk ≤ α, ∀πk ∈ Π (6.2)

where σk is the total share assignment on any processor πk. Expression (6.2) implies
that σk cannot exceed the normalized processor speed. Moreover, note that searching
a valid assignment makes only sense if Condition (6.1) is satisfied.

The assignment phase of EDF-ssl consists mainly of 3 steps, which we explain
below.

First step. In this step, we find the set of stateful tasks Γs within the original task
set Γ. Then, we use the First-Fit Decreasing Heuristic (FFD) [Joh73] (see Section 2.2.6)
to allocate these stateful tasks as fixed tasks over the available processors. This means
that if τi ∈ Γs is assigned to processor πk, its share on πk should be equal to the whole
task utilization: si,k = ui. On all the other processors, task τi has no shares.

Second step. This step tries to assign all the remaining (stateless) tasks as fixed
tasks over the remaining available processor utilization, using FFD. The tasks which
can not be assigned as fixed are added to a set of tasks Γna (not assigned), which are
assigned in the next step.

118 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Algorithm 3: Share assignment heuristic.

Input: A set of M processors Π = {π1, π2, · · · , πM}, their normalized speed α,
a set of N periodic tasks Γ = {τ1, τ2, · · · , τN}.

Result: An M-partition describing the share assignment onto M processors if Γ
is schedulable, False otherwise.

Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};1

for τi ∈ (Γs, sorted by decreasing utilization) do2

Try to assign si,k = ui of task τi on a single πk using FF;3

if FF fails for all πk ∈ Π then4

return False;5

Γna = ∅ (the set of unassigned tasks, initially empty)6

for τi ∈ (Γ − Γs, sorted by decreasing utilization) do7

Try to assign si,k = ui of task τi on πk using FF;8

if FF fails for all πk ∈ Π then9

Γna = Γna ∪ τi;10

k = M (start share assignment from processor πM to π1);11

for τi ∈ Γna do12

uremaining = ui;13

while uremaining > 0 do14

si,k = min(uremaining, (α − σk));15

σk = σk + si,k;16

uremaining = uremaining − si,k);17

if σk = α then18

k = k-119

Third step. The final step assigns all the remaining tasks, which could not be allo-
cated as fixed tasks. Considering the processor list in reversed order {πM, πM−1, · · ·π1},
task τi ∈ Γna is allocated a share on successive processors, considering the remaining
utilization on each processor, in a sequential order. (The remaining utilization on
processor πk is given by (α − σk)). The assignment of task τi finishes when the sum of
its shares over the processors equals the task utilization ui. The third step considers
the processor list in reversed order as a way to minimize the number of processors,
which already have fixed tasks, that are utilized to assign migrating shares. This can
lead to a lower number of tasks with tardiness.

The three steps described above are implemented in Algorithm 3. In particular,
the first step is represented in lines (1-5), the second step in lines (6-10), the third and
final step in lines (11-17).

Example 6.7.2. Consider the SDF graph example in Figure 6.2(a). In Example 6.6.1, we
derived the corresponding task set Γ = {τ1 = (2, 6), τ2 = (3, 3), τ3 = (2, 6)}. Tasks τ1
and τ2 are stateful, whereas task τ3 is stateless. The total utilization of the task set is

6.7. Proposed Semi-partitioned Algorithm: EDF-ssl 119

0.75

0.5

0.25

1

0
p3

S2,3=3/4

p2

S2,2=1/4

p1

S1,1=1/3

S3,1=1/3

(a) α = 0.75.

0.75

0.5

0.25

1

0
p3p2p1

S2,3=5/9
S1,1=1/3 S3,2=1/3

S2,2=2/9S2,1=2/9

(b) α = αopt = 5/9.

Figure 6.5: Share assignments considered in Example 6.7.2. Values of the normalized system speed α are
denoted by a dashed line. Migrating tasks are indicated in gray. In sub-figure (a), the normalized system
speed α is set to the lowest value that guarantees schedulability and is supported by the system, i.e.,
α = 0.75. In sub-figure (b), we use the periodic frequency switching technique described in Section 6.7.4
to get the normalized speed α = αopt = 5/9 in the long run. The technique represented in sub-figure (b)
leads to additional energy savings due to an even distribution of tasks shares among processors.

UΓ = 1/3 + 1 + 1/3 = 5/3. Assume that we want to execute this task set on M = 3
processors. By Condition (6.1), α ≥ UΓ/M = 5/9, therefore the lowest α which could
provide schedulability is αopt = 5/9. Running the system at this lowest speed αopt
minimizes the energy consumption. Now, if the system supports the speed αopt, we
can simply set the system speed to that value. In this case, we can derive tardiness
bounds using the result in Section 6.7.3, which considers fixed processors speed.

However, suppose that the considered system supports a set of normalized speeds
𝒩𝒮 = {0.25, 0.5, 0.75, 1}. Note that αopt ̸∈ 𝒩𝒮 . In this case, we have two choices.
Choice 1) We set the system speed to the lowest α ∈ 𝒩𝒮 such that α > αopt, condition
which could provide schedulability: α = 0.75. We can then refer again to Section 6.7.3
to derive tardiness bounds in this scenario. Figure 6.5(a) shows the share assignment
of tasks in Γ, when α = 0.75 and assuming that input and output actors (τ1, τ3)
are stateful. Choice 2) We use the periodic speed switching technique described in
Section 6.7.4 to get the normalized speed αopt in the long run, and we derive the
corresponding tardiness bounds. Figure 6.5(b) shows the assignment obtained when
α = αopt = 5/9.

6.7.2 Execution Phase

At run-time, EDF-ssl follows the simple rules defined below.
Job releasing rules. Jobs of a fixed task τf are released periodically, every Tf , on a

single processor. Jobs of a migrating task τm are distributed over all the processors
on which τm has non-zero shares. Our EDF-ssl inherits from EDF-os (and, in turn,
from EDF-fm) the job releasing techniques for migrating tasks (see Section 2.2.8). In
particular, the job releasing technique uses the concept of task fraction, defined in
Definition 2.2.12 on page 39, to avoid overloading the processors in the long run. For
an example, refer to Figure 2.5 on page 41. That figure shows the job release pattern
of tasks τ3 on processors π1 and π2. Since task τ3 has task fractions ϕ3,1 = 3/4 on
processor π1, and ϕ3,2 = 1/4 on processor π2, in the long run the number of jobs
of τ3 released on π1 is three times the number of jobs released on π2. Moreover,

120 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Inequality (2.24) on page 42, which provides an upper bound of the number of jobs
released on a processor as a function of the migrating task fraction, is still valid. This
result will be instrumental to the derivation of tardiness bounds under our EDF-ssl.

Job prioritization rules. Jobs of fixed and migrating tasks released on a certain
processor are scheduled using a local EDF scheduler. As shown in Example 6.7.1,
under our EDF-ssl when a task migrates from a processor to another one, the job re-
leased on the latter processor does not wait until the completion of the job released on
the former processor. This is in contrast with what happens under EDF-os. Moreover,
contrary to our EDF-ssl, under EDF-os certain tasks are statically prioritized over
others.

6.7.3 Tardiness Bounds under Fixed Processor Speed

Given the rules and properties of our EDF-ssl, described in Section 6.7.1 and Sec-
tion 6.7.2, we now derive its tardiness bounds, which are provided by Theorem 6.7.1
below. Note that due to the way task shares are assigned in the third step of the
assignment phase, each processor runs at most two migrating tasks.

Theorem 6.7.1. Consider a processor πk running at a fixed normalized speed α. Assume two
migrating tasks, τi and τj, are assigned to πk. Then, jobs of fixed and migrating tasks released
on πk may incur a tardiness of at most

∆πk =
2 (Ci + Cj)

α
(6.3)

where Ci and Cj are the worst-case execution time of τi and τj, respectively, and α follows
Definition 6.5.1.

Proof. We prove Theorem 6.7.1 by contradiction. We focus on a certain job τq,l , be-
longing to either a fixed or a migrating task, assigned to πk . Let assume that this job
incurs a tardiness which exceeds ∆πk . We define the following time instants to assist
the analysis: td is the absolute deadline of job τq,l ; tc = td + ∆πk ; and t0 is the latest
instant before tc such that no migrating or fixed job released before t0 with deadline at
most td is pending at t0. By definition of t0, just before t0 πk is either idle or executing
a job with deadline later than td. Moreover, t0 cannot be later than rq,l , the release
time of job τq,l . Note that since we assume that job τq,l incurs a tardiness exceeding
∆πk , it follows that τq,l does not finish at or before tc.

We denote as γ the total set of tasks, fixed and migrating, assigned to πk. We first
determine the demand (see Definition 2.2.1) placed on πk by γ in the time interval
[t0, tc). By the definitions of t0, td, and tc, any job of any task that places a demand
in [t0, tc) on πk is released at or after t0 and has a deadline at or before td. Therefore,
the demand of any task τi in [t0, tc) is given by the number of jobs released in this
interval multiplied by the job execution time.

The number of jobs released on πk in [t0, tc), by a fixed task τf , is at most c = ⌊ td−t0
Tf

⌋
because fixed tasks release all of their jobs on πk. By contrast, a migrating task τm

6.7. Proposed Semi-partitioned Algorithm: EDF-ssl 121

releases c = ⌊ td−t0
Tm

⌋ jobs, but only part of them are assigned to πk. An upper bound
of the amount of jobs assigned to πk, out of every c consecutive jobs, is given by
Inequality (2.24) on page 42.

We can now compute the total demand from tasks assigned to πk. We denote as
γ f and γm the fixed and migrating sets of tasks mapped on πk, respectively. Note
that γm = {τi, τj}.

Given the total number of released jobs c, from Inequality (2.24) the demand2 dmd
from migrating tasks in [t0, tc) is upper bounded by:

dmd(γm, t0, tc) ≤
(

ϕi,k

⌊
td − t0

Ti

⌋
+ 2
)

Ci +

(
ϕj,k

⌊
td − t0

Tj

⌋
+ 2

)
Cj

≤ (td − t0)

(
ϕi,k

Ci
Ti

+ ϕj,k
Cj

Tj

)
+ 2(Ci + Cj)

Given the definition of task fraction ϕi,k (see Definition 2.2.12 on page 39), we obtain:

dmd(γm, t0, tc) ≤ (td − t0)(si,k + sj,k) + 2(Ci + Cj) (6.4)

At the same time, the demand from fixed tasks in [t0, tc) is upper bounded by:

dmd(γ f , t0, tc) ≤ ∑
τf ∈γ f

⌊
td − t0

Tf

⌋
C f ≤ (td − t0) ∑

τf ∈γ f

C f

Tf

From Condition (6.2), we obtain:

dmd(γ f , t0, tc) ≤ (td − t0)(α − si,k − sj,k) (6.5)

Combining Inequality (6.4) and (6.5), we derive an upper bound for the total demand
of fixed and migrating tasks in [t0, tc):

dmd(γ f ∪ γm, t0, tc) ≤ α(td − t0) + 2(Ci + Cj) (6.6)

To ease our analysis, we now express the total demand from tasks in clock cycles.
In fact, any requirement in processor time can be converted to clock cycles. For
instance, for any task τa, its worst-case clock cycles requirement is CCa = Ca · Fmax.
This is because the worst-case execution time Ca of τa is obtained at the maximum
processor frequency, Fmax (see definition of Fmax in Section 6.5).

Then, from Inequality (6.6) we get:

dmd_cc(γ f ∪ γm, t0, tc) ≤ Fmax
(
α(td − t0) + 2(Ci + Cj)

)
(6.7)

Now, from our initial assumption that the tardiness of job τq,l exceeds ∆πk , it
follows that the amount of clock cycles provided by the processor in the interval

2See Definition 2.2.1.

122 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

[t0, tc) is less than the total demand from tasks dmd_cc in the same time interval. In the
considered interval, the total demand from tasks is upper bounded by Inequality (6.7),
whereas the amount of clock cycles provided by processor πk is α · Fmax(tc − t0),
because πk runs at frequency α · Fmax. Therefore, we have:

α · Fmax(tc − t0) < Fmax
(
α(td − t0) + 2(Ci + Cj)

)
(6.8)

Dividing both sides by α · Fmax:

tc < td + 2(Ci + Cj)/α ⇒ tc < td + ∆πk (6.9)

Expression (6.9) contradicts the earlier definition of tc = td + ∆πk , therefore Theo-
rem 6.7.1 holds. �

Note that the tardiness bound given by Equation (6.3) differs from the tardiness
bounds of EDF-os given by Equation (3) and (10) in [AEDC14]. This is caused by the
differences in the execution phase between the two scheduling algorithm described in
Section 6.7.2.

6.7.4 Tardiness Bounds under PWM Scheme

The optimal normalized speed αopt, which can minimize the energy consumption
while guaranteeing schedulability, is derived from the lower bound in Expression (6.1).
This αopt, however, often may not be supported by the system. Example 6.7.2 shows
such a case. Recall that by Def. 6.5.1, αopt corresponds to the optimal frequency
Fopt that can guarantee schedulability. Although running constantly at this optimal
frequency Fopt may not be supported by the system, it is possible to achieve this
optimal frequency value in the long run, exploiting a “Pulse Width Modulation” (PWM)
scheme, where the system switches periodically between two supported frequencies,
FL and FH , with FL < Fopt < FH . In particular, we consider the PWM technique
presented in [B+09], which we summarize in the following subsection. Note that other
research works have considered the problem of providing the optimal processor speed
in processors that only provide a discrete set of frequencies. See, for instance, [IY98].
However, in our work we choose the technique proposed in [B+09] because it is
accurate (it considers the overheads incurred during voltage/frequency switching)
and it uses the real-time periodic task model (contrary to [IY98]).

PWM Scheme

The PWM scheme presented in [B+09] is aimed at uniprocessor systems with HRT
constraints. The execution of the scheme at run-time is sketched in Figure 6.6. The
PWM scheme switches periodically between a lower frequency FL and a higher
frequency FH . The period of the PWM scheme is denoted by P.

The duration of the interval of the low-frequency (high-frequency) mode is QL

(QH). Note that QL + QH = P. Moreover, [B+09] defines λL = QL
P and λH = QH

P , the
fraction of time spent running at low and high modes, respectively.

6.7. Proposed Semi-partitioned Algorithm: EDF-ssl 123

F(t)

FH

FL
Feff

t
QH QL oLH oHL

P

Figure 6.6: Execution of the PWM scheme. The scheme switches periodically between a lower frequency
FL and a higher frequency FH , in order to provide an effective frequency Feff in the long run. The period
of the PWM scheme is denoted by P.

Z(t)

t

r

FL (QL-oHL)

omax

(QL-oHL) (QH-oLH)

omin

P

Feff
t.

P.
F

e
ff

.

Feff
t -

 r.

Z(t)

Figure 6.7: Supply function Z(t). This function provides the minimum number of cycles executed by
the processor under the PWM scheme in every time interval of length t.

As shown in Figure 6.6, the scheme considers time overheads due to frequency
switching. These overheads are denoted by oLH for transitions between lower to
higher frequencies, and by oHL for the opposite transitions. In addition, [B+09]
denotes the amount of clock cycles lost during frequency transitions as ∆LH = FL ·
oHL + FH · oLH.

Under the above definitions, the effective frequency obtained by running the
processor at FL for QL time and FH for QH time is given by expression (8) in [B+09]:

Feff = λLFL + λH FH − ∆LH/P (6.10)

To ensure HRT execution on the system, in their analysis the authors leverage the
processor supply function Z(t), defined as the minimum number of cycles that the pro-
cessor can provide in every interval of length t. From the parameters of the PWM scheme,
Z(t) is depicted with a solid red line in Figure 6.7, with omax = max{oLH, oHL} and
omin = min{oLH, oHL}. Function Z(t) is zero in [0, omax]; grows linearly with slope
FL in [omax, omax + QL − oHL]; stays constant in [omax + QL − oHL, omax + QL − oHL +
omin]; finally, grows with slope FH until the end of the period P. Note that Z(t) is
periodic with period P.

124 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Tardiness Bounds Derivation

In our approach, we leverage the processor supply function Z(t) to derive tardiness
bounds for any task running on a processor under our EDF-ssl scheduling algorithm.
These tardiness bounds are given by the following theorem.

Theorem 6.7.2. Consider a processor πk, on which the PWM scheme described in Sec-
tion 6.7.4 is applied to obtain an effective frequency Feff. Assume that two migrating tasks,
τi (with WCET Ci) and τj (with WCET Cj), are assigned to πk. Then, jobs of fixed and
migrating tasks released on πk may incur a tardiness of at most

∆πk
PWM =

2(Ci + Cj)

αeff
+

ρ

Feff
(6.11)

with ρ = (Feff − FL)QL + FL · oHL + Feff · oLH and αeff is derived from Feff using Defini-
tion 6.5.1.

Proof. To prove Theorem 6.7.2, we first derive a lower bound for Z(t). We define the
following parameter:

ρ = maxt∈R+{Feff · t − Z(t)}
which represents the maximum difference between the “optimal” number of cycles,
provided in the interval [0, t] by a processor running at Feff, and Z(t). From Figure 6.7
we get:

ρ = (Feff − FL)QL + FL · oHL + Feff · oLH (6.12)

from which we can express a lower bound for Z(t) as:

Ž(t) = Feff · t − ρ (6.13)

Ž(t) is depicted in Figure 6.7 with a dashed red line. We can then express Z(t) as
Z(t) = Ž(t) + e(t), with e(t) ≥ 0, ∀t ≥ 0.

Now, we follow the proof of Theorem 6.7.1. This time, the instant tc is defined
as tc = td + ∆πk

PWM, and we assume that a certain job τq,l does not complete by time
tc. The definitions of t0 and td are the same as in the proof of Theorem 6.7.1. The
demand from fixed and migrating tasks, expressed in clock cycles, is still bounded by
Expression (6.7). However, we have to change the left-hand side of Inequality (6.8)
with Z(tc − t0), obtaining:

Feff · (tc − t0)− ρ + e(tc − t0) < Fmax
(
αeff(td − t0) + 2(Ci + Cj)

)
(6.14)

Since Feff = αeff · Fmax, dividing both sides by αeff · Fmax we get:

(tc − t0)−
ρ − e(tc − t0)

Feff
< (td − t0) +

2(Ci + Cj)

αeff

therefore:

(tc − td) <
2(Ci + Cj)

αeff
+

ρ − e(tc − t0)

Feff
= ∆πk

PWM − e(tc − t0)

Feff
(6.15)

Even with e(tc − t0) = 0, which represents the worst case, Expression (6.15) contra-
dicts the definition of tc, therefore Theorem 6.7.2 holds. �

6.8. Start times and buffer sizes under EDF-ssl 125

As Ad
ydxs eu

u u

Figure 6.8: SDF actors As (source) and Ad (destination) with dependency over edge eu. The production
rate of As over eu is denoted by xu

s . The consumption rate of Ad over eu is denoted by yu
d .

Note that by Equation (6.11) it follows that tardiness can be experienced even on
processors with no migrating tasks, given the fact that the term ρ depends only on
the parameters of the PWM scheme.

6.8 Start times and buffer sizes under EDF-ssl

As mentioned in Section 6.6, the analysis described in this chapter leverages the results
of Chapter 5 to schedule the applications using our EDF-ssl soft real-time scheduler.
However, compared to the EDF-fm scheduling algorithm used in Chapter 5, our
EDF-ssl is different in certain aspects. In order to maintain the scheduling analysis
valid for our proposed EDF-ssl, we must take into account these differences between
our EDF-ssl and EDF-fm.

Let us consider the data-dependent actors As (source) and Ad (destination) shown
in Figure 6.8. We recall that in our analysis As and Ad are converted into two periodic
tasks τs and τd using the methodology described in Section 2.3. Assume, for instance,
that the system runs at a certain constant normalized speed α, and both τs and τd are
assigned to the processors as migrating tasks, with the share assignment shown in
Figure 6.9(a). Shares ss,1 and ss,2 of τs are assigned to π1 and π2, whereas shares sd,2
and sd,3 of τd are assigned to π2 and π3. In Figure 6.9(a), the dashed areas in each
processor represent processor utilization assigned to tasks other than τs and τd. These
other tasks are assumed to be of fixed type (i.e., not migrating). Since π1 and π3 run
only one migrating tasks, by Equation (6.3) we derive the following tardiness bounds:
∆π1 = 2Cs/α, ∆π2 = 2(Cs + Cd)/α, ∆π3 = 2Cd/α, where Cs and Cd are the WCETs of
τs and τd, respectively. It follows that under our EDF-ssl jobs of the same migrating
task have different tardiness bounds, depending on which processor the jobs are
released. For instance, jobs of τs will incur a tardiness of at most ∆π2 when released
on π2, and ∆π1 when released on π1, with ∆π2 > ∆π1 . By contrast, under EDF-fm
used in Chapter 5, jobs of a migrating task experience no tardiness at all, because
tardiness can only be experienced by fixed tasks. In addition, under our EDF-ssl jobs
of the same migrating task can execute in parallel. This cannot happen under EDF-fm.

In the remainder of this section we define a way to guarantee a correct schedule
of τs and τd, with no buffer underflow or overflow, under our EDF-ssl. As shown in
Figure 6.9(b), we assume that processors running communicating tasks have access
to a shared memory where data communication buffers are allocated. Note that
our approach allows data and instruction memory of all processors to be completely
distributed, therefore contention can only occur when accessing the shared communi-
cation memory. In Figure 6.9(b), buffer bu of size B implements the communication

126 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

p1 p3

Sd,3

p2

Sd,2

Ss,2
Ss,1

a

(a) Considered share assignment of τs and τd.

p1 p3p2

tdts ts

bu
1 2 . . . B

td

(b) Scheme of the communica-
tion between τs and τd over bu,
according to the share assign-
ment given in sub-figure (a).

Figure 6.9: Analysis of the communication between data-dependent actors when both source (τs) and
destination (τd) actors are implemented as migrating tasks. In sub-figure (a), shares ss,1 and ss,2 of τs
are assigned to π1 and π2, whereas shares sd,2 and sd,3 of τd are assigned to π2 and π3. Sub-figure (b)
represents the access to the shared communication buffer bu by jobs of τs and τd. Under our EDF-ssl,
jobs of τs may execute in parallel if released onto different processors and be affected by a different
tardiness depending on which processor execute them. The same holds for jobs of τd. It follows that jobs
of τs may write out-of-order to buffer bu. Similarly, jobs of the destination task τd may read from bu
out-of-order. This phenomenon is taken into account by our analysis.

over edge eu of Figure 6.8. Our analysis to guarantee a correct scheduling of τs and τd
comprises two parts. First, we guarantee valid start times of τs and τd and buffer size
B by adapting the analysis in Chapter 5 to our EDF-ssl. Second, we define a pattern
that τs and τd use when reading/writing from/to bu to ensure functional correctness.
These two parts are described below.

Part 1 - Valid start times and buffer sizes. As mentioned earlier, under our EDF-
ssl jobs of the same migrating task can have different tardiness bounds, if released on
different processors. According to Definition 2.2.10 on page 38, the tardiness bound
∆i of a certain task τi must be valid for all its jobs. Therefore, we set the value of ∆i to
the maximum tardiness bound among the processors which are assigned (non-zero)
shares of τi, as follows:

∆i =

{
maxk | si,k>0{∆πk} under fixed processor speed
maxk | si,k>0{∆πk

PWM} under PWM scheme
(6.16)

where ∆πk and ∆πk
PWM are the tardiness bounds calculated for processor πk under

fixed processor speed and under the PWM scheme described in Section 6.7.3 and
Section 6.7.4, respectively. For each processor πk, ∆πk and ∆πk

PWM are obtained us-
ing Equation (6.3) and Equation (6.11), respectively. Finally, in Equation (6.16), si,k
represents the share of τi on πk.

By using the tardiness bound ∆i expressed by Equation (6.16), we can represent
the ALAP completion schedule (see Definition 5.5.1 in Section 5.5.1) of actor Ai
(corresponding to task τi) as a fictitious actor Ãi, which has the same period as Ai, no
tardiness, and start time S̃i = Si + ∆i. From Equation (6.16) it follows that at run time

6.8. Start times and buffer sizes under EDF-ssl 127

Algorithm 4: Write pattern of job j of source task τs.
Input: Number of produced tokens xu

s , job index j, buffer size B.
bgn = [(xu

s · j) mod B] + 1;1

end = (xu
s · (j + 1)) mod B;2

if bgn < end then3

write xu
s tokens from bu[bgn] to bu[end]4

else5

write (bgn-B+1) tokens from bu[bgn] to bu[B];6

write remaining tokens from bu[1] to bu[end];7

any invocation Ai,j of actor Ai will never be completed later than the corresponding
invocation Ãi,j of actor Ãi, regardless of which processor is executing that invocation.
Therefore, the analysis for start times and buffer sizes in the presence of tardiness
described in Chapter 5 can be applied considering the tardiness bounds given by
Equation (6.16) and it is correct for our EDF-ssl.

Part 2 - Reading/writing pattern to/from bu. Let us focus on the source actor As
in Figure 6.8, and let assume the share assignment shown in Figure 6.9(a). Under our
EDF-ssl, jobs of τs, which correspond to invocations of As, may execute in parallel
if released onto different processors. Moreover, as mentioned earlier, jobs of τs may
experience different tardiness, depending on which processor the job is released.
It follows that jobs of τs may write out-of-order to buffer bu in Figure 6.9(b). This
is because job τs,k+a, for some a > 0, may finish before job τs,k if they are released
on different processors. Similarly, jobs of the destination task τd may read from bu
out-of-order.

In the scenario described above, it is clear that bu is not a First-in First-out (FIFO)
buffer. Thus, every job of τs/τd (invocation of As/Ad) must know where it has to
write/read to/from bu. Part 1 of our analysis (described above) ensures that B, the
size of bu, is large enough to guarantee that tokens produced by τs will never overwrite
locations which contain tokens still not consumed by τd.

Then, given xu
s , the amount of tokens produced on eu by every job of τs, we enforce

that job j of τs (with j ∈ N0) writes tokens to bu in the memory locations that would
be written if the jobs of τs wrote in-order to a FIFO buffer of size B implemented as
a circular buffer. This writing pattern is implemented in Algorithm 4. Lines 5-7 in
the algorithm handle the case in which the xu

s tokens are “wrapped” in the buffer.
Note that by replacing, in Algorithm 4, xu

s with yu
d and write operations with read

operations we obtain the reading pattern corresponding to job j of destination task τd.

Finally, note that under EDF-ssl, as in EDF-os, the job index j is maintained by
the scheduling algorithm in order to release a migrating task on the right processor,
in order to follow the job releasing rules mentioned in Section 6.7.2. Therefore, the
value of j, used in Algorithm 4, is known when a job is executed on a processor.

128 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

6.9 Evaluation

In this section, we evaluate the effectiveness of our EDF-ssl semi-partitioned schedul-
ing approach in terms of energy savings. We compare our results with the heuristic-
based partitioned approach which guarantees the most balanced distribution of
utilization of tasks among the available processors, and therefore the least energy
consumption, as shown in [AY03]. The authors in [AY03] also show that the most
balanced distributions are derived when Worst Fit Decreasing (WFD) heuristic (see
Section 2.2.6) is used to determine the assignment of tasks to processors. Each pro-
cessor then schedules the tasks assigned to it using a local EDF scheduler. In the
rest of this section, we will refer to this partitioned approach with the acronym PAR.
Note that under PAR all tasks meet their deadlines. By contrast, our proposed semi-
partitioned approach will be denoted in the rest of this section with SP when fixed
processor speed is used, and with PWM when the periodic speed switching scheme is
adopted. Note that although under our approach tasks may experience tardiness, this
has no effect on the guaranteed throughput, which remains constant among all the
considered approaches (PAR, SP, PWM). However, task tardiness has an impact on
buffer sizes and start times of tasks (and, in turn, on the latency of applications), as de-
scribed in Chapter 5. Note that although the PAR approach provides HRT guarantees
to all tasks in the system, whereas both SP and PWM only provide SRT guarantees,
our comparison remains fair. This is because:

∙ As shown in Chapter 5, also SP and PWM can guarantee HRT behavior at the
input/output interfaces with the environment, although some of the tasks of
the application may experience tardiness.

∙ Both SP and PWM, adopting the soft real-time scheduling technique of Chap-
ter 5, guarantee the same throughput as PAR.

These two conditions are sufficient for the kind of applications that we consider, in
which throughput constraints are more relevant than application latency and memory
overheads. Note also that in our scheduling framework, since actors are released
strictly periodically, the application latency is the elapsed time between the start of
the first firing of the input actor and the worst-case completion of the first firing of
the output actor.

6.9.1 Power Model

As mentioned in Section 6.5, we consider homogeneous multiprocessor systems,
in which any core can be either idle or running at a global (normalized) speed α.
We assume that the system supports a discrete set of operating voltage/frequency
modes. In our experiments, we refer to the operating modes of a modern System-
on-Chip, the OMAP 4460, as in [ZR13]. This SoC comprises two ARM Cortex-A9
cores that can operate at ΦA9 = {0.350, 0.700, 0.920, 1.200} GHz, at a supply voltage
of {0.83, 1.01, 1.11, 1.27} V, respectively. From ΦA9 we can derive the set of supported
normalized speed:

𝒩𝒮A9 = {0.292, 0.583, 0.767, 1.0}

6.9. Evaluation 129

We use the power model of a similar dual Cortex-A9 core system, considered in [P+13],
which we normalize to a single core:

pcpu = pdyn + psta = (0.223V2
cpuFcpu) + (K1Vcpu + K2) (6.17)

where K1 = 0.08965, K2 = 0.07635, Vcpu represents the voltage supplied to the CPU in
Volts, and Fcpu represent the CPU frequency in GHz. Note that the power model given
in Expression (6.17) has been validated with actual power measurements in [P+13].
The model comprises dynamic power pdyn and static power psta, and the value of
pdyn assumes that the core is fully utilized. Note also that Expression (6.17) assumes
that the processor runs at one of the supported normalized speeds αi ∈ 𝒩𝒮A9. From
this αi, we can derive the processor frequency Fcpu = Fi by Definition 6.5.1. Similarly,
to a normalized speed αi corresponds an unique voltage level Vcpu. Therefore, the
power consumption pdyn and psta depend uniquely on αi. We make this relation
explicit by using the notation pdyn(αi), psta(αi), and pcpu(αi).

6.9.2 Energy per Iteration Period

Based on the power model expressed by Equation (6.17), we now proceed by deriving
the energy consumption under PAR, SP, and PWM. In particular, we derive the
energy consumed by the system during one iteration period (H) of the graph (recall
Equation (2.28) on page 44). Note that the iteration period of the graph is the same and
constant among PAR, SP, and PWM, because the periods of all tasks do not change
depending on the considered scheduling approach. Note also that, regardless of the
application latency, every task τi executes qi times during one iteration period H (recall,
again, Equation (2.28)). We assume that α is sufficient to guarantee schedulability,
therefore α ≥ σk, for any active processor πk. In the following, we denote the number
of active cores with MON.

Static energy of (PAR, SP). Both these approaches run at a fixed speed αi, and the
static energy consumed in one iteration period H is given by:

EH,FIX
sta = H · pFIX

sta = H · MON · psta(αi) (6.18)

Dynamic energy of (PAR, SP). We derive the dynamic energy consumption in one
iteration period H. During one iteration period, each task τj executes qj = H/Tj times.
Each worst-case execution takes Cj/αi time, at dynamic power pdyn(αi). Therefore,
the dynamic energy consumed by task τj during one iteration period H is:

EH,FIX
dyn (τj) = qj

Cj

αi
pdyn(αi) (6.19)

From Equation (6.19) we derive the dynamic energy consumed in one iteration period
H by the whole task set as follows:

EH,FIX
dyn = ∑

τj∈Γ
qj

Cj

αi
pdyn(αi) =

pdyn(αi)

αi
∑

τj∈Γ
qjCj (6.20)

130 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Total energy of (PAR, SP). From Equation (6.18) and (6.20) we derive the total
energy consumed during one iteration period H under (PAR, SP) by:

EH,FIX
tot = H · MON · psta(αi) +

pdyn(αi)

αi
∑

τj∈Γ
qjCj (6.21)

Total energy of PWM. Under PWM, the system switches periodically between
normalized speeds αL and αH to guarantee a certain αeff in the long run. Therefore,
we cannot use Equation (6.21) to model the energy consumption per iteration period
under the PWM scheme, because that expression is only valid when the system runs
constantly at one of the supported normalized speeds αi. For the sake of clarity, we
will denote pcpu(αL) and pcpu(αH), obtained from Equation (6.17), with pL and pH ,
respectively. In this scenario, the total power of a single core of the system is provided
by expression (9) in [B+09], reported below.

pPWM
cpu = λL pL + λH pH + ESW/P (6.22)

where ESW = eLH − pH · oLH + eHL − pL · oHL, which represents the energy wasted
during two speed transitions. The terms λL, λH , oLH, oHL, P, are parameters of the
PWM scheme defined in Section 6.7.4, whereas eLH and eHL represent the energy
overhead incurred in the speed transition from αL to αH and vice versa. We assume
that eLH = eHL = 1 µJ and oLH = oHL = 10 µs. Note that these values are compatible
with the findings in [P+13], where the time and energy overheads due to frequency
switching have been derived using actual measurements. Now, given the number of
active cores MON, we can express the total energy per iteration period H under PWM
as:

EH,PWM
tot = H · MON · pPWM

cpu (6.23)

Note that Equation (6.23) depends on Equation (6.22), which in turn depends on the
parameters of the PWM scheme. In particular, we have to find an appropriate value
for the PWM scheme period P. Since we assume that speed changes can only happen
at the granularity of the operating system tick (which has period TOS), we enforce
P to be a multiple of TOS. From Equation (6.10), we derive the shortest P, multiple
of TOS, that makes the overhead-induced clock cycles loss less than ε = 0.01 times
the desired Fopt. Thus, P ≥ ∆LH/(εFopt). Given P, we find the shortest QH , multiple
of TOS, that guarantees an effective frequency Feff greater than or equal to Fopt (from
Equation (6.10); note that QL = P − QH). At this point, all the parameters of the
PWM scheme are known and the total energy consumption per iteration period can
be derived using Equation (6.23).

6.9.3 Experimental Results

In Table 6.1, we show the results obtained using the considered approaches (PAR, SP,
PWM) on a set of real-life applications (see column App). For each application, col-
umn UΓ reports the cumulative utilization of the corresponding task set. In addition,

6.9. Evaluation 131

Ta
bl

e
6.

1:
C

om
pa

ri
so

n
of

di
ffe

re
nt

sh
ar

e
al

lo
ca

tio
n/

sc
he

du
lin

g
ap

pr
oa

ch
es

.

A
pp

U
Γ

R
M̂

PA
R

S
P

P
W

M

[t
kn

s/
s]

M
o PA

R
T

M
PA

R
[k

B]
L

PA
R

[m
s]

E
H PA

R
[J

]
M

o S
P

T
M

S
P

T
M

PA
R

L
S

P
L

PA
R

E
H S

P
E

H PA
R

α
op

t
T

M
P

W
M

T
M

PA
R

L
P

W
M

L
PA

R

E
H P

W
M

E
H PA

R

D
C

T
2.

43
12

00
0

4
3

22
.7

0.
66

7
9.

67
·1

0−
5

4
1.

37
1.

62
0.

77
0.

61
2.

18
3.

85
0.

66
8

3
22

.7
0.

66
7

9.
67

·1
0−

5
5

1.
64

2.
22

0.
64

0.
49

3.
02

5.
95

0.
61

12
3

22
.7

0.
66

7
9.

67
·1

0−
5

9
3.

14
5.

25
0.

37
0.

27
na

na
na

JP
2

1.
23

33
3.

33
4

2
11

4
17

.5
1.

78
·1

0−
3

3
1.

42
1.

28
0.

62
0.

41
1.

9
3.

45
0.

51
8

2
11

4
17

.5
1.

78
·1

0−
3

5
2.

28
2.

13
0.

36
0.

25
na

na
na

12
2

11
4

17
.5

1.
78

·1
0−

3
5

2.
28

2.
13

0.
36

0.
25

na
na

na

M
JP

E
G

1.
22

60
00

4
2

62
.7

0.
83

3
7.

50
·1

0−
5

3
1.

31
1.

42
0.

84
0.

41
1.

94
4.

73
0.

69
8

2
62

.7
0.

83
3

7.
50

·1
0−

5
5

1.
8

3.
17

0.
47

0.
24

na
na

na
12

2
62

.7
0.

83
3

7.
50

·1
0−

5
5

1.
8

3.
17

0.
47

0.
24

na
na

na

M
P

E
G

2
6.

81
12

00
0

8
8

34
5

1.
50

2.
70

·1
0−

4
7

1.
44

1.
55

0.
99

0.
97

1.
84

2.
00

1.
00

12
8

34
5

1.
50

2.
70

·1
0−

4
12

2.
01

2.
21

0.
63

0.
57

2.
45

3.
01

0.
65

TD
E

6.
28

30
00

8
7

84
0

9.
67

9.
90

·1
0−

4
7

1.
00

1.
00

1.
00

0.
9

1.
42

1.
42

0.
94

12
9

84
0

9.
67

7.
60

·1
0−

4
11

1.
68

1.
76

0.
83

0.
57

1.
68

1.
78

0.
84

132 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

column R shows the throughput obtained for each application. For a certain applica-
tion, given xout which is the number of tokens produced by its output actor at every
invocation, the application throughput can be computed as R = xout/Tout where Tout
is the period of the output actor. Therefore, the application throughput R is given
in tokens per second [tkns/s]. Note that the throughput R and the total utilization
UΓ of each application remain constant among all considered allocation/scheduling
approaches (PAR, SP, PWM). The reason is that the WCET of each task τi, derived
using Equation (2.26) on page 43, does not depend on the actual assignment of tasks
to processors, because it considers the worst-case communication time among all
possible assignments of tasks.

Each row in Table 6.1 corresponds to results obtained considering a system com-
posed of M̂ available cores, with M̂ ∈ {4, 8, 12}. Note that column M̂ shows only
meaningful values, those which satisfy M̂ ≥ ⌈UΓ⌉. For each of the considered ap-
proaches (PAR, SP, PWM), and for each value of M̂, we consider each possible number
of active processors MON in the range [⌈UΓ⌉, M̂] and look for the lowest energy con-
sumption, thereby exploring the design space exhaustively. For every value of MON
in that range, we follow a different procedure depending on the considered approach.
In PAR, we simply assign the utilization of tasks to the MON active cores using the
WFD heuristic. Then, if WFD is successful, we derive the lowest αi ∈ 𝒩𝒮A9 which
guarantees schedulability (minαi∈𝒩𝒮A9{αi ≥ σk, ∀ active πk}). Knowing MON and αi,
we determine the total energy per iteration period EH

PAR by Equation (6.21).
In SP, we find the necessary minimum speed αopt = UΓ/MON. We round this speed
value to the closest greater or equal value in 𝒩𝒮A9, which we denote with αi. We run
Algorithm 3 with this speed value αi and M = MON. If Algorithm 3 is successful,
we determine the total energy per iteration period EH

SP by Equation (6.21) with the
considered αi and MON.
In PWM, we calculate αopt = UΓ/MON and we run Algorithm 3 with speed value αopt
and M = MON. If Algorithm 3 is successful, we use αH = minαi∈𝒩𝒮A9{αi ≥ αopt}
and αL = maxαi∈𝒩𝒮A9{αi ≤ αopt} and derive the total energy per iteration period
EH

PWM by Equation (6.23).

For each valid task share assignment, we derive earliest start times of actors and
buffer size requirements by using the formulas derived in Chapter 5 with, for each
task τl , one of the following tardiness bound values: ∆l = 0 in PAR; ∆l obtained by
Equation (6.16) in SP and PWM.

At the end of the design space exploration, for PAR and SP, we report in Table 6.1
the values of MON ∈ [⌈UΓ⌉, M̂] that yielded to the lowest energy consumption. For
PAR (SP), these values are shown in column Mo

PAR (Mo
SP). Note that the optimal

values of MON for PWM are identical to Mo
SP, therefore they are not included.

In the following discussion, we will identify rows in Table 6.1 with the couple
(App, M̂). For each of these rows, under PAR, the table shows: the optimal number
of active processors Mo

PAR; the total memory requirement TMPAR (including code,
stack, buffers); the application latency LPAR, calculated using the latency analysis
described in Section 4.7 of [Bam14]; the energy consumption EH

PAR. In particular, the

6.9. Evaluation 133

total memory requirement in the PAR approach is calculated as follows.

TMPAR =
N

∑
i=1

CSS(τi) +
|E|

∑
i=1

bHRT
u (6.24)

where N is the number of tasks, CSS(τi) is the code and stack size of task τi (which
represents actor Ai of the input CSDF graph G), E is the set of edges in G, bHRT

u is
the size of the buffer that implements the communication over edge eu. The value of
bHRT

u assumes no task tardiness and is obtained using Equation (2.31) on page 46.
By contrast, for the semi-partitioned approach SP, the total memory requirement

TMSP is derived using the following expression.

TMSP =
Mo

SP

∑
i=1

∑
τj∈Γi

CSS(τj) +
|E|

∑
i=1

bSRT
u (6.25)

where Mo
SP is the number of processors (derived in the design space exploration), Γj is

the set of tasks with non-zero shares on processor πj, and bSRT
u is the size of the buffer

that implements the communication over edge eu, calculated using Equation (5.2).
Note that Equation (6.25) differs from Equation (6.24) because in the SP approach
a task can have shares on different processors. In addition, in order to derive the
application latency under SP, denoted by LSP, we use the analysis in Section 4.7
of [Bam14], considering the task start times obtained by our SRT approach. Then, we
add to that latency value the tardiness (which can be potentially null) of the output
actor of the application.

For the PWM approach, the total memory requirement TMPWM and application
latency LPWM are derived following the same procedure used for the SP approach.

We see from Table 6.1 that SP consumes significantly lower energy than PAR, see
column EH

SP/EH
PAR. On average, we obtain an energy saving of 36%. The energy saving

goes up to 64%, see row (JP2, 8). These energy savings, however, come at a cost. The
total memory requirements (see column TMSP/TMPAR) and application latencies (see
column LSP/LPAR) are increased. Memory requirements increase due to i) more task
replicas (with their code and stack memory) needed by the semi-partitioned approach
and ii) more buffers due to task tardiness. Similarly, application latency increases
because task tardiness postpones the start times of the tasks of the application.

The rightmost part of Table 6.1 presents the results under PWM. It shows that
this approach can provide higher energy savings compared to SP (compare columns
EH

PWM/EH
PAR and EH

SP/EH
PAR). The additional energy saving can grow up to 18% (see

rows (JP2,4) and (MJPEG,4)) compared to SP. Rows with na (not applicable) values
indicate that the value of αopt (see the corresponding column) is lower than the
minimum speed in 𝒩𝒮A9. Therefore, the PWM scheme is not applicable. Note that
in three rows the value of EH

PWM/EH
PAR is higher than EH

SP/EH
PAR. This means that, in

those cases, PWM is less effective than SP. The largest inefficiency is obtained in
row (MPEG2,12). In all these cases, the value of αopt is extremely close to one of the
speeds in 𝒩𝒮A9, therefore the energy overhead incurred by the PWM scheme renders

134 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

PWM disadvantageous. Finally, note that PWM incurs more total memory and latency
overheads compared with SP, see columns TMPWM/TMPAR and LPWM/LPAR. This
is due to the higher number of task replicas, and higher values of tardiness, incurred
under PWM.

Note that our experimental results, summarized in Table 6.1, evaluate our pro-
posed approaches SP and PWM using PAR as a reference point. However, we also
made a second comparison, by evaluating our SP and PWM against the results that
can be obtained by using the EDF-os scheduling algorithm as a reference. We do
not show the results of the comparison against EDF-os in a separate table because
that table would be nearly identical to Table 6.1. This is because PAR and EDF-os
achieve nearly the same results, for the following reason. Since our designs are aimed
at achieving the maximum throughput of the considered applications, the utilization
of at least one of the tasks of each application is close to one. In this scenario, as
shown in Section 6.7, EDF-os cannot distribute the utilization of such “heavy” tasks
on multiple processors, therefore the operating frequency of the system cannot be low-
ered without compromising the schedulability of the system. Because of this, EDF-os
does not outperform the PAR approach in our experiments, with the exceptions of
the (MPEG2,8) and (MPEG2,12) cases. In both these two cases, EDF-os requires 7
processors to schedule the tasks set (one processor less than PAR) which results in a
slightly reduced total energy of 2.67 · 10−4 J (compared to EH

PAR = 2.70 · 10−4 J). Since
the difference between PAR and EDF-os involves only the MPEG2 benchmark, and is
in fact minimal, we choose not to show explicitly in a separate table the comparison
of our proposed SP and PWM against EDF-os to avoid redundancy.

6.10 Discussion

In this chapter, we have proposed EDF-ssl, a soft real-time semi-partitioned schedul-
ing algorithm aimed at reducing the energy consumption of embedded multiprocessor
streaming systems with throughput constraints. Our EDF-ssl exploits the presence of
some stateless tasks in the application, allowing the execution of different jobs of the
same task in parallel, and achieving an even distribution of the utilization of tasks
among the available processors. In turn, this enables processors to run at a lower
frequency, which yields to lower energy consumption.

As shown in Section 6.9, our semi-partitioned scheduling approach achieves sig-
nificant energy savings compared to a purely partitioned scheduling approach and
an existing semi-partitioned one, EDF-os. The energy savings are on average 36%
(and up to 64%) when using the lowest frequency which guarantees schedulability
and is supported by the system. By using a periodic frequency switching scheme
that preserves schedulability, instead of this lowest supported fixed frequency, an
additional energy saving up to 18% is obtained. Although the throughput of appli-
cations is unchanged by the proposed semi-partitioned approach, the mentioned
energy savings come at the cost of increased memory requirements and latency of
applications.

Chapter 7

Summary and Discussion

7.1 Thesis Summary

The improvements in the semiconductor technology and the demand from the in-
dustry to provide more and more advanced functionalities to the end user have lead
to a sharp increase in the complexity of embedded multiprocessor systems on chip
(MPSoCs). In order to exploit the parallelism available in MPSoCs, applications have
to be decomposed in portions that can be executed in parallel. The de-facto solution
to achieve this decomposition is to use parallel Models of Computation (MoCs) dur-
ing system design. By using parallel MoCs, applications are divided into tasks (or
processes) that can be executed in parallel. Each of these tasks is assigned to a certain
processing element (PE) of the system. This assignment of tasks to processor is called
spatial scheduling, or task mapping.

In the first part of this thesis, namely Chapters 3 and 4, we have proposed a middle-
ware layer that lays in between the tasks of the applications and the operating system.
Our proposed middleware allows to dynamically change the task mapping at run-
time, i.e., it allows certain tasks to migrate from one PE of the system to another. The
goal of our approach is to exploit the ability to migrate certain tasks in order to achieve
system adaptivity. The middleware layer presented in Chapters 3 and 4 is aimed
at best-effort systems and considers two main assumptions. The first assumption is
that the application to be executed on the MPSoC is specified as a Polyhedral Process
Network (PPN). The second assumption is that the MPSoC execution platform is
based on a Network-on-Chip (NoC) communication infrastructure. Both of these
assumptions are beneficial to our goal of achieving system adaptivity by allowing
task migration.

In particular, in Chapter 3, we have described the first component of the middle-
ware layer mentioned earlier. This component allows PPN processes to communicate
on NoC-based MPSoCs with completely distributed memories. We propose and
compare different approaches (referred to as communication approaches) to implement
communication among PPN processes on NoCs. Our evaluation shows that one of

136 Chapter 7. Summary and Discussion

the communication approaches achieves higher performance when mapping com-
munication dominant applications to NoC-based MPSoCs. Most importantly, for our
goal of allowing process migration, all of the proposed communication approaches
guarantee correct communication among PPN processes even when the mapping of
certain processes is changed at run-time.

Chapter 4 describes the second component of our proposed middleware layer.
This component is in charge of performing the actual migration of the processes
among PEs of the system. That is, it implements the process migration mechanism
used by our middleware. Our proposed migration mechanism is based on one of the
communication approaches described in Chapter 3, and guarantees the following two
important properties.

1. It is time predictable, that is, when a migration is triggered, it will be completed
within a certain time frame.

2. It allows a migration to be triggered at any time during the execution of a
PPN process, except when the status of the input/output FIFO buffers and the
iterator set of the process are updated. Note that these updates take negligible
time compared to the total execution time of the PPN process.

In the second part of this thesis, namely Chapters 5 and 6, we have targeted hard
real-time systems. To this end, we consider applications modeled as Cyclo-static
Dataflow (CSDF) graphs and we have proposed two approaches to schedule such
applications using a semi-partitioned scheduling algorithm. Similar to the approach
presented in Chapters 3 and 4, semi-partitioned scheduling algorithms also allow
certain tasks to migrate. However, in the approach proposed in Chapters 3 and 4
task migrations can occur at any time, triggered by an input event from the user or
from the environment (e.g., a hardware fault). By contrast, under semi-partitioned
schedulers task migrations follow a precise temporal and spatial pattern known at
design-time.

Chapters 5 and 6 use the scheduling framework proposed in [BS11, BS12] as a
basis and research driver. That scheduling framework converts an input application,
specified as a CSDF graph, to a set of real-time periodic tasks. Then, by using any
partitioned hard real-time scheduling algorithm on the derived task set, a designer can
obtain in a fast and analytical way the minimum number of processors that guarantee
the required application performance and the mapping of tasks to processors.

The approach proposed in Chapter 5 extends the scheduling framework of [BS11,
BS12] by allowing also the soft real-time, semi-partitioned scheduling algorithm EDF-
fm [ABD08] to schedule the periodic task set derived from the input application model.
We recall that, by contrast, in the scheduling framework of [BS11, BS12] only hard
real-time, partitioned schedulers are considered. In Chapter 5, we have shown that
our semi-partitioned scheduling approach reduces the number of processors required
to schedule certain applications, compared to a pure partitioned scheduling approach.
However, our proposed semi-partitioned approach incurs an overhead in terms of
memory requirements and latency of the application. As an additional contribution
of Chapter 5, we have proposed a task allocation heuristic that tries to minimize the
mentioned memory and latency overhead incurred by our semi-partitioned approach.

7.2. Discussion 137

Finally, in Chapter 6, we have proposed a novel soft real-time (SRT) semi-partitioned
scheduling algorithm, called EDF-ssl, that can be used instead of the EDF-fm sched-
uler employed in Chapter 5. EDF-ssl is designed to be used in combination with
Voltage/Frequency Scaling (VFS) techniques, and exploits the presence of stateless
tasks to achieve an even distribution of the utilization of tasks among the available
processors and, in turn, improve the energy efficiency of the system. Our proposed
semi-partitioned scheduling achieves the same throughput, at a significantly lower en-
ergy consumption, compared to a purely partitioned scheduling approach. However,
the mentioned energy savings come at the cost of increased memory requirements
and latency of applications.

7.2 Discussion

In Section 7.2.1 and Section 7.2.2, we provide examples of how the techniques pre-
sented in this thesis can be applied in practice to the design of embedded multi-
processor systems. In particular, Section 7.2.1 describes how the process migration
mechanism proposed in Chapter 4 has been applied to an industrially-relevant case
study within the EU FP7 project MADNESS [CGF+11,MTR+12,DCT+13]. In addition,
Section 7.2.2 explains how the semi-partitioned scheduling techniques proposed in
Chapters 5 and 6 can be integrated within the existing DaedalusRT [BZNS12, Bam14]
system-level design flow. Finally, in Section 7.2.3, we explain why we restricted the
contributions of Chapters 3 to 6 to certain application models.

7.2.1 Assessing the migration mechanism in an industrially- rel-
evant case study

In Chapter 4, we have presented our proposed process migration mechanism ex-
ploiting a PPN model with rather simple topology as a running example (see the
upper part of Figure 4.2 on page 77). The topology of the case study considered in
Section 4.6.1, an M-JPEG encoder, is also rather simple.

As a proof that our proposed process migration mechanism can handle more
complex PPN topologies, we applied the migration technique presented in Chapter 4
to an industrially relevant case study, an H.264 decoder. The PPN model of this
application is shown in Figure 7.1. This proof-of-concept has been carried out within
the EU FP7 project MADNESS [CGF+11, MTR+12, DCT+13] and showcased in a live
demonstration at the project’s booth at the DATE’13 conference [Mac13]. Hereafter,
we will refer to the implemented live demonstration as our demo.

In order to describe the kind of process migrations allowed in our demo, we first
provide an abstraction of the PPN topology shown in Figure 7.1. This abstracted PPN
topology is given in Figure 7.2.

By comparing Figure 7.1 and Figure 7.2 we note that, in the latter figure, nodes
get_data and parser have been merged into a single node, denoted by H0. Each of the
other nodes in Figure 7.1 is represented by one unique node in Figure 7.2 and denoted
by H1 to H5.

138 Chapter 7. Summary and Discussion

get_data

parser

Sps: 1 Sh: 1 first_mb_flag: 1 Pps: 1 nal: 1 currBitPos: 1

cavlc

nal: 1Sps: 1 Sh: 1first_mb_flag: 1Pps: 1nal: 1

currBitPos: 1 cavlcIps: 1

Idct

idctIps: 1

intra_prediction

intraPredIps: 1

deblocking_filter

dbIps: 1

currBitPos: 1

nal: 1

coeffs: 1

residual_mb: 1

reconst_mb: 1

printMB

op_mb: 1

Figure 7.1: PPN model of the H.264 decoder application.

get_data

parser

cavlc idct deblock
intra

pred

H0 H1 H2 H3

printMB

H4

Figure 7.2: Abstracted PPN specification of the H.264 decoder application. Compared to Figure 7.1,
nodes get_data and parser are merged into a single node, H0.

The execution platform of our demo is represented in Figure 7.3. It consists of
6 tiles connected by the ×pipes NoC [BB04] and organized as a 2x3 mesh. This
execution platform is implemented onto a Virtex-6 FPGA prototyping board.

In addition to the structure of the execution platform, Figure 7.3 shows the map-
ping of the replicas of the PPN processes which comprise the H.264 application. A
process can be executed on a tile only if a replica of that process is allocated to that
tile. In Figure 7.3, process replicas which are active at system startup are filled in dark

7.2. Discussion 139

tile0

tile3

tile1

tile5tile4tile3

tile2

H2

H3 H4H2

H0 H1

H2

H3 H4

H2

H3 H4

H2

H3 H4

H5

H3 H4

Figure 7.3: Structure of the execution platform used in our demo and allocation of process replicas
to tiles. Process replicas which are active at system startup are filled in dark gray. Input and output
interfaces are not shown.

gray. All the other replicas are inactive, but ready to by activated in case a process
migration requires so.

Our demo includes one input and one output interface (which are not shown
in Figure 7.3). The input interface allows the user to provide inputs to the system
by pushing the buttons available on the FPGA prototyping board. Each button
corresponds to one tile of the system. When a button get pressed by the user, the
system is requested to disable the corresponding tile. The output interface visualizes
the frames generated by the H.264 decoder on an external screen.

Figure 7.4 shows an example of a process migration performed in our demo. In this
example, the user requires the system to deactivate tile3. Then, the resource manager
(RM) which is executed on tile2 triggers the migration of process H2 from tile3 to
tile4 in order to keep the application running. The process migration is executed
using the mechanism described in Chapter 4 of this thesis. Our demo allows the
user to deactivate several tiles, provided that at least one replica of each process of
the H.264 decoder application is allocated onto one of the active tiles. In the most
resource-constrained scenario, the whole application can be executed by tile0 and tile2
alone. However, this results in a much lower frame rate of the application compared
to the initial mapping which uses six active tiles.

A simplified setup of the hardware and software implementation of our demo is
available to download at:
http://daedalus.liacs.nl/demos/MADNESS_adaptivity.tar.gz.
In this prototype, the input and output hardware interfaces of our demo are replaced
(and emulated) by software components.

7.2.2 Application of Chapters 5 and 6 to DaedalusRT

The scheduling framework proposed in [BS11, BS12] (shown in Figure 5.1 on page 88)
has led to the implementation of DaedalusRT [BZNS12,Bam14]. DaedalusRT combines

http://daedalus.liacs.nl/demos/MADNESS_adaptivity.tar.gz

140 Chapter 7. Summary and Discussion

tile0

tile3

tile1

tile5tile4tile3

tile2

H2

H3 H4H2

H0 H1

H2

H3 H4

H2

H3 H4

H2

H3 H4

H5

H3 H4

RM

Figure 7.4: Example of a process migration performed in our demo. The user requires the system to
deactivate tile3. Then, the resource manager (RM) which executes on tile2 triggers the migration of
process H2 from tile3 to tile4 in order to keep the application running.

the hard real-time scheduling analysis of [BS11,BS12] with the initial Daedalus system-
level design flow [NSD08, NTS+08]. The research contributions of Chapters 5 and 6
of this thesis extend the scheduling framework of [BS11, BS12], therefore they can be
directly applied to DaedalusRT, as described in this section.

DaedalusRT allows designers to generate a complete hardware and software plat-
form, with guaranteed hard real-time behavior, starting from a sequential application
specification. An overview of the DaedalusRT design flow is shown in Figure 7.5. The
design process starts by providing the input application(s), written in C/C++ in the
form of a Static Affine Nested Loop Program (SANLP) [VNS07] (see the Application
block in the upper-right part of the figure).

Then, in Step 1 , Parallelization, the pn compiler [VNS07] converts each input
SANLP to an equivalent PPN application specification. Each function call of the
SANLP is converted to a separate process of the derived PPN. Moreover, if two
functions of the SANLP access the same data array through their input/output
arguments, pn derives data dependencies between the corresponding processes in
the PPN.

Based on the derived PPN specification and on the WCET analysis (Step 2) of
each function of the input SANLP, the Analysis Model Derivation (Step 3), performed
by pntools, derives the analysis model of the application. This model is a CSDF
graph, annotated with the WCET of each actor of the graph.

All the parts of DaedalusRT described so far lay outside the dashed box in Figure 7.5
and are used to derive the application specification in the form of a PPN and the
analysis model in the form of a CSDF graph. The derivation of these two models is
not influenced by the contributions of this thesis.

However, the findings of Chapters 5 and 6 do extend the parts of Figure 7.5
enclosed by the dashed box and in particular the HRT Analysis (Step 4) of DaedalusRT.
This analysis is performed by the DARTS (Dataflow Analysis for Real Time Systems)

7.2. Discussion 141

System Synthesis (ESPAM)

No. of

Processors

Task

Mapping

Temporal and

Buffering Spec.

HRT Analysis

(DARTS)
Parallelization

(pn)

User Input

(e.g., scheduler type)
WCET Analysis

Analysis Model (CSDF)Application Spec.:

PPN

Application

Analysis Model

Derivation

(pntools)

Analysis

Model: CSDF
1

2

34

5

Figure 7.5: Overview of the DaedalusRT design flow (adapted from [BZNS12]). Steps 1 , 2 and
3 of the design flow are used to convert the input sequential application to the corresponding PPN

specification and CSDF analysis model. Then, based on this analysis model and on the scheduler chosen
by the user, Step 4 derives the number of processors required to schedule the application, the task
mapping, and the temporal and buffering specification. At the end of Step 4 the system is completely
specified and ready for system synthesis, performed in Step 5 . The parts enclosed by the dashed box
have been extended/modified by the contributions of Chapters 5 and 6 of this thesis.

tool. In fact, the dashed box in Figure 7.5 abstracts the scheduling framework shown
in Figure 5.1 on page 88. We briefly recall the operations performed by this scheduling
framework in the next paragraph.

Step 4 uses the CSDF model of the application as input. The CSDF graph is
then converted to a set of real-time periodic tasks using the scheduling analysis
of [BS11, BS12] (described in Section 2.3). Based on the scheduler type selected by the
user (see upper-left corner of Figure 7.5), DARTS derives: (i) the number of processors
required to schedule the input application(s); (ii) the task mapping, which associates
each task of the application to the processor responsible for its execution; (iii) the
temporal and buffering specification, which consists of parameters that regulate the
scheduling of tasks on the system (namely, WCET, period, and start times of tasks),
together with the size of the buffers used to implement inter-task communication.

The System Synthesis (Step 5) finalizes the design flow by generating the RTL spec-
ification of the target MPSoC platform, together with the software running on each
processor. Step 5 is performed by the ESPAM tool [NSD08] and uses the following
inputs:

∙ the number of required processors, the task mapping, and the temporal and
buffering specification provided by Step 4 ;

∙ the PPN application specification derived by Step 1 .
Note that the whole DaedalusRT design flow, including the tools pn, pntools,

DARTS, and ESPAM, is available to download at http://daedalus.liacs.nl/

http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html

142 Chapter 7. Summary and Discussion

download.html.

As mentioned earlier, Step 4 of DaedalusRT uses the the scheduling analysis
of [BS11, BS12] and therefore, so far, has considered only hard real-time partitioned
scheduling algorithms. The contributions of Chapters 5 and 6 allow designers to
exploit soft real-time semi-partitioned scheduling algorithms in the systems generated
by DaedalusRT, with the benefits summarized in Section 1.4.2. In order to do so, the
parts of DaedalusRT enclosed by the dashed box in Figure 7.5 can be simply replaced
by the scheduling frameworks proposed in Figure 5.2 and Figure 6.1, which represent
the contributions of Chapters 5 and 6, respectively. Although the contributions of these
chapters have been proven to be correct, the schedulers considered in these chapters
have still not been implemented in DaedalusRT. That is, the actual deployment of
EDF-fm (see Section 2.2.7) and EDF-ssl (see Section 6.7) on the systems generated by
DaedalusRT is left as future work.

7.2.3 Application models considered in Chapters 3 to 6

In this section, we explain why Chapters 5 and Chapters 6 consider only applications
modeled as acyclic (C)SDF graphs, and why Chapters 3 and 4 consider applications
modeled as PPNs, instead.

Analysis of Chapters 5 and 6 restricted to acyclic (C)SDF graphs

The restriction on the application models considered in the semi-partitioned schedul-
ing techniques proposed in Chapters 5 and 6 follows naturally from the dependencies
of these techniques from the scheduling analysis of [BS11, BS12]. As explained in
Section 2.3, such scheduling analysis can only handle applications modeled as acyclic
(C)SDF graphs. In turn, this restriction applies also to the scheduling techniques
proposed in Chapters 5 and 6.

Choice of the PPN MoC in Chapters 3 and 4

Chapters 3 and 4 consider applications modeled using the PPN Model of Computation
(MoC) (see Section 2.1.3). We recall that these chapters propose an approach aimed at
achieving system adaptivity in the context of best-effort systems. In order to achieve
system adaptivity, the proposed approach provides a mechanism by which application
processes can migrate among processors at run-time. In such a context, PPNs are a
suitable MoC. This is because in PPNs, memory, control, and synchronization are
completely distributed, which allows to change the mapping of processes to PEs at
run-time with low effort.

As explained in Section 2.1.3, any sequential application specified as a Static Affine
Nested Loop Program (SANLP) can be automatically converted to an equivalent
parallel PPN specification [VNS07]. Moreover, from this specification, it is possible to
efficiently generate the code that will run on the actual MPSoC [NSD08] for process
execution, communication, and synchronization. For these reasons, the PPN model
of the input application is used as Application Specification also in DaedalusRT (see

http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html

7.2. Discussion 143

one of the inputs of Step 5 in Figure 7.5). This application specification is also called
Implementation Model of the application, that is, the model that is close to the final
code to be executed on the MPSoC.

In principle, it would have been possible to base the approach proposed in Chap-
ters 3 and 4 of this thesis on the CSDF MoC (see Section 2.1.2) instead of PPNs. This
is because it has been proven that a PPN is equivalent to a CSDF graph where the
production/consumption sequences of actors consist of only zeros and ones [DSBS06].
However, we did not choose the CSDF MoC for Chapters 3 and 4 due to the following
two reasons.

∙ First, as mentioned earlier, the PPN MoC works well as an implementation
model (see page 16 of [Zha15]), because code can be efficiently generated from
it. This is the reason why DaedalusRT uses the PPN MoC as the implementation
model of an application and CSDF only as the analysis model, i.e., the model
used to perform non-functional analysis (see one of the inputs of Step 4 in
Figure 7.5). Since the approach proposed in Chapters 3 and 4 acts at the level
of the implementation model of the application, the PPN MoC is a natural
foundation for the approach presented in these chapters.

∙ Second, as mentioned earlier, given any application specified as a SANLP, its
equivalent PPN specification can be automatically derived. In turn, this PPN
specification could be converted to an equivalent CSDF specification. However,
in the approach proposed in Chapters 3 and 4, this additional conversion would
not add any benefit. This is because these chapters are aimed at best-effort
systems, and do not require a separate analysis model (in the form of a CSDF
graph) to perform hard real-time analysis as in DaedalusRT. Moreover, in
most cases the PPN application model is more succint (or compact) than the
equivalent CSDF model. If this CSDF application specification were to be
mapped to actual code running on the MPSoC, the lesser compactness of this
specification may result in execution time and/or code size overhead for each
actor of the application, compared to the code generated from the equivalent
PPN specification.

144 Chapter 7. Summary and Discussion

Bibliography

[AACP08] Andrea Acquaviva, Andrea Alimonda, Salvatore Carta, and Michele
Pittau. Assessing task migration impact on embedded soft real-time
streaming multimedia applications. EURASIP J. Emb. Sys., 2008, 2008.

[ABD08] James H Anderson, Vasile Bud, and UmaMaheswari C Devi. An EDF-
based restricted-migration scheduling algorithm for multiprocessor
soft real-time systems. Real-Time Systems, 38(2):85–131, 2008.

[AEDC14] James H. Anderson, Jeremy P. Erickson, UmaMaheswari C. Devi, and
Benjamin N. Casses. Optimal semi-partitioned scheduling in soft real-
time systems. In 2014 IEEE 20th International Conference on Embedded and
Real-Time Computing Systems and Applications, Chongqing, China, August
20-22, 2014, pages 1–10, 2014.

[AK09] C. Ababei and R. Katti. Achieving network on chip fault tolerance by
adaptive remapping. In Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–4, May 2009.

[AMC+07] Federico Angiolini, Paolo Meloni, Salvatore Carta, Luigi Raffo, and
Luca Benini. A layout-aware analysis of networks-on-chip and tra-
ditional interconnects for mpsocs. IEEE Trans. on CAD of Integrated
Circuits and Systems, 26(3):421–434, 2007.

[AT06] Björn Andersson and Eduardo Tovar. Multiprocessor scheduling with
few preemptions. In 12th IEEE Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2006), 16-18 August 2006,
Sydney, Australia, pages 322–334, 2006. URL: http://dx.doi.org/
10.1109/RTCSA.2006.45, doi:10.1109/RTCSA.2006.45.

[AY03] Hakan Aydin and Qi Yang. Energy-aware partitioning for mul-
tiprocessor real-time systems. In 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003,
Nice, France, CD-ROM/Abstracts Proceedings, page 113, 2003. URL:
http://dx.doi.org/10.1109/IPDPS.2003.1213225, doi:10.
1109/IPDPS.2003.1213225.

http://dx.doi.org/10.1109/RTCSA.2006.45
http://dx.doi.org/10.1109/RTCSA.2006.45
http://dx.doi.org/10.1109/RTCSA.2006.45
http://dx.doi.org/10.1109/IPDPS.2003.1213225
http://dx.doi.org/10.1109/IPDPS.2003.1213225
http://dx.doi.org/10.1109/IPDPS.2003.1213225

146 Bibliography

[B+09] Enrico Bini et al. Minimizing CPU energy in real-time systems with
discrete speed management. Trans. Embedded Comput. Syst., 2009.
URL: http://doi.acm.org/10.1145/1550987.1550994, doi:
10.1145/1550987.1550994.

[BABP06] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio
Poggiali. Supporting task migration in multi-processor systems-on-
chip: a feasibility study. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’06, pages 15–20, 2006.

[Bam14] Mohamed A. Bamakhrama. On Hard Real-Time Scheduling of Cyclo-
Static Dataflow and its Application in System-Level Design. PhD thesis,
Leiden University, 2014.

[BB01] Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. Parameterized
dataflow modeling for dsp systems. Signal Processing, IEEE Transactions
on, 49(10):2408–2421, 2001.

[BB04] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture
for gigascale systems-on-chip. Circuits and Systems Magazine, IEEE,
4(2):18–31, September 2004.

[BBA11] Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. Is
semi-partitioned scheduling practical? In 23rd Euromicro Conference
on Real-Time Systems, ECRTS 2011, Porto, Portugal, 5-8 July, 2011, pages
125–135, 2011.

[BBB15] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor
Scheduling for Real-Time Systems. Springer, 2015.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[BDLT13] Shuvra S Bhattacharyya, Ed F Deprettere, Rainer Leupers, and Jarmo
Takala. Handbook of signal processing systems. Springer Science &
Business Media, 2013.

[BDM02] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70–78, Jan 2002.

[BELP96] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete.
Cyclo-static dataflow. IEEE Transactions on Signal Processing, 44(2):397–
408, 1996.

[BHHT10] Iuliana Bacivarov, Wolfgang Haid, Kai Huang, and Lothar Thiele. Meth-
ods and Tools for Mapping Process Networks onto Multi-Processor
Systems-On-Chip. In Shuvra S. Bhattacharyya, Ed F. Deprettere,
Rainer Leupers, and Jarmo Takala, editors, Handbook of Signal Processing
Systems, pages 1007—1040. Springer, October 2010.

http://doi.acm.org/10.1145/1550987.1550994
http://dx.doi.org/10.1145/1550987.1550994
http://dx.doi.org/10.1145/1550987.1550994

Bibliography 147

[BS11] Mohamed Bamakhrama and Todor Stefanov. Hard-real-time schedul-
ing of data-dependent tasks in embedded streaming applications. In
Proceedings of the ninth ACM International Conference on Embedded Soft-
ware, EMSOFT ’11, pages 195–204, New York, NY, USA, 2011. ACM.
doi:10.1145/2038642.2038672.

[BS12] Mohamed A. Bamakhrama and Todor P. Stefanov. On the hard-
real-time scheduling of embedded streaming applications. Design
Automation for Embedded Systems, 2012. DOI: 10.1007/s10617-012-9086-
x. doi:10.1007/s10617-012-9086-x.

[BTV12] Adnan Bouakaz, Jean-Pierre Talpin, and Jan Vitek. Affine Data-Flow
Graphs for the Synthesis of Hard Real-Time Applications. In Proceedings
of the 12th International Conference on Application of Concurrency to System
Design, ACSD ’12, pages 183–192, Los Alamitos, CA, USA, 2012. IEEE
Computer Society.

[BZNS12] Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov, and
Todor Stefanov. A methodology for automated design of hard-real-
time embedded streaming systems. In Proceedings of the 15th Design,
Automation Test in Europe Conference and Exhibition, DATE 2012, pages
941–946, 2012.

[CBS14] Emanuele Cannella, Mohamed Bamakhrama, and Todor Stefanov.
System-level scheduling of real-time streaming applications using a
semi-partitioned approach. In Design, Automation & Test in Europe
Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28,
2014, pages 1–6, 2014. URL: http://dx.doi.org/10.7873/DATE.
2014.376, doi:10.7873/DATE.2014.376.

[CDM+12] Emanuele Cannella, Onur Derin, Paolo Meloni, Giuseppe Tuveri, and
Todor Stefanov. Adaptivity support for mpsocs based on process
migration in polyhedral process networks. VLSI Design, 2012:987209:1–
987209:17, 2012.

[CDS11] Emanuele Cannella, Onur Derin, and Todor Stefanov. Middleware
approaches for adaptivity of kahn process networks on networks-on-
chip. In 2011 Conference on Design and Architectures for Signal and Image
Processing, DASIP 2011, Tampere, Finland, November 2-4, 2011, pages
100–107, 2011. URL: http://dx.doi.org/10.1109/DASIP.2011.
6136862, doi:10.1109/DASIP.2011.6136862.

[CGF+11] Emanuele Cannella, Lorenzo Di Gregorio, Leandro Fiorin, Menno
Lindwer, Paolo Meloni, Olaf Neugebauer, and Andy D. Pimentel.
Towards an ESL design framework for adaptive and fault-tolerant mp-
socs: MADNESS or not? In 9th IEEE Symposium on Embedded Systems
for Real-Time Multimedia, ESTIMedia 2011, Taipei, Taiwan, October 13-14,
2011, pages 120–129, 2011.

http://dx.doi.org/10.1145/2038642.2038672
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.7873/DATE.2014.376
http://dx.doi.org/10.7873/DATE.2014.376
http://dx.doi.org/10.7873/DATE.2014.376
http://dx.doi.org/10.1109/DASIP.2011.6136862
http://dx.doi.org/10.1109/DASIP.2011.6136862
http://dx.doi.org/10.1109/DASIP.2011.6136862

148 Bibliography

[CGJ96] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: A survey. In Dorit S. Hochbaum, edi-
tor, Approximation algorithms for NP-hard problems, pages 46–93. PWS
Publishing Co., Boston, MA, USA, 1996.

[CJK88] Thomas L. Casavant, Jon, and G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Transactions on
Software Engineering, 14:141–154, 1988.

[CRJ06] Hyeonjoong Cho, B. Ravindran, and E.D. Jensen. An optimal real-
time scheduling algorithm for multiprocessors. In Real-Time Systems
Symposium, 2006. RTSS ’06. 27th IEEE International, pages 101–110, Dec
2006.

[CS16] Emanuele Cannella and Todor P. Stefanov. Energy Efficient Semi-
partitioned Scheduling for Embedded Multiprocessor Streaming Sys-
tems. Design Autom. for Emb. Sys., 20(3):239–266, 2016.

[DA10] V. Devadas and H. Aydin. Coordinated power management of periodic
real-time tasks on chip multiprocessors. In Green Computing Conference,
2010 International, pages 61–72, Aug 2010.

[Das04] Ali Dasdan. Experimental analysis of the fastest optimum cycle ra-
tio and mean algorithms. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 9(4):385–418, 2004.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Computing Surveys, 43(4):35:1–35:44,
2011.

[DCT+13] Onur Derin, Emanuele Cannella, Giuseppe Tuveri, Paolo Meloni, Todor
Stefanov, Leandro Fiorin, Luigi Raffo, and Mariagiovanna Sami. A
system-level approach to adaptivity and fault-tolerance in noc-based
mpsocs: The MADNESS project. Microprocessors and Microsystems -
Embedded Hardware Design, 37(6-7):515–529, 2013.

[dDAB+13] Benoît Dupont de Dinechin, Renaud Ayrignac, P-E Beaucamps, Patrice
Couvert, Benoit Ganne, Pierre Guironnet de Massas, François Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, et al. A clus-
tered manycore processor architecture for embedded and accelerated
applications. In High Performance Extreme Computing Conference (HPEC),
2013 IEEE, pages 1–6. IEEE, 2013.

[DDF11] Onur Derin, Erkan Diken, and Leandro Fiorin. A middleware approach
to achieving fault-tolerance of kahn process networks on networks-on-
chips. International Journal of Reconfigurable Computing, 2011(Article ID
295385):14 pages, February 2011. Selected Papers from the International
Workshop on Reconfigurable Communication-centric Systems on Chips
(ReCoSoC’ 2010). doi:doi:10.1155/2011/295385.

http://dx.doi.org/doi:10.1155/2011/295385

Bibliography 149

[Der15] Onur Derin. Self-adaptivity of Applications on Network on Chip Multi-
processors: The Case of Fault-tolerant Kahn Process Networks. PhD thesis,
Faculty of Informatics, University of Lugano, May 2015. PhD thesis.

[Dev06] Umamaheswari C Devi. Soft real-time scheduling on multiprocessors. PhD
thesis, University of North Carolina at Chapel Hill, 2006.

[DKF11] Onur Derin, Deniz Kabakci, and Leandro Fiorin. Online task remap-
ping strategies for fault-tolerant network-on-chip multiprocessors. In
NOCS 2011, Fifth ACM/IEEE International Symposium on Networks-on-
Chip, Pittsburgh, Pennsylvania, USA, May 1-4, 2011, pages 129–136, 2011.

[DSBS06] Ed F. Deprettere, Todor Stefanov, Shuvra S. Bhattacharyya, and Mainak
Sen. Affine Nested Loop Programs and their Binary Parameterized
Dataflow Graph Counterparts. In Proceedings of the International Confer-
ence on Application-specific Systems, Architectures and Processors, ASAP
2006, pages 186–190, 2006. doi:10.1109/ASAP.2006.7.

[DYGR10] François Dorin, Patrick Meumeu Yomsi, Joël Goossens, and Pascal
Richard. Semi-partitioned hard real-time scheduling with restricted mi-
grations upon identical multiprocessor platforms. CoRR, abs/1006.2637,
2010. URL: http://arxiv.org/abs/1006.2637.

[EA11] Jeremy P. Erickson and James H. Anderson. Response time bounds
for G-EDF without intra-task precedence constraints. In Principles
of Distributed Systems - 15th International Conference, OPODIS 2011,
Toulouse, France, December 13-16, 2011. Proceedings, pages 128–142, 2011.
URL: http://dx.doi.org/10.1007/978-3-642-25873-2_10,
doi:10.1007/978-3-642-25873-2_10.

[Gab09] Gabriel Marchesan Almeida and Gilles Sassatelli and Pascal Benoit
and Nicolas Saint-Jean and Sameer Varyani and Lionel Torres and
Michel Robert. An Adaptive Message Passing MPSoC Framework.
International Journal of Reconfigurable Computing, 2009:20, 2009.

[GCS11] Laurent George, Pierre Courbin, and Yves Sorel. Job vs. portioned
partitioning for the earliest deadline first semi-partitioned scheduling.
Journal of Systems Architecture - Embedded Systems Design, 57(5):518–535,
2011.

[GGS+06] Amir Hossein Ghamarian, MCW Geilen, Sander Stuijk, Twan Basten,
AJM Moonen, Marco JG Bekooij, Bart D Theelen, and MohammadReza
Mousavi. Throughput analysis of synchronous data flow graphs. In
Application of Concurrency to System Design, 2006. ACSD 2006. Sixth
International Conference on, pages 25–36. IEEE, 2006.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. WH Freeman & Co., New York,
NY, USA, 1979.

http://dx.doi.org/10.1109/ASAP.2006.7
http://arxiv.org/abs/1006.2637
http://dx.doi.org/10.1007/978-3-642-25873-2_10
http://dx.doi.org/10.1007/978-3-642-25873-2_10

150 Bibliography

[God98] Steve Goddard. On the Management of Latency in the Synthesis of Real-
Time Signal Processing Systems from Processing Graphs. PhD thesis, Uni-
versity of North Carolina at Chapel Hill, U.S.A., 1998.

[HDV+11] Jason Howard, Saurabh Dighe, Sriram R Vangal, Gregory Ruhl, Nitin
Borkar, Shailendra Jain, Vasantha Erraguntla, Michael Konow, Michael
Riepen, Matthias Gries, et al. A 48-core ia-32 processor in 45 nm cmos
using on-die message-passing and dvfs for performance and power
scaling. Solid-State Circuits, IEEE Journal of, 46(1):173–183, 2011.

[Hen03] Jörg Henkel. Closing the SoC design gap. IEEE Computer, 36(9):119–121,
2003. doi:10.1109/MC.2003.1231200.

[HHBT09] Wolfgang Haid, Kai Huang, Iuliana Bacivarov, and Lothar Thiele. Mul-
tiprocessor SoC software design flows. IEEE Transactions on Signal
Processing, 26(6):64–71, 2009.

[HMGM13] Pengcheng Huang, Orlando Moreira, Kees Goossens, and Anca Mari-
ana Molnos. Throughput-constrained voltage and frequency scaling
for real-time heterogeneous multiprocessors. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra, Por-
tugal, March 18-22, 2013, pages 1517–1524, 2013. URL: http://doi.
acm.org/10.1145/2480362.2480645, doi:10.1145/2480362.
2480645.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture, 4th
Edition. Morgan Kaufmann, 2007.

[HSH+09] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar
Thiele. Efficient execution of kahn process networks on multi-processor
systems using protothreads and windowed fifos. In Proc. IEEE Work-
shop on Embedded Systems for Real-Time Multimedia (ESTIMedia), pages
35–44, Grenoble, France, 2009. IEEE.

[HvdHBL10] Mike Holenderski, Martijn M.H.P. van den Heuvel, Reinder J. Bril,
and Johan J. Lukkien. Grasp: Tracing, visualizing and measuring the
behavior of real-time systems. In International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS),
July 2010.

[HXW+10] Hongtao Huang, Feng Xia, Jijie Wang, Siyu Lei, and Guowei Wu.
Leakage-aware reallocation for periodic real-time tasks on multicore
processors. In Fifth International Conference on Frontier of Computer
Science and Technology, FCST 2010, Changchun, Jilin Province, China, Au-
gust 18-22, 2010, pages 85–91, 2010. URL: http://dx.doi.org/10.
1109/FCST.2010.105, doi:10.1109/FCST.2010.105.

http://dx.doi.org/10.1109/MC.2003.1231200
http://doi.acm.org/10.1145/2480362.2480645
http://doi.acm.org/10.1145/2480362.2480645
http://dx.doi.org/10.1145/2480362.2480645
http://dx.doi.org/10.1145/2480362.2480645
http://dx.doi.org/10.1109/FCST.2010.105
http://dx.doi.org/10.1109/FCST.2010.105
http://dx.doi.org/10.1109/FCST.2010.105

Bibliography 151

[Int13] International Technology Roadmap for Semiconductors. 2013 Edition:
Executive Summary, 2013. URL: http://www.itrs.net/ [cited
May 14, 2015].

[IY98] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In ISLPED 98, August 10-12,
Monterey, CA USA, 1998.

[Jha01] N.K. Jha. Low power system scheduling and synthesis. In Computer
Aided Design, 2001. ICCAD 2001. IEEE/ACM International Conference on,
pages 259–263, Nov 2001.

[Joh73] David S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT,
1973.

[Joh74] David S. Johnson. Fast algorithms for bin packing. Journal of
Computer and System Sciences, 8(3):272–314, 1974. doi:10.1016/
S0022-0000(74)80026-7.

[JTW05] Ahmed Jerraya, Hannu Tenhunen, and Wayne Wolf. Multiprocessor
Systems-on-Chips. IEEE Computer, 38(7):36–40, 2005.

[Kah74] Gilles Kahn. The Semantics of Simple Language for Parallel Program-
ming. In Proceedings of the IFIP Congress, pages 471–475. North-Holland
Publishing Company, 1974.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, July 2005. URL: http://dl.acm.org/citation.
cfm?id=1148882.1148891.

[KJS+02] Shashi Kumar, Axel Jantsch, J-P Soininen, Martti Forsell, Mikael Mill-
berg, Johny Oberg, Kari Tiensyrja, and Ahmed Hemani. A network on
chip architecture and design methodology. In VLSI, 2002. Proceedings.
IEEE Computer Society Annual Symposium on, pages 105–112. IEEE, 2002.

[KKJ+08] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and
Yunheung Paek. A retargetable parallel-programming framework for
mpsoc. ACM Trans. Des. Autom. Electron. Syst., 13:39:1–39:18, July 2008.

[KY08] Shinpei Kato and Nobuyuki Yamasaki. Portioned edf-based scheduling
on multiprocessors. In Proceedings of the 8th ACM & IEEE International
conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA, Octo-
ber 19-24, 2008, pages 139–148, 2008. URL: http://doi.acm.org/
10.1145/1450058.1450078, doi:10.1145/1450058.1450078.

http://www.itrs.net/
http://dx.doi.org/10.1016/S0022-0000(74)80026-7
http://dx.doi.org/10.1016/S0022-0000(74)80026-7
http://dl.acm.org/citation.cfm?id=1148882.1148891
http://dl.acm.org/citation.cfm?id=1148882.1148891
http://doi.acm.org/10.1145/1450058.1450078
http://doi.acm.org/10.1145/1450058.1450078
http://dx.doi.org/10.1145/1450058.1450078

152 Bibliography

[LA09] Cong Liu and James H. Anderson. Supporting pipelines in soft real-
time multiprocessor systems. In 21st Euromicro Conference on Real-
Time Systems, ECRTS 2009, Dublin, Ireland, July 1-3, 2009, pages 269–
278, 2009. URL: http://dx.doi.org/10.1109/ECRTS.2009.16,
doi:10.1109/ECRTS.2009.16.

[LA10] Cong Liu and James H. Anderson. Supporting soft real-time dag-based
systems on multiprocessors with no utilization loss. In Proceedings
of the 31st IEEE Real-Time Systems Symposium, RTSS 2010, San Diego,
California, USA, November 30 - December 3, 2010, pages 3–13, 2010.

[LDG04] J. M. López, J. L. Díaz, and D. F. García. Utilization bounds for
edf scheduling on real-time multiprocessor systems. Real-Time Syst.,
28(1):39–68, October 2004.

[Lee99] E.A. Lee. Embedded Software: An Agenda for Research. Memorandum
(University of California, Berkeley, Electronics Research Laboratory).
Electronics Research Laboratory, College of Engineering, University of
California, 1999.

[Lee09] Wan Yeon Lee. Energy-saving dvfs scheduling of multiple periodic
real-time tasks on multi-core processors. In Distributed Simulation and
Real Time Applications, 2009. DS-RT ’09. 13th IEEE/ACM International
Symposium on, pages 216–223, Oct 2009.

[LH89] Edward Ashford Lee and Soonhoi Ha. Scheduling strategies for multi-
processor real-time DSP. In Proceedings of the IEEE Global Telecommu-
nications Conference and Exhibition: Communications Technology for the
1990s and Beyond, volume 2 of GLOBECOM 1989, pages 1279–1283, 1989.
doi:10.1109/GLOCOM.1989.64160.

[LKwP+10] Chanhee Lee, Hokeun Kim, Hae woo Park, Sungchan Kim, Hyunok Oh,
and Soonhoi Ha. A task remapping technique for reliable multi-core
embedded systems. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, pages
307–316, Oct 2010.

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal of the ACM,
20(1):46–61, 1973.

[LM87a] E. Lee and D.G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. Computers, IEEE
Transactions on, C-36(1):24–35, Jan 1987.

[LM87b] Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

http://dx.doi.org/10.1109/ECRTS.2009.16
http://dx.doi.org/10.1109/ECRTS.2009.16
http://dx.doi.org/10.1109/GLOCOM.1989.64160

Bibliography 153

[LvdWD01] Paul Lieverse, Pieter van der Wolf, and Ed F. Deprettere. A trace
transformation technique for communication refinement. In Proceed-
ings of the Ninth International Symposium on Hardware/Software Code-
sign, CODES 2001, Copenhagen, Denmark, 2001, pages 134–139, 2001.
doi:10.1145/371636.371703.

[Mac13] Enrico Macii, editor. Design, Automation and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013. EDA Consortium San Jose, CA, USA
/ ACM DL, 2013. URL: http://dl.acm.org/citation.cfm?id=
2485288.

[Mar11] P. Marwedel. Embedded System Design. Springer, 2011.

[MB07] Orlando Moreira and Marco Bekooij. Self-timed scheduling analysis
for real-time applications. EURASIP J. Adv. Sig. Proc., 2007, 2007.

[MCA] Multicore associations communication api. URL: http://www.
multicore-association.org.

[MCM+04] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and
Luciano Ost. HERMES: An Infrastructure for Low Area Overhead
Packet-switching Networks on Chip. Integr. VLSI J., 38(1):69–93,
October 2004.

[MDP+00] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler,
and Songnian Zhou. Process migration. ACM Comput. Surv., 32:241–
299, September 2000.

[Mei10] Sjoerd Meijer. Transformations for Polyhedral Process Networks. PhD
thesis, Universiteit Leiden, Netherlands, 2010.

[MTR+12] Paolo Meloni, Giuseppe Tuveri, Luigi Raffo, Emanuele Cannella, Todor
Stefanov, Onur Derin, Leandro Fiorin, and Mariagiovanna Sami. Sys-
tem adaptivity and fault-tolerance in noc-based mpsocs: The MAD-
NESS project approach. In 15th Euromicro Conference on Digital System
Design, DSD 2012, Cesme, Izmir, Turkey, September 5-8, 2012, pages 517–
524, 2012. doi:10.1109/DSD.2012.122.

[NGWK09] A. B. Nejad, K. Goossens, J. Walters, and B. Kienhuis. Mapping kpn
models of streaming applications on a network-on-chip platform. In
ProRISC 2009: Proceedings of the Workshop on Signal Processing, Integrated
Systems and Circuits, November 2009.

[NKG+02] André Nieuwland, Jeffrey Kang, Om Prakash Gangwal, Ramanathan
Sethuraman, Natalino G. Busá, Kees Goossens, Rafael Peset Llopis,
and Paul E. R. Lippens. C-HEAP: A heterogeneous multi-processor
architecture template and scalable and flexible protocol for the design
of embedded signal processing systems. Design Autom. for Emb. Sys.,
7(3):233–270, 2002.

http://dx.doi.org/10.1145/371636.371703
http://dl.acm.org/citation.cfm?id=2485288
http://dl.acm.org/citation.cfm?id=2485288
http://www.multicore-association.org
http://www.multicore-association.org
http://dx.doi.org/10.1109/DSD.2012.122

154 Bibliography

[NMSD09] Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed Depret-
tere. Realizing FIFO Communication When Mapping Kahn Pro-
cess Networks onto the Cell. In Proceedings of the 9th Interna-
tional Workshop on Embedded Computer Systems: Architectures, Model-
ing, and Simulation, SAMOS ’09, pages 308–317, Berlin, Heidelberg,
2009. Springer-Verlag. URL: http://dx.doi.org/10.1007/
978-3-642-03138-0_34, doi:http://dx.doi.org/10.1007/
978-3-642-03138-0_34.

[NSD08] Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Systematic and
Automated Multiprocessor System Design, Programming, and Imple-
mentation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(3):542–555, 2008.

[NTS+08] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere. Daedalus: toward composable mul-
timedia MP-SoC design. In Proceedings of the 45th annual Design Au-
tomation Conference, DAC ’08, pages 574–579, New York, NY, USA, 2008.
ACM. doi:10.1145/1391469.1391615.

[NVC10] Vincent Nollet, Diederik Verkest, and Henk Corporaal. A Safari
Through the MPSoC Run-Time Management Jungle. Journal of Sig-
nal Processing Systems, 60:251–268, 2010.

[ope] A high performance message passing library. URL: http://www.
open-mpi.org/.

[P+13] Sangyoung Park et al. Accurate modeling of the delay and energy
overhead of dynamic voltage and frequency scaling in modern mi-
croprocessors. IEEE Trans. on CAD of Integrated Circuits and Systems,
32(5):695–708, 2013. URL: http://dx.doi.org/10.1109/TCAD.
2012.2235126, doi:10.1109/TCAD.2012.2235126.

[PEP06] Andy D Pimentel, Cagkan Erbas, and Simon Polstra. A systematic
approach to exploring embedded system architectures at multiple ab-
straction levels. Computers, IEEE Transactions on, 55(2):99–112, 2006.

[Pin16] Michael L Pinedo. Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2016.

[Ram] Carl Ramey. TILE-Gx100 ManyCore Processor: Acceleration
Interfaces and Architecture. URL: http://www.hotchips.
org/wp-content/uploads/hc_archives/hc23/HC23.18.
2-security/HC23.18.220-TILE-GX100-Ramey-Tilera-e.
pdf [cited April 30, 2015].

[RGR+03] E. Rijpkema, K.G.W. Goossens, A. Radulescu, J. Dielissen, J. van Meer-
bergen, P. Wielage, and E. Waterlander. Trade offs in the design of a

http://dx.doi.org/10.1007/978-3-642-03138-0_34
http://dx.doi.org/10.1007/978-3-642-03138-0_34
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-03138-0_34
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-03138-0_34
http://dx.doi.org/10.1145/1391469.1391615
http://www.open-mpi.org/
http://www.open-mpi.org/
http://dx.doi.org/10.1109/TCAD.2012.2235126
http://dx.doi.org/10.1109/TCAD.2012.2235126
http://dx.doi.org/10.1109/TCAD.2012.2235126
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-security/H C23.18.220-TILE-GX100-Ramey-Tilera-e.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-security/H C23.18.220-TILE-GX100-Ramey-Tilera-e.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-security/H C23.18.220-TILE-GX100-Ramey-Tilera-e.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-security/H C23.18.220-TILE-GX100-Ramey-Tilera-e.pdf

Bibliography 155

router with both guaranteed and best-effort services for networks on
chip. In Design, Automation and Test in Europe Conference and Exhibition,
2003, pages 350–355, 2003.

[Rho] M. Rhodan. GM to Roll Out a Self-Driving Cadillac. URL:
http://time.com/3303212/gm-self-driving-cadillac/
[cited March 11, 2015].

[SB09] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multi-
processors: Scheduling and Synchronization. CRC Press, Boca Raton, FL,
USA, 2nd edition, 2009.

[SDK13] Amit Kumar Singh, Anup Das, and Akash Kumar. Energy optimization
by exploiting execution slacks in streaming applications on multipro-
cessor systems. In The 50th Annual Design Automation Conference 2013,
DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 115:1–115:7,
2013. URL: http://doi.acm.org/10.1145/2463209.2488875,
doi:10.1145/2463209.2488875.

[SGTB11] Sander Stuijk, Marc Geilen, Bart Theelen, and Twan Basten. Scenario-
aware dataflow: Modeling, analysis and implementation of dynamic
applications. In Embedded Computer Systems (SAMOS), 2011 International
Conference on, pages 404–411. IEEE, 2011.

[SJPL08] Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. Energy
efficient scheduling of real-time tasks on multicore processors. Parallel
and Distributed Systems, IEEE Transactions on, 19(11):1540–1552, Nov
2008.

[Smi88] Jonathan M. Smith. A survey of process migration mechanisms.
SIGOPS Oper. Syst. Rev., 22:28–40, July 1988.

[SSHT06] Thilo Streichert, Christian Strengert, Christian Haubelt, and Jürgen
Teich. Dynamic task binding for hardware/software reconfigurable
networks. In Proceedings of the 19th Annual Symposium on Integrated
Circuits and Systems Design, SBCCI ’06, pages 38–43, 2006.

[Sut] H. Sutter. The Free Lunch Is Over. URL: http://www.gotw.ca/
publications/concurrency-ddj.htm [cited March 12, 2015].

[TA10] William Thies and Saman Amarasinghe. An empirical characterization
of stream programs and its implications for language and compiler
design. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10, pages 365–376, New
York, NY, USA, 2010. ACM. doi:10.1145/1854273.1854319.

[TIL] TriMedia TM-1000 Datasheet. URL: http://www.tilera.com/
files/drim__TILE-Gx8072_PB041-04_WEB_7683.pdf [cited
June 11, 2015].

http://time.com/3303212/gm-self-driving-cadillac/
http://doi.acm.org/10.1145/2463209.2488875
http://dx.doi.org/10.1145/2463209.2488875
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://dx.doi.org/10.1145/1854273.1854319
http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_7683.pdf
http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_7683.pdf

156 Bibliography

[Tri] TriMedia TM-1000 Datasheet. URL: http://pdf.
datasheetcatalog.com/datasheet/philips/TM-1000.pdf
[cited June 11, 2015].

[VAJ+09] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman
Gupta, Christopher M. Louie, Saturnino Garcia, Serge Belongie, and
Michael Bedford Taylor. SD-VBS: the san diego vision benchmark
suite. In Proceedings of the 2009 IEEE International Symposium on Work-
load Characterization, IISWC 2009, October 4-6, 2009, Austin, TX, USA,
pages 55–64, 2009.

[VEMR14] Anish Varghese, Bob Edwards, Gaurav Mitra, and Alistair P. Rendell.
Programming the adapteva epiphany 64-core network-on-chip copro-
cessor. In Proceedings of the 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, IPDPSW ’14, pages 984–992, Washing-
ton, DC, USA, 2014. IEEE Computer Society.

[VNS07] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool
for improved derivation of process networks. EURASIP Journal on
Embedded Systems, 2007(1):19–19, 2007.

[W+10] Yi-Hung Wei et al. Energy-efficient real-time scheduling of multimedia
tasks on multi-core processors. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing (SAC), Sierre, Switzerland, March 22-26,
2010, pages 258–262, 2010. URL: http://doi.acm.org/10.1145/
1774088.1774142, doi:10.1145/1774088.1774142.

[WL03] D. Wiklund and D. Liu. SoCBUS: switched network on chip for hard
real time embedded systems. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, pages 8 pp.–, April 2003.

[WLL+11] Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edwin Hsing-
Mean Sha. Overhead-aware energy optimization for real-time stream-
ing applications on multiprocessor system-on-chip. ACM Trans. Design
Autom. Electr. Syst., 16(2):14, 2011. URL: http://doi.acm.org/10.
1145/1929943.1929946, doi:10.1145/1929943.1929946.

[Woo] Victoria Woollaston. New images show how Google’s self-driving
cars see the world. URL: http://www.dailymail.co.uk/
sciencetech/article-2317594/ [cited March 11, 2015].

[YA14] Kecheng Yang and James H. Anderson. Optimal gedf-based schedulers
that allow intra-task parallelism on heterogeneous multiprocessors.
In 12th IEEE Symposium on Embedded Systems for Real-time Multimedia,
ESTIMedia 2014, Greater Noida, India, October 16-17, 2014, pages 30–
39, 2014. URL: http://dx.doi.org/10.1109/ESTIMedia.2014.
6962343, doi:10.1109/ESTIMedia.2014.6962343.

http://pdf.datasheetcatalog.com/datasheet/philips/TM-1000.pdf
http://pdf.datasheetcatalog.com/datasheet/philips/TM-1000.pdf
http://doi.acm.org/10.1145/1774088.1774142
http://doi.acm.org/10.1145/1774088.1774142
http://dx.doi.org/10.1145/1774088.1774142
http://doi.acm.org/10.1145/1929943.1929946
http://doi.acm.org/10.1145/1929943.1929946
http://dx.doi.org/10.1145/1929943.1929946
http://www.dailymail.co.uk/sciencetech/article-2317594/
http://www.dailymail.co.uk/sciencetech/article-2317594/
http://dx.doi.org/10.1109/ESTIMedia.2014.6962343
http://dx.doi.org/10.1109/ESTIMedia.2014.6962343
http://dx.doi.org/10.1109/ESTIMedia.2014.6962343

Bibliography 157

[Yue91] Minyi Yue. A simple proof of the inequality FFD (L) ≤
11/9 OPT (L) + 1, ∀L for the FFD bin-packing algorithm. Acta
Mathematicae Applicatae Sinica, 7:321–331, 1991. doi:10.1007/
BF02009683.

[ZBS13] Jiali Teddy Zhai, Mohamed Bamakhrama, and Todor Stefanov. Ex-
ploiting just-enough parallelism when mapping streaming applica-
tions in hard real-time systems. In The 50th Annual Design Automation
Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013,
pages 170:1–170:8, 2013. URL: http://doi.acm.org/10.1145/
2463209.2488944, doi:10.1145/2463209.2488944.

[Zha15] Teddy Zhai. Adaptive Streaming Applications: Analysis and Implementation
Models. PhD thesis, Leiden University, 2015.

[Zhe07] Liu Zheng. A task migration constrained energy-efficient scheduling
algorithm for multiprocessor real-time systems. In Wireless Communica-
tions, Networking and Mobile Computing, 2007. WiCom 2007. International
Conference on, pages 3055–3058, Sept 2007. doi:10.1109/WICOM.
2007.759.

[ZNS11] Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov. Modeling adap-
tive streaming applications with parameterized polyhedral process
networks. In Proceedings of the 48th Design Automation Conference, pages
116–121. ACM, 2011.

[ZR13] Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-
efficient mobile web browsing on big/little systems. In 19th
IEEE International Symposium on High Performance Computer Archi-
tecture, HPCA 2013, Shenzhen, China, February 23-27, 2013, pages
13–24, 2013. URL: http://dx.doi.org/10.1109/HPCA.2013.
6522303, doi:10.1109/HPCA.2013.6522303.

http://dx.doi.org/10.1007/BF02009683
http://dx.doi.org/10.1007/BF02009683
http://doi.acm.org/10.1145/2463209.2488944
http://doi.acm.org/10.1145/2463209.2488944
http://dx.doi.org/10.1145/2463209.2488944
http://dx.doi.org/10.1109/WICOM.2007.759
http://dx.doi.org/10.1109/WICOM.2007.759
http://dx.doi.org/10.1109/HPCA.2013.6522303
http://dx.doi.org/10.1109/HPCA.2013.6522303
http://dx.doi.org/10.1109/HPCA.2013.6522303

List of abbreviations

ALAP As late as possible
API Application programming interface
BE Best-Effort
BF Best-Fit
BFD Best-Fit Decreasing
CSDF Cyclo-Static Dataflow
DCT Discrete cosine transform
DM Data Memory
DMA Direct Memory Access
DPM Dynamic Power Management
DSE Design Space Exploration
EDF Earliest Deadline First
EDF-fm Earliest Deadline First with fixed and migrating tasks
EDF-ssl Earliest Deadline First based semi-partitioned stateless
FF First-Fit
FFD First-Fit Decreasing
FFD-SP First-Fit Decreasing followed by semi-partitioning
FIFO First-in First-out
FPGA Field-programmable gate array
GEDF Global EDF
GT Guaranteed throughput
HRT Hard Real-Time
HSDF Homogeneous Synchronous Dataflow
IM Instruction Memory
IP Input Port
JPEG Joint Photographic Experts Group
KPN Kahn Process Network
LLF Least Laxity First
MCM Maximum Cycle Mean
MJPEG Motion JPEG
MoC Model of Computation
MPI Message Passing Interface
MPSoC Multiprocessor System-on-Chip
MW Middleware

NI Network Interface
NoC Network-on-Chip
NP Non-deterministic Polynomial-time
OP Output Port
OS Operating System
PE Processing Element
PEDF Partitioned EDF
PM Power Management
PPN Polyhedral Process Network
PWM Pulse Width Modulation
SANLP Static Affine Nested Loop Program
SDF Synchronous Dataflow
SRT Soft Real-Time
TDMA Time Division Multiple Access
VFS Voltage/Frequency Scaling
VLE Variable-length encoding
WCET Worst-Case Execution Time
WF Worst-Fit
WFD Worst-Fit Decreasing

Samenvatting

In deze dissertatie worden – in de context van ingebedde systemen – bepaalde ont-
werp methoden en technieken voorgesteld. Het accent ligt op ingebedde systemen
die datastromen bewerken die vanuit de omgeving van het ingebedde systeem wor-
den aangeleverd. De datastromen zijn typisch onbegrensd in lengte. Coderen en
decoderen in real-time van audio en video datastromen zijn typische voorbeelden.
Als bij het bewerken van datastromen een hoge prestatie is vereist kan het nodig zijn
om daarvoor meerdere processors in een netwerk op een enkele chip als executie-
platform te gebruiken (Multi-Processor System-on-Chip of MPSoC). Daardoor kan
parallelisme worden uitgebuit en dus de bewerkingstijd verkort. Het bewerkingspro-
gramma wordt dan opgesplitst in taken die wel onderling afhankelijk zijn maar toch
parallel kunnen worden verwerkt. De verschillende taken worden dan toegekend aan
de processors in het platform (ordening in ruimte). De dissertatie geeft technieken
voor het dynamisch optimaliseren en adapteren van de toekenning van taken aan
processoren. Er zijn twee bijdragen te onderscheiden.

In het eerste deel gaat de aandacht naar systemen waarbij het tijdsgedrag (or-
dening in tijd) niet is gespecificeerd, anders gezegd systemen met best- mogelijke
prestatie. Door het toevoegen van een taak-migratie procedure wordt het mogelijk de
toekenning van taken aan processors tijdens de executie te wijzigen met de garantie
dat communicatie tussen taken zowel voor als na de migratie correct is. Met deze
taak-migratie procedure kan het systeem zich aanpassen aan eventuele veranderende
condities die vanuit de omgeving worden opgelegd, waardoor het systeem adaptief
wordt. Als bijvoorbeeld een processor faalt, dan kan de taak die aan deze processor
was toegekend migreren naar een correct functionerende processor, waardoor het
systeem als geheel het falen van een van de procesoren kan overleven.

In het tweede deel is het tijdsgedrag wel gespecificeerd en gaat het om systemen
die aan strikte of harde real-time condities moeten voldoen. Niet voldoen aan de
tijdeisen leidt tot een volledig falend systeem. Gekeken wordt naar de toepasbaarheid
van gedeeltelijk gepartitioneerde toekenningen van taken aan processoren. Hierbij
worden de meeste taken statisch toegekend aan processors en kan slechts een klein
deel van de taken migreren volgens een vooraf bepaald patroon.

In deze dissertatie wordt een benadering voorgesteld die de ontwerper toelaat
het aantal processors te verminderen in tegenstelling tot systemen waarin migreren
niet kan. De vermindering van het aantal processors gaat ten koste van een geringe
toename van het benodigde geheugen. Een tweede voorgestelde benadering is

geschikt voor systemen waarin voedingsspanning en klokfrequentie kunnen worden
verlaagd met het doel energie te besparen. In vergelijking met systemen waarin
migratie niet mogelijk is, kan met gedeeltelijke partitionering een grotere energie
besparing bereikt worden. Ook hier gaat dit gepaard met een geringe toename van
het benodigde geheugen.

List of publications

Journal Articles

∙ Emanuele Cannella, Todor Stefanov, “Energy Efficient Semi-Partitioned Schedul-
ing for Embedded Multiprocessor Streaming Systems”, In Design Automation
for Embedded Systems (DAEM), vol. 20, number 3, 2016, pp. 239–266.

∙ Emanuele Cannella, Onur Derin, Paolo Meloni, Giuseppe Tuveri, Todor Ste-
fanov, “Adaptivity Support for MPSoCs Based on Process Migration in Polyhe-
dral Process Networks”, In VLSI Design 2012, pp. 987209:1-987209:17.

∙ Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “On the Improved
Hard Real-Time Scheduling of Cyclo-Static Dataflow”, In ACM Transactions on
Embedded Computing Systems (TECS), vol. 15, Issue 4, Article 68, Aug 2016.

∙ Onur Derin, Emanuele Cannella, Giuseppe Tuveri, Paolo Meloni, Todor Ste-
fanov, Leandro Fiorin, Luigi Raffo, Mariagiovanna Sami, “A system-level ap-
proach to adaptivity and fault-tolerance in NoC-based MPSoCs: The MADNESS
project”, Microprocessors and Microsystems - Embedded Hardware Design, vol. 37,
number 6-7, 2013, pp. 515–529.

∙ Onur Derin, Prasanth Kuncheerath Ramankutty, Paolo Meloni, Emanuele Can-
nella, “Towards Self-Adaptive KPN Applications on NoC-Based MPSoCs” In
Advances in Software Engineering, 2012, pp. 172674:1–172674:16, 2012.

Peer-reviewed Conference Proceedings

∙ Emanuele Cannella, Mohamed A. Bamakhrama, and Todor Stefanov, “System-
level Scheduling of Real-time Streaming Applications using a Semi-partitioned
Approach”, In the Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, (DATE) 2014, pp. 1–6, Dresden, Germany, 24-28 March
2014.

∙ Emanuele Cannella, Onur Derin, Todor Stefanov, “Middleware approaches for
adaptivity of Kahn Process Networks on Networks-on-Chip”, In the Proceedings
of the 2011 Conference on Design and Architectures for Signal and Image Processing,
(DASIP) 2011, pp. 100–107, Tampere, Finland, November 2-4, 2011.

∙ Emanuele Cannella, Lorenzo Di Gregorio, Leandro Fiorin, Menno Lindwer,
Paolo Meloni, Olaf Neugebauer, Andy D. Pimentel, “Towards an ESL design

framework for adaptive and fault-tolerant MPSoCs: MADNESS or not?”, In
the Proceedings of the 9th IEEE Symposium on Embedded Systems for Real-Time
Multimedia, (ESTIMedia) 2011, pp. 120–129, Taipei, Taiwan, October 13-14, 2011.

∙ Jelena Spasic, Di Liu, Emanuele Cannella, Todor Stefanov, “Improved hard real-
time scheduling of CSDF-modeled streaming applications”, In the Proceedings
of the 2015 International Conference on Hardware/Software Codesign and System
Synthesis, (CODES+ISSS) 2015, pp. 65–74, Amsterdam, Netherlands, October
4-9, 2015.

∙ Giuseppe Tuveri, Simone Secchi, Paolo Meloni, Luigi Raffo, Emanuele Can-
nella, “A runtime adaptive H.264 video-decoding MPSoC platform”, In the
Proceedings of the 2013 Conference on Design and Architectures for Signal and Image
Processing, (DASIP) 2013, pp. 149–156, Cagliari, Italy, October 8-10, 2013.

∙ Paolo Meloni, Giuseppe Tuveri, Luigi Raffo, Emanuele Cannella, Todor Ste-
fanov, Onur Derin, Leandro Fiorin, Mariagiovanna Sami, “System Adaptivity
and Fault-Tolerance in NoC-based MPSoCs: The MADNESS Project Approach”,
In the Proceedings of the 15th Euromicro Conference on Digital System Design, (DSD)
2012, pp. 517–524, Cesme, Izmir, Turkey, September 5-8, 2012.

Curriculum Vitae

Emanuele Cannella was born on August 17, 1983 in Udine, Italy. In 2008, he obtained
his MSc degree in Electronic Engineering from University of Udine. His master’s
thesis project concerned Multiprocessor Systems-on-Chip running embedded stream-
ing applications. He carried out this project as an exchange student at the Computer
Engineering laboratory of TU Delft, The Netherlands. Shortly after his graduation, he
started to work as a research assistant at University of Udine, in the field of pervasive
and distributed computing. In 2010, he joined the Leiden Embedded Research Center
at Leiden University as a PhD candidate. His research work, which has led to this
thesis, has been funded by the EU FP7 project MADNESS. In July 2015, he joined
Lely Industries, where he works as a software engineer focusing on model-driven
software engineering approaches to robotic control.

Acknowledgments

First of all, on the professional level, I would like to thank the colleagues I had the
pleasure to work with at the Leiden Embedded Research Center (LERC). Hristo
Nikolov, Mohammad Al Hissi, Mohamed Bamakhrama, Di Liu, Sjoerd Meijer, Sven
van Haastregt, Dmitry Nadezhkin, Sobhan Niknam: it has been a great pleasure to
work with you! Thanks to LERC, I have also been lucky to meet Jelena Spasic and
Milos Acanski. All the conversations and dinners we had together are great memories
for me. Moreover, I won’t forget the many times I self-invited myself to have early
breakfasts, on weekends, at your place (and you guys were so kind to let me in). In
addition, I had great times working (and sharing an accommodation) with Teddy
Zhai. Ted, I have always appreciated the discussions we had, regarding research
and life in general. I will also not forget that, especially in the beginning of my PhD,
every other day you were at my desk to help me or teach me some tricks. Of course,
I appreciated even more the time we spent (and will spend) together outside the
working hours. With regard to this, a big “thank you” goes to Shan for making our
gatherings even more fun.

The research work described in this thesis has been carried out within the EU
FP7 project MADNESS. Thanks to this project, I had the chance to meet fellow
researchers from all over Europe, with whom I shared many enjoyable moments. My
first thought goes to the EOLAB group from University of Cagliari. Luigi, Paolo,
Giuseppe, Sebastiano, Simone: thanks a lot for making my visits in Cagliari always
fun, despite the challenges we sometimes faced in our project. In addition, I truly
enjoyed spending time during and outside office hours with Onur Derin and Roberta
Piscitelli.

Outside of the professional context, I had the pleasure to meet many people during
my stay in Leiden. I cannot list them all here; however, I’d like to mention especially
Andrea and Helene for the happy times we had together. I am very glad that I could
make you two meet each other.

Speaking about meeting special persons, I want to thank once more Teddy for
making I and my beloved Sing-Cih to meet. Sing-Cih, you are by far the greatest
and sweetest thing that has happened in my life since my arrival in the Netherlands.
Many many thanks for all the joyful moments we shared, for your continuous support,
for your patience and perseverance that has allowed our relationship to stay strong,
despite the great physical distance that sets us apart. I really wish we will be able to
close this distance soon!

Finally, I would like to thank Sing-Cih’s family, and in particular Wang papa, Wang
mama, Lisa, Deborah, and Enoch. I enjoy every time I can visit you in Taiwan, you
make me really feel at home. Thank you for your kindness and for all your support!

Ringraziamenti

Vorrei ringraziare Tomaso, Jolija, Mykolas e Pietro per le belle serate passate assieme,
per i leggendari bbq "scientifici", e per farmi riassaporare le mie radici udinesi in
terra d’Olanda. Un grande grazie anche a Fabio, che ho conosciuto poco dopo aver
iniziato a lavorare alla Lely, per le risate e i discorsi che hanno spesso arricchito i miei
weekend nell’ultimo anno.

Un grazie speciale va a tutti gli amici che mi hanno supportato da lontano. Mi
sento molto fortunato ad avere un gruppo di amici che tuttora riesco a capire al volo,
nonostante ci si veda molto più raramente che in passato. Marco, Simone, Giorgio e
Camilla, Alessio, Manuel, Tiffany, Enrica, Elena, Marsela e Camilla, Tristram: grazie
mille per il vostro affetto e per saper illuminare le mie giornate tutte le volte che
ritorno in Italia.

Inoltre, una componente fondamentale della mia vita, e mio grande orgoglio, è la
mia famiglia. Alberto, Nadia, Andrea, Ludovica, Fiorella, Domenico, Amos, Noemi,
Simonetta, Alessandro, Samuele, Susanna, Alessandra, Andrea, Pietro, Stefano, Paola,
Nicola, Lisa, Matteo: ognuno di voi mi ha insegnato qualcosa, e rivedervi mi riempie
ogni volta il cuore di gioia. Grazie mille anche a Zia Myriam e Zia Mirella per il
grande affetto che mi dimostrate sempre!

Infine, era un mio desiderio che questa tesi si aprisse e si chiudesse con un pensiero
ai miei fantastici genitori, le due persone che più di tutti hanno contribuito a farmi
diventare la persona che sono. Papà, più passano gli anni e più riesco a comprendere
i sacrifici che hai dovuto fare per crescere me e i miei fratelli. Per questo, per tutto
quello che mi hai insegnato, e per tutto l’amore che mi hai donato, ti sarò sempre
riconoscente. Mamma, purtroppo tu non riuscirai a leggere queste parole, ma spero
che in qualche modo ti possano raggiungere. Penso che le cure, l’affetto, le gioie,
l’amore che mi hai regalato siano qualcosa di inestimabile. Tu sei stata una mamma,
ed in generale una persona, assolutamente straordinaria. Ad entrambi voi voglio dire:
essere vostro figlio è la mia fortuna ed il mio orgoglio più grande.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Trends in Embedded MPSoC Design
	Programming for Multiprocessors: Models of Computation
	Communication Infrastructures: Networks-on-Chip

	Challenges in Embedded MPSoC Design
	System Adaptivity
	Timing Requirements
	Cost
	Energy Efficiency

	Problems Addressed in this Thesis
	Best-Effort Systems
	Hard Real-Time Systems

	Research Contributions
	Exploiting Task Migration to achieve System Adaptivity in Best-Effort Systems
	Exploiting Semi-partitioned Approaches in Hard Real-Time Scheduling of (C)SDF Graphs

	Thesis Organization

	Background
	Dataflow Models of Computation
	(Homogeneous) Synchronous Dataflow ((H)SDF)
	Cyclo-Static Dataflow (CSDF)
	Polyhedral Process Network (PPN)

	Real-time Scheduling Theory
	Real-time periodic and sporadic task models
	System model
	Multiprocessor Real-Time Scheduling Algorithms
	Uniprocessor Schedulability Analysis
	Multiprocessor Schedulability Analysis
	Partitioning Heuristics
	EDF-fm Semi-partitioned Algorithm
	EDF-os Semi-partitioned Algorithm

	HRT Scheduling of Acyclic CSDF GraphsBamakhrama:2011:EMSOFT, Bamakhrama:2012:DAES

	PPN Communication on Networks-on-chip
	Problem Statement
	Contributions
	Related Work
	PPN Communication Approaches
	Virtual Connector approach (VC)
	Virtual Connector with Variable Rate approach (VRVC)
	Request-driven approach (R)

	Case Studies
	Sobel filter
	M-JPEG encoder
	Platform setup

	Experimental Results
	Inter-tile communication efficiency
	System adaptivity support

	Discussion

	Process Migration Mechanism in a Mapped PPN
	Problem Statement
	Contributions of this Chapter
	Related Work
	Proposed Migration Approach
	Process Migration
	Migratable PPN process structure
	Process migration mechanism

	Experiments and Results
	Process migration benefits and overhead

	Discussion

	Semi-partitioned Scheduling of CSDF-modeled Streaming Applications
	Proposed Extension of the Scheduling Framework of Bamakhrama:2011:EMSOFT, Bamakhrama:2012:DAES
	Choice of the EDF-fm Semi-partitioned Algorithm
	Implications of Using EDF-fm

	Problem Statement
	Contributions
	Related Work
	Soft Real-time Scheduling Analysis
	Earliest Start Times in Presence of Tardiness
	Minimum Buffer Sizes in Presence of Tardiness

	FFD-SP Task Assignment Heuristic
	Evaluation
	Discussion

	Energy Efficient Semi-Partitioned Scheduling of SDF Graphs
	Problem Statement
	Contributions
	Scope of work
	Assumptions
	Limitations

	Related work
	System Model
	Example of SRT Scheduling of an SDF Graph
	Proposed Semi-partitioned Algorithm: EDF-ssl
	Assignment Phase
	Execution Phase
	Tardiness Bounds under Fixed Processor Speed
	Tardiness Bounds under PWM Scheme

	Start times and buffer sizes under EDF-ssl
	Evaluation
	Power Model
	Energy per Iteration Period
	Experimental Results

	Discussion

	Summary and Discussion
	Thesis Summary
	Discussion
	Assessing the migration mechanism in an industrially- relevant case study
	Application of Chapters 5 and 6 to DaedalusRT
	Application models considered in Chapters 3 to 6

	Bibliography
	List of abbreviations
	Samenvatting
	List of publications
	Curriculum Vitae
	Acknowledgments

