
Improved Hard Real-Time Scheduling of
CSDF-modeled Streaming Applications

Jelena Spasic Di Liu Emanuele Cannella Todor Stefanov

Leiden Institute of Advanced Computer Science
Leiden University, Leiden, The Netherlands

Email: {j.spasic, d.liu, t.p.stefanov}@liacs.leidenuniv.nl, emanuele.cannella@gmail.com

ABSTRACT

Recently, it has been shown that hard real-time scheduling theory
can be applied to streaming applications modeled as acyclic Cyclo-
Static Dataflow (CSDF) graphs. However, that approach is not
efficient in terms of throughput and processor utilization. Therefore,
in this paper, we propose an improved hard real-time scheduling ap-
proach to schedule streaming applications modeled as acyclic CSDF
graphs on a Multi-Processor System-on-Chip (MPSoC) platform.
The proposed approach converts each actor in a CSDF graph to a set
of real-time periodic tasks. The conversion enables application of
many hard real-time scheduling algorithms which offer fast calcula-
tion of the required number of processors for scheduling the tasks.
We evaluate the performance and time complexity of our approach in
comparison to several existing scheduling approaches. Experiments
on a set of real-life streaming applications demonstrate that our
approach: 1) results in systems with higher throughput and better
processor utilization in comparison to the existing hard real-time
scheduling approach for CSDF graphs while requiring comparable
time for the system derivation; 2) gives the same throughput as
the existing periodic scheduling approach for CSDF graphs but
requires much shorter time to derive the task schedule and tasks’
parameters (periods, start times, etc.); and 3) gives the throughput
that is equal or very close to the maximum achievable throughput
of an application obtained via self-timed scheduling, but requires
much shorter time to derive the schedule. The total time needed
for the proposed conversion approach and the calculation of the
minimum number of processors needed to schedule the tasks and
the calculation of the size of communication buffers between tasks
is in the range of seconds.

1. INTRODUCTION
Modern streaming applications have high computational demands

and hard real-time requirements. As huge amount of data should be
processed in a “short” time interval, the parallel processing comes as
a natural solution. The processing power of Multi-Processor System-
on-Chip (MPSoC) platforms perfectly matches the computational
requirements of streaming applications. Designing such an embed-
ded system imposes several challenges: a streaming application
should be represented in a way which reveals the parallelism of the
application and it should be mapped and scheduled on a platform
such that hard real-time requirements are satisfied.

To address these challenges, several parallel Models-of-Computa-
tion (MoCs), e.g. Synchronous Data Flow (SDF) [12] and Cyclo-
Static Dataflow (CSDF) [5], have been adopted as the parallel
application specification. Within a MoC, an application is rep-
resented as a set of concurrently executing and communicating
tasks. Thus, the parallelism is explicitly specified in the model.
Two primary performance metrics of streaming applications are
throughput and latency. Throughput is defined by the number of
samples an application can produce during a given time interval,
while latency is the elapsed time between the arrival of a sample
to an application and the output of the processed sample by the
application. Apart from guaranteeing a certain throughput and
latency for each application running on a platform, modern em-
bedded systems should be able to accept or stop applications at

run-time without violating the timing requirements of the other
running applications. This property is called temporal isolation
between the applications. Many algorithms from the classical hard
real-time multiprocessor scheduling theory can perform fast admis-
sion and scheduling decisions for the incoming applications while
providing hard real-time guarantees and temporal isolation between
the applications. Moreover, these algorithms enable several efficient
and fast approaches to compute the number of processors required
to schedule the applications instead of performing a complex design
space exploration. Such an approach for computing the number of
processors for scheduling the applications is given in Section 5.6
and it is, in the worst case, of a polynomial time complexity.

Recently, the authors in [2] proposed a framework to schedule
streaming applications modeled as acyclic CSDF graphs as a set of
real-time periodic tasks on an MPSoC platform. They also derive the
minimum number of processors needed to schedule the applications
on a platform. However, in that framework, the authors use one and
the same worst-case execution time (WCET) value for all execution
phases of a task in the CSDF graph, although a task in the CSDF
graph may have a different WCET value for every phase. The
authors simply take and use the maximum WCET value among the
WCET values for all phases of a task. By doing this, the cyclically
changing execution nature of an application modeled by the CSDF
model is hidden, which leads to underestimation of the throughput,
overestimation of the latency, and underutilization of processors.
In another recent work [6], the authors proposed a framework to
evaluate a lower bound of the maximum throughput of a periodically
scheduled CSDF-modeled application. However, the authors do not
provide a method to determine the number of processors required
for scheduling the application. Moreover, their approach does not
ensure temporal isolation among applications, i.e., the schedule of
applications has to be recalculated once a new application comes
in the system and hence it may be possible that the previously
calculated throughput of an application can no longer be reached.

In this paper, we address the drawbacks of [2] and [6] by con-
sidering different WCET values for task’s phases in an acyclic
CSDF graph and enabling temporal isolation of applications while
providing hard real-time guarantees. The contributions of this paper
are the following:

• We prove that considering a different WCET value for each
execution phase of a task we can convert the execution phases
of each task in an acyclic CSDF graph to strictly periodic
real-time tasks. This enables the use of many hard real-time
scheduling algorithms to schedule such tasks with a certain
guaranteed throughput and latency. (Theorem 3)

• We prove that our scheduling approach gives equal or higher
throughput than the existing hard real-time scheduling
approach for acyclic CSDF graphs. (Theorem 4)

• We show, on a set of real-life streaming applications, that
scheduling each execution phase of a CSDF task as a strictly
periodic task and considering different WCET per phase lead
not only to tighter guarantee on the throughput of an applica-
tion but also to better utilization of processor resources.

• We demonstrate, on a set of real-life streaming applications,
that the total time required by our approach to derive the

978-1-4673-8321-9/15/$31.00 ©2015 IEEE 65

schedule of the tasks, calculate the minimum number of
processors needed to schedule the tasks and calculate the
size of communication buffers between tasks is comparable
to the time required by the existing hard real-time scheduling
approach for CSDF graphs. In addition, we show that the total
time needed by our approach is much shorter in comparison
to the existing periodic scheduling and self-timed scheduling
approaches for CSDF graphs.

The remainder of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces the back-
ground necessary to understand the proposed scheduling method.
Section 4 gives a motivational example. The proposed scheduling
method is described in Section 5. Experimental evaluation of the
approach is given in Section 6, and Section 7 concludes the paper.

2. RELATED WORK
Research on scheduling of streaming applications modeled by

parallel MoCs has been active for a long period of time. Below
we compare our approach with some of the existing hard real-
time scheduling approaches for streaming applications and with
the scheduling approaches which do not provide hard real-time
guarantees but are similar to our approach.

[9] proposes a two parameter (σ, ρ) workload characterization to
reduce the difference between the worst-case throughput, determined
by the analysis, and the actual throughput of the application. They
consider different execution times for task’s phases and then the
average worst-case execution time is used to improve the minimum
guaranteed throughput/latency. Similar to them, we consider dif-
ferent execution times for task’s phases in a CSDF graph. But in
contrast to them, we convert task’s phases to classical periodic hard
real-time tasks, which allows us to calculate the minimum number
of processors required to guarantee certain throughput and latency in
a fast and analytical way for global scheduling and in a polynomial
time for partitioned scheduling by using our algorithm given in
Section 5.6.

In [7], the authors propose an analysis framework for hard real-
time applications modeled as Affine Dataflow Graphs (ADF). The
actors in an ADF graph are scheduled as periodic tasks. The ADF
model proposed in [7] extends the CSDF model and hence, is more
expressive than the CSDF. However, in their approach only one
value is considered as the WCET value of a task, while we consider
a different WCET value per each phase of a task, thereby efficiently
exploiting the cyclic nature of the CSDF model and providing a
tighter throughput guarantee.

[6] proposes a framework to derive the maximum throughput of a
CSDF graph under a periodic schedule and to calculate the buffer
sizes in the graph with a throughput constraint. Both problems are
represented as LP problems and solved approximately. Similar to
our work, their work considers different execution times for each
phase of a task. However, it is not explicitly given in [6] how to
compute the number of processors needed to schedule the graph
according to the derived schedule. One possible way is to look
at the derived schedules and find the maximum number of active
tasks at any given point in time. However, this procedure has an
exponential time complexity in the worst case. In contrast, in our
case the conversion of CSDF task’s phases to classical periodic
hard real-time tasks enables fast and analytical calculation of the
minimum number of processors for global scheduling of the tasks,
and a polynomial time derivation of the number of processors for
partitioned scheduling by using our algorithm given in Section 5.6.

The closest to our work, in terms of scope of work and methods
proposed to schedule streaming applications modeled as acyclic
CSDF graphs, is the work in [2]. The authors in [2] convert each
task in a CSDF graph to a periodic task by deriving parameters such
as period and start time. Then they use hard real-time schedulability
analysis to determine the minimum number of processors required
to execute the derived task-set. Our approach differs from [2] in the
following: we use different WCET values for each execution phase
of a task and each phase is converted to a periodic task, while in [2],
only one WCET value is used for a task and every execution of a task
is periodic with a calculated period. By considering different WCET

[3,1,1]
1

[2,3]

[2]
3

2

[1,1,1]

[1,0,0]

[1,1] [0,2]

[3]

[1]
e1

e2

e3

Figure 1: A CSDF graph G.

values for each task phase and converting each phase to a periodic
task, we can guarantee tighter throughput and better utilization of
processor resources.

3. BACKGROUND
In this section, we first introduce the application model, i.e., the

CSDF MoC, followed by the system model we use. After that we
review the scheduling framework proposed in [2], which we use as
a main reference point for comparison with our approach presented
in Section 5.

3.1 Cyclo-Static Dataflow (CSDF)
An application modeled as a CSDF [5] is a directed graph G =

(V, E) that consists of a set of actors V which communicate with each
other through a set of communication channels E. Actors represent
a certain functionality of the application, while communication
channels are FIFOs representing data dependency and transferring
data tokens between the actors. Every actor τi ∈ V has an execu-
tion sequence [fi(1), fi(2), · · · , fi(Pi)] of length Pi, i.e., it has Pi

phases. The kth time that actor τi is fired, it executes the function
fi(((k− 1) mod Pi)+ 1). As a consequence, the execution time of ac-
tor τi is also a sequence [CC

i
(1), CC

i
(2), · · · , CC

i
(Pi)] consisting of the

worst-case computation time values for each phase. Similarly, every
output channel eu of an actor τi has a predefined token production
sequence [xu

i
(1), xu

i
(2), · · · , xu

i
(Pi)] of length Pi. Analogously, token

consumption on every input channel eu of an actor τi is a predefined
sequence [yu

i
(1), yu

i
(2), · · · , yu

i
(Pi)], called consumption sequence.

The total number of tokens on a channel eu produced by τi during
its first n invocations and the total number of tokens consumed on
the same channel by τ j during its first n invocations are Xu

i
(n) =

∑n
l=1 xu

i
(((l−1) mod Pi)+1) and Yu

j
(n) =

∑n
l=1 yu

j
(((l−1) mod P j)+1),

respectively.
Figure 1 shows an example of a CSDF graph. For instance,

actor τ1 has 3 phases, its execution time sequence (in time units) is
[CC

1
(1), CC

1
(2), CC

1
(3)] = [3, 1, 1] and its token production sequence

on channel e1 is [1, 0, 0].
An important property of the CSDF model is the ability to derive

at design-time a schedule for the actors. In order to derive a
valid static schedule for a CSDF graph at design-time, it has to
be consistent and live.

Theorem 1 (From [5]). In a CSDF graph G, a repetition vector
~q = [q1, q2, · · · , qN]T is given by

~q = P · ~r, with P jk =

{

P j if j = k

0 otherwise
(1)

where ~r = [r1, r2, · · · , rN]T is a positive integer solution of the
balance equation

Γ · ~r = ~0 (2)

and where the topology matrix Γ ∈ Z|E|×|V | is defined by

Γu j =

Xu
j
(P j) if actor τ j produces on channel eu

−Yu
j
(P j) if actor τ j consumes from channel eu

0 otherwise.

(3)

A CSDF graph G is said to be consistent if a positive integer solution
~r = [r1, r2, · · · , rN]T exists for the balance equation, Eq. (2). We call
~r aggregated repetition vector. If a deadlock-free schedule can be
found, G is said to be live. An entry qi ∈ ~q represents the number
of invocations of an actor τi in a graph iteration of G. Similarly, an

66

entry ri ∈ ~r represents the number of invocations of a phase of an
actor τi in a graph iteration of G. For graph G shown in Figure 1, the
repetition vector ~q is [6, 2, 2]T and the aggregated repetition vector
~r is [2, 1, 2]T . Throughout this paper, all CSDF graphs are assumed
to be consistent and live.

3.2 System Model
In this work, we consider a system composed of a set Π = {π1, π2,

· · · , πm} of m identical processors. The processors execute a task-set
T = {τ1, τ2, · · · , τn} of n periodic tasks, which can be preempted at
any time. A periodic task τi ∈ T is defined by a 4-tuple τi = (S i,
Ci,Di,Ti), where S i is the start time of τi in absolute time units,
Ci is the WCET, Di is the deadline of τi in relative time units, and
Ti is the task period (where Ti ≥ Ci) in relative time units. In this
work, we only consider tasks which relative deadline Di is equal to
its period Ti.

The utilization of task τi, denoted as ui, where ui ∈ (0, 1], is
defined as ui = Ci/Ti. For a task-set T , uT is the total utilization
of T given by uT =

∑

τi∈T
ui. The total utilization of a task-set

directly determines the minimum number of processors needed to
schedule the task-set. Given a systemΠ and a task-setT , a necessary
and sufficient condition for T to be scheduled on Π such that all
deadlines are met is given by uT ≤ m. Thus, the absolute minimum
number of processors needed to schedule a periodic task-set with
deadlines equal to periods is given by [3]:

mOPT = ⌈uT ⌉. (4)

Scheduling T on mOPT processors is possible only by using the
optimal scheduling algorithms, which are either global or hybrid.
However, global and hybrid scheduling algorithms require task
migration. The other class of scheduling algorithms are partitioned
algorithms which do not require task migration. With partitioned
scheduling, tasks are first allocated to processors. Then, the tasks
on each processor are scheduled using a uniprocessor scheduling
algorithm. The minimum number of processors needed to schedule
a task-set T assuming partitioned scheduling is given by:

mPAR = min
x∈N
{x-part. of T ∧ ∀i ∈ [1, x] : Ti is sched. on πi}. (5)

Note that mOPT is the lower bound on the number of processors mPAR

needed by partitioned scheduling algorithms.

3.3 Strictly Periodic Scheduling of CSDF
In [2], a real-time strictly periodic scheduling (SPS) framework

for acyclic CSDF graphs is proposed. In this framework, every
actor τi in a CSDF graph G is converted to an implicit-deadline
periodic (IDP) task by computing the task parameters S i, Di, Ti and
Ci, where Ci is computed as the maximum WCET value of actor
τi, i.e., Ci = max1≤ϕ≤Pi

{Ci(ϕ)}, where Ci(ϕ) contains the worst-case
computation, read and write time of a phase ϕ of actor τi. To execute
graph G strictly periodically, period Ti for each actor τi is computed
as:

Ti =
lcm(~q)

qi

⌈

maxτ j∈V {C jq j}

lcm(~q)

⌉

,∀τi ∈ V, (6)

where lcm(~q) is the least common multiple of all repetition entries
in ~q. Once the actor periods are computed, the throughput of each
actor τi can be computed as 1/Ti, while the throughput of a graph
G is equal to 1/(qiTi). The authors also provide in [2] a method
for calculating the latency of a CSDF graph scheduled in a strictly
periodic fashion. In addition, the framework computes the minimum
buffer size for each channel in a graph such that actors, i.e., tasks,
can be executed in strictly periodic fashion. Converting the actors
to periodic tasks enables fast analytical calculation of the minimum
number of processors needed to schedule the application. The
strictly periodic schedule of all actors in G, given in Figure 1, is
shown in Figure 2(a), under the assumption that read and write
times are 0 (for the sake of simplicity). For example, actor τ2

executes periodically with the calculated period T2 = 9. Note that
for every actor’s phase one and the same WCET value is considered,
i.e., for actor τ2 we have two phases 1 and 2 and the considered

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

✜1

✜2

✜3

1 12

C2 C2 C2

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

�1(1)

�1(2)

�1(3)

�2(1)

�2(2)

�3(1)

S 2(1)

S 2(2)

(b)

Figure 2: (a) The SPS and (b) ISPS of the CSDF graph G in
Figure 1.

Table 1: Throughput, latency and number of processors for G
under different scheduling schemes.

SPS ISPS

R L m R L m

1/18 30 2 1/10 25 2

WCET value C2 for each phase is C2 = max{C2(1),C2(2)} =
max{CC

2
(1),CC

2
(2)} = max{2, 3} = 3.

4. MOTIVATIONAL EXAMPLE
The goal of this section is to show that the SPS approach [2]

introduced in Section 3.3 is not efficient in terms of throughput,
latency and utilization of processor resources. We analyze two
different schedules of the CSDF graph G in Figure 1 to demonstrate
the need of considering different WCET values of actor’s phases
and the drawback of strictly periodic schedule between actor phases.
The first schedule we consider is SPS. This schedule is visualized
in Figure 2(a). Each execution of an actor is periodic with the period
computed by Eq. (6). Moreover, every execution phase of an actor is
assumed to have one and the same WCET value. The throughput R,
latency L of G and the required number of processors m are given
in Table 1 under SPS.

However, by taking one and the same value as the WCET for all
execution phases of an actor, the cyclic behavior of the CSDF actors
is hidden. Assume that we convert each actor τi in G to a set of Pi

tasks considering different WCET values for each execution phase
and execute them as periodic tasks. The execution schedule of such
task-set is given in Figure 2(b). Again, here we assume that read and
write times are 0. For example, actor τ2 is converted to 2 periodic
tasks τ2(1) and τ2(2) where each task is executed periodically with
a period equal to 10. Moreover, the WCET values of the tasks τ2(1)
and τ2(2) are not the same but τ2(1) has WCET C2(1) = 2 and τ2(2)
has WCET C2(2) = 3, as the original specification in Figure 1.

We can see from Table 1 under ISPS that by scheduling G in
such a way we can obtain almost 2 times higher graph throughput
and shorter graph latency while resources in terms of the required
number of processors are the same compared with SPS and thus,
the processor resources are better utilized in the case of ISPS. This
is especially important in case of a timing constraint because it may
happen that graph cannot meet the constraint when scheduled under
SPS. Here the throughput and latency under ISPS are calculated by
using our approach described in Section 5. The required number of
processors for both SPS and ISPS is calculated by Eq. (4). More-
over, the number of processors needed for partitioned scheduling in
both cases is the same as the number needed for global scheduling

67

Algorithm 1: Procedure to convert a CSDF graph to a set of
periodic tasks.

Input: A CSDF graph G = (V, E).
Output: For each actor τi ∈ V , a set of periodic tasks Tτi = {τi(1), · · · ,

τi(Pi)}, and for each channel eu ∈ E, the size of the buffer bu.
1 for actor τi ∈ V do

2 Compute the minimum common period Ťi by using Eq. (10);

3 for actor τi ∈ V do
4 for phase ϕ of τi, 1 ≤ ϕ ≤ Pi do

5 τi(ϕ) = (0,Ci(ϕ), Ťi, Ťi)

6 for actor τi ∈ V do

7 Compute the start time of the first phase S i(1) by using Eq. (13);
8 for phase ϕ of τi, 2 ≤ ϕ ≤ Pi do

9 Compute the start time of the ϕth phase S i(ϕ) by using
Eq. (15);

10 for actor τi ∈ V do

11 for phase ϕ of τi, 1 ≤ ϕ ≤ Pi do

12 τi(ϕ) = (S i(ϕ),Ci(ϕ), Ťi, Ťi)

13 for communication channel eu ∈ E do

14 Compute the buffer size bu by using Eq. (18);

given by Eq. (4). We can see from the motivational example that the
approach from [2] yields to lower throughput and larger latency of a
graph by using one and the same value for the WCET of each phase
of an actor and by strictly periodic scheduling of all executions of
the actor. Thus, different WCET values for actor phases should
be considered and the constraint on strictly periodic scheduling
between the actor phases should be removed.

5. IMPROVED HARD REAL-TIME

SCHEDULING OF CSDF
In this section, we present a scheduling framework, namely

improved strictly periodic scheduling (ISPS), which enables a con-
version of every actor of an acyclic CSDF graph to a set of periodic
tasks. Each set of periodic tasks corresponding to an actor has as
many elements as the number of phases of that actor. By taking into
account the WCET value of each phase of an actor in a graph, the
proposed approach computes the parameters (S i, Di, Ti) of tasks
corresponding to the actor and the minimum buffer sizes of the
communication channels such that ISPS is guaranteed to exist.

The proposed conversion procedure is given in Algorithm 1. First,
the periods of tasks corresponding to actors are calculated in lines
1-2, explained in Section 5.1, and relative deadlines of the tasks are
set to be equal to the corresponding task periods, lines 3-5. Then the
start times for each task-set corresponding to an actor are computed
in lines 6-12, for details see Section 5.2. Finally, the buffer sizes of
the communication channels are derived in lines 13-14, for details
see Section 5.3.

5.1 Deriving Periods of Tasks
The first step in constructing the ISPS of a CSDF graph is to

derive the valid period for each periodic task corresponding to a
phase of an actor in the graph. To calculate the periods, we introduce
the following definitions:

Definition 1. For each actor τi in an acyclic CSDF graph G, the
WCET sequence Ci = [Ci(1), Ci(2), · · · , Ci(Pi)], represents the
sequence of the WCET values, measured in time units, for each
execution phase of τi. The WCET value Ci(ϕ) for a phase ϕ is given
by:

Ci(ϕ) = CR ·
∑

er∈in(τi)

yr
i (ϕ) +CC

i (ϕ) +CW ·
∑

ew∈out(τi)

xw
i (ϕ), (7)

where CR represents the platform-dependent worst-case time needed
to read a single token from an input channel er from the set of input
channels in(τi) of actor τi; analogously, CW is the worst-case time
needed to write a single token to an output channel ew from the set
of output channels out(τi) of τi; yr

i (ϕ) and xw
i
(ϕ) is the number of

tokens read from er and written to ew by τi, respectively, during its
execution phase ϕ; and CC

i
(ϕ) is the worst-case computation time of

τi in its phase ϕ.

Definition 2. For an acyclic CSDF graph G, an aggregated

execution vector ~AC, where ~AC ∈ NN , represents the aggregated
WCET value of the actors in G and its elements are given by

ACi =
∑Pi

ϕ=1
Ci(ϕ), where Ci(ϕ) is the WCET value of τi’s phase ϕ.

Each actor τi ∈ V in graph G is converted to a periodic task-set
Tτi = {τi(1), · · · , τi(Pi)}.

Definition 3. A task τi(ϕ) corresponding to a phase ϕ of an actor
τi, where 1 ≤ ϕ ≤ Pi, in an acyclic CSDF graph G is a strictly
periodic task iff the time period between any two consecutive
firings of that task is constant.

All tasks belonging to a periodic task-set Tτi corresponding to an
actor τi have the same period Ti, which we call common period.

Definition 4. For an acyclic CSDF graph G, a common period

vector ~T , where ~T ∈ NN , represents the periods, measured in time

units, of periodic task-sets corresponding to actors in G. Ti ∈ ~T is
common period of periodic task-set corresponding to actor τi ∈ V .
~T is given by the solution to both

r1T1 = r2T2 = · · · = rN−1TN−1 = rNTN (8)

and
~T − ~AC ≥ ~0, (9)

where ri ∈ ~r and ~r is the aggregated repetition vector introduced in
Section 3.1.

Lemma 1. For an acyclic CSDF graph G, the minimum common

period vector ~̌T is given by:

Ťi =
lcm(~r)

ri

⌈

maxτ j∈V {AC jr j}

lcm(~r)

⌉

,∀τi ∈ V, (10)

where lcm(~r) is the least common multiple of all phase repetition
entries in ~r.

Proof. The minimum common period vector ~̌T that solves Eq. (8)
is given by:

Ťi = lcm{r1, r2, · · · , rN}/ri,∀τi ∈ V.

Ineq. (9) can be re-written as:

cŤ1 ≥ AC1, cŤ2 ≥ AC2, · · · , cŤN ≥ ACN , c ∈ N. (11)

Further, Ineq. (11) can be re-written as:

c ≥ AC1r1/ lcm(~r), · · · , c ≥ ACNrN/ lcm(~r). (12)

From Ineq. (12), it follows that c is greater than or equal to
maxτ j∈V {AC jr j}/ lcm(~r). However, maxτ j∈V {AC jr j}/ lcm(~r) is not
always guaranteed to be an integer. Because of that, the value is
rounded up by taking its ceiling. Thus, the minimum common
period vector which satisfies both Eq. (8) and Ineq. (9) is given by
Eq. (10).

Once we derive the periods of actors in a graph using Eq. (10), actor
deadlines are derived implicitly given that we convert each actor to
a set of strictly periodic tasks with deadlines equal to the periods.

For the CSDF graph in Figure 1, the derived minimum common

period vector is ~̌T = [5, 10, 5] time units.

Theorem 2. For any acyclic CSDF graph G, a periodic schedule
exists such that every phase of an actor τi ∈ V is strictly periodic

with a constant period Ti ∈
~̌T and every communication channel

eu ∈ E has a bounded buffer capacity.

Proof. Let us assume that graph G is partitioned into L levels in
a way similar to topological sort. In that way, all input actors belong
to level-1, the actors from level-2 have all immediate predecessors
in level-1, the actors from level-3 have immediate predecessors in
level-2 and can also have immediate predecessors in level-1, and so
on. The graph iteration period is α = r1T1 = · · · = rNTN . During the
iteration period each phase of τi is executed ri times. Assume that the
first phase of level-1 actors starts at time t = 0. Other phases of an

68

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

✜1(1)

✜1(2)

✜1(3)

✜2(1)

✜2(2)

✜3(1)

Figure 3: The periodic scheduleσ for the CSDF graph G shown
in Figure 1.

actor are scheduled to be fired as soon as the WCET of the previous
phase elapses. Recall that every actor τi in graph G is converted to
a set of strictly periodic tasks where a task corresponds to a phase
of the actor. Consider now an actor from level-1, denoted as τ1. By
time t = α+S 1(P1), the last phase of τ1 will finish its r1th execution,
where S 1(P1) is the start time of the last phase of τ1. Level-1 actors
will complete a whole iteration by time t1 = α +maxτi∈level-1{S i(Pi)}
and will continue executing their second iteration. According to
Eq. (2), level-1 actors will produce enough data on all channels
to level-2 actors by time t1 such that level-2 actors can execute a
whole iteration if their first phases are started at t1, at the earliest.
Let us start the first phases of level-2 actors at time t = 2α and all
the other phases of a level-2 actor one after the other. Similarly,
by time t2 = 3α + maxτi∈level-2{S i(Pi) − S i(1)}, level-3 actors will
have enough data to execute one iteration. Thus, starting the first
phases of level-3 actors at time t = 4α guarantees that the actors
can execute a whole iteration. By repeating the same procedure to
the actors of the last level, level L, (by starting their first phases at
t = (L − 1) · 2α and all the other phases as soon as the WCET of
previous phase elapses), we obtain an overlapping schedule σ where
all actors execute their corresponding iterations. In the constructed
schedule, the first phase of an actor τ j corresponding to a level-i
will start execution at time t = (i− 1) · 2α and once it starts it will be
fired every T j time units. The other phases start their executions one
after the other and all within period T j. Once started, each phase is
re-executed every T j time units.

Now, we will prove that the constructed schedule executes with
bounded buffers. The longest delay which may happen between
production and consumption of data tokens is in case when there
is a dependency eu between the first iteration of a level-1 actor and
the first iteration of a level-L actor. In this case the delay is equal to
(L − 1) · 2α and during that period the level-1 actor will produce on
channel eu at most (L−1) ·2Xu

1
(P1r1) data tokens, where Xu

1
(P1r1) is

the number of tokens produced during P1r1 executions of the level-1
actor. However, starting from L · 2α level-1 and level-L execute in
parallel, so we should increase the buffer size by 2Xu

1
(P1r1) which

then becomes L · 2Xu
1
(P1r1). We can now use the methodology

described above to determine the buffer size of each communication
channel in a graph: each channel eu ∈ E, connecting a level-i source
actor τk and a level- j destination actor (j ≥ i) will store according
to schedule σ at most:

bu = (j − i + 1) · 2Xu
k (Pkrk)

tokens. Thus, an upper bound on the buffer sizes exists.

For the example graph G given in Figure 1, actors in G are
grouped into 3 levels such that τ1 is level-1 actor, τ2 level-2 and τ3 is
level-3 actor. The calculated graph iteration period α is equal to 10.
The periodic schedule resulting from Theorem 2, namely schedule
σ, is depicted in Figure 3.

5.2 Deriving The Earliest Actor Phase Start
Times

In order to represent an actor of a CSDF graph as a set of strictly
periodic tasks, we still need one parameter to be derived – the start
time of each task. In Section 5.1 we already introduced the start
times of phases of the actors corresponding to different levels, but
those start times are not minimum. Minimizing the start times is
very important since it has a direct impact on the latency of the graph

and the buffer sizes of the communication channels. Therefore, the
earliest start times are derived below.

We derive the earliest start times assuming that the tokens pro-
duction happens as late as possible (at the deadlines) and the tokens
consumption happens as early as possible (at the beginning of
execution of each phase).

Lemma 2. For an acyclic CSDF graph G, the earliest start time
of the first phase of an actor τ j ∈ V, denoted S j, under ISPS is
given by:

S j(1) =

{

0 if prec(τ j) = ∅

maxτi∈prec(τ j){S i→ j(1)} if prec(τ j) , ∅
(13)

where prec(τ j) is the set of predecessors of τ j, and S i→ j(1) is given
by:

S i→ j(1) = min
t∈[0,S i(1)+α+∆i(Pi)]

{t : prd
[S i(1),max{S i(1),t}+k)

(τi)

≥ cns
[t,max{S i(1),t}+k]

(τ j), ∀k ∈ [0, α + ∆i(Pi)]}, (14)

where S i(1) is the earliest start time of the first phase of a
predecessor actor τi, α = riTi = r jT j, ∆i(Pi) = S i(Pi) − S i(1),
prd[ts ,te)(τi) is the number of tokens produced by τi during the time
interval [ts, te), and cns[ts ,te](τ j) is the number of tokens consumed
by τ j during the time interval [ts, te]. The earliest start times of the
other phases of τ j ∈ V are then given by:

S j(ϕ) = S j(ϕ − 1) +C j(ϕ − 1), ∀ϕ ∈ [2, · · · ,P j]. (15)

Proof. In Theorem 2 we proved the existence of ISPS when the
first phase of level-k actors was started at time (k−1) ·2α. According
to the schedule σ, level-(k−1) predecessor τi will start the execution
of its first phase at S i(1) = (k − 2) · 2α. Level-k actor τ j can then
start the execution of its first phase at:

S j(1) = (k − 1) · 2α = (k − 2) · 2α + 2α = S i(1) + 2α.

Observe now that in the proof of Theorem 2, instead of 2α we could
more precisely take α + S i(Pi) − S i(1), because the last production
of an iteration of an actor τi will happen α + ∆i(Pi) time units after
the start of its first phase, at the latest. Given this and taking into
account all predecessors of τ j, we can write:

S j(1) = max
τi∈prec(τ j)

{S i(1) + α + ∆i(Pi)}.

We are now interested in starting the first phase of τ j earlier, which
means we search for S j(1) ≤ maxτi∈prec(τ j){S i(1) + α + ∆i(Pi)}, and
the earliest possible S j(1) can be at the time when the application
starts, which is t = 0. This can be written as:

S j(1) = max
τi∈prec(τ j)

{S i→ j(1)}

where S i→ j(1) = t′, t′ ∈ [0, S i(1) + α + ∆i(Pi)].

A valid start time candidate S i→ j(1) must guarantee that the number
of tokens available on channel eu = (τi, τ j) at any time instant
t ≥ t′ is greater than or equal to the number of consumed tokens
at the same instant such that τ j can be executed as a set of strictly
periodic tasks. Here, we have two cases: Case 1: t′ ≥ S i(1): In

order to guarantee that τ j can fire its first phase at times t = t′, t′ +
T j, · · · , t

′ + α and each its other phase ϕ as early as possible at
times t = t′ + ∆ j(ϕ), t′ + ∆ j(ϕ) + T j, · · · , t

′ + ∆ j(ϕ) + α − T j, where

∆ j(ϕ) =
∑ϕ−1

l=1
C j(l), t′ must satisfy:

∀k ∈ [0, α + ∆i(Pi)] : prd
[S i(1),t′+k)

(τi) ≥ cns
[t′ ,t′+k]

(τ j). (16)

Thus, a valid value of t′ guarantees that once τ j starts, it always
finds enough data to fire for one iteration. Case 2: t′ < S i(1):

This case happens when τ j consumes zero tokens in the interval
[S i(1), t′] or there are initial tokens on the channel. It is sufficient to
check the cumulative production and consumption over the interval
[S i(1), S i(1) + α + ∆i(Pi)] since by time t = S i(1) + α + ∆i(Pi) both
τi and τ j are guaranteed to have finished one iteration:

∀k ∈ [0, α + ∆i(Pi)] : prd
[S i(1),S i(1)+k)

(τi) ≥ cns
[t′ ,S i(1)+k]

(τ j). (17)

69

By merging Eq. (16) and Eq. (17) and then selecting among valid
start times t′ the minimum one, we obtain Eq. (14). Start times
for the tasks corresponding to the actor phases other than the first
phase are obtained by adding the WCET value of the previous phase
to the derived start time of the previous phase, which is given by
Eq. (15). The start times derived in such a way enable the serialized
execution of tasks corresponding to actor phases, when it is needed,
by careful allocation and certain scheduling algorithms, which will
be explained in more detail in Section 5.4.

For example, the derived earliest start times for phases of actor τ2

in G, shown in Figure 1, are S 2(1) = 8 and S 2(2) = S 2(1) +C2(1) =
10, as illustrated in Figure 2(b).

5.3 Deriving Channel Buffer Sizes
We proved that ISPS has bounded buffer sizes in Section 5.1.

Those bounds are sufficient but not minimum. Therefore, we want
to derive the minimum buffer sizes that guarantee periodic execution
of tasks corresponding to actor phases.

We want to derive the minimum buffer size such that the derived
buffer size is always valid regardless of when the actor phases are
actually scheduled to produce/consume during its common period.
Hence, we assume that the tokens production happens as early as
possible (at the beginning of execution of each phase) and the tokens
consumption happens as late as possible (at the deadlines).

Lemma 3. For an acyclic CSDF graph G, the minimum buffer
size bu of a communication channel eu = (τi, τ j) under ISPS is given
by:

bu = max
k∈[0,α+∆ j(P j)]

{ prd
[S i(1),max{S i(1),S j(1)}+k]

(τi)

− cns
[S j(1),max{S i(1),S j(1)}+k)

(τ j)}, (18)

where S i(1) is the earliest start time of the first phase of a
predecessor actor τi, α = riTi = r jT j, ∆ j(P j) = S j(P j) − S j(1),
prd[ts ,te](τi) is the number of tokens produced by τi during the time
interval [ts, te], and cns[ts ,te)(τ j) is the number of tokens consumed
by τ j during the time interval [ts, te).

Proof. Equation (18) tracks the maximum cumulative number
of unconsumed tokens on channel eu during one iteration of τi and
τ j. We have two cases: Case 1: S j(1) ≥ S i(1): Here we have two

intervals [S i(1), S j(1)) and [S j(1), S j(1) + α + ∆ j(P j)]. During the
first interval only phases of actor τi are executing, so tokens are only
produced and buffer size should be large enough to accommodate all
produced tokens in that interval. During the second interval phases
of both actors execute in parallel. Thus, the minimum number of
tokens that needs to be stored is given by the maximum number of
unconsumed tokens on eu at any time over this interval. At time
t = S j(1)+α+∆ j(P j), both τi and τ j have completed one iteration and
the number of tokens on eu is the same as at time t = S j(1) + ∆ j(P j)
[5]. Due to the periodicity of τi and τ j, their execution pattern
repeats. Thus, bu given by Eq. (18) is the minimum buffer size which
guarantees periodic execution of τi and τ j. Case 2: S j(1) < S i(1):

Here we have three intervals [S j(1), S i(1)), [S i(1), S j(1)+α+∆ j(P j)]
and (S j(1)+α+∆ j(P j), S i(1)+α+∆ j(P j)]. During the first interval
there is no production nor consumption or there are initial tokens
on the channel, and hence the bu during that interval is equal to
the number of initial tokens. During the second interval phases of
both actors execute in parallel and bu gives the maximum number
of unconsumed tokens on eu. During the third interval phases of
actor τ j executes their second iteration, again either there is no
consumption, which means that eu has to accommodate all the
tokens produced during this interval or there is consumption and
bu gives the maximum number of unconsumed tokens on eu. At
time t = S i(1) + α + ∆ j(P j), both τi and τ j have completed one
iteration and the number of tokens on eu is the same as at time
t = S i(1) + ∆ j(P j) [5]. Due to the periodicity of τi and τ j, their
execution pattern repeats. Thus, bu given by Eq. (18) is the minimum
buffer size which guarantees periodic execution of τi and τ j.

For the example graph G given in Figure 1, the calculated buffer
sizes are [b1, b2, b3] = [4, 15, 4] tokens.

5.4 Hard Real-Time Schedulability
We give now a theorem which summarizes the presented results

for our improved strictly periodic scheduling:

Theorem 3. For an acyclic CSDF graph G, let TG be a set of
periodic task-sets Tτi such that Tτi corresponds to τi ∈ V. Tτi
consists of Pi periodic tasks given by:

τi(ϕ) = (S i(ϕ),Ci(ϕ),Di,Ti), 1 ≤ ϕ ≤ Pi, (19)

where S i(ϕ) is the earliest start time of a phase ϕ of actor τi given
by Eq. (13) and Eq. (15), Ci(ϕ) is the WCET value of a phase ϕ
given by Eq. (7), Di is the implicit deadline, and Ti is the period of
Tτi given by Eq. (10). TG is schedulable on m processors using a
hard real-time scheduling algorithm A for implicit-deadline periodic
tasks if:

1. A is partitioned Earliest Deadline First, partitioned Rate
Monotonic, partitioned Deadline Monotonic or hierarchical
global hard real-time scheduling algorithm,

2. TG satisfies the schedulability test of A on m processors,

3. every communication channel eu ∈ E has a capacity of at
least bu tokens, where bu is given by Eq. (18).

Proof. According to Theorem 2, the graph is converted into
strictly periodic tasks. The relative deadline of these strictly periodic
tasks is set to be equal to their period. If all actors in a graph have
phases which are not data-dependent (stateless actors) then the
corresponding tasks become implicit-deadline periodic (IDP) tasks,
hence the tasks can be scheduled by any hard real-time scheduling
algorithm for IDP tasks which satisfies the schedulability test of
task-sets on the corresponding platform. If a graph contains an
actor τi which phases are data-dependent (stateful actor) then the
corresponding task-set Tτi of this actor should be scheduled in a way
which preserves the dependency between the actor phases. The hard
real-time scheduling algorithms which can do this are partitioned
Earliest Deadline First (EDF), Rate Monotonic (RM) [15] and
Deadline Monotonic (DM) [13], or hierarchical [10], [14]. In case
of the partitioned algorithms, tasks which correspond to phases of
an actor with data-dependent phases should be allocated to the same
processor and scheduled by EDF or DM because the deadlines of
the phases are in the same order as the phases themselves, or by
RM fixed priority scheduler where ties should be broken in favor
of jobs arrived earlier in a system. In hierarchical scheduling a
set of tasks are grouped together and scheduled as a single entity
- server task or supertask. When the entity is scheduled, one of
its tasks is selected to execute according to an internal scheduling
policy. Hence, the supertasks/servers are scheduled globally, while
the scheduling of the tasks within a supertask/server is done locally,
i.e., it is analogous to scheduling on uniprocessor. By grouping the
tasks which correspond to phases of an actor with data-dependent
phases into a supertask/server and scheduling them by a scheduler
which preserves their order (e.g. EDF) the synchronization problem
of such dependent tasks is solved.

If tasks which correspond to different phases of a stateless actor
are scheduled to execute on different processors, it may happen that
they produce/consume tokens out-of-order. In that case, every task
corresponding to a phase must know where to write or read from
the communication buffer. A writing/reading pattern which ensures
correct token production/token consumption follows the one which
would be obtained if the tasks corresponding to different phases
of an actor wrote/read in-order to a buffer that is implemented as
a circular buffer. The buffer sizes derived in Section 5.3 are large
enough to guarantee that tokens produced by tasks corresponding
to different phases of an actor will never overwrite the unconsumed
tokens of each other.

5.5 Performance Analysis
Once an acyclic CSDF graph has been converted to a set of

strictly periodic tasks, the calculated task parameters are used for
performance analysis of the graph.

The throughput of a graph G scheduled by ISPS is given by:

R(G) =
1

α
=

1

riŤi

, τi ∈ V, (20)

70

where Ťi is calculated by Eq. (10). Given that during one graph
iteration every actor τi ∈ V is executed qi times, the throughput of
each actor is calculated as:

Ri =
qi

α
=

Pi

Ťi

, τi ∈ V. (21)

Theorem 4. For any acyclic CSDF graph G scheduled by ISPS,
the throughput of the graph is never less than the graph throughput
when G is scheduled by SPS.

Proof. The throughput of a graph scheduled under SPS is
1/αSPS = 1/(qiT

SPS
i

), τi ∈ V . If the same graph is scheduled under

our ISPS, then its throughput is 1/αISPS = 1/(riT
ISPS
i

), τi ∈ V . By

using Eq. (6) and Eq. (10) and denoting u = maxτ j∈V {r j

∑P j

ϕ=1
C j(ϕ)}

and w = maxτ j∈V {q j max1≤ϕ≤P j
{C j(ϕ)}}, we can write the relation

which we want to prove, i.e., αISPS ≤ αSPS, as follows:

lcm(~r)

⌈

u

lcm(~r)

⌉

≤ lcm(~q)

⌈

w

lcm(~q)

⌉

. (22)

We have that u ≤ w. Now, we want to analyze the relation
between lcm(~r) and lcm(~q). Given that the least common multiple
of positive integer numbers can be found using prime factorization,
and the relation between vectors ~r = [r1, · · · , rN]T and ~q = P · ~r =
[P1r1, · · · , PNrN]T , we can write:

lcm(~r) =
∏

i

p
max1≤ j≤N {a

i
j
}

i
and lcm(~q) =

∏

i

p
max1≤ j≤N {a

i
j
+bi

j
}

i
,

where pi is a prime number, ai
j
is a power of pi in the representation

of r j and bi
j

is a power of pi in the representation of P j. For each

prime number pi, max1≤ j≤N{a
i
j
} is not grater than max1≤ j≤N{a

i
j
+ bi

j
},

which means that we can write lcm(~q)/ lcm(~r) =
∏

i p
ki

i
, with ki =

max1≤ j≤N{a
i
j
+ bi

j
} − max1≤ j≤N{a

i
j
}, and ki ≥ 0. Thus, lcm(~q) is

divisible by lcm(~r).
Finally, to prove relation (22) we consider the following cases

(with regard to divisibility by the corresponding lcm term): Case 1:
workloads on both sides of inequality (22) are divisible by the
corresponding lcm terms. By removing the ceiling operation we
obtain inequality u ≤ w, which always holds. Case 2: u is divisible
by lcm(~r). We can represent the ceiling operation on the right-
hand side as (w + lcm(~q) − wmod(lcm(~q)))/ lcm(~q). In the worst
case wmod(lcm(~q)) is equal to lcm(~q) − 1. By putting this into
Ineq. (22) we obtain u ≤ w + 1, which holds. Case 3: w is
divisible by lcm(~q) (also divisible by lcm(~r)). We can represent
u and w as ku lcm(~r) + u mod (lcm(~r)) and kw lcm(~r), respectively,
for some integer constants ku and kw, ku < kw. We represent the
ceiling operation as in Case 2, so Ineq. (22) becomes u + lcm(~r) −
umod(lcm(~r)) ≤ w. Now, by putting the ku-representation of u
and kw-representation of w, the inequality becomes ku + 1 ≤ kw,
which is true and thus, Ineq. (22) holds. Case 4: workloads on
both sides of Ineq. (22) are not divisible by the corresponding lcm
terms. Similarly to Case 2 and Case 3, we can represent the ceiling
operation through the modulo operation. In the worst case, we have
on the right-hand side the smallest possible value which is w + 1,
which means that this value now is divisible by both lcm(~q) and
lcm(~r). In the worst case u = w, which means that u also needs
only 1 unit to be rounded up to a value divisible by lcm(~r). Thus,
Ineq. (22) becomes w + 1 ≤ w + 1, which holds.

The other performance metric of a graph is the latency. The
latency of G scheduled by ISPS is given by:

L(G) = max
win→out∈W

{S out(g
C
out) + Tout − S in(gP

in)}, (23)

where W is the set of all paths from any input actor τin to any
output actor τout, and win→out is one path of the set. S out(g

C
out) and

S in(gP
in

) are the earliest start times of the first phase of τout with
non-zero token consumption (phase gC

out) and the first phase of τin

with non-zero token production (phase gP
in

) on a path win→out ∈ W,
respectively. Tout is the common period of τout.

Algorithm 2: Procedure to derive the number of processors.

Input: A CSDF graph G = (V, E), a partitioned scheduling algorithm A,
an allocation heuristic H.

Output: Number of processors mPAR, task allocation alloc.
1 for actor τi in V do

2 Compute the minimum common period Ťi by using Eq. (10);

3 utotal = 0;
4 for actor τi ∈ V do

5 ui = 0;
6 for phase ϕ of τi, 1 ≤ ϕ ≤ Pi do

7 ui(ϕ) =
Ci(ϕ)

Ťi
;

8 ui = ui + ui(ϕ);
9 utotal = utotal + ui(ϕ);

10 Find Vs = {τi : τi ∈ V ∧ τi is stateful};
11 U ← ∅; (the set of allocation units, initially empty)
12 for actor τi ∈ Vs do

13 U = U ∪ ui;

14 for actor τi ∈ V − Vs do

15 for phase ϕ of τi, 1 ≤ ϕ ≤ Pi do

16 U = U ∪ ui(ϕ);

17 mPAR = mOPT = ⌈utotal⌉;
18 Reorder elements of U if required by an allocation heuristic H;
19 for u ∈ U do

20 Π = {π1, π2, · · · , πmPAR
};

21 Apply bin-packing allocation heuristic H to u on π j ∈ Π and check
a schedulabiility test of algorithm A on π j;

22 if u is not allocated to any π j ∈ Π then
23 Allocate u on a new processor πmPAR+1;
24 mPAR = mPAR + 1;

25 return mPAR, alloc;

5.6 Deriving the Number of Processors
As introduced in Section 3.2, by using Eq. (4) one can compute

the absolute minimum number of processors mOPT needed to sched-
ule the tasks with deadlines equal to the periods. The tasks can be
scheduled on mOPT if an optimal scheduling algorithm is used. The
optimal scheduling algorithms are either global or hybrid, and hence,
they require the task migration. On the other hand, the partitioned
scheduling algorithms do not require the task migration. In that
case the tasks are first allocated to the processors, and then the tasks
on each processor are scheduled using a uniprocessor scheduling
algorithm. The problem of allocating tasks onto processors is similar
to the bin-packing problem and can be solved using either exact or
approximate allocation algorithms. The disadvantage of using an
exact algorithm is its high computational complexity. Therefore,
many heuristics exist for task partitioning such as First-Fit, Best-Fit,
Worst-Fit, etc. [8] which have, in the worst case, a polynomial time
complexity.

The procedure to calculate the number of processors required for
the partitioned scheduling of the task-set obtained by the conversion
procedure described in Section 5.1-5.2 is given in Algorithm 2. The
minimum common period for each actor is calculated in lines 1-2
of the algorithm. Once the periods are calculated, then the total
utilization of the converted task-set and the utilization per task-
set corresponding to an actor are calculated in lines 3-9. Note
that deadlines of tasks are equal to their periods. Lines 10-16
in Algorithm 2 ensure that the task-set of an actor which phases
are data-dependent (stateful actor) is considered as one scheduling
entity, i.e., one allocation unit. The absolute minimum number of
processors mOPT for scheduling the tasks with deadlines equal to the
periods is computed in line 17. Some allocation heuristics require
a preprocessing step to be performed on the tasks before applying
the heuristic. This preprocessing step is usually sorting the tasks
based on some criteria, such as their utilization. That step is done
in Algorithm 2 in line 18. The following lines find the number of
processors and the allocation of tasks to processors. Given that mOPT

is the lower bound on the number of processors mPAR needed by
partitioned scheduling algorithms, Algorithm 2 starts with the task
partitioning on mOPT processors. If the tasks pass the schedulability

71

test on all mPAR processors, i.e., the utilization of the tasks allocated
to a processor is not greater than the corresponding utilization bound
(e.g., for EDF utilization bound is 1), then the algorithm returns
mPAR and the corresponding allocation of the tasks to the processors
alloc.

Let us now analyze the time complexity of Algorithm 2 in the
worst case. The first for loop in lines 1-2 takes linear time to
calculate the minimum common period of each actor, i.e., its time
complexity is O(|V |). The second for loop in lines 4-9 has a nested
for loop and hence, its time complexity in the worst case is given
by O(|V |P), where P is the maximum number of execution phases
per actor, i.e., P = maxτi∈V {Pi}. Lines 10-13 of Algorithm 2 run in
linear time in the worst case, with complexity O(|V |). The for loop
in lines 14-16 is similar to the loop in lines 4-9 and thus, it takes
O(|V |P) time to construct a set of scheduling entities. If the task
sorting in line 18 should be performed prior to performing the task
allocation, it will have O(|V |P log(|V |P)) time complexity given that
the maximum number of tasks is |V |P. The for loop in lines 19-24
implements the allocation of the tasks to the processors by applying
certain allocation heuristic and scheduling algorithm. Given that
the maximum number of tasks is |V |P and the maximum number
of processors needed to allocate and schedule an CSDF graph is
equal to the number of actors in the graph |V |, the time complexity
of finding the number of processors mPAR and the feasible task
allocation is O(|V |P log |V |) [21]. Thus, we can conclude that the
running time of Algorithm 2 is polynomial and its complexity
is O(|V |P log |V |) or O(|V |P log(|V |P)) if the preprocessing step is
performed.

6. EVALUATION
We evaluate our approach in terms of its performance and time

complexity by performing experiments on the benchmarks given in
Table 2. Columns 3, 4 and 5 in Table 2 give for each benchmark the
number of actors |V |, the number of channels |E| in the correspond-
ing CSDF graph of a benchmark, and the number of periodic tasks
|T | obtained after converting the actors of the CSDF graph by our
approach to a set of periodic tasks T . The execution times of the
benchmarks are given in clock cycles [6] or in time units [4], [20].
If the execution times of a benchmark are not given [5], [17], [16],
certain values based on a static analysis are assumed. The execution
times of benchmark [23] are obtained from the measurements of the
benchmark running on a MicroBlaze processor.

Our approach is evaluated by comparison to 3 related scheduling
approaches - strictly periodic scheduling, SPS, proposed in [2],
periodic scheduling, PS, presented in [6], and self-timed scheduling,
STS, given in [19]. We implemented our approach in Python. The
SPS approach was implemented in Python within the darts tool-set
[1]. The approach in [19] was implemented in C++ within the SDF3

tool-set [18]. In addition, we implemented the approach from [6]
in Python as well. We formulated both LP problems [6] for finding
the period of a graph, and for finding the start times and the buffer
sizes as integer linear programming (ILP) problems, and we added
the constraint that the periods of all actors in a graph have to be
integers. We used CPLEX Optimization Studio [11] to solve the
ILP problems. We run all the experiments on a Dell PowerEdge
T710 server running Ubuntu 11.04 (64-bit) Server OS.

6.1 Performance of the ISPS approach
The main objective of the evaluation is to compare the throughput

of streaming applications and the required number of processors
to guarantee the throughput when scheduled by our ISPS with the
throughput and the number of processors under SPS [2], PS [6]
and STS [19]. In addition, we compare our ISPS and the other
scheduling approaches in terms of latency and memory resources
needed to implement the communication channels.

We used the sdf3analysis-csdf tool from SDF3 [18] to ob-
tain the maximum achievable throughput of a graph, which is
the throughput under STS, and to compute the minimum buffer
sizes required to achieve that throughput. Unfortunately, the sdf3-
analysis-csdf tool does not support the latency calculation and
the calculation of the number of processors. Thus, we were not able

Table 2: Benchmarks used for evaluation.
Domain Benchmark |V | |E| |T | Source

Medical Heart pacemaker 4 3 67 [17]

Communication Reed Solomon Decoder (RSD) 6 6 904 [4]

Financial BlackScholes 41 40 261 [6]

Computer Vision
Disparity map 5 6 11 [23]

Pdetect 58 76 4045 [6]

Audio processing

CELP algorithm 9 10 167 [5]

CD2DAT rate converter 6 5 22 [16]

MP3 Playback 4 3 8 [20]

Video processing JPEG2000 240 703 639 [6]

to compare them with our approach. We were also not able to obtain
the number of processors for a graph scheduled under PS, because
the calculation of the number of processors was not considered in
[6].

Results of the performance evaluation are given in Table 3. We
report the throughput of the output actors under ISPS, calculated
by Eq. (21), in the second column of Table 3. Here t.u. denotes the
corresponding time unit of a benchmark. Columns 7, 12 and 15 show
the ratio between the throughput of the output actors under our ISPS
and SPS, PS and STS, respectively. For processor requirements
in case of ISPS and SPS, we compute the minimum number of
processors under optimal and partitioned First-Fit Decreasing EDF
(FFD-EDF) schedulers by using Eq. (4) and Algorithm 2 for ISPS,
and Eq. (4) and Eq. (5) for SPS - see columns 4, 5, 9 and 10. By
comparing the throughputs under ISPS and SPS, we can see that
for the majority of the benchmarks the throughput under our ISPS is
higher than the corresponding throughput under SPS. Only in two
cases the throughputs are the same for both schedules. The first case
is MP3 Playback, which bottleneck actor (the actor with the biggest
workload over one iteration period) is the same under both SPS and
ISPS, and that actor has only one phase, so the influence of different
WCET for actor phases on throughput cannot be seen. However, the
influence can be seen from the required number of processors needed
for scheduling of MP3 Playback, which is smaller in the case of
our ISPS. The second case is CD2DAT. For this benchmark lcm(~q)
and lcm(~r) are equal and much higher than the maximum workload
of actors over an iteration period for both SPS and ISPS, which
leads to the same iteration period for both schedules. However, the
WCET-awareness of ISPS leads to smaller number of processors.
Note that if we want to schedule a task-set on smaller number of
processors than the one calculated by Eq. (4) or Eq. (5)/Algorithm 2,
we should scale up the computed actor periods by the same scaling
factor [22]. Hence, to schedule CD2DAT by SPS on the same
number of processors required by ISPS, we need to scale up actor
periods by 2, which will lead to decrease in throughput by 2. Thus,
ISPS outperforms SPS in terms of throughput when CD2DAT
is scheduled on 1 processor. Benchmarks JPEG2000 and RSD
can achieve much better throughput when scheduled under ISPS,
but in that case they require larger number of processors to be
scheduled. Note that the throughputs of these two benchmarks
cannot be increased under SPS even when the number of processors
is increased. If we apply the period scaling technique [22] for
these two benchmarks to schedule them under ISPS on the same
number of processors as required under SPS the throughput values
for JPEG2000 and RSD under our ISPS are 3.93 and 11.2 times
higher, as given in column 7 in parenthesis, than the corresponding
values under SPS. Therefore, we can conclude that in all cases
the minimum number of processors required to guarantee certain
throughput under ISPS is smaller than or equal to the minimum
number of processors under SPS while the throughput under ISPS
is increased in most cases, thus, processors are better utilized.

Column 12 in Table 3 shows the ratio of the maximum throughput
of the output actors achieved by our ISPS to the maximum through-
put of the output actors achieved by PS. We can see that both
approaches give the same throughput for all benchmarks, which
is expected given that PS schedules phases of an actor in a CSDF
graph statically within a period of the actor, hence the scheduling
granularity is similar between these two approaches.

Table 3 shows in column 15 the ratio of the maximum throughput
of the output actors achieved by our approach to the absolute

72

maximum throughput of the output actors achieved by self-timed
scheduling of actor firings, which is the optimal scheduling in terms
of throughput. We can see that throughput under ISPS is equal
or very close to the throughput under STS for the majority of
the benchmarks. Difference in throughput appears as a result of
the ceiling operation during calculation of actor common periods
in Eq. (10). The biggest difference is in the case of CD2DAT
benchmark. For this benchmark lcm(~r) is much higher than the
maximum workload of actors over an iteration period, and thus,
the calculated actor periods are underutilized, which leads to lower
throughput. The throughput value N/A for JPEG2000 indicates
that the SDF3 tool-set [18] returned an infeasible throughput (most
likely related to an integer overflow).

Let us now analyze the latency and the memory resources needed
to implement the communication channels of the benchmarks. The
graph latency under ISPS is calculated by Eq. (23) and shown in
column 3 of Table 3. As we can see from columns 4, 5, 7-10 in
Table 3: for 4 benchmarks (highlighted in the table) under ISPS
we obtain higher throughput and smaller latency than under SPS
without increasing the number of processors (with JPEG2000 and
RSD scheduled on the same number of processors as in case of
the SPS); for the other 3 benchmarks (BlackScholes, Disp. map,
Pdetect) the obtained increase in throughput is less than the increase
in latency on a platform with the same (or 1 less for BlackScholes
under ISPS, partitioned scheduling) number of processors; for
the rest 2 benchmarks we obtained the same throughput with the
increase in latency, but also with the decrease in the number of
processors. For the tested benchmarks, the calculated buffer sizes
under ISPS are never smaller than the buffer sizes under SPS, see
column 11 in Table 3. The highest ratio in buffer sizes between ISPS
and SPS is obtained for BlackScholes and CD2DAT. However, the
actual increase in communication memory resources is 215 KB
and less than 1 KB, respectively, which is acceptable given the
size of memory available in modern embedded systems. Note that
both latency and buffer sizes can be reduced by carefully selecting
deadlines for individual actors (actors phases). However, in that
case the calculation of the number of processors is more complex
and most likely, bigger number of processors might be needed to
schedule the benchmarks.

Column 13 gives the ratio of the maximum latency of benchmarks
under ISPS to the latency of benchmarks under PS. Although [6]
does not provide the latency calculation, we were able to extract
the latency information from the start times obtained by solving the
ILP problem. However, for benchmarks JPEG2000 and Pdetect
we could not get a solution from the ILP solver after more than 1
day, so we could not calculate the latency for these two benchmarks.
As we can see, the average latency of benchmarks under ISPS is
four times the latency under PS. As mentioned above, reducing the
latency under ISPS can be done by carefully selecting deadlines
for individual actors (actors phases). Moreover, ISPS reports the
maximum latency while PS reports the actual latency under a certain
schedule. The ratio of the calculated buffer sizes under ISPS to the
calculated buffer sizes under PS and STS is given in columns 14 and
16, respectively. Again, for benchmarks JPEG2000 and Pdetect
under PS we could not get a solution from the ILP solver after more
than 1 day. Similarly, for benchmarks RSD, BlackScholes, Pdetect
and CELP under STS we could not get a solution for longer than
1 day. As mentioned before, value N/A for JPEG2000 indicates
that SDF3 tool-set returned an infeasible throughput, and hence
the buffer sizes were not calculated. As we can see, the buffer
sizes under PS and STS are always smaller than the buffer sizes
under ISPS. The highest ratio in buffer sizes between ISPS and
PS is obtained for BlackScholes and CD2DAT, with the actual
increase in communication memory resources of 232 KB and less
than 1 KB, respectively. The highest increase in buffer sizes under
ISPS when compared to STS is less than 1 KB. The reason of
difference in the buffer sizes is that in both PS and STS approaches
it is assumed that the production of tokens happens at the end of
the actor firing, while the consumption happens at the start of
the firing, while in our case (and in SPS case) the worst-case
scenario is considered, i.e., the production of tokens happens at
the earliest possible start of the actor firing (at start times), while

the consumption happens at the latest possible end of actor firing (at
deadlines). Note that in an implementation of a dataflow application,
data may be consumed from input channels and produced to output
channels at arbitrary points in time during an actor firing. To
guarantee that buffer overflow/underflow does not occur, buffer sizes
have to be sufficiently large. Thus, the assumption in PS and STS
limits the actual implementation of reading and writing of tokens,
while the buffers calculated in our case are valid regardless of the
actual point in time where reading and writing of tokens happens
and thus, our approach does not limit the implementation of the
reading and writing of tokens. Moreover, the buffer sizes calculated
in PS and STS are valid for that specific schedule and the specific
production/consumption pattern, while in the case of our ISPS the
computed buffer sizes are valid for any schedule of actor firings
during its period and for any production/consumption pattern during
its firing.

6.2 Time complexity of the ISPS approach
In this section we evaluate the efficiency of our ISPS approach

in terms of the execution time of our algorithms to calculate the
throughput of an application, and to find a schedule and buffer
sizes of communication channels. The execution times are given in
Table 4. We compare these execution times with the corresponding
execution times of related approaches – SPS, PS and STS.

Let us first analyze the time needed to calculate the throughput of
an application. The execution times needed to find the application
throughput under ISPS, SPS, PS and STS are given in columns
2, 4, 6 and 8, respectively. As we can see, the times spent on
calculating the throughput of an application under ISPS and SPS
are similar and much shorter than the time needed for solving the
ILP problem to find the application throughput under PS and the
time spent on finding the maximum achievable throughput of the
application, i.e., the throughput under STS. Thus, our approach
outperforms PS and STS in terms of time required to calculate the
throughput of an application. Given that in most cases ISPS gives
higher throughput of an application than SPS within almost the
same time, we can say that ISPS outperforms SPS as well.

Next, we compare the time needed to derive the start times of actor
firings, i.e., the schedule, and the buffer sizes of communication
channels. Those times are given in columns 3, 5, 7 and 9, for ISPS,
SPS, PS and STS, respectively. By comparing the times under
ISPS and SPS, we can see that both schedules find the start times
and the buffer sizes within less than 4 seconds in most cases, and
within a minute in two cases. Then, we compare ISPS with PS.
In all but two cases ISPS is faster than PS. For those two cases
(CD2DAT and MP3 Playback), the ILP problems for PS are not
complex and hence they can be solved very fast. As shown in
Table 4, ISPS gives a solution for those two cases within a second,
and within a minute. On the other hand, for benchmarks Pdetect
and JPEG2000 we could not get a solution from the ILP solver for
PS after more than a day, while our ISPS produced the results in a
couple of seconds and within a minute. By comparing to STS, our
ISPS approach is always much faster. Moreover, for 4 benchmarks
we were not able to get the solution to the buffer sizing problem
under STS after more than a day.

We report in Table 5 the execution time of calculating the mini-
mum number of processors needed to temporally schedule the tasks,
obtained by the conversion of an application by using our ISPS ap-
proach, under global optimal and partitioned FFD-EDF schedulers.
In the case of global optimal scheduling, the minimum number of
processors is calculated by Eq. (4), while the calculation procedure
for FFD-EDF partitioned scheduling is presented in Algorithm 2 in
Section 5.6. As we can see, the number of processors in the case
of optimal scheduling can be calculated within a millisecond for
most of the benchmarks, while in the case of partitioned scheduling
the calculation is done within less than 12 milliseconds for most
cases and within less than 420 milliseconds in two cases. Thus,
the calculation of the number of processors required to schedule an
application under our ISPS is very efficient. We obtained similar
times for the calculation of the number of processors under SPS
and global and partitioned FFD-EDF schedulers. We could not
numerically compare the time complexity of our approach with

73

Table 3: Comparison of different scheduling approaches.

Benchmark
ISPS SPS PS STS

RISPS
out [1

t.u.
] LISPS[t.u.] mISPS

OPT
mISPS

PAR
MISPS[B]

RISPS
out

RSPS
out

LISPS

LSPS mSPS
OPT

mSPS
PAR

MISPS

MSPS

RISPS
out

RPS
out

LISPS

LPS
MISPS

MPS

RISPS
out

RSTS
out

MISPS

MSTS

Pacemaker 1/10 1920 2 2 436 1.5 0.99 2 2 1.47 1 2.93 4.95 0.91 5.07

RSD
1/1080 6295 2 2 5205 22.4 0.05

1 1
1.56

1 2.8 3.23 0.83 –
(1/2160) (11695) (1) (1) (5460) (11.2) (0.097) (1.63)

BlackScholes 1/3234876 24764218 16 16 260284 1.33 1.58 16 17 6.41 1 5.31 11.57 1 –

Disp. map 1/65326 382593 2 2 995520 1.03 1.13 2 2 1 1 3.18 2 1 2

Pdetect 1/2033760 36608557 11 13 13464910 1.0002 1.12 11 13 1.26 1 – – 1 –

CELP 1/2 964 6 6 1780 1.5 0.99 6 6 1.68 1 2.24 2.38 1 –

CD2DAT 1/147 2637 1 1 116 1 3.18 2 2 4.83 1 8.88 11.6 0.17 5.09

MP3 Playback 1/25 46355 3 3 3860 1 1.84 4 4 1.48 1 2.02 1.76 0.91 1.66

JPEG2000
1/811008 27255343 18 18 9625878 70.65 0.02

1 1
1.17

1 – – N/A N/A
(1/14598144) (497471535) (1) (1) (10006530) (3.93) (0.3) (1.21)

Table 4: Time complexity (in seconds) of different scheduling approaches.

Benchmark
ISPS SPS PS STS

tISPS
R

tISPS
S&B

tSPS
R

tSPS
S&B

tPS
R

tPS
S&B

tSTS
R

tSTS
S&B

Pacemaker 1.24e-05 0.056 1.31e-05 0.007 0.19 0.34 0.004 1.52

RSD 1.62e-05 4 1.74e-05 3.3 115.11 146.66 0.06 > 1 day

BlackScholes 9.7e-05 1.13 9.46e-05 0.43 0.28 1.22 0.05 > 1 day

Disp. map 1.36e-05 0.0014 1.69e-05 0.00087 0.027 0.055 0.004 0.01

Pdetect 0.00014 3.52 0.00013 0.65 83.64 > 1 day 0.33 > 1 day

CELP 2.26e-05 0.097 2.43e-05 0.029 0.56 0.95 0.01 > 1 day

CD2DAT 1.67e-05 0.59 1.76e-05 0.66 0.061 0.17 0.004 108.56

MP3 Playback 1.41e-05 59.07 1.37e-05 55.87 0.021 0.034 0.004 3236.31

JPEG2000 0.00053 27.22 0.00053 3.55 0.51 > 1 day N/A N/A

Table 5: Time complexity (in seconds) for
the calculation of number of processors.

Benchmark tISPS
mOPT

tISPS
mPAR

Pacemaker 4.51e-05 0.00095

RSD 0.00049 0.012

BlackScholes 0.00017 0.0077

Disp. map 1.19e-05 0.00037

Pdetect 0.0028 0.2

CELP 0.0001 0.0029

CD2DAT 1.72e-05 0.0021

MP3 Playback 9.06e-06 0.00039

JPEG2000 0.00048 0.42

regard to the PS approach because the calculation of the number
of processors was not considered in [6]. As mentioned already
in Section 2, one possible way to find the minimum number of
processors under PS is to trace the schedules, but that procedure
has an exponential time complexity in the worst case, whereas our
Algorithm 2 for finding the minimum number of processors under
ISPS has a polynomial time complexity, see Section 5.6. Finding
the minimum number of processors under STS requires complex
Design Space Exploration (DSE) procedures, with an exponential
time complexity in the worst case, to find the best allocation which
delivers the maximum achievable throughput. The SDF3 tool-set
used to compute the self-timed scheduling parameters does not
support such design space exploration for self-timed scheduling.
Thus, we could not numerically compare the time complexity of
ISPS with the time complexity of STS. However, given that our
approach finds the minimum number of processors for scheduling
an application in polynomial time in the worst case, as shown in
Section 5.6, we can conclude that our ISPS is faster than STS.

7. CONCLUSIONS
In this paper, we presented a scheduling approach which converts

each actor in a CSDF graph, by considering different WCET value
for each actor phase, to a set of strictly periodic tasks. As a result,
a variety of hard real-time scheduling algorithms can be applied
to temporally schedule the graph on a platform with calculated
number of processors with a certain guaranteed throughput and
latency. The experiments on a set of real-life applications showed
that our approach gives tighter guarantee on the throughput and
better processor utilization with acceptable increase in terms of
communication memory requirements when compared with the
existing hard real-time scheduling approach. When compared with
the existing periodic scheduling approach for CSDF graphs, our
proposed approach gives the same throughput with increased com-
munication memory, but takes much shorter time for deriving the
schedule, the calculation of the minimum number of processors
and the calculation of the size of communication buffers. Finally,
our approach gives the throughput that is equal or very close to the
absolute maximum throughput achieved by self-timed scheduling of
actor firings, but requires much shorter time to derive the schedule.

8. REFERENCES
[1] M. Bamakhrama. http://daedalus.liacs.nl/darts.

[2] M. Bamakhrama and T. Stefanov. On the hard-real-time scheduling of
embedded streaming applications. DAES, 17(2):221–249, 2013.

[3] S. K. Baruah et al. Proportionate progress: A notion of fairness in
resource allocation. In STOC, 1993.

[4] M. Benazouz et al. A new method for minimizing buffer sizes for
cyclo-static dataflow graphs. In ESTIMedia, 2010.

[5] G. Bilsen et al. Cyclo-static dataflow. IEEE Trans. Signal Process.,
44(2):397–408, 1996.

[6] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. Periodic
schedules for cyclo-static dataflow. In ESTIMedia, 2013.

[7] A. Bouakaz, J.-P. Talpin, and J. Vitek. Affine data-flow graphs for the
synthesis of hard real-time applications. In ACSD, 2012.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: A survey. In Approximation algorithms for

NP-hard problems, pages 46–93. 1996.

[9] J. P. H. M. Hausmans et al. Two parameter workload characterization
for improved dataflow analysis accuracy. In RTAS, 2013.

[10] P. Holman and J. H. Anderson. Group-based Pfair scheduling.
Real-Time Systems, 32(1–2):125–168, 2006.

[11] IBM. IBM ILOG CPLEX Optimization Studio V12.4.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[13] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation,
2(4):237–250, 1982.

[14] G. Lipari and E. Bini. Resource partitioning among real-time
applications. In ECRTS, 2003.

[15] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[16] H. Oh and S. Ha. Fractional rate dataflow model for efficient code
synthesis. J. of VLSI Signal Process., 37(1):41–51, 2004.

[17] R. Pellizzoni et al. Handling mixed-criticality in SoC-based real-time
embedded systems. In EMSOFT, 2009.

[18] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In ACSD,
pages 276–278, 2006.

[19] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs. IEEE

Trans. on Computers, 57(10):1331–1345, 2008.

[20] M. Wiggers et al. Efficient computation of buffer capacities for
cyclo-static real-time systems with back-pressure. In RTAS, 2007.

[21] O. U. P. Zapata and P. M. Alvarez. EDF and RM multiprocessor
scheduling algorithms: Survey and performance evaluation. Technical
Report CINVESTAV-CS-RTG-02, 2004.

[22] J. T. Zhai, M. Bamakhrama, and T. Stefanov. Exploiting just-enough
parallelism when mapping streaming applications in hard real-time
systems. In DAC, 2013.

[23] C. L. Zitnick and T. Kanade. A cooperative algorithm for stereo
matching and occlusion detection. IEEE Trans. Pattern Anal. Mach.

Intell., 22(7):675–684, 2000.

74

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150805080400
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 23.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 23.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

