
Run-time Reconfiguration of Polyhedral Process Networks
Implementations

Hristo Nikolov Todor Stefanov Ed Deprettere
Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands
{nikolov, stefanov, edd}@liacs.nl

Abstract

Run-time reconfigurable computing is a novel com-
puting paradigm which offers greater functionality with
a simpler hardware design and reduced time-to-market.
Although, the reconfigurable technology is constantly
advancing, yet reconfigurable computing is hardly em-
ployed in real systems due to the difficulties associated
with realizing and managing the reconfiguration pro-
cess. In this paper, we address a particular design chal-
lenge, namely, the execution management of the dy-
namic (reconfigurable) modules. We propose a general
and technology independent approach for modeling and
implementation of run-time execution management for
applications modeled as polyhedral process networks.
By exploiting the main characteristics of the polyhe-
dral process networks, the approach guarantees consis-
tent executions of reconfigurable implementations. We
do not focus on low-level implementation issues of the
reconfiguration process itself since the latter is not (di-
rectly) related to the execution management we propose,
and therefore, it is out of the scope of this paper.

1 Introduction

When we talk about (re)configurable computing, we
usually consider FPGA-based system designs. Such
systems retain the execution speed of “fixed” hardware
while having a great deal of functional flexibility be-
cause the logic within the FPGA can be changed if or
when it is necessary. As a result, hardware bug fixes
and upgrades can be administered as easily as their
software counterparts. For example, in order to sup-
port a new version of a network protocol, one can re-
design the internal logic of the FPGA, and send the
enhancement to the affected customers by email. Once
they have downloaded the new logic design to the sys-
tem and restarted it, they will be able to use the new

version of the protocol. Evolving from configurable
computing, reconfigurable computing goes one step fur-
ther by providing manipulation of the logic within the
FPGA at rum time. That is, the design of the hardware
may change in response to the demands placed upon
the system while it is running. Here, the FPGA acts as
an execution engine for a variety of different hardware
functions much as a CPU acts as an execution engine
for a variety of software threads. A particular example
of run-time reconfigurable computing is the so called
dynamic partial reconfiguration (DPR). Partial recon-
figuration is the process of configuring a portion of a
field programmable gate array while the other part is
still running/operating. DPR allows for critical parts
of the design to continue operating while a partial de-
sign is loaded into the FPGA.

Reconfigurable computing has two major advan-
tages. First, it is possible to achieve greater func-
tionality with a simpler hardware design. Because not
all of the logic must be present in the FPGA at all
times, the cost of supporting additional features is re-
duced to the cost of the memory required to store the
logic design. The second advantage is reduced time-
to-market. Most importantly, the logic design remains
flexible up to, and even after the product is shipped.
This allows an incremental design flow, a luxury usu-
ally not available to typical hardware designs. One can
even ship a product that meets the minimum require-
ments and add features after deployment. Moreover,
in a networked product like a set-top box or cellular
telephone, it may even be possible to make such en-
hancements without customer involvement. In case of
run-time reconfigurable computing, a main considera-
tion is the overhead introduced by the reconfiguration
process itself. If reconfiguration is performed too of-
ten, this overhead can become a bottleneck, limiting
system performance. Therefore, the ratio execution-
time/reconfiguration-time has to be kept reasonably
high.

1.1 Problem Statement

The principal benefits of using dynamic (partial) re-
configuration (DPR) are the ability to execute larger
hardware designs with fewer gates and to realize the
flexibility of a software-based (multi-threaded) solution
while retaining the execution speed of a more tradi-
tional, hardware-based approach. However, this comes
at the price associated with the difficulties in realizing
run-time reconfigurable computing. First, the provided
design flows are weak and mostly experimental. It is
not possible to model DPR during all the steps of a
system development. For instance, SystemC can be
used for first high-level steps but then it is difficult to
use other tools, e.g., HW/SW partitioning tools, sim-
ply because DPR is not integrated by the tool vendors.
For the low-level steps, it is (almost) impossible to sim-
ulate and validate the designs before the platform is in-
tegrated into the final board. As a result, designers are
overwhelmed with too many and very low-level details
in order to “get it right”, making reconfigurable com-
puting a highly error-prone and time-consuming task.

In addition to the lack of a tool support, a ma-
jor challenge when using dynamic reconfiguration is
the execution management of the dynamic (reconfig-
urable) modules. This includes both spatial and tem-
poral management. The latter is especially impor-
tant in realizing reconfigurable implementations with
consistent run-time behavior. Consistency here means
that any reconfigurable implementation and execution
generates results equivalent to its non-reconfigurable
counterpart for the same application. The challenge in
realizing an execution management is further exacer-
bated by the complexity of today’s applications, espe-
cially in the domain of multimedia embedded systems.
Usually, such systems consist of multiple compute mod-
ules that operate in a globally asynchronous fashion.
If these modules require reconfiguration, i.e., they are
dynamic, it is very easy to violate consistency at rum
time. This resembles very much the challenges in soft-
ware multi-threading: common problems with thread
synchronizations include deadlock and the inability to
(correctly) compose program fragments that are cor-
rect in isolation [3, 6]. In general, it is not known how
a programmer can come up with a multi-threaded pro-
gram with correctness guarantee. The same problems
arise in the reconfigurable computing as well, i.e., there
is no correctness guarantee for applications demanding
and implementing reconfiguration at rum time. We
address this issue, and in this paper we present an ap-
proach based on conditions defining “save” points when
reconfiguration may occur. The main contribution of
the proposed approach is that if the defined conditions

are respected, consistent system executions are guar-
anteed while allowing asynchronous reconfiguration of
different dynamic modules at rum time.

The remaining part of the paper is organized as fol-
lows. In Section 2, we discuss the scope of the ap-
proach and the main assumptions it relies on. Sec-
tion 3 presents the solution approach. Implementation
details are discussed in Section 4. Section 5 concludes
the paper.

2 Scope of Work

One of the main assumption in our work is that
we consider only dataflow dominated applications in
the realm of multimedia, imaging, and signal process-
ing that naturally contain tasks communicating via
streams of data. Such applications are very well mod-
eled by using the parallel dataflow model of computa-
tion (MoC) called Kahn Process Network (KPN) [4].
The KPN model we use is a network of concurrent au-
tonomous processes that communicate data in a point-
to-point fashion over bounded FIFO channels, using a
blocking read/write on an empty/full FIFO as a syn-
chronization mechanism. Each process in the network
performs a sequential computation concurrently with
the other processes. A well-known characteristic of
KPNs is that their MoC is deterministic. Always for
a given input data, one and the same output data is
produced. This input/output relation does not depend
on the order in which the processes are executed. As
the control is incorporated into the processes, no global
scheduler is present.

To represent KPNs, we use polyhedral descriptions,
therefore, we call our KPNs polyhedral process net-
works (PPN). The PPNs are specific case of KPNs,
i.e., PPNs are static and everything about the exe-
cution of the process networks is known at compile
time. Moreover, the PPNs execute in finite memory
and the amount of data communicated through the
FIFO channels is also known. We are interested in
this subset of KPNs because they are analyzable, e.g.,
FIFO buffer sizes and execution schedules are decid-
able, and SW/HW synthesis from them is possible.

A PPN is implemented as a heterogeneous multipro-
cessor system on chip (MPSoC) using the Daedalus
design methodology [1, 10]. In such MPSoCs, the pro-
cessing components are programmable processors and
dedicated HW compute modules (IP cores). The latter
may provide run-time reconfiguration. In this paper,
we consider fix communication topologies, i.e., a com-
munication topology can not be reconfigured in a target
MPSoC. Hence, reconfiguration can be applied only on
the dedicated dynamic IP cores.

An IP core implements the main computation of a
PPN process which behaves like a function call. There-
fore, the computation performed by a reconfigurable IP
has to resemble a function call as well. This means that
for each input data read by the IP core, the core is ex-
ecuted and it produces output data after an arbitrary
delay. In addition, to guarantee seamless integration
within the dataflow of the considered heterogeneous
systems, an IP core must have unidirectional data in-
terfaces at the input and the output that do not require
random access to read and write data from/to mem-
ory. Additional information about the IP cores is given
further in Section 4.

3 Solution approach

In this section, we discuss the solution approach
which allows for run-time reconfiguration of PPN pro-
cesses in a way that consistent and deterministic PPN
executions are guaranteed on the considered MPSoCs.
For an illustrative purpose, we use an example pre-
sented in Section 3.1. The PPN model is briefly intro-
duced in Section 3.2. It contains parameters which may
change values at rum time. The concept of modeling
process network containing dynamic parameters was
introduced recently in [7]. We use the same approach
as in [7] to preserve consistency of PPN executions,
and in addition, we use the parameter values to trigger
reconfiguration of particular processes (i.e. IP cores)
at rum time. In the proposed solution approach, we
do not discuss technical details about how FPGA par-
tial reconfiguration is realized since it is highly vendor
dependent and it is out of the scope of this work. In-
stead, we discuss when actually reconfiguration is safe
to happen (in terms of consistency). It is based on con-
ditions which have to be respected at rum time. The
conditions are discussed in Section 3.4.

3.1 Illustrative example

Below, we present a part of a multi-format video
encoding application. Usually, encoding algorithms
work on a YUV color space while naturally, the in-
put video information is represented in a RGB color
space. Therefore, initial conversion to YUV is required
and then, specific processing on the Y, U, and V im-
age components is performed. Figure 1 illustrates this
basic scenario which we will use as our illustrative ex-
ample. Figure 1(a) depicts a high-level view of an MP-
SoC system in which the input RGB stream is con-
verted by processing component Conv to Y, U, and
V streams. They are further processed in parallel by

UprocConv

P1

Conv
Y,U,V pxls

Proc

reconfigure (Y,U,V)

paramemters

P2
d data

c

a) Processing without reconfiguration

b) Processing with reconfiguration

c) PPN with dynamic parameters

Yproc ...

...

...
...

...

U pxls

V pxls

Y pxls

RGB

Vproc

Figure 1. Motivating example.

processing components Y proc, Uproc, and V proc, re-
spectively. Figure 1(b) depicts the same YUV-to-RGB
conversion and processing, however, implemented on a
system with run-time reconfiguration. In this version,
there is one dynamic module Proc which is used to pro-
cess the YUV data. According to the data that need to
be processed, Proc is dynamically reconfigured by the
Conv component. The implementation of the reconfig-
uration process must avoid any undetermined behavior.
Therefore, explicit handshake logic is required for cor-
rect management of the reconfiguration. For brevity,
these details are omitted in Figure 1(b).

In our example, we use only the type of the pro-
cessed data to illustrate a scenario of a reconfigurable
computing. However depending on the required level
of flexibility, additional information, e.g., frame size:
standard or high definition; type of encoding: MJPEG,
MPEG4, or DivX; etc., can also be used for reconfig-
uration of the system at rum time. Moreover, due to
performance limitations for example, the quality of the
encoding may need to be constrained as well. In our
approach to reconfigurable computing, we capture re-
configuration information at application level, i.e., in
the polyhedral process network model we use to specify
application behavior. More precisely, different config-
uration possibilities are defined by a set of parameters
and their values in a PPN. Our illustrative example is
represented as a PPN in Figure 1(c). It consists of two
processes, P1 and P2, connected through one dataflow
channel (d). P1 implements the RGB-to-YUV conver-
sion and P2 realizes the processing of the Y, U, and
V components. The information what type of image
component is to be processed is specified by a parame-
ter. In order to transfer parameter values between the
processes, we use control FIFO channels, i.e., channel
c in Figure 1(c). At run time, the parameter values are
used to trigger proper reconfigurations.

As is the case with all data-flow models, the main
question here is whether the PPNs with dynamic pa-
rameters are consistent. Consistency has to do with

a balancing of the production and consumption of to-
kens in the network. When this balancing is dependent
on dynamic parameters, consistency conditions may be
violated. In the remaining part of the paper, we dis-
cuss how we address this problem in order to guarantee
consistent executions of applications modeled as PPNs
on platforms using run-time partial reconfiguration.

3.2 Polyhedral (Kahn) process networks (PPN)

The parallelism in our PPNs is expressed at the level
of the application tasks as a process implements a single
application task only. A process of a PPN consists of
a function, input ports, output ports, and control. The
function specifies how data tokens from input streams
are transformed to data tokens to output streams. The
function also has input and/or output arguments. The
input and output ports are used to connect a process to
FIFO channels in order to read data tokens, initializing
the function input arguments, and to write data gener-
ated as a result of the function execution. The control
specifies how many times the function is executed and
which ports to read/write at every execution, i.e., at
every iteration (firing) of the process. The control of a
process can be compactly represented mathematically
in terms of linearly bounded sets of iterator vectors us-
ing the polytope model [2]. A process has a Process
Domain (DM) which is the set of all iterator vectors.
Each iterator vector corresponds to one and only one
integral point in a polytope. Formally,

DM = {P (p) ∩ Zn},

where P (p) is a parametric polytope,

P (p) = {i ∈ Qn, p ∈ Zm | Ai ≥ Bp + C},

where i is an iteration vector, A, B and C are in-
tegral matrices of appropriate dimensions, and p is a
parameter vector with an affine range R(p),

R(p) = {p ∈ Zm | Dp ≥ E},

where D and E are integral matrices of appropri-
ate dimensions. We use the values of the parameter
vector’s elements to determine different configuration
options at rum time.

3.3 Process network instance

In our approach to model dynamic parameters,
we introduce a notion of a PPN instance which is
defined by the current value of the elements of the
parameter vector. Consider the PPN representing

1 // Execution of process P1
2 while(1) {

4

6

8
7

3

5

9
10

// Execution cycle
read_parameter(N1);

}

read(a, x);

write(y, b);
}

for (int i=1; i<=N1; i=i+1) {

execute_P1(x, &y);
ba c

x y x yP1 P2
N1 N2

N1 N2

b) Structure of a processa) PPN with dynamic parameters

Figure 2. PPN and process execution cycle.

a producer-consumer pair, shown in Figure 2(a).
N1 and N2 are FIFO channels of the parameters
N1 for process P1 and N2 for process P2, respec-
tively. Each parameter can take values within a fixed
range. PPN(N1, N2) denotes an instance of the PPN.
There is generally a relation between the parame-
ters, in this example N1 and N2. Therefore, some
instances PPN(N1, N2) are invalid instances. For the
PPN network in Figure 2(a), all different instances are,

Parameters Range: PPN instances – PPN(N1,N2):

1 ≤ N1 ≤ 3; PPN(1,1); PPN(1,2); PPN(1,3)
1 ≤ N2 ≤ 3; PPN(2,1); PPN(2,2); PPN(2,3)

N2 ≥ N1; PPN(3,1); PPN(3,2); PPN(3,3)

Instances PPN(2, 1), PPN(3, 1), and PPN(3, 2)
are invalid because they violate the condition N2 ≥ N1.
Similarly, instance PPN(2, 4) is invalid because N2 is
out of its range. Figure 2(b) shows the structure of a
process we propose to deal with dynamic parameters.
Network instances are selected by reading parameter
values at run time. For this purpose, we add a read
parameters phase, see line 4, prior to the actual pro-
cessing at lines 5-9. Because reading parameters and
data processing are repeated (possibly an infinite num-
ber of times), we call it a process execution cycle (lines
3-9). When all processes in a PPN have performed an
execution cycle, a network instance has performed an
execution.

Definition 3.1 (Consistency of a PN instance)
A PN instance is consistent if after an execution, the
number of tokens written to any channel is equal to the
number of tokens read from it.

3.4 Preserving the consistency

The validity of the PPN instances is a necessary but
not a sufficient condition to preserve the PPN consis-

tency when changing parameter values at run time. A
valid set of parameters corresponds to a valid (and con-
sistent) PPN instance. However, the transition from a
valid instance to another valid instance at an arbitrary
point may violate the consistency of the instances and
the PPN execution. In order to transfer new values for
parameters to a process of the PPN at run time, i.e.,
to select a new PPN instance, we use control channels
with FIFO organization using blocking read/write syn-
chronization mechanism. In addition, we define the fol-
lowing three conditions which are sufficient to preserve
consistency when changing parameter values dynami-
cally at run time.

C1: Parameter sets have to correspond to valid net-
work instances.

C2: A valid parameter set has to initiate a network
instance execution.

C3: Processes may read new parameters from a
valid set (corresponding to the selection of a new valid
network instance) after they have completed a process
execution cycle.

In other words, parameter values may be changed
(reconfiguration may take place) either before or af-
ter an execution cycle of the processes. This is taken
into account by the proposed execution cycle of a pro-
cess illustrated in Figure 2(b). Note that the defined
conditions are valid only for consistent PPN instances.
Therefore, a consistency check of a PPN instance is re-
quired, either at design time or at run time. In our
approach, a consistency check is performed at design
time since everything about the execution of a PPN is
known. For more details about the defined conditions
and the approach to deal with dynamic parameters at
run time, we refer to [7] where the presented approach
has been generalized for the SBF MoC [5].

4 Implementation

We consider that reconfiguration is applied on HW
IP cores integrated in an MPSoC generated by Es-
pam [8, 9]. To integrate an IP core, Espam generates
a HW Module (HM) around an IP core taken from
a library. To describe how reconfiguration, based on
parameter values, is realized with respect to the pre-
viously defined conditions, we explain the structure
of a HM, shown in Figure 3. For additional details
about HW IP core integration with Espam, we refer
to [8]. The processes in our PPNs have always the
same structure. It reflects the KPN operational seman-
tics, i.e, read-execute-write using blocking read/write
synchronization mechanism. Therefore, a HW Module
realizing a process of a PPN has a similar structure,

E
xi

st

R
ea

d

C
on

f

D
on

e

FIFOs FIFOs

FIFOs CONTROL

E
na

bl
e

C
on

f

D
on

e

READ EXECUTE
(IP core)

W
rit

e

D
on

e

C
on

f

WRITE Full

Data

F
ul

l

Write

Exist

Data

Read

V
al

id

Figure 3. HW Module top-view.

shown in Figure 3, consisting of READ, EXECUTE,
and WRITE blocks. The READ and WRITE blocks
constitute the communication part of a HM. A set of
input data ports belongs to the read unit and a set
of output data ports belongs to the write unit. The
number of input/output ports is equal to the number
of the edges going in (respectively out of) the process
of a PPN. The read unit is responsible for getting data
from proper channels (FIFOs) at each iteration. The
write unit is responsible for writing the result to proper
channels (FIFOs) at each iteration. Selecting a proper
channel at each iteration means to follow a local sched-
ule incorporated into the read and write units. These
local schedules are extracted from the PPN specifica-
tion automatically by the Espam tool.

The EXECUTE block of a HW Module (HM) is ac-
tually a dedicated HW IP core to be integrated. It is
not generated by Espam but it is taken from a library.
In order to be incorporated into a HW Module, an IP
core has to provide Enable/Valid control interface. The
Enable signal is a control input to the IP core which
allows for running the core when there is data to be
processed. If input data is not available, or there is no
room to store the output of the IP core to output FIFO
channels, then Enable is used to suspend the operation
of the IP core. The Valid signal is a control output
signal from the IP used to indicate whether the data
on the IP outputs is valid and ready to be written to
an output FIFO channel. In addition, the IP core has
also to provide an interface for accepting configuration
information, illustrated by the Conf/Done signals in
Figure 3.

A CONTROL block is added to capture the pro-
cess behavior, e.g., the number of process firings,
and to synchronize the operation of the other three
blocks. Also, CONTROL implements the block-
ing read/write synchronization mechanism using Ex-
ist/Read and Full/Write signals. Another function of
block CONTROL is to allow the parameter values to
be set/modified from outside the HW Module at run
time. Below, we present how the CONTROL block

implements the reconfiguration process such that the
previously defined conditions are respected.

4.1 Respecting the conditions

Recall that the defined conditions are taken into ac-
count by the proposed execution cycle of a PPN pro-
cess, shown in Figure 2(b). Therefore, to respect the
conditions and to preserve consistency of our PPNs,
the CONTROL block of a HW Module (see Figure 3)
implements this execution cycle.

In the beginning, the CONTROL block reads pa-
rameter values from the corresponding control FIFO
channels. If data has not been written, the control
block stalls waiting for it. The correctness of the pa-
rameter values (i.e., the configuration data) has to be
guaranteed (condition C1) by the module generating
them. Thus, the combined writing of parameter val-
ues and the reading of these parameters by the control
block respects condition C2, because only a valid pa-
rameter set will cause a PPN process to initiate an
execution cycle and, consequently, an execution of a
network instance. After reading control data (e.g.,
iteration domains and information about configuring
the IP core), the CONTROL block initiates an execu-
tion cycle. First, it performs an IP (re)configuration
if it is required as well as setting control informa-
tion in the READ and WRITE blocks. After IP
core (re)configuration is completed (indicated by signal
’Done’), the control block uses the ’Exist/Read’, ’En-
able/Valid’, and ’Full/Write’ interfaces (see Figure 3)
to control the execution (cycle) of the HW Module.
The end of the cycle is reached when the READ and
WRITE blocks have performed all required read and
write operations. This is indicated by the correspond-
ing ’Done’ signals. After that, the control block is free
to initiate another execution cycle (respecting condi-
tion C3), i.e., to read new configuration data from
the control channels and to repeat the steps described
above.

4.2 Discussion

By using FIFO control channels with blocking syn-
chronization mechanism, we keep the KPN semantics
of our polyhedral process networks with dynamic pa-
rameters, i.e., we have the capability to control the
execution without changing the model. Keeping the
KPN model means that the deterministic behavior of
our PPNs with dynamic parameters is preserved. The
FIFO organization of the control channels and the
blocking synchronization mechanism (the KPN seman-
tics) keep the right order of selecting new network in-

stances, i.e., the order in which the parameter sets are
generated outside the network and written to the con-
trol channels. Since new parameter values are read
by the processes after performing an execution cycle,
parameter values selecting alternative PPN instances
may be written to the control channels while a PPN
instance is being executed. In addition, the proposed
mechanism allows the processes to read the parameter
values independently of each other without violating
the conditions defined for preserving the consistency.

Our approach for run-time reconfiguration is applied
at two levels, i.e., high-level (no FPGA reconfiguration)
by setting control registers and low-level by reconfigur-
ing the FPGA logic. Since we consider fixed commu-
nication topology, the READ and WRITE units are
reconfigured by just writing data to control registers,
e.g., the amount of data to be communicated and par-
ticular communication patterns to read/write from/to
different FIFO channels. Dynamic partial reconfigura-
tion is applied only on the IP core of a HW Module.

From a design-complexity prospective, the proposed
approach to use PPNs with dynamic parameters to
capture (rum-time) reconfiguration information and
to target reconfigurable MPSoC implementations con-
tributes to a simplified (low-level) design effort be-
cause:

1. By using the defined conditions and the control
FIFOs, explicit handshaking (between processes)
is eliminated. In addition, a reconfigurable IP core
has to set only a “Done” signal to the CONTROL
block after reconfiguration;

2. During the reconfiguration process, the dataflow
FIFOs used for communication between the dy-
namic modules ensure proper operation of the
static portion of the design.

5 Conclusions

In this paper, we proposed a general and technol-
ogy independent approach for modeling and implemen-
tation of run-time execution management for applica-
tions modeled as polyhedral process networks (PPNs)
and targeting reconfigurable computing. Based on the
characteristics of the PPN formal model of compu-
tations, we proposed conditions which define “save”
points when reconfiguration can occur. The main
contribution of the presented work is that it guaran-
tees consistent executions of reconfigurable implemen-
tations. In addition, the FIFO communication and
synchronization mechanism of the polyhedral process
networks simplify design efforts and facilitate auto-
mated implementations.

References

[1] Daedalus, a system-level design methodology and
toolflow, http://daedalus.liacs.nl/.

[2] P. Feautrier. Automatic parallelization in the polytope
model. In The Data Parallel Programming Model, vol-
ume 1132 of LNCS, pages 79–103, 1996.

[3] M. Herlihy. The multicore revolution. In In 27th
FSTTCS: Foundations of Software Technology and
Theoretical Computer Science, pages 1–8, 2007.

[4] G. Kahn. The Semantics of a Simple Language for
Parallel Programming. In Proc. IFIP Congress 74.
North-Holland Publishing Co., 1974.

[5] B. Kienhuis and E. Deprettere. Modeling stream-
based applications using the sbf model of computa-
tion. Journal of VLSI Signal Processing, 34(3), July
2003.

[6] E. A. Lee. The Problem With Threads. IEEE Com-
puter, 36(5):33–42, 2006.

[7] H. Nikolov and E. Deprettere. Parameterized Stream-
Based Functions Dataflow Model of Computation. In

6th Int. Workshop on Optimizations for DSP and Em-
bedded Systems (ODES-6), Boston, USA, Apr. 6 2008.

[8] H. Nikolov, T. Stefanov, and E. Deprettere. Au-
tomated Integration of Dedicated Hardwired IP
Cores in Heterogeneous MPSoCs Designed with
ESPAM. EURASIP Journal on Embedded Sys-
tems, 2008:Article ID 726096, 15 pages, 2008.
doi:10.1155/2008/726096.

[9] H. Nikolov, T. Stefanov, and E. Deprettere. System-
atic and automated multiprocessor system design, pro-
gramming, and implementation. In IEEE Trans. on
CAD of Integrated Circuits and Systems, volume 27,
Mar. 2008.

[10] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel,
S. Polstra, R. Bose, C. Zissulescu, and E. Deprettere.
Daedalus: Toward composable multimedia mp-soc de-
sign. In In Proc. 45th ACM/IEEE Int. Design Au-
tomation Conference (DAC’08), pages 574–579, Ana-
heim, USA, June 8-13 2008.

