
8Architecture and Cross-Layer Design Space
Exploration

Santanu Sarma and Nikil Dutt

Abstract

The task of architectural Design Space Exploration (DSE) is extremely complex,
with multiple architectural parameters to be tuned and optimized, resulting in
a huge design space that needs to be explored efficiently. Furthermore, each
architectural parameter and/or design point is critically affected by decisions
made at lower levels of abstraction (e.g., layout, choice of transistors, etc.).
Ideally designers would like to perform DSE incorporating information and
decisions made across multiple layers of design abstraction so that the ensuing
design space is both feasible and has good fidelity. Simulation-based methods
alone can not deal with this incredibly large and complex design space. To
address these issues, this chapter presents an approach for cross-layer architec-
tural DSE that efficiently prunes the large design space and furthermore uses
predictive models to avoid expensive simulations. The chapter uses a single-
chip heterogeneous single-ISA multiprocessor as an exemplar to demonstrate
how the large search space can be covered and evaluated efficiently. A cross-
layer approach is presented to cope with the complexity by restricting the
search/design space through the use of cross-layer prediction models to avoid
too costly full system simulations, coupled with systematic pruning of the design
space to enable good coverage of the design space in an efficient manner.

Acronyms

CLDSE Cross-Layer Design Space Exploration
DoE Design of Experiments

S. Sarma (�)
University of California Irvine, Irvine, CA, USA
e-mail: santanus@uci.edu

N. Dutt
Center for Embedded and Cyber-Physical Systems, University of California Irvine, Irvine,
CA, USA
e-mail: dutt@ics.uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_9

247

mailto:santanus@uci.edu
mailto:dutt@ics.uci.edu


248 S. Sarma and N. Dutt

DSE Design Space Exploration
EDP Energy-Delay Product
EDSP Energy-Delay Square Product
HMP Heterogeneous Multi-core Processor
ILP Instruction-Level Parallelism
ISA Instruction-Set Architecture
RSM Response Surface Modeling
SA Simulated Annealing

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.2 Design Space Exploration of Heterogeneous Multi-core Processors . . . . . . . . . . . . . . . 251

8.2.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.2.2 Response Surface Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.3 Cross-Layer Predictive Model Building Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.3.2 Application and Workload Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.3.3 Heterogeneity-Aware Task Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.3.4 Predictive Modeling of Performance and Power of Different Core Types . . . . . 258
8.3.5 Training Methodology and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.3.6 Selecting the HMP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.4 Case Study: Experimental Evaluation of Cross-Layer DSE of HMPs . . . . . . . . . . . . . . 262
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8.1 Introduction

The task of architectural Design Space Exploration (DSE) is extremely complex,
with multiple architectural parameters to be tuned and optimized, resulting in
a huge design space. Furthermore, each architecture parameter and/or design
point is critically affected by decisions made at lower levels of abstraction (e.g.,
layout, choice of transistors, etc.). Ideally, designers would like to perform DSE
incorporating information and decisions made across multiple layers of design
abstraction so that the ensuing design space is both feasible and has good fidelity.
Simulation-based methods alone can not deal with this incredibly large and complex
design space. To address these issues, this chapter presents an approach for
cross-layer architectural DSE that efficiently prunes the large design space, and
furthermore uses predictive models to avoid expensive simulations. The chapter
uses a single-chip heterogeneous single-ISA multiprocessor system as an exemplar
to demonstrate how the large search space can be covered and evaluated efficiently.
This chapter complements other chapters in this book that give additional insights on
specific optimization and exploration strategies. For instance: Chapter 6 by Scuito
et al. describes optimization strategies for DSE; Chapter 7 by Glass et al. details
advanced hybrid DSE techniques; and Chapter 10 by Henkel et al. incorporates
power-aware run-time adaptions in DSE.

Single-chip-single-ISA-based Heterogeneous Multi-core Processors (HMPs)
are increasingly considered as an attractive design alternative to homogeneous



8 Architecture and Cross-Layer Design Space Exploration 249

multiprocessor systems because of their superior performance, power, and energy
efficiency while providing the flexibility of using the same software (binaries) and
development tools across cores for a range of applications. HMPs can effectively
address complex requirements of diverse applications by executing workloads (or
tasks) in the most appropriate core types to meet competing and conflicting objec-
tives and figures of merit (e.g., performance, power, energy, throughput, area, cost
etc.) [3, 19, 29, 30]. Since different workloads (e.g., CPU bound, integer-intensive,
floating-point intensive, memory intensive, etc.) require different resources, a key
issue is to determine and select the right types and number of cores (processing
elements) for an allocation strategy that maps the workload (or tasks) to right core
type such that the type of workload will best benefit from the given platform. The
selection of number and type of cores is not straightforward when the applications
executed by these HMPs exhibit diverse workload characteristics. When designing
such a system, a chip architect must decide how to distribute the available limited
system resources, such as area and power, among all the processor cores.

HMPs that integrate a mix of small power-efficient cores and big high-
performance cores are attractive alternatives to homogeneous multiprocessor
systems because they have the potential for higher performance and reduced power
consumption. Contemporary mobile phones have already embraced hardware core
heterogeneity, for instance, ARM’s big.LITTLE architecture [17] and NVIDIA’s
Kal-El [39] that have cores of different strengths in one cache coherence domain
with the same Instruction-Set Architecture (ISA). Architectures with more than
two core types are already a reality (e.g., NVIDIA’s Kal-El [39] that integrates
four high performance cores, one low performance core, and many GPU cores),
and this trend toward heterogeneity is only expected to grow further in the future.
Processor cores in a heterogeneous multi-core system can differ in their static
microarchitectures to dynamic behavior or modes of operation (e.g., frequency
or operating voltage). Broadly, the vast space of HMPs can be classified by core
type (strength/size/number/ISA) and heterogeneity levels. As an example, consider
Fig. 8.1 that shows a sample space of HMP architectures using a combination of
different ARM cores – ranging from big (A15) to medium (A11) to small (A7) –
that vary in their performance, power, and energy efficiency.

HMPs provide architecturally diverse cores with drastically different power-
performance trade-offs that can be exploited for system efficiency. Consequently,
HMP architectures and their DSE is an active area of research. DSE is the process
of discovering and evaluating design alternatives during system development that
enable design optimization, system integration, and rapid prototyping prior to
implementation. The main challenge of DSE for HMPs arises from the sheer size
of the design space that must be explored because a typical HMP system has a
huge number of possibilities (in the millions, if not billions), and so enumerating
every point in the design space considering different layers of the system stack is
prohibitive. Although several works have studied HMPs and their run-time systems
[2, 4, 8, 24, 29, 36, 47], the topic of DSE of HMPs is still in its infancy and needs a
principled approach as these architectures evolve in their diversity and complexity.

DSE of HMPs is critical to evaluate and architect a suitable processor platform
configuration. Selection and composition of the platform is important at the early



250 S. Sarma and N. Dutt

a b

c d

Fig. 8.1 Examples of heterogeneous architectures composition for the same die area using big
(A15), medium (A11) , and little (A7) cores

stage of the design, and a chip architect must decide how to distribute the available
limited system resources, such as area and power, among all the processor cores.
Moreover, since HMPs are inherently designed as a multilayered system, either
gross approximation or complete neglect of any layer and its features can affect
the behavior, misrepresent the intricate multilayer trade-offs and interactions, as
well as misguide the design and composition process. However, due to their diverse
and vast design space, selecting a suitable HMP configuration with different core
types within a given area-power budget is an extremely challenging task. This
complexity challenge can be overcome in an intelligent manner by (a) restricting
the search/design space and (b) using cross-layer prediction models to selectively
avoid too costly full system simulations all the time, making a good coverage of
the design space affordable. The problem of exploring and configuring an HMP
for a given system goal under system-level constraints (such as equal area or
power budget) can be cast as a cross-layer optimization problem. This chapter
illustrates an approach that jointly consider cross-layer features of the application,
operating system (task allocation strategies), and hardware architecture while
deploying computationally efficient predictive models (of performance and power)
in configuring the HMP platform resources (number and types of cores) in an
evolutionary optimization framework. The predictive cross-layer approach enables
the designer to comparatively evaluate and select the most promising (e.g., energy
and performance efficient) HMP configuration in over two order of magnitude less
simulation time compared to a full system simulation especially during the early
design and verification stages when the design space is at its largest.



8 Architecture and Cross-Layer Design Space Exploration 251

8.2 Design Space Exploration of Heterogeneous Multi-core
Processors

Design space exploration needs two important components (a) a simulation infras-
tructure to evaluate different configurations and (b) predictive models to assess the
quality of new configurations with a metric of goodness. System designers often
build performance, power, and area (PPA) models of a microarchitecture to predict
these metrics as a function of the design parameters x. These models may be often
represented as y D J .x/, where J .x/ represents a cycle accurate simulator or
empirical model fit to simulated [33, 51] or prototype system data [10]. Detailed
simulation is the most widely adopted approach in evaluating J .x/. However, the
significant computational costs of simulation often hinder the design process leading
to approaches that aim at reducing the simulation cost by either reducing the number
of simulation runs of an evaluated program [14,22,41,51] or reducing the number of
simulated architectures by building predictive models [7,9,11,20,23,31,33,40,50].
A combination of jointly reducing both program and architecture simulations is also
possible [13, 27].

Design space exploration of HMPs is much more complex and challenging than
that of homogeneous architectures since it involves reevaluating architecture and
application options along with the operating system (OS) implications [10]. A
straightforward extension of the abovementioned works is not directly applicable
for HMPs as they are targeted toward homogeneous multi-core processors without
considering the operating system. The exploration is performed using architectural
and program space parameters without considering the OS scheduling by either
using microarchitecture or cycle-accurate simulation. In order to consider the
operating system in the DSE, full system cycle-accurate architectural simulators
are indispensable tools for evaluating complicated and subtle design trade-offs with
respect to large design spaces and handling various design constraints. As an ex-
emplar, this chapter presents an extended full system cycle accurate HMP simulator
[46] based on Gem5 [6] along with the Linux OS as the infrastructure for the cross-
layer DSE. A predictive model of the full system is built, considering parameters
from all the system stacks in order to capture the HMP performance and power
characteristics. Unlike the state-of-the-art mentioned earlier that focused either on
uni-core or homogeneous multi-core processors, the predictive approach specifically
focuses on the cross-layer predictive-model-based DSE of the heterogeneous multi-
core processor while considering key parameters of the application, architecture,
and the operating system in the evaluation of the HMP configurations.

This chapter specifically presents a cross-layer approach for exploring and
configuring a HMP for a given goal under system-level constraints (such as equal
area or power budget) based on recent work [45]. Unlike the state-of-the-art
approaches, the presented approach jointly considers features of the application,
operating system (task allocation strategies), and hardware architecture while de-
ploying computationally efficient predictive models (of performance and power) in
composing the HMP platform resources (number and types of cores). The predictive
cross-layer approach enables the designer to comparatively evaluate and select the



252 S. Sarma and N. Dutt

most promising (e.g., energy and performance efficient) HMP configuration in over
two order of magnitude less simulation time especially during the early design and
verification stages when the design space is at its largest.

8.2.1 Design of Experiments

The term “experiment” [28, 37] concerns situations where we have to organize a
systematic scientific procedure to obtain some meaningful information about an
object of interest. Design of Experiments (DoE) [1, 43] is an efficient and scientific
approach that considers all factors simultaneously, applied to an experimentation
to obtain meaningful information and to determine the relationship between factors
affecting a process and the output of that process. DoE is a powerful tool that can
be used in a variety of experimental platforms where more than one input factor
is suspected of influencing an output. DoE allows for multiple input factors to be
manipulated determining their effect on a desired output. By manipulating multiple
inputs at the same time, DoE can identify important interactions that may be missed
when experimenting with one factor at a time. Likewise, DoE provides a full insight
of interaction between design elements; therefore, it helps turn any ad hoc design
process into a robust, predictable process.

The DoE methodology may involve controllable and uncontrollable input fac-
tors. Controllable input factors are those input parameters that can be modified in
an experiment while uncontrollable input factors cannot be changed. These factors
need to be recognized to understand how they may affect the output or response.
DoE provides information about the interaction of these factors and the total system
work flow, something not obtainable through testing one factor at a time while
maintaining other factors constant. Additionally, DoE shows how interconnected
factors respond over a wide range of values, without requiring the testing of all
possible values directly. Often, hypothesis testing is performed to determine the
significant factors using statistical methods in combination with orthogonal vectors
or sets of orthogonal vectors that are uncorrelated and independent [1]. Before
doing the actual experiment, experimental design requires careful consideration
of several factors such as number of factors that influence the design, fixed or
random levels of these factors, control conditions required in the design process,
sample size, number of units collected for the experiment to be generalizable,
the relevance of interactions between factors, noise, etc., for the establishment of
validity, reliability, and replicability [1]. In order to predict the output responses
for any given combination of input values, DoE fits response data to mathematical
models or predictive models. With these models, it is possible to optimize critical
responses and find the best combination of input values. As measurements are
usually subject to variation and measurement uncertainty, blocking and replication
of experiments are adopted to overcome these shortcomings. Blocking is the
arrangement of experimental units into groups consisting of units that are similar to
one another in order to avoid any unwanted variations in the input or experimental
process and thus allows greater precision in the estimation of the source of variation
under study. A randomization process is used to assign individuals at random



8 Architecture and Cross-Layer Design Space Exploration 253

to groups or to different groups in an experiment so that each individual of the
population has the same chance of becoming a part in the process. Similarly,
replication of the experiments (i.e., perform the same combination run more than
once) is done in order to identify the sources of variation, to get an estimate for the
amount of random error that could be part of the process, and to further strengthen
the experiment’s reliability and validity.

8.2.2 Response Surface Models

Response Surface Modeling (RSM) techniques allow determining an analytical
relationship or dependence between several design parameters and one or more
response variables into a mathematical framework typically to rapidly evaluate a
system-level metric. The working principle of RSM exploits a set of simulations
generated by DoE in order to obtain a predictive model that is also called a response
model. A typical RSM flow involves a training phase in which known data (or
training set) is used to identify the RSM configuration and a prediction phase in
which the RSM is used to forecast or predict unknown system response. These
predictive models can be developed using established techniques [40] such as
interpolations, linear regression, or artificial neural networks. RSM methodology
has been used extensively to study the design space exploration of homogeneous
architectures [35, 40]. The next section outlines the methodology specifically
adapted for emerging HMP architectures.

8.3 Cross-Layer Predictive Model Building Approach

This section presents a Cross-Layer Design Space Exploration (CLDSE) approach,
a methodology that allows evaluation of large architectural design spaces at different
levels of abstraction to achieve efficiency (e.g., reducing simulation time by
trimming down the large design space into a small finite set of points) and accuracy
(gradual refinement of the abstraction models). The cross-layer-based DSE for the
HMPs is motivated by the platform-based approach [26,42] with the difference that
the hardware architecture platform and the mapping strategy are varied along with
diverse spectrum of applications for given system-level constraints. The presented
methodology combines the DoE [43] and predictive model [40] techniques to
predict the quality of the nonsimulated design points thereby speeding up the
exploration process while reducing the number of required simulations. While the
DoE phase generates an initial plan of experiments used to create a coarse view
of the target design space to be explored by simulations, the predictive model –
a closed-form expression of objective (figure of merit) space as a function of the
parameter space – is useful during the DSE phase to quickly converge to the Pareto
set of the multi-objective problem without executing lengthy simulations. The
modeling and optimization techniques proposed in [33, 40] are used to iteratively
update the predictive models (as shown in Fig. 8.2) while simulating different parts
of the system stack.



254 S. Sarma and N. Dutt

Applications 

Linux Kernel

Task 0

Task n
App 0 

Task 0

Task n
App n 

Operating
System 

HMP  
Platform 

Benchmarks

Ev8

Ev6

Ev5 Ev4

Disk DRAM

McPAT

HPC/
Sensing

Interface

Power Perf. 

Gem5 

Predictive
Model (RSM)

± 

App. Type, Size, etc
No of Tasks/Thread Model

Task ExecuLon Time
Task Throughput

Task AllocaLon &
Scheduling Policy/Strategy

Memory AllocaLon
Etc..

Hardware Architecture
ConfiguraLons, Performance

Events Counters
Bus SpecificaLons

Circuit/Device Scaling
Technology Parameters

Power/Energy ConsumpLon
circuit delay parameters

System Specifications 
& Factors  

System Perf.
System Power
System Energy

Heterogeneous Platform Simulator 

DoE  
Data 

Regression 
Fitting  

Full System Stack 

Fig. 8.2 Training phase: cross-layer predictive model building approach

The cross-layer predictive modeling methodology for HMP architectures is
divided in two phases. In the training phase, known data (from a training set) are
used to identify the predictive model configuration as depicted in Fig. 8.2. A special
set of benchmarks are used for coverage of the design space. On the other hand,
during the prediction phase, a predictive model is used to forecast the unknown
system response as illustrated in Fig. 8.3. The training phase of the cross-layer
predictive modeling approach captures the architectural design spaces and behaviors
at different levels of abstraction to achieve efficiency (e.g., reducing simulation
time by trimming down the large design space into a small finite set of points) and
accuracy (gradual refinement of the abstraction models). This approach, illustrated
in Fig. 8.2, is motivated by the platform-based approach [26,42] with the difference
that the hardware architecture platform and the mapping strategy are varied along
with diverse spectrum of applications for given system-level constraints. The
modeling and optimization techniques proposed in [40] are deployed to iteratively
update the predictive models (as shown in Fig. 8.2) of different parts of the system
stack as discussed in the subsequent sections.

8.3.1 Problem Formulation

Consider a shared memory HMP architecture as shown in Fig. 8.1 consisting of K

types of core represented using a set ˘ = f�1; �2; : : : ; �Kg ; �i ¤ �j ; K > 1 having



8 Architecture and Cross-Layer Design Space Exploration 255

Sensors, monitors
and Observer

HMP Stack Operating Parameters HMP Predictive model 

Opera&ng System

Instruc&on Set Architecture

Hardware Architecture

Network/Bus
Communica&on Architecture

Device/Circuit Architecture

SO

SI

SN

SH

SC

O
PERATIN

G
 CO

N
D

ITIO
N

Sensing and monitoring 
at different Layers 

Virtual Sensors / monitors  
Physical Sensors/ monitors 

Applica&ons SA

Predic&ve
Model

Perf. 

Power 

Energy 

Exe. time

Fig. 8.3 Prediction phase: use of the cross-layer predictive model using features from different
layers of the stack during prediction

corresponding areas � = fa1; a2; : : : ; aKg. Let the set of all processing elements be
PE D fp1; p2; : : : :; png where pj is an instance of a core type in ˘ . The HMP
consists of the core combinations C Dfn1; n2; ::; nKg such that the total number of
processors in the HMP is n =

PK
lD1 nl , where nl is the number of processors of

type �l and the total area A D
PK

iD1 ai � ni . Let Amax, Pmax be the respective
maximum die area and allowable power consumption in the design of the HMP.
The goal is to find the HMP core combinations C such that a platform objective J
(e.g., power/energy efficiency) is optimized under system constraints (such as area
or power) as below:

Maximize
C
s:t

.J/

A � Amax

: (8.1)

As the design space for HMP composition problem in (8.1) is extremely large, a few
assumptions and approximations are made to reduce the design space. First, assume
that the number of core types K is small (<5). Second, as there is a hard constraint
on system area and power resources, the composition space of C can be reduced to a
set of feasible configurations C DfC1; C2; ::; CN g. Then the problem is to chose one
of these Ci for a given set of workloads and OS level workload allocation strategy
that optimizes the system goal J:



256 S. Sarma and N. Dutt

8.3.2 Application and Workload Models

The workload and their diversity (program phases , CPU, memory, and IO intensive
workloads) are modeled using a task-based (thread-based) model and are exposed to
the OS using the performance and power/energy characterization matrices where:

• V D fvi g is the set of tasks (or interchangeably used for threads). vi stands for
task i where 1 � i � m and m is the number of tasks. Without loss of generality,
a task or group of tasks represents the workload/application. Let Ni represent the
computational workload (measured in terms of number of instructions) of task vi .

• S D Œipsi� D
˚
ipsij ; 1 � i � m; 1 < j � n

�
is the average throughput matrix

(measured in terms of instructions per second) when executing the tasks on
different processors. ipsij .D IPCij �Fj / represents the average throughput when
task vi executes on processor pj and is the product of the IPCij (instruction per
cycle) and the frequency of the core Fj . The IPCij can be measured directly from
the processor’s built-in performance counters [15].

• � =
�
Ni =sij

�
D

˚
�ij ; 1 � i � m; 1 < j � n

�
is the average execution time (or the

time span) matrix. �ij is the average execution time of task vi on processor pj .
• P D Œpwi� D

˚
pwij ; 1 � i � m; 1 < j � n

�
is the average power consumption

matrix of tasks executing on different processors. pwi D fpwij ; 1 � j � ng

represents a vector of all the average powers of task vi executing on each
processor. pwij represents the average power of task vi executing on processor
pj , and it varies with time. The power consumption pwij of a task vi can be
computed by using combination of performance counters [15].

• �=
�
"ij

�
D

˚
pwij � �ij

�
is the average energy consumption defined as the

product of the average power consumption and execution time.

8.3.3 Heterogeneity-Aware Task Allocation

The task allocation problem of multi-core processors within an HMP architecture
consists of finding an optimal distribution of tasks on a set of processors PE D

fp1; p2; : : : ; png. It is assumed that each processor runs independently but can only
run one task at any instant of time. An assignment of all tasks V D fv1; v2; : : : :; vmg

to available processors PE D fp1; p2; : : : ; png a “schedule” � is represented as:

� D
˚
�j ; 1 � j � n

�

�j D fvi ; 1 � i � mg; 8vi 2 V D fv1; v2; : : : ; vmg;
(8.2)

where �j represents the schedule of set of task for the processor pj and vi represents
a task among the set of tasks V D fv1; v2; : : : ; vmg that is mapped to processor
pj . A schedule as defined in (8.2) will result in a total execution time and power
distribution consumption as a function of the task allocation taking into account the



8 Architecture and Cross-Layer Design Space Exploration 257

Table 8.1 Heterogeneity-aware task allocation strategies for a given HMP composition

Sl No Platform
design goal

Allocation Problem
definition

Objective function Nomenclature

1 Performance
maxi-
mization
(PerfMax)

minD Find 	D

9 JD is
mini-
mized

topt D minfJDg D minfmaxftj gg

JD D maxftj gI ti D
Pk

iD1 �ij

1 � j � n

tj represents total
execution time of
the tasks in pro-
cessor pj

2 Energy
mini-
mization
(Ener-
gyMin)

minE Find 	E

9 JE is
mini-
mized

�opt D minfJEgI JE D
Pn

j D1 
j


j D
Pk

iD1 "ij D
Pk

iD1 pwij :�ij I

1 � j � n


j represents sum
of total energy
consumed by k

task in processor
pj

3 Power min-
imization
(PowerMin)

minED Find 	ED

9 JED is
mini-
mized

JED D minfJE:JDg Energy delay
product

4 Energy
efficiency
maxi-
mization
(EEMax)

minED2 Find
	ED2

9 JED2 is
mini-
mized

JED2 D minfJE:J 2
Dg Energy delay

square product

heterogeneity of processing elements and workload. In other words, for different
allocation strategies, the total execution time and energy consumption in the multi-
core processor system will be different. Thus, the CLDSE determines a schedule �

for the given set of tasks that meets an objective or a performance index as defined
in Table 8.1.

8.3.3.1 Optimization Methodology
Finding the optimal allocation that maximizes or minimizes the multiple objective
functions is a combinatorial problem; therefore, a solution based on brute force
search is not suitable even for a small number of cores and threads due to com-
binatorial explosion; furthermore, this problem is shown to be NP-hard [49]; thus,
polynomial time optimal solutions are not available at all. However, heuristics that
exploit specific characteristics of the problem can be adopted to reach acceptable
solutions within a reasonable amount of time. Owing to the tremendous diversity of
heuristics, a judicious choice of heuristics is critical for finding efficient solutions.
Many heuristics often converge to local minima resulting in poor results [12],
while others cannot be applied due to the nonlinear nature of the thread allocation
objective function (e.g., linear-programming-based approaches [48]). In general,
problem structure-dependent heuristics does not provide a generic solution, and
a new heuristic formulation has to be obtained for every change in the problem
structure (e.g., objective function or constraints).

A more generic approach to such optimization problems have used probabilistic
strategies such as Simulated Annealing (SA) that have demonstrated the ability to



258 S. Sarma and N. Dutt

produce close-to-globally-optimal solutions with a moderate complexity in terms
of execution time [12]. SA can easily accommodate changes in the problem
nature without significant modifications and provide tunable parameters to trade-
off computational complexity for solution quality. Furthermore, SA can also be
parallelized and distributed to control the computation complexity for extreme
scalability.

8.3.3.2 Simulated Annealing-Based Optimization
Simulated Annealing (SA) is a method for solving unconstrained and bound-
constrained optimization problems [12]. The method models the physical process of
heating a material and then slowly lowering the temperature to decrease defects, thus
minimizing the system energy. At each iteration of the SA algorithm, a new point
is randomly generated. The distance of the new point from the current point, or the
extent of the search, is based on a probability distribution with a scale proportional
to the temperature. The algorithm accepts all new points that lower the objective but
also accepts points that raise the objective with a certain probability. By accepting
points that raise the objective, the algorithm avoids being trapped in local minima
and is able to explore globally for more possible solutions. An annealing schedule
is selected to systematically decrease the temperature as the algorithm proceeds.
As the temperature decreases, the algorithm reduces the extent of its search to
converge to a minimum. The SA-based algorithm outlined in Fig. 8.4 is used as
the optimization engine for exploring the cross-layer design space of HMPs.

8.3.4 Predictive Modeling of Performance and Power of Different
Core Types

The predictive models based on RSM as described in [40, 43] are closed-form
analytical expressions suitable for predicting the quality of nonsimulated design
points. Predictive model techniques are typically introduced to decrease the time due
to the evaluation of the system-level objective function J.x/ for each architecture x.
A response surface model for the function J.x/ is an analytical function r.x/ such
that

J.x/ D r.x/C�; (8.3)

where � is the estimation error. Typically, an appropriate predictive model for J.x/ is
such that it has some desired statistical properties such as a mean of zero and small
variance. The working principle of a predictive model is to use a set of simulations
generated by DoE in order to build the response model of the system. A typical
predictive model-based flow involves a) a training phase, in which known data
(or training set) are used to identify the predictive model configuration and b) a
prediction phase, in which the predictive model is used to forecast the unknown
system response. This chapter demonstrates the use of linear regression techniques
to construct the predictive model by taking into account the interaction between the



8 Architecture and Cross-Layer Design Space Exploration 259

SA Input Params: Temperature T , Temperature schedule c, Maximum number of iterations Itermax
Input Data: HMP config C, Throughput Matrix S, Power Matrix P, Execution Time Matrix Γ , Energy MatrixX

X

Output: AllocationY

1. Set an initial solutionY =Y0
2. Obtain a new solution Y ′ == Y and randomly perturb one of the elements Y ′

ji of Y
′. The so-called Bolz-mann

generating scheme accomplishes this:

idx= j ∗m+ i

idx= [idx+
√
T × rand()]mod(n∗m)

j′ = idxmodn, i′ = (idx− j′)/m
swap(Y ′

ji,Y
′
j′ i′ )

where rand() generates uniformly distributed random integer numbers.
3. Evaluate the objective function J(C, S,P,Γ , ) forY ′

4. Accept (setY =Y ′) or rejectY ′ . If the value of the objective function is lower than before the perturbation, always
accept. If it is higher, then accept according to the probabilistic rule

accept i f rand()< exp
(
E0 −Ep

T

)

where E0 −Ep is the difference in objective function values before and after the perturbation.
5. Decrease the temperature according to the cooling schedule:

T = c×T

where 0< c< 1 is a constant.
6. The algorithm stops when the average change in the objective function is small relative to the tolerance, or when it

reaches the maximum number of iterations Itermax, otherwise, it goes back to step 2.

Fig. 8.4 Heterogeneity-aware static task allocation using SA

parameters and the quadratic behavior with respect to a single parameter using the
general model discussed in [40].

In order to concisely encapsulate the effects of performance, power, and work-
load behavior, an effective approach is required to determine and represent the
performance, power, and the energy matrices as described above. A combination of
measurement and on-line prediction is used to construct these matrices. Estimation
or the prediction of the performance and power matrices are possible as there is a
direct correlation between the behavior of different core types. The key idea behind
the estimation and prediction of execution time and power matrix relies on the
fact that the performance of a task on one core is correlatable to the performance
in another core (with the same ISA and memory hierarchy) with a good degree
of accuracy. By measuring the performance of the task in one processor, one can
predict the performance in other processors. The execution time �ij of a task vi on
the processor pj can be defined as,

�ij D Ni

IPCij �Fj
D Ni

ipsij

IPCij D 1=CPIij :
(8.4)



260 S. Sarma and N. Dutt

Next, core specific performance (throughput) predictors are developed and then
combined to obtain performance prediction of the combined total platform. The
average throughput IPCij is for a given task vi running on processor pj is predicted
by using a linear predictor

IPCij D ˚j � XT
ij ; (8.5)

where ˚j is constant vector of a predictive model [2, 24] and XT
ij D

Œx1i ; x2i ; ::; xqi �
T
j is a characterization vector of core architectural features and

hardware counter (cycle counters, instruction counters, performance degradation
events) values that is used to predict the performance for the core pj for the
task vi . The cross-layer features and hardware architecture counters are used in
the prediction. The following static features and dynamic hardware performance
counters are used:

• Hardware Architecture Features: Issue width (Iw/, LQ/SQ size (LSQ/, IQ
size (IQ/, ROB size (ROB/, Int/float Regs (IFR/, L1$I size (KB) (L1I /, L1$D
size (KB) (L1D/, Freq. (MHz) (F /, voltage (V ), core area (a/.

• Performance Events Counters: The following events are measured that are
known to drive the performance of a core [2, 24]: mispredicted branches, which
are used to compute the branch misprediction rate (mB ) and instruction/data
L1 caches and TLBs misses and hits, which are used to compute the L1
instruction miss rate (mL1I ), L1 data cache miss rate (mL1D), instruction
TLB miss rate (mITLB ), data TLB miss rate (mDTLB ), and Context switch
counters (C w/.

• Cycle and Instruction Counters: the following cycle counters are sampled: the
amount of busy cycles (cyBusy), idle cycles (cyIdle), and sleep cycles (cySleep)
of a core. Busy cycles represent the time a core spends doing computation, idle
cycles capture idling time due to pipeline stalls or cache misses, and sleep cycles
capture the time a core spends in a quiescent state. Furthermore, the following
instruction counters are sampled: total amount of committed instructions (Itotal ),
committed load and stores (Imem), and committed branches (Ibranch).

Similarly, the power consumption of each task is computed for all the cores by
measuring the power consumption in a core and suitably scaling it by the scaling
factor among the cores using a linear predictor described below:

pwij D �j � XT
ij ; (8.6)

where �j D Œ1; 2; : : : ; q�j are constant vectors obtained by fitting the data of the
benchmarks and XT

ij D Œx1i ; x2i ; ::; xqi �
T
j is the architecture feature and hardware

counter (cycle counters, instruction counters, performance degradation events).



8 Architecture and Cross-Layer Design Space Exploration 261

The computational complexity (execution time) and accuracy of the predictors for
sample benchmarks are shown in Table 8.3.

8.3.5 Training Methodology and Benchmarks

The process of training and the training data used for identifying the parameters is
fundamental for creating reasonably accurate prediction models. For this specific
approach, training of the predictive models leverages the DoE as discussed in
sub-section 8.2.1 by using existing benchmarks such as PARSEC [5], Mediabench-
II [32], SPEC 2006 [18], as well as their unique combinations; this training is
guided by DoE such that the properties of these experiments are satisfied. These
benchmarks and their combinations are used with different parameters, such as
levels of parallelization, number of threads, computational load, memory require-
ments, etc., to excite the platform from different dimensions and systematically
collect the response data for training. For instance, PARSEC benchmarks have
good Instruction-Level Parallelism (ILP) diversity and are excellent for building
predictive models that capture the computing and memory behaviors. However,
these benchmark applications are CPU bound and mostly exhibit a constant high
load, which may not be ideal for properly evaluating the impact of distinct load
contribution patterns. For this reason, a set of synthetic microbenchmarks with
attributes that reflect interactive behaviors (I/O dependent applications) and other
cross-layer attributes are created and mixed with traditional benchmark suites during
the training data collection for the predictive models [38, 46].

The use of specialized microbenchmarks [44,46] can provide further diversity to
accurately capture cross-layer characteristics. For example, in [46] a set of multi-
threaded synthetic benchmarks – interactive microbenchmarks (IMB) – enable
selective control of the workload, phasic/ bursty behavior, and interactivity (sleep
and wait periods). These IMBs can be configured to have throughput (T) and
interactivity (I) that control the sleep/wait periods for high(H), medium(M), and
low(L) values. Using this approach, a diverse combination of synthetic benchmarks
can be generated to stress various dimensions of cross-layer attributes. For instance,
the combination “HTHI” represents a high throughput and high interactivity IMB
configuration; all other combinations are similarly used in the experiments to
capture the cross-layer behavior [38, 46].

8.3.6 Selecting the HMP Configuration

Once the response surface of the system goal is formed using the predictive models,
different search heuristics can be used to find the most suitable HMP configuration.
As an example, the configuration that performed the best in most cases as the
number of threads (or load) increases can be selected by searching the feasible
configurations. Other heuristics or optimization criteria can be used to select the
configurations from the Pareto front [16, 21].



262 S. Sarma and N. Dutt

8.4 Case Study: Experimental Evaluation of Cross-Layer DSE
of HMPs

In this section, an example case study of the presented cross-layer approach is
illustrated for a contemporary heterogeneous multi-core architecture such as the
ARM big.LITTLE [17]), with the goal of quantifying the benefits of different
architectural configurations. To emulate different core types, different classes of
publicly available Alpha processor models [25,30] (Table 8.2) are used to construct
a realistic HMP model in Gem5 [6] by specifying their multilayer architectural
features. Note that the performance of the processors in terms of average IPC,
area, and power are normalized with respect to the smallest EV4 (Alpha 21064)
core. Also observe that the asymmetric increase of approximately 82� in chip area
just to double the performance of an EV8 core with respect to an EV4 core. This
asymmetry (or heterogeneity) in scaling is essentially exploited by HMPs to achieve
performance, power, and energy efficiency for a given area budget.

To illustrate the CLDSE approach, some experiments can be run by considering
chip/die area budget of four Alpha 21264 (EV6) processors as the system-level
constraint. Observe that all the possible distinct combinations with three classes
of processors (EV4, EV5, and EV6) that meet the area budget are numbered for the
37 possible candidate configurations as shown in Fig. 8.5. To represent a diverse set
of workloads, 8 Mediabench-II algorithms [32] and PARSEC benchmarks [5] are
selected as representative workloads; their execution time and power consumption
are generated using a combination of Gem5 [6] and McPAT[34], respectively, as
shown in Fig. 8.6. The performance and power values for each processor core
type are generated through full system simulation as shown in Table 8.2. To
consider the effect of varying workload and other microarchitectural effects, the
number of threads in the benchmark program are varied with different inputs in
the cycle accurate full system Gem5 simulation. Here each benchmark is viewed
as a single threaded task. The effect of diverse multi-threaded workloads on the

Table 8.2 Alpha processor cores performance, area and power [30]

Alpha
core

Issue
width

I-cache D-cache Branch
predic-
tion

# MSHRs IPCa Areaa Peak
power(W)

Avg.
power(W)

Powera

EV4 2 8 KB,
DM

8 KB,
DM

2 KB, 1-
bit

2 1.00 1.00 4.97 3.73 1.00

EV5 4 8 KB,
DM

8 KB,
DM

2K-,
gshare

4 1.30 1.76 9.83 6.88 1.84

EV6 6 64 KB,
2 Way

64 KB,
2 Way

Hybrid,
2 level

8 1.87 8.54 17.8 10.68 2.86

EV8 8 64 KB,
4 Way

64 KB,
4 Way

Hybrid,
2�EV6
size

16 2.14 82.2 92.88 46.44 12.45

aNormalized versus EV4; all cores scaled to 0.1 �m, at 2.1 GHz; IPC based on SPEC CPU
benchmarks



8 Architecture and Cross-Layer Design Space Exploration 263

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

# 
of

 C
or

es

HMP Configuration #

HMP configuration for Area Budget of 4Ev6

Ev4
Ev5
Ev6
Ev8

Fig. 8.5 HMP configurations for area budget of 4�EV6. Total of 37 configurations numbered
from 1 to 37 from left to right

platform can be simulated by using PARSEC benchmarks or by gradually increasing
the number of single threaded tasks and performing the allocation for a given
platform. The combination of these benchmarks form new composite tasks (e.g.,
JPEG compression followed by AES encryption), and the execution time and power
consumption of the composite task can be computed as the sum of execution
time and power consumption of the individual benchmarks, respectively. This tests
architectural configurations with more than 100 cores (e.g., area budget of 4 EV8
results in 46,428 configuration with as many as 330 EV4 cores). With the variability
in number of tasks, the objective functions of each architectural combination with
system goal minD is shown in Fig. 8.7.

To demonstrate the ability to cover a large design space, an initial set of simula-
tions generated by DoE is used to build the response surface model of the system
for the following design objectives: make-span/delay, power, energy, Energy-Delay
Product (EDP), and Energy-Delay Square Product (EDSP) as listed in Table 8.1.
These initial simulation points are used to construct the predictive models by using
linear regression to obtain the coefficients of the expression (8.5) by performing
least square fitting of the data. Table 8.3 shows the computational complexity
(execution time) and accuracy of the predictors in comparison to a full system
simulation (over two orders of magnitude at maximum prediction error of 10%)
of the platform for some sample benchmarks. The presented CLDSE shows that
an allocation strategy that performs well with one architectural configuration does
not perform equally well for another architectural configuration and there is a rich
design space to exploit for a specific solution. The predictive models demonstrate



264 S. Sarma and N. Dutt

EV4 EV5 EV6 EV8
0

10

20

30

40

50

60

70

80
Execution Time in msec

EV4 EV5 EV6 EV8
0

100

200

300

400

500

600

700

800
Power Consumption in mW

adpcm
aes
blowfish
gsm
h263
jpeg
motion
sha

adpcm
aes
blowfish
gsm
h263
jpeg
motion
sha

Fig. 8.6 Average power and execution time for eight benchmarks for different Alpha processors

the relative merit for heterogeneous multi-core processor configurations for the
same area budget and different allocation strategies. Furthermore, the allocation
strategies are compared with a heterogeneity oblivious random allocation with
variability in number of task and the execution time as shown in Fig. 8.8. The
joint impact of considering the workload variability (with variations in number
of tasks and intra-task execution time variations) with allocation strategies shows
that almost all the HMP configuration will under-perform by as much as 50 and
70%, respectively, in terms of energy delay product (EDP ) and energy delay square
product (ED2) if a heterogeneity agnostic allocation policy (e.g., random policy as
in vanilla Linux Kernel) is used. Thus, heterogeneity-aware allocation strategies are
crucial for almost any HMP platform configurations, and their impact is significant
as the system is loaded with more tasks. This approach can be used to search for
the best performing architecture (Table 8.4 ) as the most preferable architecture
(most frequently occurring) for different system goals using a given allocation
strategy with the given equal area budget constraints. Observe that for the given area



8 Architecture and Cross-Layer Design Space Exploration 265

Fig. 8.7 Objectives with variability in number of task for delay only task allocation strategy
(minD) using the predictive models. Lower is better

Table 8.3 Execution time and prediction model performance on Intel i7 2.4 GHz machines

Benchmarks HMP config Gem5 full system
simulation time

Prediction model
execution time

Prediction error

H.264 #1 (4 cores) >2 days < 1 s <5%

Bodytrack #2 (8 cores) >4 days < 1 s <5%

Blackscholes #10 (16 cores) >7 days < 1 s <8%

Fluidanimate #10 (16 cores) >7 days < 1 s <8%

Mix of above #36 (32 cores) >10 days < 1 s <10%

budget, the architectural combination #9(8 � EV4, 5 � EV5, 2 � EV6) with 8 EV4
cores, 5 EV5 scores, and 2 EV6 cores has superior performance in terms of EDP

and ED2:

This section has outlined a case study demonstrating the benefits of cross-layer
design space exploration of HMPs. These preliminary studies show that much
more research is required to exploit this rich and complex space of cross-layer
optimizations for emerging heterogeneous architectures.



266 S. Sarma and N. Dutt

Fig. 8.8 DSE with predictive models: comparison of SA-based static allocation strategies with
random allocation strategy (as in vanilla Linux). Higher is better

Table 8.4 Preferred architectural composition with different system goals and allocation strate-
gies

Goals/objective JD (minD) JE (minE) JED.minED/ JED2 .minED2/

CPerfMax #1 (4 � EV6) #1(4 � EV6) #1(4 � EV6) #1(4 � EV6)

CEnergyMin #37(34 � EV4) #9(8 � EV4,
5 � EV5,
2 � EV6)

#37(34 � EV4) #37(34 � EV4)

CPowerMin #9(8 � EV4,
5 � EV5,
2 � EV6)

#37(34 � EV4) #2(5 � EV5,
3 � EV6)

#2(5 � EV5,
3 � EV6)

CEEMax #9(8 � EV4,
5 � EV5,
2 � EV6)

#37(34 � EV4) #9(8 � EV4,
5 � EV5,
2 � EV6)

#9(8 � EV4,
5 � EV5,
2 � EV6)

8.5 Conclusions

Cross-layer architectural design space exploration presents significant opportunities
for architects to comparatively evaluate design choices early in the design, while
accounting for complex interactions between constraints at multiple abstraction



8 Architecture and Cross-Layer Design Space Exploration 267

levels. This chapter presented an exemplar case study for the exploration of single-
chip, single-ISA heterogeneous multi-core processors.

Recent research has highlighted the potential benefits of single-ISA hetero-
geneous multi-core processors over cost-equivalent homogeneous ones, and it is
likely that future processors will integrate cores that have the same ISA but offer
different performance and power characteristics. However, there are few efforts
that address the problem of HMP composition, constituting of different core
types. This chapter presented a cross-layer (across application, operating system,
and hardware architecture layer) approach of single-ISA heterogeneous multi-core
processors using predictive models to investigate the interactions and influence of
heterogeneity of hardware architectures (configurations, number, and types of cores)
and multi-objective allocation strategies along with diverse types of workloads
under system-level constraints (such as equal area or power budget). A versatile
and realistic approach was outlined along with clear methodology to build cross-
layer predictive models of application and system interactions that can be used in
the HMP compositions. The presented cross-layer approach quantifies the relative
merits of one architectural configuration and allocation strategy over others and
helps in selecting most promising heterogeneous architectures. The predictive cross-
layer approach enables the chip architect and designer to comparatively evaluate
and select the most promising (e.g., energy and performance efficient) HMP
configuration in over two order of magnitude less simulation time compared to a
full system simulation especially during the early design and verification stages
when the design space is at its largest. The approach embodied in this chapter
should be applicable for design space exploration of many emerging programmable
architectures.

Acknowledgments This work was partially supported by the NSF Variability Expedition award
CCF-1029783.

References

1. Anderson MJ, Whitcomb PJ (2000) Design of experiments. Wiley Online Library.
doi: 10.1002/0471238961.0405190908010814.a01.pub3. http://onlinelibrary.wiley.com/doi/
10.1002/0471238961.0405190908010814.a01.pub3/abstract. Accessed Sep 2010

2. Annamalai A, Rodrigues R, Koren I, Kundu S (2013) An opportunistic prediction-based
thread scheduling to maximize throughput/watt in amps. In: 2013 22nd international
conference on parallel architectures and compilation techniques (PACT), pp 63–72. doi:
10.1109/PACT.2013.6618804

3. Balakrishnan S et al (2005) The impact of performance asymmetry in emerging multicore ar-
chitectures. SIGARCH Comput Archit News 33(2):506–517. doi: 10.1145/1080695.1070012

4. Becchi M et al (2006) Dynamic thread assignment on heterogeneous multiprocessor architec-
tures. In: Proceedings of the 3rd conference on computing frontiers, CF ’06. ACM, New York,
pp 29–40. doi: 10.1145/1128022.1128029

5. Bienia C et al (2008) The parsec benchmark suite: characterization and architectural impli-
cations. In: Proceedings of the 17th international conference on parallel architectures and
compilation techniques. ACM, pp 72–81

http://dx.doi.org/10.1002/0471238961.0405190908010814.a01.pub3
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0405190908010814.a01.pub3/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0405190908010814.a01.pub3/abstract
http://dx.doi.org/10.1109/PACT.2013.6618804
http://dx.doi.org/10.1145/1080695.1070012
http://dx.doi.org/10.1145/1128022.1128029


268 S. Sarma and N. Dutt

6. Binkert N et al (2011) The gem5 simulator. SIGARCH Comput Archit News 39(2):1–7. doi:
10.1145/2024716.2024718

7. Chen T, Chen Y, Guo Q, Zhou ZH, Li L, Xu Z (2013) Effective and efficient microprocessor
design space exploration using unlabeled design configurations. ACM Trans Intell Syst
Technol (TIST) 5(1):20

8. Chen J et al (2009) Efficient program scheduling for heterogeneous multi-core processors. In:
46th ACM/IEEE design automation conference, 2009, DAC ’09, pp 927–930

9. Chen T, Guo Q, Tang K, Temam O, Xu Z, Zhou ZH, Chen Y (2014) Archranker: a ranking
approach to design space exploration. In: 2014 ACM/IEEE 41st international symposium on
computer architecture (ISCA). IEEE, pp 85–96

10. Chitlur N, Srinivasa G, Hahn S, Gupta P, Reddy D, Koufaty D, Brett P, Prabhakaran A, Zhao
L, Ijih N et al (2012) Quickia: exploring heterogeneous architectures on real prototypes. In:
2012 IEEE 18th international symposium on high performance computer architecture (HPCA).
IEEE, pp 1–8

11. Cook H, Skadron K (2008) Predictive design space exploration using genetically programmed
response surfaces. In: Proceedings of the 45th annual design automation conference. ACM,
pp 960–965

12. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
13. Dubach C, Jones T, O’Boyle M (2007) Microarchitectural design space exploration using an

architecture-centric approach. In: Proceedings of the 40th annual IEEE/ACM international
symposium on microarchitecture. IEEE Computer Society, pp 262–271

14. Eeckhout L, Vandierendonck H, Bosschere K (2002) Workload design: selecting representative
program-input pairs. In: Proceedings of the 2002 international conference on parallel architec-
tures and compilation techniques. IEEE, pp 83–94

15. Ge R et al (2010) Powerpack: Energy Profiling and analysis of high-performance systems and
applications. IEEE Trans Parallel Distrib Syst 21(5):658–671. doi: 10.1109/TPDS.2009.76

16. Givargis T, Vahid F, Henkel J (2002) System-level exploration for pareto-optimal con-
figurations in parameterized system-on-a-chip. IEEE Trans Very Large Scale Integr Syst
10(4):416–422

17. Greenhalgh P (2011) Big.little processing with arm cortex-a15 & cortex-a7: improving energy
efficiency in high-performance mobile platforms. http://www.arm.com/files/downloads/big.
LITTLE_Final.pdf

18. Henning JL (2006) Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput Archit
News 34(4):1–17

19. Hill M et al (2008) Amdahl’s law in the multicore era. Computer 41(7):33–38. doi:
10.1109/MC.2008.209

20. Ïpek E, McKee SA, Caruana R, de Supinski BR, Schulz M (2006) Efficiently exploring
architectural design spaces via predictive modeling. SIGPLAN Not 41(11):195–206. doi:
10.1145/1168918.1168882

21. Ipek E, McKee SA, Singh K, Caruana R, Supinski BRd, Schulz M (2008) Efficient architectural
design space exploration via predictive modeling. ACM Trans Archit Code Optim (TACO)
4(4):1

22. Jin Z, Cheng AC (2008) Improve simulation efficiency using statistical benchmark subsetting:
an implantbench case study. In: Proceedings of the 45th annual design automation conference.
ACM, pp 970–973

23. Joseph P, Vaswani K, Thazhuthaveetil MJ (2006) Construction and use of linear regression
models for processor performance analysis. In: The twelfth international symposium on high-
performance computer architecture. IEEE, pp 99–108

24. Kenzo VC et al (2012) Scheduling heterogeneous multi-cores through performance impact
estimation (PIE). In: International symposium on computer architecture, ISCA’12

25. Kessler R (1999) The alpha 21264 microprocessor. IEEE Micro 19(2):24–36. doi:
10.1109/40.755465

26. Keutzer K et al (2000) System-level design: orthogonalization of concerns and platform-
based design. IEEE Trans Comput-Aided Des Integr Circuits Syst 19(12):1523–1543. doi:
10.1109/43.898830

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/TPDS.2009.76
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1145/1168918.1168882
http://dx.doi.org/10.1109/40.755465
http://dx.doi.org/10.1109/43.898830


8 Architecture and Cross-Layer Design Space Exploration 269

27. Khan S, Xekalakis P, Cavazos J, Cintra M (2007) Using predictivemodeling for cross-program
design space exploration in multicore systems. In: Proceedings of the 16th international
conference on parallel architecture and compilation techniques. IEEE Computer Society,
pp. 327–338

28. Kleijnen JP (2008) Design and analysis of simulation experiments, vol 20. Springer, New
York/London

29. Kumar R et al (2004) Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance. In: Proceedings of the 31st annual international symposium on
computer architecture, pp 64–75. doi: 10.1109/ISCA.2004.1310764

30. Kumar R et al (2005) Heterogeneous chip multiprocessors. Computer 38(11):32–38. doi:
10.1109/MC.2005.379

31. Lee BC, Brooks DM (2006) Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In: ACM SIGPLAN notices, vol 41. ACM, pp 185–194

32. Lee C, Potkonjak M, Mangione-Smith WH (1997) Mediabench: a tool for evaluating
and synthesizing multimedia and communicatons systems. In: Proceedings of the 30th
annual ACM/IEEE international symposium on microarchitecture. IEEE Computer Society,
pp 330–335

33. Lee BC, Collins J, Wang H, Brooks D (2008) Cpr: composable performance regression
for scalable multiprocessor models. In: 2008 41st IEEE/ACM international symposium on
microarchitecture, 2008, MICRO-41. IEEE, pp 270–281

34. Li S et al (2009) Mcpat: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In: 42nd annual IEEE/ACM international symposium
on microarchitecture, 2009, MICRO-42, pp 469–480

35. Liu HY, Carloni LP (2013) On learning-based methods for design-space exploration with high-
level synthesis. In: Proceedings of the 50th annual design automation conference. ACM, p 50

36. Liu G et al (2013) Dynamic thread mapping for high-performance, power-efficient heteroge-
neous many-core systems. In: 2013 IEEE 31st international conference on computer design
(ICCD), pp 54–61. doi: 10.1109/ICCD.2013.6657025

37. Montgomery DC: Design and analysis of experiments. Wiley, Hoboken (2008)
38. Mück T, Sarma S, Dutt N (2015) Run-DMC: runtime dynamic heterogeneous multicore per-

formance and power estimation for energy efficiency. In: Proceedings of the 10th international
conference on hardware/software codesign and system synthesis. IEEE, pp 173–182

39. NVidia (2011) Variable SMP – a multi-core CPU architecture for low power and high
performance. http://www.nvidia.cn/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-
Core-CPU-\Architecture-for-Low-Power-and-High-Performance-v1.1.pdf

40. Palermo G, Silvano C, Zaccaria V (2009) Respir: a response surface-based pareto iterative
refinement for application-specific design space exploration. IEEE Trans Comput-Aided Des
Integr Circuits Syst 28(12):1816–1829. doi: 10.1109/TCAD.2009.2028681

41. Phansalkar A, Joshi A, John LK (2007) Subsetting the spec CPU2006 benchmark suite. ACM
SIGARCH Comput Archit News 35(1):69–76

42. Pimentel A et al (2006) A systematic approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Trans Computers 55(2):99 – 112. doi: 10.1109/TC.2006.16

43. Santner TJ, Notz W, Williams B (2003) The design and analysis of computer experiments.
Springer, New York

44. Sarma S (2016) Cyber-physical-system-on-chip (CPSoC): an exemplar self-aware SoC and
smart computing platform

45. Sarma S, Dutt N (2015) Cross-layer exploration of heterogeneous multicore processor
configurations. In: 2015 28th international conference on VLSI design (VLSID), pp 147–152.
doi: 10.1109/VLSID.2015.30

46. Sarma S, Muck T, Bathen LAD, Dutt N, Nicolau A (2015) Smartbalance: a sensing-driven
linux load balancer for energy efficiency of heterogeneous mpsocs. In: Proceedings of the
52nd annual design automation conference, DAC ’15. ACM, New York, pp 109:1–109:6. doi:
10.1145/2744769.2744911

47. Shelepov D et al (2009) Hass: a scheduler for heterogeneous multicore systems. SIGOPS Oper
Syst Rev 43(2):66–75. doi: 10.1145/1531793.1531804

http://dx.doi.org/10.1109/ISCA.2004.1310764
http://dx.doi.org/10.1109/MC.2005.379
http://dx.doi.org/10.1109/ICCD.2013.6657025
http://www.nvidia.cn/content/PDF/tegra_white_papers/ Variable-SMP-A-Multi-Core-CPU-  Architecture-for-Low-Power-and -High-Performance-v1.1.pdf
http://www.nvidia.cn/content/PDF/tegra_white_papers/ Variable-SMP-A-Multi-Core-CPU-  Architecture-for-Low-Power-and -High-Performance-v1.1.pdf
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/VLSID.2015.30
http://dx.doi.org/10.1145/2744769.2744911
http://dx.doi.org/10.1145/1531793.1531804


270 S. Sarma and N. Dutt

48. Teodorescu R, Torrellas J (2008) Variation-aware application scheduling and power man-
agement for chip multiprocessors. SIGARCH Comput Archit News 36(3):363–374. doi:
10.1145/1394608.1382152

49. Vidyarthi DP et al (2009) Scheduling in distributed computing systems: analysis, design &
models, a research monogram. Springer

50. Wu W, Lee BC (2012) Inferred models for dynamic and sparse hardware-software spaces. In:
Proceedings of the 2012 45th annual IEEE/ACM international symposium on microarchitec-
ture. IEEE Computer Society, pp 413–424

51. Yi JJ, Lilja DJ, Hawkins DM (2003) A statistically rigorous approach for improving simulation
methodology. In: Proceedings of the ninth international symposium on high-performance
computer architecture, 2003, HPCA-9 2003. IEEE, pp 281–291

http://dx.doi.org/10.1145/1394608.1382152

	8 Architecture and Cross-Layer Design Space Exploration
	Contents
	8.1 Introduction
	8.2 Design Space Exploration of Heterogeneous Multi-core Processors
	8.2.1 Design of Experiments
	8.2.2 Response Surface Models

	8.3 Cross-Layer Predictive Model Building Approach 
	8.3.1 Problem Formulation 
	8.3.2 Application and Workload Models
	8.3.3 Heterogeneity-Aware Task Allocation  
	8.3.3.1 Optimization Methodology
	8.3.3.2 Simulated Annealing-Based Optimization 

	8.3.4 Predictive Modeling of Performance and Power of Different Core Types
	8.3.5 Training Methodology and Benchmarks 
	8.3.6 Selecting the HMP Configuration

	8.4 Case Study: Experimental Evaluation of Cross-Layer DSE of HMPs
	8.5 Conclusions
	References


