
7Hybrid Optimization Techniques for
System-Level Design Space Exploration

Michael Glaß, Jürgen Teich, Martin Lukasiewycz, and Felix Reimann

Abstract

Embedded system design requires to solve synthesis steps that consist of resource
allocation, task binding, data routing, and scheduling. These synthesis steps
typically occur several times throughout the entire design cycle and necessitate
similar concepts even at different levels of abstraction. In order to cope with the
large design space, fully automatic Design Space Exploration (DSE) techniques
might be applied. In practice, the high complexity of these synthesis steps
requires efficient approaches that also perform well in the presence of stringent
design constraints. Those constraints may render vast areas in the search space
infeasible with only a fraction of feasible implementations that are sparsely
distributed. This is a serious problem for metaheuristics that are popular for DSE
of electronic hardware/software systems, since they are faced with large areas
of infeasible implementations where no gradual improvement is possible. In this
chapter, we present an approach that combines metaheuristic optimization with
search algorithms to solve the problem of Hardware/Software Codesign (HSCD)
including allocation, binding, and scheduling. This hybrid optimization uses
powerful search algorithms to determine feasible implementations This avoids
an exploration of infeasible areas and, thus, enables a gradual improvement as

M. Glaß
Institute of Embedded Systems/Real-Time Systems at Ulm University, Ulm, Germany
e-mail: michael.glass@uni-ulm.de

J. Teich
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
e-mail: juergen.teich@fau.de

M. Lukasiewycz
Robert Bosch GmbH, Corporate Research, Renningen, Germany
e-mail: martin.lukasiewycz@de.bosch.com

F. Reimann
Audi Electronics Venture GmbH, Gaimersheim, Germany
e-mail: felix.reimann@audi.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_8

217

mailto:michael.glass@uni-ulm.de
mailto:juergen.teich@fau.de
mailto:martin.lukasiewycz@de.bosch.com
mailto:felix.reimann@audi.de

218 M. Glaß et al.

required for efficient metaheuristic optimization. Two methods are presented that
can be applied to both, problems with linear as well as non-linear constraints,
the latter being particularly intended to address aspects such as timeliness or
reliability which cannot be approximated by linear constraints in a sound fashion.
The chapter is concluded with several examples for a successful use of the
introduced techniques in different application domains.

Acronyms

BIST Built-In Self-Test
DPLL Davis-Putnam-Logemann-Loveland
DSE Design Space Exploration
EA Evolutionary Algorithm
E/E Electric and Electronic
ESL Electronic System Level
HSCD Hardware/Software Codesign
ILP Integer Linear Program
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
PB Pseudo-Boolean
SAT Boolean Satisfiability
SMT Satisfiability Modulo Theories

Contents

7.1 Introduction and Motivation . 218
7.2 Fundamentals and Problem Formulation . 219

7.2.1 System Model and the System-Level Synthesis Problem 220
7.2.2 Constrained Combinatorial Optimization . 225

7.3 Hybrid Optimization . 229
7.3.1 SAT Decoding: The Key Idea . 229
7.3.2 Solver . 230
7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,

and Scheduling . 231
7.4 Satisfiability Modulo Theories During Decoding . 236

7.4.1 SMT Decoding: The Key Idea . 236
7.4.2 SMT Decoding Formulation . 238
7.4.3 Learning Schemes . 239

7.5 Applications . 242
7.6 Conclusion . 244
References . 245

7.1 Introduction and Motivation

The design of electronic embedded systems typically requires to solve the crucial
synthesis steps of resource allocation, task binding, data routing, and scheduling.
Those basic steps can even re-occur throughout the design cycle [30] and necessitate
similar concepts even at different levels of abstraction. Here, a major problem for

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 219

design space exploration is typically not just a vast design space, but the high
complexity of these synthesis steps (NP-complete) that becomes even more severe
in the presence of stringent design constraints. Those constraints may render many
possible system implementations infeasible, such that vast areas in the search space
are infeasible with feasible implementations populating the space only sparsely.
This is a tremendous problem for metaheuristics that are popular for Design Space
Exploration (DSE) (see �Chap. 6, “Optimization Strategies in Design Space
Exploration”), since they are faced with large areas of infeasible implementations
where no gradual improvement is possible.

This chapter describes an approach to overcome this problem. The main idea is to
employ a backtracking-based search algorithm, i.e., a Pseudo-Boolean (PB) solver,
to obtain feasible implementations only. This search algorithm is controlled by a
metaheuristic optimization technique, i.e., an Evolutionary Algorithm (EA) to (a)
enable an efficient exploration even in large and sparse search spaces and (b) search
for implementations that are optimized with respect to multiple non-functional
design objectives such as timeliness, reliability, and/or power consumption. This
combination is termed SAT decoding and can be considered a hybrid optimization
approach which is exemplified for system-level DSE of electronic hardware/soft-
ware systems in this chapter. However, the employed search algorithm is only
capable of handling linear or linearizable design constraints in a Boolean domain.

In the presence of constraints that cannot be efficiently linearized and reduced
to the Boolean domain – such as a maximum end-to-end delay of an application
with tasks mapped to multiple resources – the approach will again deliver infea-
sible implementations if these non-linear constraints are ignored. A technique to
overcome this drawback is as well presented in this chapter. The basic idea is to
integrate analysis techniques for such non-functional constraints and incrementally
determine linear constraints for the pseudo-Boolean solver. By this way, the solver
is capable of learning which implementations are infeasible. The proposed hybrid
Design Space Exploration (DSE) approach is not only applicable at the Electronic
System Level (ESL), but may be applied also at other levels of hardware and
software synthesis in embedded system design.

This chapter is structured into three main sections: Sect. 7.2 introduces required
fundamentals as well as the mathematical formulation of the synthesis problem to
be solved. Section 7.3 presents the hybrid optimization technique SAT decoding
that can consider linear constraints. An extension of SAT decoding which considers
non-linear constraints termed SMT decoding is discussed subsequently in Sect. 7.4.
Examples of applications of the introduced techniques for further reading are
presented in Sect. 7.5 before the chapter is concluded in Sect. 7.6.

7.2 Fundamentals and Problem Formulation

The first work on Hardware/Software Codesign (HSCD) can be found in [22]
which considers the problem of concurrently defining a multi-processor system’s
topology, a binding of tasks to processors, and their scheduling. Since, the problem
of allocating hardware and software components, followed by binding tasks to

http://dx.doi.org/10.1007/978-94-017-7267-9_7

220 M. Glaß et al.

either hardware or software, became known as hardware/software codesign. Many
initial works consider the codesign problem a bipartition problem, i.e., a task
is assigned either to a processor and executed as software or to one dedicated
hardware accelerator. This notion is generalized to heterogeneous hardware/soft-
ware architectures with multiple components in [29] under the term system-level
synthesis. In [1], same authors prove that this system-level synthesis problem is
an NP-complete problem. For an in-depth discussion of the historical roots of
hardware/software codesign, see �Chap. 1, “Introduction to Hardware/Software
Codesign”. For comprehensive overviews on system-level synthesis techniques,
interested readers can refer to [6, 28].

In the following sections, we introduce a well-established model for the system-
level synthesis problem which is very suitable for (networked) embedded systems.
Afterward, we also discuss the problem from an optimization perspective where
system synthesis can be considered a constrained combinatorial optimization
problem and give a brief introduction of common optimization approaches and
constraint-handling techniques.

7.2.1 System Model and the System-Level Synthesis Problem

In the following section, we introduce a formal graph-based system model and
the respective system-level synthesis problem as a variation and extension of the
original model from [1] that is proposed in [21].

7.2.1.1 System Model
A system model & termed specification is given in a graph-based fashion that
distinguishes between application (modeled as an application graph GT) and
an architecture (modeled as an architecture graph GR). The relation between
application and architecture – indicating each possible binding of a task of the
application for execution on a resource of the architecture – is modeled by means of
a set of mapping edges EM .

• The application is given by a bipartite directed graph GT .T; ET / with T DP [C .
The vertices T are either process tasks p 2 P or communication tasks c 2 C .
Each edge e 2 ET connects a vertex in P to one in C , or vice versa. Each
process task p 2 P can have multiple incoming edges since it might receive
data from multiple other process tasks. A process task can also have multiple
outgoing edges to model the sending of data to multiple process tasks. The data
itself is not directly sent to other processing tasks, but the transmission is modeled
explicitly by communication tasks. Each communication task c 2 C has exactly
one predecessor process task as the sender, since data is sent by exactly one
sender. To allow multicast communication, each communication task can have
multiple successor process tasks.

• The architecture is modeled as a directed graph GR.R; ER/. The vertices R

represent resources such as processors, memories, or buses. The directed edges
ER � R � R indicate available communication connections between resources.

http://dx.doi.org/10.1007/978-94-017-7267-9_41

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 221

Fig. 7.1 Specification with
the application graph GT on
the left, the architecture graph
GR on the right, and mapping
edges depicted dashed

• The set of mapping edges EM contains the mapping information for each
process task. Each mapping edge m D .p; r/ 2 EM indicates a possible
implementation/execution of process p 2 P on resource r 2 R.

A simple specification including application graph, architecture graph, and mapping
edges is given in Fig. 7.1: The application consists of three process tasks (p1, p2,
and p3) and one communication task (c1) that distributes the data produced by p1

to p2 and p3 in a multicast fashion. The architecture consists of two CPU resources
capable of executing process tasks (rcpu1 and rcpu2) that are connected via a channel
(rchan) that only allows a communication from rcpu1 to rcpu2 but not vice versa as
specified by the directed edge .rcpu1; rcpu2/ 2 ER. Moreover, mapping edges depict
which process task can be executed on which resources, i.e., p1 on rcpu1 and rcpu2,
p2 on rcpu2, and p3 on rcpu1 and rcpu2.

A more complex specification is given in Fig. 7.2: The application graph shown
in Fig. 7.2a consists of five process tasks and three communication tasks. The
architecture graph shown in Fig. 7.2b consists of six processors (CPUs) and two
buses that are coupled via a gateway resource. For the sake of brevity and better
visualization, we also show an architecture diagram in Fig. 7.2c where processors
are depicted as rectangles and buses are depicted as edges between processors and
(possibly) gateway components.

7.2.1.2 System-Level Synthesis
The introduced specification is the base for the following formulation of the system-
level synthesis problem:

System-level synthesis derives an implementation from a given specification
by means of an allocation of resources, a binding of process tasks to allocated
resources, a routing of communication tasks on a tree of allocated resources,
and a schedule of tasks.

222 M. Glaß et al.

Fig. 7.2 A specification with (a) application graph GT and (b) architecture graph GR with
mapping edges (not depicted) being EM D f.p1; rcpu1/, .p1; rcpu2/, .p2; rcpu5/, .p3; rcpu2/,
.p3; rcpu4/, .p4; rcpu4/, .p4; rcpu6/, .p5; rcpu1/, .p5; rcpu3/g. A more compact representation of the
modeled architecture as an architecture diagram is given in (c)

Formally, an implementation ! consists of the allocation graph G˛ that is
deduced from the architecture graph GR, the binding Eˇ as a subset of EM that
describes the mapping of the process tasks to allocated resources, the routing � that
contains a directed routing graph G�;c for each communication task c 2 C , and the
schedule function S . For an implementation to be feasible, several conditions have
to be fulfilled by the allocation, binding, routing, and scheduling:

• The allocation is a directed graph G˛.˛; E˛/ that is an induced subgraph of
the architecture graph GR. The allocation contains all resources r 2 R that
are selected for the current implementation. E˛ describes the set of allocated
communication connections that are induced from the graph GR such that
e D .r; Qr/ 2 E˛ if and only if r; Qr 2 ˛.

• The binding Eˇ � EM describes the mapping of the process tasks to allocated
resources. Here, the following requirements must be fulfilled:
– Each process task p 2 P of the application is bound to exactly one resource:

8p 2 P W jfmjm D .p; r/ 2 Eˇgj D 1 (7.1)

where j � j denotes the cardinality.
– Each process task p 2 P can only be bound to an allocated resource:

8m D .p; r/ 2 Eˇ W r 2 ˛ (7.2)

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 223

• Each communication task c 2 C is routed on a tree G�;c D .R�;c; E�;c/. The
routing must be performed such that the following conditions are satisfied:
– The directed tree G�;c is a connected subgraph of the allocation G˛ such

that

R�;c � ˛ and E�;c � E˛: (7.3)

– For each communication task c 2 C , the root of G�;c has to equal the resource
on which the predecessor sender process task p 2 P is bound:

8.p; c/ 2 ET ; m D .p; r/ 2 Eˇ W jfeje D . Qr; r/ 2 E�;cgj D 0 (7.4)

Here, r is the resource to which the sender process task p 2 P is bound and
by requiring that the number of incoming edges to this node is 0, the node is
ensured to be the routing tree’s root.

– For each communication task c 2 C , R�;c must contain all resources on which
any successor process task p 2 P is bound:

8.c; p/ 2 ET ; m D .p; r/ 2 Eˇ W r 2 R�;c (7.5)

• On each resource, different scheduler types may be present to schedule tasks
bound to them. Here, a general scheduling approach is considered which assigns
each mapping of a (process and communication) task a priority:

S W EM [C ! f1; : : : ; jT j C jC jg: (7.6)

In case resources either execute process tasks or route communication tasks, the
number of required priorities decreases to max.jT j; jC j/.

It is then the responsibility of the scheduler to consider the assigned priorities.
However, the following two conditions typically have to be fulfilled:
– Process task priorities are unique per resource r 2 R:

8r 2 R; m D .t; r/; m0 D .t 0; r/ 2 Eˇ; m ¤ m0 W S.m/ ¤ S.m0/ (7.7)

– Communication task priorities are unique (since they may share several
allocated resources on their route):

8r 2 R; c; c0 2 C; c ¤ c0 W S.c/ ¤ S.c0/ (7.8)

Two implementations for the simple specification given in Fig. 7.1 are shown in
Fig. 7.3. The implementation depicted on the left is infeasible since c1 cannot be
routed to p3. The implementation depicted on the right adheres to all requirements
and is, thus, a feasible implementation. Moreover, a feasible implementation for the
more complex specification from Fig. 7.2 is given in Fig. 7.4.

224 M. Glaß et al.

Fig. 7.3 Two implementations of the specification in Fig. 7.2. Shown are two allocated resources
rcpu1 and rcpu2 as rectangles and the unidirectional communication channel rchan as a directed edge
between them. The left implementation is infeasible: Because of the unidirectional communication
channel, there exists no connected subgraph to route the communication task c1 to receiver p3. The
right implementation is feasible

Fig. 7.4 An implementation
for the specification in
Fig. 7.2. Illustrated is the
allocation G˛ , the binding Eˇ

of process tasks, and the
routing � of communication
tasks. All routings are
performed within multiple
hops using the available
bi-directional buses
rbus1; rbus2 and the gateway
rgw. The communication c1 is
of type multicast

The outlined system-level synthesis problem is typically represented by means of
the Y-chart [5] where the separation of application and architecture resulting in an
implementation forms a Y as depicted in Fig. 7.5. In general, system-level synthesis
shall obviously only deliver feasible implementations. Yet, our aim is to search for
implementations that are optimized with respect to multiple and even conflicting
design objectives. For this purpose, the Y-chart approach is extended in [1] and later
in [12] by a DSE phase that can be seen as an optimization in order to obtain high-
quality implementations. This directly brings us to the core topic of this chapter:
How to efficiently perform a DSE which has to solve the complex system-level
synthesis problem for each considered implementation? Before we come to the
introduction of the hybrid optimization technique, we briefly review optimization
techniques that are suitable for such kind of problems.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 225

Fig. 7.5 Illustration of the Y-chart approach: An implementation shall be synthesized from a given
application graph and architecture graph. For each implementation that is considered during DSE,
resource allocation, process task binding, communication task routing, and task scheduling have
to be determined with the overall goal to determine a set of Pareto-optimal implementations

7.2.2 Constrained Combinatorial Optimization

As we have seen, whether an implementation that is deduced from a specification
is feasible requires it to fulfill the introduced constraints. Also, we can recognize
that allocation, binding, routing, and scheduling are all design steps that basically
solve combinatorial problems of assigning tasks to resources or priorities to tasks.
Thus, we can conclude that system-level synthesis as introduced falls in the class of
constrained combinatorial problems:

Definition 1 (Constrained Combinatorial Problem).

minimize f .x/

subject to:

ai .x/ � bi ; 8i 2 f1; : : : ; qg with bi 2 Z

226 M. Glaß et al.

Fig. 7.6 A two-dimensional
objective space:
Pareto-optimal
implementations are depicted
light blue while dominated
implementations are depicted
light red. The area which is
dominated by Pareto-optimal
implementations is depicted
light red as well.
Multi-objective optimization
approaches try to achieve
high convergence as well as
high diversity among the
found implementations

In system-level synthesis, the objective function f is typically multi-dimensional to
consider multiple objective functions such as area, power, or timeliness that can, in
particular, be non-linear. Note that in multi-objective optimization problems, there
is generally not only one global optimum, but also a set of so-called Pareto-optimal
implementations is derived with each Pareto-optimal implementation being better
in at least one objective when compared to each other feasible implementation.
In multi-objective optimization, the notion of one implementation being better
than another is given by the concept of dominance (�), i.e., one implementation
dominates another if it is better in at least one design objective. Figure 7.6 visualizes
this in the objective space with two design objectives f1 and f2. Pareto-optimal
implementations are depicted light blue and dominated implementations light red.
Also, the areas in the objective space that are dominated by a Pareto-optimal
implementation are depicted. An indicator for the quality of a multi-objective opti-
mization approach is convergence, i.e., how close are the found implementations to
the front or Pareto-optimal implementations, and diversity, i.e., how well distributed
are the implementations in the objective space.

For this chapter, focus is not put on the handling of multiple objectives. Instead,
the main problem addressed arises from the notion of the feasible search space
Xf � X . In the general form, the search space is constrained by q so-called
constraint functions a imposed on an implementation, formulated as inequalities
ai .x/ � bi . The effect of these restrictions is sketched in Fig. 7.7: While every
point in the search space of an unconstrained combinatorial problem is feasible, the
search space Xf � X may contain significantly less or – in the extreme case – even
no feasible implementation at all.

In order to solve this problem efficiently, the search space and the types of
constraints will be restricted in the following: The search space X D f0; 1gn is
encoded as a set of two Boolean vectors. Moreover, the constraints are restricted to
a single matrix inequation as follows:

Ax � b with x 2 f0; 1gn; A 2 Z
m;n; b 2 Z

m (7.9)

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 227

Fig. 7.7 A visualization of the search space of a combinatorial problem (left) and a constrained
combinatorial problem (right) when projecting the search space X D f0; 1gn onto two dimensions:
In the unconstrained case, every point in the search space is a feasible implementation while in the
constrained case, large areas in the search space might not contain any feasible implementation

As can be seen, the constraints given by Ax � b have to be linear or linearizable. In
the two main parts of this chapter, we will first discuss that the introduced constraints
for allocation, binding, routing, and scheduling can be linearized and, thus, directly
be included in the search space. Afterward, we will also introduce how to take care
of constraints that cannot be linearized.

As outlined in �Chap. 6, “Optimization Strategies in Design Space Exploration”,
metaheuristic optimization techniques have become state-of-the-art to solve several
problems from the area of hardware/software codesign. This is mainly due to their
ability to consider multiple conflicting and even non-linear design objectives. In
contrast, exact approaches like Integer Linear Programs (ILPs) require the objective
function to be linear and multiple objectives are – in general (see [15]) – not
supported. However, applying metaheuristic optimization techniques to constrained
combinatorial problems as given by system-level synthesis raises a significant
problem: How to determine the set of Pareto-optimal feasible implementations and
– in case of really stringent constraints – how to even find one single feasible
implementation?

The basic idea behind the relevant metaheuristic approaches is to vary selected
(high-quality) implementations in an iterative loop and to keep the best found so
far in an archive A of non-dominated implementations. In every iteration, varied
implementations, e.g., !, are compared to the ones from the archive, e.g., Q!, and
– also depending on the concrete metaheuristic optimization technique – either
dropped in case they are dominated (�) by implementations from the archive,
i.e., ! � Q!, or the archive is updated with the new implementations. This way,
metaheuristics gradually but efficiently search for the best implementations. This
principle is depicted in Fig. 7.8. However, in the presence of stringent constraints,
Fig. 7.9 (left) outlines the effect of variation. The next feasible implementation may
be out of reach and since all surrounding implementations are infeasible, only a very
slow convergence toward the optimal implementations is achieved. In some cases,
it might even occur that not even a single feasible implementation is found.

http://dx.doi.org/10.1007/978-94-017-7267-9_7

228 M. Glaß et al.

Fig. 7.8 Principle of metaheuristic optimization approaches for hardware/software codesign:
Given a specification, the heuristic performs an iterative optimization loop where it varies
the allocation, binding, routing, and schedule to explore implementations and selects which
implementations (a) are to be dropped since they are dominated by implementations from an
archive, (b) update the archive in case they dominate implementations in the archive, and (c)
are promising candidates for variation in the next iteration. At the end, a set of optimized (near
Pareto-optimal) implementations is the output

Fig. 7.9 Varying a feasible implementation as a common concept of most metaheuristic optimiza-
tion techniques may only result in neighboring implementations that are all infeasible (left). In the
presence of a repair strategy, an infeasible implementation is modified to – if possible – become a
feasible implementation (right)

As a remedy, constraint-handling techniques have been successfully devel-
oped to apply metaheuristic optimization techniques to constrained combinatorial
problems; see [2] for a comprehensive overview. Here, we will just introduce
two main concepts: Penalty functions and repair strategies. The idea of penalty
functions [27] is to transform the constrained problem into an unconstrained
problem by deteriorating the original objective function by a penalty function. The
amount of penalization depends on the violation of constraints. A similar idea
is to leave the original objective function as is and add constraints as additional
objectives [11], e.g., minimizing the number of violated constraints. The drawbacks

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 229

of these approaches are the increased complexity of the problem by additional
objectives and a slow convergence if the feasible region is relatively small compared
to the entire search space.

For some combinatorial problems, repair algorithms or at least repair heuristics
are available that restore the feasibility of the implementation by applying certain
modifications. One well-known problem where such a solution exists is the 0/1
Knapsack Problem [32] where an infeasible implementation can be repaired by
removing items from the knapsack. The idea of the repair strategy is depicted
in Fig. 7.9 (right). Since the introduced system-level synthesis problem is NP-
complete, also a repair heuristic is, in general, NP-complete and, thus, does not
offer a conclusive alternative for our outlined problem.

The rest of this chapter introduces a solution to this problem by means of a hybrid
optimization approach.

7.3 Hybrid Optimization

This section introduces a hybrid optimization technique for system-level DSE of
embedded systems. First, the key idea of the hybrid optimization technique termed
SAT decoding – the combination of a metaheuristic with a backtracking-based
search algorithm (solver) to consider only feasible implementations during DSE – is
presented. Afterward, the main required ingredients to realize such an approach, i.e.,
(a) the branching strategy of the solver and (b) the formulation of the system-level
synthesis problem by means of pseudo-Boolean constraints, are explained.

7.3.1 SAT Decoding: The Key Idea

In the literature, one can find various hybrid optimization approaches that combine
heuristic algorithms with exact approaches, also for combinatorial problems from
diverse domains; cf. [23] for an overview. The approach discussed in the chapter
at hand termed SAT decoding [16] falls into the category of integrative hybrid
optimization approaches. Here, a metaheuristic algorithm is responsible to control
the overall optimization procedure: It controls the optimization loop and selects
implementations based on their multiple and even non-linear design objectives. In
contrast to standard metaheuristics, it does not directly vary the implementation
(i.e., allocation, binding, routing, and scheduling). Instead, it integrates a solver –
in our case a Pseudo-Boolean (PB) solver – that is only responsible to gather feasi-
ble implementations, but does not perform any optimization by itself. Following is
the key idea of SAT decoding:

In SAT decoding, instead of varying the implementation directly, the meta-
heuristic varies the branching strategy of the backtracking-based solver. This
way, only feasible implementations are obtained and are evaluated during
design space exploration.

230 M. Glaß et al.

Fig. 7.10 Principle of the SAT-decoding approach: The metaheuristic does not vary the imple-
mentation directly but rather varies the parameters �; � of the branching strategy of the employed
solver. The solver takes an encoding �& of the specification & together with the current branching
strategy and determines a feasible implementation. Each feasible implementation is then delivered
to the selection step of the metaheuristic. Note that this hybrid optimization approach only derives
feasible implementations to the metaheuristic, circumventing the outlined problems of other state-
of-the-art design space exploration approaches for system-level synthesis

Figure 7.10 shows the idea and the resulting integrative hybrid optimization
approach. The key feature of this approach is that it combines the advantages of the
metaheuristic, i.e., being able to consider multiple and non-linear design objectives,
with those of the solver, i.e., only obtaining feasible implementations. After this
informal introduction of the approach, each fundamental ingredient is presented in
a more detailed fashion in the following subsection.

7.3.2 Solver

To understand how the metaheuristic can actually control the solver to explore
the whole diversity of different implementations, we first need to understand how
the solver finds feasible implementations – or better – how it solves given search
problems in general. Thus, this subsection first introduces the so-called Pseudo-
Boolean (PB) problem and then shows how most existing solvers approach them by
means of the Davis-Putnam-Logemann-Loveland (DPLL) backtracking algorithm.

In general, the task of a PB solver is to find a variable assignment x that
satisfies a set of linear constraints, i.e., x 2 Xf as formulated in Equation (7.9).
Constraints that are given as linear inequalities and Boolean variables with integer
coefficients are known as PB constraints. Any ILP solver is also capable of solving
PB problems. But, specialized PB solvers tend to outrun ILP solvers on Pseudo-
Boolean problems because they are based on efficient backtracking algorithms.
In fact, many PB solvers are extended Boolean Satisfiability (SAT) solvers with
the capability to handle PB constraints and rely on the Davis-Putnam-Logemann-

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 231

Loveland (DPLL) algorithm [3]. To comprehend the SAT-decoding technique
requires an understanding of the main concept of the DPLL algorithm which is
outlined in Algorithm 2. The algorithm starts with a set of completely unassigned

Algorithm 2 DPLL backtracking algorithm
1: procedure SOLVE(�; �)
2: while t rue do
3: branch(�; �)
4: if CONFLICT then
5: backtrack()
6: else if SATISFIED then
7: return x
8: end if
9: end while

10: end procedure

variables. Then, the operation branch.�; �/ selects an unassigned variable xi and
assigns it the value 0 or 1 (Line 3). Which variable is selected and which value
(0 or 1) is assigned is called branching strategy. The branching strategy – which
is of key importance for the SAT-decoding approach – is guided by the vectors
� 2 f0; 1gn and � 2 R

n: Unassigned variables xi with the highest value �i are
prioritized and set to the value �i . Of course, as is common in all backtracking-
based solvers, arising conflicts are recognized and resolved (Line 4). A conflict is
recognized if any constraint is not satisfiable anymore and backtracking is triggered
(Line 5). Backtracking means that variable assignments made before are reverted.
When all variables have a variable assignment and no conflict occurs (Line 6), then
the variable assignment is a feasible solution to the specified problem and returned
(Line 7). The majority of the state-of-the-art PB solvers like SAT4J [13] are based
on the DPLL algorithm.

Knowing the algorithm of the solver, we can draw two important conclusions:
First, we can control which variable assignment, i.e., which feasible implementa-
tion, is delivered by the solver by varying the two vectors � and � of the branching
strategy. Thus, the search space of the metaheuristic in SAT decoding is not the
allocation G˛ , the binding Eˇ , the routing � , and the schedule S , but is solely given
by the two vectors � and � of the solver’s branching strategy. Second, we have to
find an encoding �& of a specification & and the introduced system-level synthesis
problem by means of pseudo-Boolean constraints such that each feasible variable
assignment x represents a feasible implementation of a given specification.

7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,
and Scheduling

In the following, we present a pseudo-Boolean encoding �& of a specification & and
the system-level synthesis problem such that a solution x 2 f0; 1gn corresponds to
a feasible implementation ! according to Equations (7.1), (7.2), (7.3), (7.4), (7.5),

232 M. Glaß et al.

(7.6), (7.7), and (7.8). First, we introduce the required Boolean variables used to
formulate the linear constraints:

r
A Boolean variable for each resource r 2 R. It indicates whether the resource
is allocated r 2 ˛ (1) or not (0).

m
A Boolean variable for each mapping edge m 2 EM . It indicates whether the
mapping edge is part of the binding, i.e., m 2 Eˇ (1) or not (0).

cr

A Boolean variable for each communication task c 2 C and resource r 2 R.
It indicates whether the communication task c is routed over the resource r

(1) or not (0)
cr;�

A Boolean variable for each communication c 2 C and resource r2R. It in-
dicates at which communication step � 2 T D f1; ::; jT jg a communication
is routed over the resource. Note that communication tasks are propagated in
steps or hops, respectively.

With these variables, we can formulate the linear constraints that encode all
introduced requirements in Equations (7.1), (7.2), (7.3), (7.4), (7.5), (7.6), (7.7),
and (7.8) for a feasible implementation. First, we start with the linear constraints
regarding allocation, binding, and routing:
8p 2 P W

X

mD.p;r/2EM

m D 1 (7.10)

8m D .p; r/ 2 EM W

r � m � 0 (7.11)

The constraints in Equations (7.10) and (7.11) ensure that each task is bound
to exactly one resource (cf. Equation (7.1)) and that this resource is allocated
(cf. Equation (7.2)). Exemplarily, we show the constraints that would result from
Equations (7.10) and (7.11) for the simple specification given in Fig. 7.1:

mp1;rcpu1 C mp1;rcpu2 D 1

mp2;rcpu2 D 1

mp3;rcpu1 C mp3;rcpu2 D 1

rcpu1 � mp1;rcpu1 � 0

rcpu1 � mp3;rcpu1 � 0

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 233

rcpu2 � mp1;rcpu2 � 0

rcpu2 � mp2;rcpu2 � 0

rcpu2 � mp3;rcpu2 � 0

These first constraints cover the major requirements regarding process task
binding and the allocation of the resources to execute them. The following con-
straints cover the aspect of routing data from sender to receiver and, thus, address
Equations (7.3), (7.4), and (7.5):

8c 2 C; r 2 R; .c; p/ 2 ET ; m D .p; r/ 2 EM W

cr � m D 0 (7.12)

8c 2 C W

X

r2R

cr;1 D 1 (7.13)

8c 2 C; r 2 R; .p; c/ 2 ET ; m D .p; r/ 2 EM W

m � cr;1 D 0 (7.14)

Equation (7.12) ensures that a communication task c is routed to each resource a
succeeding (receiving) process task is mapped to (cf. Equation (7.5)). Analogously,
the constraints in Equations (7.13) and (7.14) ensure a communication task’s
root is the resource that the preceding (sending) process task is mapped to (cf.
Equation (7.4)). Having the very basic routing constraints formulated, we need
further constraints to precisely formulate what makes a route between source and
multiple receivers feasible. First, we ensure that each communication task can only
be routed on allocated resources by Equation (7.15):
8c 2 C; r 2 R W

r � cr � 0 (7.15)

Additionally, Equation (7.16) ensures that a communication task may be routed only
between adjacent resources in one communication step:
8c 2 C; r 2 R; � D f2; ::; jT jg W

0

@
X

Qr2R;eD.Qr;r/2ER

cQr;�

1

A � cr;�C1 � 0 (7.16)

It is finally required that a communication task is assigned a communication step �

if it is considered to be routed over a resource which is achieved by Equations (7.17)
and (7.18):

234 M. Glaß et al.

8c 2 C; r 2 R W

X

�2T

cr;�

!
� cr � 0 (7.17)

8c 2 C; r 2 R; � 2 T W

cr � cr;� � 0 (7.18)

Here, Equation (7.17) ensures that if cr is set to 1, the sum of cr;� variables is greater
zero which means that if the message is routed on the resource, a respective time
step has to be assigned. On the other hand, Equation (7.18) ensures that no cr;�
variable can be set to 1 unless cr is set to 1 as well.

The introduced Equations (7.10), (7.11), (7.12), (7.13), (7.14), (7.15), (7.16),
(7.17), and (7.18) are suitable to ensure a feasible allocation, binding, and
routing and, thus, a feasible implementation in case scheduling is of no
concern.

Further constraints may be added to enhance the obtained feasible implementa-
tions. First, a natural enhancement to a feasible route is to require it to be free of
(redundant) cycles. The satisfaction of Equation (7.19) avoids cycles in a route by
ensuring that a communication task can pass a resource at most once:
8c 2 C; r 2 R W

X

�2T

cr;� � 1 (7.19)

Second, an implementation benefits from not containing unused (redundant) re-
sources as they might affect design objectives such as cost, area, or power
consumption. To eliminate unused resources from the allocation, Equation (7.20)
ensures that a resource is only allocated if at least one process or communication
task is bound to or routed over it:
8r 2 R W

X

c2C ^r2R

cr

!
C

0

@
X

mD.p;r/2EM

m

1

A � r � 0 (7.20)

The pseudo-Boolean encoding presented so far covers the allocation, binding,
and routing.

As outlined in the definition of the system-level synthesis problem, we finally
want to support generic scheduling constraints by means of assigning priorities.
Thus, we now introduce a pseudo-Boolean encoding for task and communication
priorities; cf. Equations (7.7) and (7.8). Here, we again need to introduce Boolean
variables:

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 235

sp; Qp

A Boolean variable that indicates whether process task p 2 P has a higher
priority than task Qp 2 P (1) or not (0).

sc;Qc

A Boolean variable that indicates whether communication task c 2 C has a
higher priority than task Qc 2 C (1) or not (0).

The following constraints ensure that priorities are assigned properly. We first define
the priority assignment function for process tasks which assigns correct priorities
within tasks bound to the same resource (cf. Equation (7.7)):
8r 2 R; .p; r/; . Qp; r/ 2 EM ; p ¤ Qp W

sp; Qp C s Qp;p D 1 (7.21)

Equation (7.21) states that if process task p has a higher priority than task Qp (sp; Qp D

1), it has to be ensured that task Qp has a lower priority than task p (s Qp;p D 0). Now,
we also have to ensure transitivity, i.e., task p has a higher priority than task Qp and
task Qp than task Op. It also has to hold that task p has higher priority than task Op

which is ensured by Equations (7.22) and (7.23):
8r 2 R; .p; r/; . Qp; r/; . Op; r/ 2 EM ; p ¤ Qp ¤ Op W

sp; Qp C s Qp; Op C sp; Op � 2 (7.22)

sp; Qp C s Qp; Op C sp; Op � 2 (7.23)

Exactly the same requirements as ensured by Equations (7.21), (7.22) and (7.23)
are now imposed on the communication tasks as well. The only difference is that
– since communication tasks might share multiple buses and other communication
resources – we apply a global priority assignment; cf. Equation (7.8):
8c; Qc 2 C; c ¤ Qc W

sc;Qc C sQc;c D 1 (7.24)

8c; Qc; Oc 2 C; c ¤ Qc ¤ Oc W

sc;Qc C sQc; Oc C sc; Oc � 2 (7.25)

sc;Qc C sQc; Oc C sc; Oc � 2 (7.26)

With the above-given constraints, a unique priority assignment is achieved.
From the introduced encoding �& , a simple decode function as shown in Fig. 7.10

can be defined that derives the concrete implementation ! D decode.x/ D

.G˛; Gˇ; �; S/ from the phase of the Boolean variables in x. This is also depicted in
the decoding step shown in Fig. 7.10.

As outlined, the search space of SAT decoding consists solely of the two vectors
� and � of the branching strategy. Given the mentioned rules to determine an

236 M. Glaß et al.

encoding �& , the search space can be seamlessly derived by providing one entry
in � and � for each variable required for the encoding �& . This completes the
introduction of the basic ingredients of the SAT-decoding approach.

7.4 Satisfiability Modulo Theories During Decoding

The introduced SAT-decoding approach is capable of restricting the search space to
feasible implementations with respect to given linear constraints (cf. Definition 1)
only. However, in the area of hardware/software codesign, several objectives can
– typically – not be linearized in a sound fashion. Two prominent examples are
timeliness which requires to analyze the interference of process and communication
tasks on shared resources and reliability which is a probabilistic and combinatorial
problem itself that has to consider which combination of faults in tasks or resources
results in the system to fail. As can be imagined, transforming such complex
behaviors and interactions into a combination of linear constraints may come
at significant over-approximations or even result in practically useless results.
In this section, we therefore introduce the key idea how to also consider non-
linear constraints, followed by a formal definition of the SMT decoding technique.
Afterward, different schemes how to learn which solutions are infeasible with
respect to a set of non-linear constraints are discussed.

7.4.1 SMT Decoding: The Key Idea

The solution to the problem of considering non-linear constraints is inspired by
the concept of Satisfiability Modulo Theories (SMT); cf. [4]. Without aiming for
a complete and thorough introduction of SMT, the basic idea of SMT relevant for
hardware/software codesign is that it checks the satisfiability of a logical formula
over one or more background theories. The concept of SMT decoding [24] is
depicted in Fig. 7.11. We again use the pseudo-Boolean encoding �& that considers
a set of linear constraints as introduced in the last section. We now hand over an
implementation ! delivered by the solver to one or several background theories,
each of which decides whether the implementation is feasible (isFeasible(!))
for a set of non-linear constraints as well. In the context of hardware/software
codesign, such a background theory could, for example, be a formal timing analysis
(cf. �Chap. 23, “CPA: Compositional Performance Analysis”) or a timing sim-
ulation (cf. �Chap. 19, “Host-Compiled Simulation”) that can decide whether the
delay of an implementation meets a certain deadline. So in particular, we couple any
external analysis technique for any interesting system constraint as a background
theory to the introduced solver. In case the variable assignment does not fulfill
those constraints that are checked by the background theory, the solver will be
told to consider this variable assignment as infeasible (although it initially appeared
to be feasible considering only the set of linear constraints). This way, the solver

http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_18

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 237

Fig. 7.11 Principle of the SMT decoding approach: The solver takes an encoding of the
specification together with the current branching strategy and determines a feasible implementation
! with respect to a set of linear constraints. The background theory then checks the delivered
implementation for feasibility with respect to a set of non-linear constraints. In case it is infeasible
(0), the respective variable assignment is excluded in the solver and the solver is asked for a new
implementation. This way, the solver learns over time which variable assignments violate a set of
non-linear constraints

basically learns which variable assignments are infeasible with respect to a set of
non-functional constraints over time.

Consider again the simple specification given in Fig. 7.1 and the implementation
that is feasible with respect to the linear constraints defined by system-level
synthesis depicted in Fig. 7.3 on the right. Assume we are interested in formulating
a set of additional constraints on timeliness of computed results. For example, we
formulate a deadline for the execution of the application of the simple system
shown in Fig. 7.1. Here, we employ a formal timing analysis approach as our
background theory to check whether the latency of each implementation meets
the specified deadline. As indicated in Fig. 7.12 on the left, the implementation
violates the deadline because p2 and p3 have to be executed sequentially on rcpu2

(depicted also in the Gantt chart at the bottom left). Thus, the implementation is
infeasible with respect to timeliness and this information has to be propagated to
the solver. This is achieved by combining the specification encoding �& with an
encoding x! of this implementation such that this implementation is not feasible
anymore. In the concrete example – and for the sake of brevity only considering the
mapping variables – this results in �& ^ :.mp1;rcpu1 ^ mp2;rcpu2 ^ mp3;rcpu2 /. This
can be achieved by a Boolean conjunction of the specification encoding with the
negated implementation encoding, i.e., �& ^:x! . Figure 7.12 on the right shows an
implementation that adheres to both linear constraints and the non-linear constraint
on timeliness – tasks p2 and p3 can be executed in parallel on rcpu2 and rcpu1,
respectively.

238 M. Glaß et al.

Fig. 7.12 Two implementations for the specification in Fig. 7.1 that are both feasible with respect
to the introduced set of linear constraints. Yet, the implementation shown on the left does not meet a
specified deadline because p2 and p3 have to run sequentially on rcpu2 after receiving the data from
p1 (see Gantt chart at bottom left obtained from the timing analysis). Thus, the implementation is
infeasible with respect to a constraint on timeliness. On the right, the deadline can be met because
p2 and p3 can run in parallel once both received the data from p1 (see Gantt chart at bottom right)

This way, the key idea of SAT decoding – the restriction of the search space
to feasible implementations only – can be extended to non-linear constraints as
well by means of SMT decoding. In the following subsection, we give a formal
definition of SMT decoding that completes the informal introduction given so far.
Afterward, we introduce at which points of the solving process a feasibility check
by the background theory can be applied, resulting in different learning schemes of
the solver.

7.4.2 SMT Decoding Formulation

Let ˝f � ˝ denote the subset of feasible implementations of all implementations
˝. Those feasible implementations ˝f D ˝L \˝N are given by the cut set of those
implementations ˝L that are feasible with respect to the set of linear constraints
and implementations ˝N that are feasible with respect to non-linear constraints.
What we know from the previous section is that we can derive a pseudo-Boolean
encoding �& for our system-level synthesis problem that delivers ˝L. Our aim is to
derive an encoding �f for all feasible implementations ˝f which would be given as
�f D �& ^ �N . However, ˝N cannot be converted to a respective Pseudo-Boolean
(PB) encoding �N because we cannot linearize those constraints in a sound fashion.
From this problem, we can formalize the key idea of SMT decoding:

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 239

In SMT decoding, an encoding �N for the set of implementations ˝N that
are feasible with respect to a set of non-linear constraints is derived by
iteratively learning the implementations �N that are infeasible using one or
several background theories. Whenever a variable assignment x is considered

infeasible by the background theory, it is added to �N via �N
iC1

WD �N
i
_ x.

SMT decoding is, thus, capable of deriving �f via �f D �& ^ :�N , i.e., the
conjunction of those implementations that are feasible with respect to a set of
linear constraints and not those that do violate any non-linear constraint.

Since SMT decoding aims at learning �N iteratively and does not require a
closed-form representation, any analysis technique can be employed to determine
whether an implementation is feasible or not. This results in a great flexibility and
applicability of SMT decoding to various aspects and problems from the area of
hardware/software codesign.

Note that this technique is even capable of covering a delicate corner case:
In case no feasible implementation exists, i.e., ˝f D ;, the SMT decoding will
iteratively eliminate infeasible implementations until the pseudo-Boolean solver
returns a contradiction. At this moment, SMT decoding has proven that no feasible
implementation exists which is neither possible for DSE approaches that solely
rely on metaheuristic optimization nor for exact approaches that may only consider
linear constraints.

7.4.3 Learning Schemes

For SMT decoding, three learning schemes have been proposed in literature: Simple
learning requires no problem-specific knowledge while early learning requires that
the specification allows to also derive partial implementations; see [24]. A third
scheme that relies on the deduction of justifications requires that enough problem-
specific knowledge is available such that the background theory can basically
derive the reason why an implementation is infeasible; see [26]. In the following
subsection, all three schemes are introduced.

7.4.3.1 Simple Learning
The simple learning scheme has already implicitly been mentioned in the introduc-
tion of SMT decoding. It is a direct implementation of the SMT decoding idea: The
solver derives a variable assignment x which is passed to the background theories. If
any of these recognizes that the respective implementation is infeasible, the variable
assignment is added to the set of infeasible implementations �N , i.e., �N WD �N _x.

Simple learning is depicted in Fig. 7.13: The triangle shall visualize the decision
tree of the solver which is given by the Boolean variables and their phases. One path
in that tree is one concrete variable assignment x and the solver will, of course, only
consider those variable assignments that are feasible with respect to the set of linear

240 M. Glaß et al.

Fig. 7.13 The decision tree that is given from the encoding �& . The leaves of the tree denote the
set of implementations ˝L that are feasible with respect to a given set of linear constraints. In the
simple learning scheme, each complete variable assignment x or implementation !, respectively,
is checked for feasibility by the background theories. Thus, the simple learning scheme can only
eliminate individual implementations in case of infeasibility

constraints. The leaves of the tree are all variable assignments or points in our search
space that are feasible with respect to the set of linear constraints. As can be seen,
simple learning considers each point in the search space individually and checks its
feasibility; possibly forbidding it for future solving by means of learning.

The advantage of the simple learning is that the background theories can be
treated as black-box analysis approaches. The simple learning delivers complete im-
plementations, asks for feasibility using the background theories, and – if required
– eliminates a complete implementation from the search space. The drawback is
that, for large search spaces, many very similar implementations might exist that
all violate certain non-linear constraints. With simple learning, those would have
to be checked individually which might be computationally expensive. In the worst
case, no feasible implementation might exist such that simple learning becomes an
exhaustive search. Note that not only the sheer number of checked implementations
might become a problem, but also the huge number of PB constraints that are
iteratively added to �N which may become a problem for efficiently solving of
the resulting function �f.

7.4.3.2 Early Learning
The early learning scheme tries to overcome the outlined problems of the simple
learning scheme by trying to evaluate already partial implementations [24]. The
idea of early learning is depicted in Fig. 7.14. There, already a partial variable
assignment x0 which corresponds to a partial implementation !0 is checked by
the background theories for feasibility. The significant advantage arises in case
such a partial variable assignment is infeasible: Not only one implementation, but
all complete implementations that are based on the partial implementation can be
eliminated from the search space at once by �N WD �N _ x0.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 241

Fig. 7.14 Depicted is again the decision tree given by the encoding �& . In the early learning
scheme, already a partial variable assignment x0 that represents a partial implementation !0 is
checked for feasibility by the background theories. Given the partial implementation is already
infeasible, a complete subtree of the decision tree can be eliminated, eliminating several – in the
concrete example five – implementations at once

However, opposed to the simple learning scheme, care must be taken when
applying the early learning scheme.

For early learning, it has to hold that in case a partial implementation is
infeasible, all implementations that contain this partial implementation must
be infeasible as well. This holds true if the background theory is monotonic
with respect to partial implementations.

Of course, whether this assumption holds or not heavily depends on the used
background theory: Consider, for example, our previous constraint on timeliness of
an implementation and a schedule analysis used as background theory. If already
a partial implementation violates a given deadline, it will typically hold that a
complete implementation with more workload and/or interference in the system will
also violate the deadline. For many timing analysis approaches, early learning can
be used. On the other hand, a consideration of system reliability may result in a
different situation. While a partial implementation might not satisfy a constraint
on minimal lifetime, a complete implementation might add additional redundant
resources or tasks to the system. With this redundancy, the lifetime criterion might
again be met by the complete implementation. But, as discussed in [24], a clever
and problem-specific variable ordering might allow to employ early learning at
safe points in the decision tree such that monotonicity of the background theory
is achieved.

242 M. Glaß et al.

7.4.3.3 Deducing Justifications
We recognized that the early learning scheme already offers several advantages over
the simple learning strategy but requires a monotonic background theory by deriving
partial implementations at safe points during the run of the solver. This could be
avoided by the simple learning scheme which, however, comes at the drawback of
only being able to eliminate one implementation per check. A third learning scheme
that explicitly targets this problem is based on the following idea:

The violation of a certain non-linear constraint is typically not caused by all
assigned decision variables, but only by a subset of critical decisions termed
justification.

Consider again the example of a background theory that analyzes timeliness. The
violation of a deadline is typically caused by the critical path in the implementation.
However, not all design decisions contribute to the critical path, but only a subset
of design decisions that cause interference on computation and communication
resources. The key idea of this learning scheme is to rely on background theories
that consider an implementation ! and the respective variable assignment x, check
its feasibility, and deliver the justificationex. Eliminating the justification from the
search space has the immediate effect that not only one – as in early learning –
but multiple complete subtrees can be removed from the decision tree or search
space, respectively. In particular, it eliminates all implementations that contain the
determined justification or, in other words, that include the critical decisions that will
always result in a violation of the constraint. The concept of this learning scheme is
depicted in Fig. 7.15.

Similar to the early learning scheme, it has to hold that all implementations that
contain the justification do violate the respective constraint. However, opposed to
ensuring this via a respective variable ordering and interrupting the solver, this
learning scheme only relies on the simple learning considering the solver while
it is the task of the background theory alone to determine the justification. Thus,
it can be concluded that the deduction of justifications can be considered the least
invasive and most flexible learning approach, given a respective background theory
is available.

7.5 Applications

The introduced techniques of SAT and SMT decoding may be employed to a variety
of constrained combinatorial problems, of which several are highly relevant for
hardware/software codesign at system level. In this section, we will briefly outline
some concrete applications of the introduced techniques to serve as directions
for further reading and to give evidence of the flexibility and applicability of the
underlying ideas.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 243

Fig. 7.15 Depicted is again the decision tree given by the encoding �& . As in the simple learning
scheme, a variable assignment x that represents an implementation ! is checked for feasibility by
the background theories. But here, the background theory has the capability to derive the set of
variables and their phaseex called justification that causes the violation of non-linear constraints.
Learning this justification, not only one, but possibly multiple complete subtrees of the decision
tree can be eliminated at once

SAT decoding is successfully applied to system-level synthesis problems from
the area of Multi-Processor System-on-Chip (MPSoC) design; see, for exam-
ple, [21]. There, the focus is on the distribution of process tasks to multiple
processing units as well as hardware accelerators and also to find a specification
encoding that suits the application’s Model of Computation (MoC); see �Chap. 3,
“SysteMoC: A Data-Flow Programming Language for Codesign”. For upcoming
many-core architectures that often feature regular communication topologies such as
meshes, SAT decoding is extended to mitigate the complexity increase of the routing
in such architectures; see [10]. For many-core architectures and so-called hybrid
mapping approaches (see �Chap. 10, “Design Space Exploration and Run-Time
Adaptation for Multicore Resource Management Under Performance and Power
Constraints”), SAT decoding is used as part of the design-time DSE [31].

A particular domain where the concepts of SAT and SMT decoding are applied
is networked embedded systems as can be found in avionics, rail, industrial
automation, and automotive systems. Here, routing data over multiple different field
bus systems is one problem where SAT decoding enables a conclusive solution [17],
particularly for automotive Electric and Electronic (E/E) architectures. Besides the
integration of various applications, SAT decoding is also used to integrate additional
features such as diagnosis applications [25] like Built-In Self-Tests (BISTs) that
must not interfere with the applications yet enhance the quality of the system. SMT
decoding is applied to automotive applications with stringent real-time requirements
in [26]. The approach in [14] uses a concept similar to SMT decoding to design
automotive systems that are completely time-triggered and combines architectural
and timing optimization in a unified DSE.

http://dx.doi.org/10.1007/978-94-017-7267-9_4
http://dx.doi.org/10.1007/978-94-017-7267-9_11

244 M. Glaß et al.

SAT decoding has also been used for the design of dependable embedded systems
where dependability-enhancing techniques such as the binding of redundant process
or communication tasks are integrated directly into the specification encoding;
see, for example, [7]. The application of SMT decoding to consider dependability
constraints such as a minimal expected lifetime is discussed in [24].

Finally, modern embedded systems may not only implement a fixed set of
applications but rather enable customers to select various features and, thus, create
their individual variant of the system. Particularly in the automotive domain, variant
management requires to keep track of both the variants arising from a combination
of different applications and the underlying architecture that has to support the
different application variants in an efficient fashion. The approaches in [9] and [8]
target these problems using the SAT-decoding technique.

Availability of the techniques: The described SAT-decoding approach is pub-
licly available at [18] as part of the open-source library OPT4J [19] which can
serve as a base for the application of SAT decoding to a wide range of constraint
combinatorial problems. An open-source library termed OPENDSE is also publicly
available [20] which already combines the SAT-decoding engine of OPT4J with a
system model suitable for system-level DSE and hardware/software codesign as
introduced in this chapter.

7.6 Conclusion

This chapter introduces a hybrid optimization approach to be used during Design
Space Exploration (DSE) for system-level hardware/software codesign. The tar-
geted problem is that linear as well as non-linear constraints may render many
system implementations infeasible, such that classic DSE approaches can hardly
find high-quality implementations or – in extreme cases – cannot even find a single
feasible system implementation. The main focus of this chapter is the introduction
of a hybrid optimization approach that allows a metaheuristic optimization to derive
feasible implementations using a nested exact technique. The first method termed
SAT decoding is capable of considering linear constraints and is used to introduce
the general concept of hybrid optimization. Since hardware/software codesign at
system level typically also has to respect constraints that cannot be expressed as
linear constraints such as on timeliness, power consumption, or reliability, a second
approach is introduced that may also handle additional non-linear constraints. This
approach termed SMT decoding is capable of employing any available analysis
technique to judge whether an implementation violates a given set of non-linear
constraints or not and, thus, learns which implementations are infeasible in an
iterative but efficient way. Moreover, three different learning schemes are introduced
that either require no problem-specific knowledge at all or can significantly improve
the learning via the evaluation of partial implementations or the deduction of the
cause of a constraint violation. The chapter is concluded with examples of the
successful application of the SAT and SMT decoding approaches to different areas
such as MPSoC design and automotive systems.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 245

References

1. Blickle T, Teich J, Thiele L (1998) System-level synthesis using evolutionary algorithms. Des
Autom Embed Syst 3(1):23–58

2. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng
191(11–12):1245–1287

3. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Commun
ACM 5(7):394–397

4. De Moura L, Bjørner N (2011) Satisfiability modulo theories: introduction and applications.
Commun ACM 54(9):69–77

5. Gajski DD, Kuhn RH (1983) New VLSI tools. IEEE Comput 16(12):11–14
6. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic

system-level synthesis methodologies. IEEE Trans Comput Aided Des Integr Circuits Syst
28(10):1517–1530

7. Glaß M, Lukasiewycz M, Reimann F, Haubelt C, Teich J (2010) Symbolic system level
reliability analysis. In: Proceedings of the international conference on computer-aided design
(ICCAD), San Jose, pp 185–189

8. Graf S, Glaß M, Teich J, Lauer C (2014) Multi-variant-based design space exploration for
automotive embedded systems. In: Proceedings of design, automation and test in Europe
(DATE), p 6

9. Graf S, Glaß M, Wintermann D, Teich J, Lauer C (2013) IVaM: implicit variant modeling
and management for automotive embedded systems. In: Proceedings of the international
conference on hardware/software codesign and system synthesis (CODES+ISSS), p 10

10. Graf S, Reimann F, Glaß M, Teich J (2014) Towards scalable symbolic routing for multi-
objective networked embedded system design and optimization. In: Proceedings of the
international conference on hardware/software codesign and system synthesis (CODES+ISSS),
pp 2:1–2:10

11. Hernandez-Aguirre A, Botello-Rionda S, Coello Coello CA, Lizarraga-Lizarraga G, Mezura-
Montes E (2004) Handling constraints using multiobjective optimization concepts. Int J Numer
Methods Eng 59(15):1989–2017

12. Kienhuis ACJ (1999) Design space exploration of stream-based dataflow architectures –
methods and tools. Ph.D. thesis, Delft University of Technology

13. Le Berre D, Parrain A (2010) The Sat4J library, release 2.2. system description. J Satisf
Boolean Model Comput 7:59–64

14. Lukasiewycz M, Chakraborty S (2012) Concurrent architecture and schedule optimization
of time-triggered automotive systems. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), pp 383–392

15. Lukasiewycz M, Glaß M, Haubelt C, Teich J (2007) Solving multiobjective Pseudo-Boolean
problems. In: Proceedings of the international conference on theory and applications of
satisfiability testing (SAT), pp 56–69

16. Lukasiewycz M, Glaß M, Haubelt C, Teich J (2008) Efficient symbolic multi–objective design
space exploration. In: Proceedings of the Asia and South Pacific design automation conference
(ASPDAC), Seoul, pp 691–696

17. Lukasiewycz M, Glaß M, Haubelt C, Teich J, Regler R, Lang B (2008) Concurrent topology
and routing optimization in automotive network integration. In: Proceedings of the design
automation conference (DAC), Anaheim, pp 626–629

18. Lukasiewycz M, Glaß M, Reimann F Opt4J–meta-heuristic optimization framework for java.
http://www.opt4j.org/

19. Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J: a modular framework for meta-
heuristic optimization. In: Proceedings of the genetic and evolutionary computation conference
(GECCO), pp 1723–1730

20. Lukasiewycz M, Reimann F OpenDSE–open design space exploration framework. http://
opendse.sourceforge.net/

http://www.opt4j.org/
http://opendse.sourceforge.net/
http://opendse.sourceforge.net/

246 M. Glaß et al.

21. Lukasiewycz M, Streubühr M, Glaß M, Haubelt C, Teich J (2009) Combined system
synthesis and communication architecture exploration for MPSoCs. In: Proceedings of design,
automation and test in Europe (DATE), pp 472–477

22. Prakash S, Parker AC (1992) SOS: synthesis of application-specific heterogeneous multipro-
cessor systems. J Parallel Distrib Comput 16(4):338–351

23. Puchinger J, Raidl G (2005) Combining metaheuristics and exact algorithms in combinatorial
optimization: a survey and classification. In: Proceedings of the first international work-
conference on the interplay between natural and artificial computation (IWINAC), vol 3562,
pp 41–53

24. Reimann F, Glaß M, Haubelt C, Eberl M, Teich J (2010) Improving platform-based system
synthesis by satisfiability modulo theories solving. In: Proceedings of the international
conference on hardware/software codesign and system synthesis (CODES+ISSS), pp 135–144

25. Reimann F, Glaß M, Teich J, Cook A, Gómez LR, Ull D, Wunderlich HJ, Abelein U, Engelke
P (2014) Advanced diagnosis: SBST and BIST integration in automotive E/E architectures. In:
Proceedings of the design automation conference (DAC), p 8

26. Reimann F, Lukasiewycz M, Glaß M, Haubelt C, Teich J (2011) Symbolic system synthesis
in the presence of stringent real-time constraints. In: Proceedings of the design automation
conference (DAC), pp 393–398

27. Smith AE, Coit DW (1997) Penalty functions, chap. C 5.2. Institute of Physics Publishing and
Oxford University Press, Bristol

28. Teich J (2012) Hardware/software co-design: past, present, and predicting the future. Proc
IEEE 100(5):1411–1430

29. Teich J, Blickle T, Thiele L (1997) An evolutionary approach to system-level synthesis. In:
Proceedings of the international workshop on hardware/software codesign (CODES/CASHE),
pp 167–171

30. Teich J, Haubelt C (2007) Digitale hardware/software-systeme: synthese und optimierung, 2nd
edn. Springer, Heidelberg

31. Weichslgartner A, Gangadharan D, Wildermann S, Glaß M, Teich J (2014) DAARM: design-
time application analysis and run-time mapping for predictable execution in many-core
systems. In: Proceedings of the international conference on hardware/software codesign and
system synthesis (CODES+ISSS), pp 34:1–34:10

32. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

	7 Hybrid Optimization Techniques for System-Level Design Space Exploration
	Contents
	7.1 Introduction and Motivation
	7.2 Fundamentals and Problem Formulation
	7.2.1 System Model and the System-Level Synthesis Problem
	7.2.1.1 System Model
	7.2.1.2 System-Level Synthesis

	7.2.2 Constrained Combinatorial Optimization

	7.3 Hybrid Optimization
	7.3.1 SAT Decoding: The Key Idea
	7.3.2 Solver
	7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,and Scheduling

	7.4 Satisfiability Modulo Theories During Decoding
	7.4.1 SMT Decoding: The Key Idea
	7.4.2 SMT Decoding Formulation
	7.4.3 Learning Schemes
	7.4.3.1 Simple Learning
	7.4.3.2 Early Learning
	7.4.3.3 Deducing Justifications

	7.5 Applications
	7.6 Conclusion
	References

