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Abstract

This chapter presents guidelines to choose an appropriate exploration algorithm,
based on the properties of the design space under consideration. The chapter de-
scribes and compares a selection of well-established multi-objective exploration
algorithms for high-level design that appeared in recent scientific literature.
These include heuristic, evolutionary, and statistical methods. The algorithms are
divided into four sub-classes and compared by means of several metrics: their
setup effort, convergence rate, scalability, and performance of the optimization.
The common goal of these algorithms is the optimization of a multi-processor
platform running a set of diverse software benchmark applications. Results show
how the metrics can be related to the properties of a target design space (size,
number of variables, and variable ranges) with a focus on accuracy, precision,
and performance.
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6.1 Introduction

Given a specific software application – or a class of software Applications – the
parameters of a System-on-Chip (SoC) can be appropriately tuned to find the best
trade-offs among the figures of merit (e.g., energy, area, and delay) deemed of
interest by the designer. Design Space Exploration (DSE) is the tool by which the
optimal configuration for a given system can be found.

This parameter tuning is fundamentally an optimization problem, which gen-
erally involves the maximization (or minimization) of multiple objectives. A
consequence of having multiple objectives is that optimal solutions are, potentially,
no longer unique. A set of metrics or objective functions are used to express
the quality of a solution from different perspectives, also known as objectives.
Since multi-objective optimization problems do not have a single optimal solution,
solutions consist instead of several optima, i.e., the points that lie on the Pareto
curve [11]. These are the optimal points that are non-dominated by any other point.

To find the Pareto curve for a specific platform, the designer has to evaluate all
the possible configurations of the design space and characterize them in terms of
objective functions. This approach is known as full or exhaustive search, and it is
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often impractical due to the large number of points in a design space and/or due
to the high cost associated with the evaluation of the objective functions (e.g., long
simulation times).

Even today, Multi-Processor Systems-on-Chips (MPSoCs) platforms are often
tuned according to designer experience or the non-systematic application of sev-
eral algorithms found in literature. For example, classical heuristic algorithms
(i.e., tabu search, simulated annealing, etc.) [28] are extremely common, as well
as techniques able to reduce the design space size [22]. The advanced hybrid
approaches in �Chap. 7, “Hybrid Optimization Techniques for System-Level
Design Space Exploration” combine metaheuristics and search algorithms to avoid
large, unfeasible areas of the design space. All these approaches need to use
simulation (or estimation) to assess the system-level metrics (i.e., the objective
functions) of the very large number of configurations they evaluate. For a review of
microarchitecture-level modeling and design methodologies for SoC, please refer to
�Chap. 27, “Microarchitecture-Level SoC Design”.

The characteristics of a design space (e.g., its size or the time required to simulate
one of its points) can certainly affect how different exploration algorithms perform
in terms of time to convergence or accuracy of results. This chapter describes and
compares 15 algorithms among the several ones that have been recently proposed in
the scientific literature for automatic DSE and multi-objective optimization. These
different approaches are dissimilar in terms of theoretical background, applicability
conditions, and overall performance. Through rigorous analysis, the advantages and
drawbacks of each method are uncovered, providing guidelines for their use in
different contexts.

In the following, Sect. 6.2 describes a partitioning of the existing literature into
four classes; Sect. 6.3 reviews the methodology of each one of the 15 algorithms that
underwent experimental comparison; Sect. 6.4 presents the experimental setup, the
framework used to compare these algorithms, and its results; Sect. 6.5 contains the
discussion of these results as well as recommendations on the use of the algorithms;
Sect. 6.6 lists some of the currently available open-source implementations of the
algorithms; finally, Sect. 6.7 draws some concluding remarks.

6.2 Classification of Multi-objective DSE Strategies

The automation of DSE can be split into two sub-problems: (a) the identification
of plausible candidate solutions (i.e., valid system configurations) and (b) the
evaluation of the metrics of interest of these solutions, in order to select the optimal
configurations.

Evolutionary Algorithms (EAs) in particular have widespread use in the area of
design space exploration. EAs discriminate and select solutions using a combination
of metrics called the fitness function. EAs are usually easy to apply and do not
require detailed knowledge of the design space to be explored, and there is a
strong theoretical background on how to assign fitness values for multi-objective
problems [9].

http://dx.doi.org/10.1007/978-94-017-7267-9_8
http://dx.doi.org/10.1007/978-94-017-7267-9_28
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To classify these methods, Coello [4] proposed to divide evolutionary approaches
for multi-objective optimization into three sub-classes according to the way in which
the fitness of individuals/solutions is computed: (1) algorithms using aggregating
functions, (2) algorithms using non-aggregating but non Pareto-based approaches,
and (3) Pareto-based approaches, such as the NSGA algorithm.

Broadening the scope of the analysis to also include design space exploration
methods that are not based on EAs, four different classes of algorithms for problem
(a) can be found in the literature:

• Class 1: Heuristics and pseudo-random optimization approaches attempt to
reduce the design space under scrutiny and focus the exploration on regions of
interest [10, 11]. Methodologies in this class often rely on full search or pseudo-
random algorithms to explore the selected regions. Class 1 includes algorithms
such as multi-agent optimization (e.g., Particle Swarm Optimization (PSO) [26]),
Simulated Annealing (SA), tabu search, and operations research algorithms.
Methodologies in this class often aim at drastically reducing the number of
configurations to evaluate (e.g., from the product to the sum of the number
of tunable parameters in [10]). One way to do so is, for example, to identify
sub-spaces (called clusters) into the design search space that can be efficiently
explored in an exhaustive fashion [11]. The global Pareto front can then be
reconstructed from the Pareto-optimal configurations of each partition. Because
of their simplicity, the exploration results of the algorithms in this class remain
in many cases sub-optimal.

• Class 2: Evolutionary algorithms. EAs are the most common and widely used
DSE algorithms, they apply random changes of a starting set of configurations
to iteratively improve their Pareto set of solutions. Genetic Algorithms (GAs)
belong to this category [28]. The major advantages of these algorithms are
the very limited setup effort and the fact that they do not require any specific
knowledge associated to the search space or the metrics used for the optimization.
Unfortunately, these algorithms are not guaranteed to find the optimal solutions
or even to converge to results within certain predefined quality bounds. In
practice, however, they usually perform fairly well when they are allowed to run
for a sufficiently large number of evaluations. Techniques in this class can also
be combined with exact methods. For example, in [20], DSE is translated into a
multi-objective 0–1 Integer Linear Program (ILP) problem and a pseudo-Boolean
(PB) solver is used to constrain a GA within the feasible search space.

• Class 3: Statistical approaches without domain knowledge. Methodologies
in this class extract a metamodel from the design space and use it to predict
the next configurations to evaluate [20, 21, 27, 32]. Class 3 includes those
methods that use statistics to guide their DSE. Many of the algorithms in this
class exploit a methodology called Design of Experiments (DoE) [21, 27, 32]
to characterize the sensitivity of the system to its parameters. DoE, in fact,
allows to estimate the portion of the variance of each objective metric associated
to the oscillations in a certain parameter. Heuristics or metamodels are then
developed from this sensitivity analysis and used to tune the parameters and find
the optimal configurations of the system. The work in [27] is an example of this
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sort of approach. It uses DoE to define an initial set of experiments and create a
preliminary estimate of the target design space. Then, the exploration is further
refined iteratively using a technique called Response Surface Modeling (RSM).
Statistical methods, such as DoE, are the defining characteristics of this class,
as they allow to extract the maximum amount of information from the initial
training sets of limited size. The generated metamodels can then be used both to
find new candidate configurations as well as to evaluate them.

• Class 4: Statistical approaches with domain knowledge. These are techniques
that use predefined rules and knowledge specific to a certain design space to find
the most promising solutions [3]. The algorithms in Class 4 are characterized
by the use of built-in domain knowledge to set up a probabilistic framework to
guide the identification of new candidate solutions. The work in [3], in particular,
combines decision theory with this kind of integrated knowledge. The DSE
problem is remapped to a Markov Decision Process (MDP) [18, 30] whose
solution is the sequence of changes to apply to the tunable parameters in order
to minimize (or maximize) one of the objective performance metrics. The major
advantage of this approach is that it greatly reduces the number of times in which
the system requires to be simulated (i.e., only when uncertainty at a fork is too
large to be managed with the embedded domain knowledge).

Later in this chapter, a selection of well-established algorithms from all the
four classes and their configuration parameters are described. Then, their strengths
and weaknesses are compared in the context of the optimization of a symmetric
multi-processor platform. The results of this experiment provide guidelines for the
selection of the right DSE and multi-objective optimization algorithm, given the
characteristics of the design space.

The evaluation of the candidate solutions – problem (b) – can be tackled
either using detailed simulation [3] or simpler predictive models [14], or also a
combination of the two.

Okabe, Jin, and Sendhoff [25] reviewed several metrics for the evaluation of
solutions to multi-objective optimization problems. Their conclusion is that no
single metric is usually sufficient to quantify the quality of the Pareto set returned
by a multi-objective optimization algorithm. Similar results are also found in [35].

In our analysis, four different metrics are used to evaluate the accuracy, distri-
bution, and cardinality of the Pareto sets found by the optimization algorithms.
Moreover, the performance of the algorithms under study is quantified as the number
of evaluations needed to converge to a Pareto set.

6.3 Multi-objective DSE Algorithms

This section details 15 multi-objective optimization algorithms for DSE that are
then experimentally compared in Sect. 6.4. For each algorithm, a brief description
of inner working and its parameters are given. The reader should pay attention
to the fact that the parameters mentioned here are not the tunable parameters of
a computing platform (i.e., those that create the design space). The parameters
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described in this section are the configuration parameters of each algorithm and
they are important as they influence its performance and setup effort.

6.3.1 Heuristics and Pseudo-random Optimization Approaches

This section describes algorithms belonging to the first class defined in Sect. 6.2 in
detail. Half of the algorithms described in this section (MOSA, PSA, and SMOSA)
are based on SA. SA is essentially a local search characterized by the way in
which local minima are avoided: solutions that do not improve the current one can
be accepted with a given probability p, computed from a Boltzmann distribution
(parameterized by a coefficient T , called temperature).

6.3.1.1 Adaptive Windows Pareto Random Search (APRS)
The APRS algorithm is one of two novel algorithms implemented in the Multicube
Explorer framework [37]. APRS takes an initial set of design points as its approx-
imate Pareto set, then it improves this solution by randomly picking new points
from windows centered on the current points. The size of the windows is reduced
according to two factors: time (i.e., number of iterations) and quality of the points
they are created from.

6.3.1.2 Multi-objective Multiple Start Local Search (MOMSLS)
MOMSLS [16] is a heuristic method based on executing in parallel multiple local
searches starting each one of them from a different initial point. Each local search it-
self is a simpler heuristic that iteratively refines an initial random solution by looking
for better candidates in its neighborhood [30]. As a consequence, MOMSLS evalu-
ates solutions in N different neighborhoods during each one of its iteration steps.

6.3.1.3 Multi-objective Particle Swarm Optimization (MOPSO)
PSO [19] is a biologically inspired heuristic search method that mimics the
movement of a flock of birds. Candidate solutions are described by particles of
the swarm, and, at each iteration, they move a maximum of the objective function
updating their position according to a velocity vector (see Fig. 6.1) that is the linear
combination of three components:

P2

P1

P0

best solution
ever seen by P2

best solution ever
seen by thes warm

old v
W C1

C2
new v

Fig. 6.1 Example of a velocity vector update for a particle belonging to a three-particle swarm
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• their last velocity vector (weighted by an inertial factor, W );
• the direction toward the best (e.g., with the greatest objective metric) solution

ever reached by the swarm (weighted by a social learning factor, C1);
• the direction toward the best solution ever reached by the individual particle

(weighted by a cognitive learning factor, C2).

To adapt PSO to multi-objective optimization problems, MOPSO [26] replicates the
PSO approach in N different swarms. These N swarms have, for objective function,
the product of the multiple objective functions, each elevated by a random exponent.
Moreover, in MOPSO, the inertial and social learning factors are set to 0. Particles
are also forced to perform a random walk with a fixed probability p to avoid local
minima.

In MOPSO implementations where the social learning factor is different from 0,
the overall performance is also influenced by the way in which the swarm “leaders”
are selected. The analysis performed in [23] shows that choosing as leaders those
particles/solutions that contribute the most to the hyper-volume of the Pareto front
usually results in the best performance.

6.3.1.4 Multi-objective Simulated Annealing (MOSA)
MOSA [36] is the multi-objective adaptation of the well-known SA technique.
In [36], there are two proposed approaches for the translation of SA into the context
of multi-objective optimization:

• probability scalarization, i.e., computing the acceptance/rejection probability of
new solutions for each performance metric and their aggregation;

• criterion scalarization, i.e., the projection of the performance metrics into a single
metric that is then used to compute the acceptance/rejection probability of the
new solution.

The approach actually implemented in MOSA [36] and tested in Sect. 6.4 is the
second one, while the first one is used by the two other SA-based algorithms
presented in the following.

6.3.1.5 Pareto Simulated Annealing (PSA)
PSA [5] proposes two different criteria to scalarize the acceptance/rejection prob-
ability of a new solution and adapt simulated annealing to multi-objective prob-
lems:

• rule C says that the rejection probability p is proportional to the largest difference
between the current and the new solution among all the performance metrics
under evaluation;

• rule SL, instead, states that p is the weighted linear combination of the
differences between the current and the new solution in all their performance
metrics.
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The weights used by rule SL to multiply each metric are also tuned at each iteration,
depending on whether the most recently introduced solution brought a deterioration
in that specific metric or not.

6.3.1.6 Serafini’s Multiple Objective Simulated Annealing (SMOSA)
The work in [31] enriches the discussion on the rules that can be used to com-
bine multiple performance metrics and apply SA to multi-objective optimization
problems. In [31], a new complex rule is defined as the linear composition, with
coefficients ˛ and .1 � ˛/, of two simpler rules:

• rule P, i.e., the rejection probability p of a new solution is proportional to the
product of the differences between the current and the new solution in all their
performance metrics;

• and rule W, i.e., p is proportional to the smallest value among the differences
between the current and the new solution in all their performance metrics.

6.3.2 Evolutionary Algorithms

This section describes algorithms belonging to the second class defined in Sect. 6.2
in detail. The majority of these approaches is composed by variations of traditional
genetic algorithms. The basic way a GA works is by improving an initial set of
solutions (often randomly chosen), called population, by computing new solutions
as combinations of existing solutions X picked with a probability p proportional to
their fitness f .X/ [33].

6.3.2.1 Multiple Objective Genetic Local Search (MOGLS)
MOGLS [12] combines a typical class 2 methodology with one from class 1,
that is, genetic algorithms with a local search. Those algorithms that combine
multiple search methodologies are often referred to as “hybrid approaches.” Each
fundamental iteration step of MOGLS is composed of two sub-steps:

• first, new solutions are generated using genetic operations;
• and then, a local search is performed in the neighborhoods of these new solutions.

6.3.2.2 Ishibuchi-Murata Multi-objective Genetic Local Search
(IMMOGLS)

IMMOGLS [13] is another hybrid algorithm that combines a genetic algorithm
and a local search, just like MOGLS. In a multi-objective minimization problem,
a solution is said to be non-dominated with respect to a set of solutions, if none
of the other solutions score lower in all of the metrics one wants to minimize
(or maximize). The iteration step of IMMOGLS, as for MOGLS, consists of both
genetic operations and a local search but with three peculiar aspects:
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• the fitness function used by the GA is a linear combination of the optimization
metrics and the weights are chosen randomly at each iteration;

• the local search is limited to a certain (random) number of neighbors k;
• at each iteration, the current population is purged of any dominated solutions

(this is referred to as an “elitist strategy”).

6.3.2.3 Non-dominated Sorting Genetic Algorithm (NSGA)
NSGA [34] is a very successful application of the genetic approach to the problem of
multi-objective optimization. The main insight regarding NSGA is the way in which
the fitness of solutions is computed. All the individual in the current population are
assigned fitness values on the basis of non-domination. All non-dominated solutions
are assigned the same fitness value.

6.3.2.4 Controlled Non-dominated Sorting Genetic Algorithm (NSGA-II)
In [6], NSGA-II – an evolution of NSGA – is introduced. NSGA-II has two main
peculiar aspects:

• NSGA-II is an elite-preserving algorithm; this means that non-dominated solu-
tions cannot ever be removed from the current population;

• the sorting of solutions by non-domination also reduces computational
complexity.

Genetic algorithms rely on several different genetic operators (mutation, crossover,
etc.) to create new solutions as shown in Fig. 6.2. Thanks to GAs robustness, even
the random selection of these operators usually leads to quality performance [24].

6.3.2.5 Pareto Memetic Algorithm (PMA)
PMA [15] is another member of the family of hybrid algorithms that combines GAs
local searches. PMA differs from MOGLS and IMMOGLS in the way it selects
the solutions for the crossover genetic operation. These are not drawn from the
current population but from another set of size T that is the results of sampling

+ +

Mutation
1-point

Crossover
2-point

Crossover

Fig. 6.2 Three of the most commonly used genetic operators: mutation, one-point, and two-point
crossover
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(with repetition) from the current population. The solutions that are chosen for
recombination are the two with the best fitness in this new set.

6.3.2.6 Strength Pareto Evolutionary Algorithm (SPEA)
SPEA [38] is part of the larger family of heuristic search methods called evolu-
tionary algorithms that also includes GAs. The three characteristic traits of SPEA
are:

• all the non-dominated solutions are also stored in an auxiliary set/population;
• the fitness of a solution in the current population is determined only by

comparison with the solutions in this auxiliary set [38];
• clustering is used to limit the size of the auxiliary population.

6.3.3 Statistical Approaches Without Domain Knowledge

This section describes algorithms belonging to the third class defined in Sect. 6.2 in
detail.

6.3.3.1 Response Surface Pareto Iterative Refinement (ReSPIR)
ReSPIR [27] is a DSE tool that exploits two statistical/learning methodologies
to infer the relationships between the tunable parameters of a system and its
performance metrics. The benefit of this approach is that the number of evaluations
needed to optimize a design is greatly reduced. These two pillars of ReSPIR are:

• DoE, a methodology that maximizes the information gained from a set of
empirical trials;

• and RSMs, analytical representations of a performance metric reconstructed from
the data. Several models can be applied for this problem: linear regression,
Shepard-based interpolation, Artificial Neural Networks (ANNs), etc.

The main iteration step of ReSPIR consists of using DoE to define a set of
experiments to perform, training the RSMs with the information collected, and
finally producing an intermediate Pareto set.

6.3.4 Statistical Approaches with Domain Knowledge

This section describes algorithms belonging to the fourth class defined in Sect. 6.2
in detail.

6.3.4.1 Markov Decision Process Optimization (MDP)
The approach proposed by [3] is based on a framework for sequential decision
making called Markov decision process. The components of an MDP are states,
actions, stochastic transitions from state to state, and rewards (Fig. 6.3). The solution
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Fig. 6.3 An MDP with two states and three actions. Each arc going from an action Ax to a state
Sy is associated with a probability p and a reward r

of an MDP is a strategy, i.e., the correct actions to perform in each one of the
states to collect the largest amount of rewards [30] in a certain time horizon. In
the formulation of [3], states are points in the design space (with their relative
performance metrics), actions are changes in the tunable parameters, and rewards
are improvements in the performance metrics. Stochastic transitions are initialized
with uniform distribution and their likelihood are then refined throughout the
execution of the algorithm. The main drawback of this approach is that it requires
knowledge of the upper and lower bounds of each performance metric as a function
of the tuning parameters. For this reason, MDP has a long setup time and cannot be
used without thorough knowledge of the system to optimize.

6.3.4.2 Multi-objective Markov Decision Process (MOMDP)
MOMDP [1] is an improved version of MDP. The main difference lies in MOMDP
novel exploration strategy. MDP, in fact, aggregated multiple performance metrics
with a scalarizing function. By changing the value taken from a parameter called ˛

(representing the weight(s) associated to each metric), it was possible to discover a
Pareto curve for multiple separate objectives.

MOMDP, instead, uses a different approach: it maximizes (or minimizes) one
of the objectives to derive a starting point and then builds the Pareto curve using a
value function that selects a point that is close to the starting point, but improving it
in at least one of the objectives. The process is repeated using the newly found point
until a full Pareto front is discovered.

MOMDP also introduces a special action, called the leap of faith, that allows to
avoid local minima by searching in the direction of high rewards, however unlikely.
This action is performed when all actions fail to improve any of the metrics.
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6.4 Experimental Comparison

Most class 1 and class 2 algorithm implementations can be found in the Multiple
Objective MetaHeuristics Library in C++ (MOMHLib++) [16]. Multicube Explorer
(M3Explorer) [37] also implements standard and enhanced versions of several well-
known multi-objective optimization algorithms. Multicube Explorer provides some
of the DSE algorithms in classes 1 and 3. Concerning the algorithms in class 4,
MDP and MOMDP, they are evaluated using the original source code.

6.4.1 Objectives

This experimental comparison has multiple aims. Its three most important aspects
are:

• determine the effort required to configure each algorithm for a given design space
and how the characteristics of the design space influence the choice of the most
effective exploration algorithm;

• determine the number of evaluations required by each algorithm to obtain an
approximate Pareto set that meets certain quality requirements;

• and, finally, quantify the quality of the resulting Pareto set found by each
algorithm.

A qualitative comparison of the 15 algorithms is presented in Table 6.3. Each
algorithm was tested in the context of the same design space: a symmetric multi-
processor platform running three different applications, shown in Fig. 6.4.

6.4.2 Benchmark Applications

Three applications (listed in Table 6.1) were used for testing, more specifically,
two large applications and a small benchmark, for which exhaustive search was
possible. ffmpeg, a video transcoder, was used to convert a small clip from MPEG-1
to MPEG-4, and pigz, a parallel compression algorithm, was used to compress a text
file. The small benchmark consists of an implementation of Bailey’s six-step FFT
algorithm (fft6). All applications are data-parallel and are targeted toward a homoge-
neous shared-memory multi-processor platform (N processors accessing a common
memory via bus). ffmpeg and pigz are implemented using pthreads; they create a
set of working threads equal to the number of available processors and dispatch
independent data to each thread. fft6 uses OpenMP, with loop parallelization and
static scheduling. These applications were chosen in order to display the maximum
variability in their behavior, as they use a different synchronization mechanisms
and require very different evaluation times. For situations in which it is especially
important to identify the optimal mapping of complex, multi-application workloads,
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Fig. 6.4 The simulated multi-core processor architecture and its parameters (From [29])

Table 6.1 The three benchmark applications chosen to represent a significant spectrum of
workloads

Application Version Source Model Synch. Sim. Time Description

pigz 2.1 C pthreads Condition �2 m A parallel implementa-
tion of gzip

fft6 2.0 C/Fortran77 OpenMP Barrier �30 s Implementation of
Bailey’s 6-step fast
Fourier transformation
algorithm

ffmpeg 49.0.2 C pthreads semaphore �30 m A fast video and audio
converter

�Chap. 9, “Scenario-Based Design Space Exploration” explores thoroughly the
domain of scenario-based DSE.

6.4.3 Target Computing Platform

The target platform consists of a collection of ARM9 cores with private caches
and a shared memory (a comprehensive review of memory architectures and
organizations can be found in �Chap. 13, “Memory Architectures”) interconnected
by a simple system-bus model. Cache coherence is directory-based and implements
the MESI protocol. The number of processing elements varies between one
and eight. In the context of heterogeneous (e.g., big.LITTLE) multi-processor
architectures, �Chap. 8, “Architecture and Cross-Layer Design Space Exploration”

http://dx.doi.org/10.1007/978-94-017-7267-9_10
http://dx.doi.org/10.1007/978-94-017-7267-9_14
http://dx.doi.org/10.1007/978-94-017-7267-9_9
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Table 6.2 The platform
design space simulated using
ReSP

Parameter name Domain

# of PEs {1,2,3,4,8}

PE frequency {100,200,250,300,400,500} MHz

L1 cache size {1,2,4,8,16,32} KByte(s)

Bus latency {10,20,50,100} ns

Memory latency {10,20,50,100} ns

L1 cache policy {LRU, LRR, RANDOM}

examines how cross-layer optimization and predictive models can further enhance
the DSE process.

The ReSP [2] open-source simulation environment was used to perform the
simulations, providing a set of configurable parameters, listed in Table 6.2. ReSP
provides values for execution time and power consumption, which were used as the
performance metrics for all optimization algorithms in our experiments. For more
on energy optimization, power, and thermal constraints in DSE, please refer to the
methodologies in �Chap. 10, “Design Space Exploration and Run-Time Adaptation
for Multicore Resource Management Under Performance and Power Constraints”.

The platform was explored using the parameters listed in Table 6.2 with a
resulting design space of 8640 points (It is worth noting that bus and memory
latency are not realistic parameters, but they enlarge the design space to better
test the proposed algorithm. The linear dependence with performance prevents any
strong biasing of the results.), comparable with similar works (e.g., 6144 points
in [32]) and such that the exhaustive exploration of any medium/large application
would require an unfeasibly long simulation time (e.g., roughly two months for
ffmpeg). Even the full exploration of the simple fft6 benchmark required six days
of uninterrupted simulation. To gather sufficient data for a statistical analysis, each
of the three benchmark applications was optimized ten times with each exploration
algorithm (N D 30 executions for each algorithm).

6.4.4 Metrics to Evaluate Approximate Pareto Sets

According to [35], the quality of the result of a multi-objective optimization
algorithm is twofold: (1) solutions should be as close as possible to the actual Pareto
set and (2) solutions should be as diverse as possible. Therefore, no single metric is
sufficient in assessing the quality of the discovered Pareto set.

Because of this reason, three metrics presented in [8] are used to compare the
relative quality of the approximate Pareto sets obtained by the 15 algorithms under
evaluation:

6.4.4.1 Average Distance from Reference Set
The Average Distance from Reference Set (ADRS) is used to compare the ap-
proximated Pareto sets with the best Pareto set (found combining the results of all

http://dx.doi.org/10.1007/978-94-017-7267-9_11
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experiments). ADRS approximates the distance of the set under scrutiny from the
Pareto-optimal front and should be minimized: an algorithm with low ADRS is very
likely to have found a Pareto set that resembles the actual one.

As defined in [37], the ADRS between an approximate Pareto set � and a
reference Pareto set ˘ is computed as:

ADRS.˘; �/ D
1

j˘ j

X

�a2˘

�
min

�b2�
fı.�b; �a/g

�
(6.1)

where the ı function stands for:

ı.�b; �a/ D maxj D1;::;m

�
0;

�j .�a/ � �j .�b/

�j .�b/

�
(6.2)

Parameter m is the number of objectives and �i .�a/ is the value of the i -th objective
metric measured in point �a.

6.4.4.2 Non-uniformity
Non-uniformity measures how solutions are distributed in the design space. A good
search algorithm should look at all the different regions of a design space with
equal attention. Lower non-uniformity means a more evenly distributed approximate
Pareto set that better estimates the optimal Pareto set.

Given a normalized Pareto set N�, where di is defined as the Euclidean distance
between two consecutive points (i D 1; ::; j N�j � 1), and Od is the average value of all
the d ’s, non-uniformity [8] can be computed as:

j N�j�1X

iD1

jdi � Od j
p

m.j N�j � 1/
(6.3)

6.4.4.3 Concentration
Concentration measures the span of each Pareto set with respect to the range of the
objectives. The lower the concentration, the higher the spread of the Pareto set and
the better coverage of the range of objectives. It is important to observe that non-
uniformity captures the behavior of a search algorithm in the design space, while
concentration looks at points in the space of objective metrics.

Given a normalized Pareto set N�, where �min
i is defined as minf�i .�a/ s:t: �a 2

N�g and �max
i is defined as maxf�i .�a/ s:t: � a 2 N�g, concentration [8] can be

computed as:

mY

iD1

1

j�max
i � �min

i j
(6.4)
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6.4.5 Performance of the Algorithms Under Test

Having established the experimental context – that is, a set of benchmark applica-
tions and the target computing platform – and the performance metrics necessary to
evaluate approximate Pareto sets, this section details the obtained results.

6.4.5.1 Initial Setup Effort and Parameter Sensitivity
All the examined algorithms differ in the way they converge to an approximate
Pareto front, and the quality of their results depends on a number of different
parameters, making a fair evaluation difficult to perform. There is no common rule
for the choice of each algorithm’s parameters: these range from 4 to 12, and they can
be anything from integers to the choice of an interpolation function. The selection of
the parameters that are optimal for a specific optimization problem requires either
human expertise or the meta-exploration (also known as parameter screening) of the
algorithm parameters space, i.e., running multiple explorations while changing the
parameters to optimize the result. Either way, finding the optimal parameters usually
requires trial and error. The “Effort” column of Table 6.3 qualitatively presents the
tuning cost required by each algorithm.

Algorithms of classes 1 and 2 only require few parameters (such as population
size, mutation factors, initial temperature, etc.), and they are generally robust to
parameter choice. This means that small changes will not dramatically affect the
outcomes of the exploration, although there is no guarantee that a given parameter
choice will lead to optimal results. Their parameters (e.g., initial temperature for
MOSA and NSGA-II) have no direct link to any characteristic of the design
space and can be determined only by experience or guesswork, rendering the best

Table 6.3 A qualitative analysis of the chosen algorithms: setup effort, number of evaluations for
1% ADRS, number of Pareto points found, and scalability

Acronym Class Setup effort Evaluations Pareto points Scalability

APRS [37] 1 ? ? ? ? ? ? ?? ?

MOMSLS [16] 1 ? ? ? ? ? ? ? ?

MOPSO [26] 1 ?? ? ? ?? ? ? ? ? ? ??

MOSA [36] 1 ? ? ? ? ? ?? ? ? ? ? ? ??

PSA [5] 1 ? ? ? ? ? ? ? ? ? ??

SMOSA [31] 1 ? ? ? ? ? ? ? ??

MOGLS [12] 2 ?? ? ? ? ? ? ? ? ? ??

IMMOGLS [13] 2 ?? ? ? ? ?? ? ? ??

NSGA [34] 2 ? ? ? ? ? ? ? ? ? ??

NSGA-II [6] 2 ? ? ? ? ? ?? ? ? ? ??

PMA [15] 2 ?? ? ? ? ?? ? ? ??

SPEA [38] 2 ?? ? ? ? ? ? ? ? ? ??

ReSPIR [27] 3 ? ? ?? ?? ? ? ?? ? ? ?

MDP [3] 4 ? ? ? ? ? ? ? ??

MOMDP [1] 4 ? ? ? ? ? ? ? ? ? ? ? ?
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combination very difficult to obtain without screening and additional evaluations.
For the comparison in this chapter, the best parameters were determined via
screening, which required running several thousand evaluations.

Algorithms like APRS have a minimal setup effort as they do not require any
special tuning and rely on pre-determined heuristics. It is worth noting that both
class 1 and 2 algorithms do not guarantee convergence to the optimal Pareto set and
require the user to specify a maximum number of iterations in addition to any other
stopping condition (e.g., when the results do not vary for more than two iterations).

Algorithms in class 3 demand a greater setup effort: the choice of proper
metamodels for the design space requires some expertise and an initial screening
(i.e., additional evaluations) to properly determine which parameters are the most
significant. Each metamodel needs specific additional parameters that are loosely
linked to the designer’s expertise of the design space. For the comparison in this
chapter, the central composite design using a Neural Network (NN) interpolator
was used, as suggested by the results in [27]. However, the NN produced results
with a very high variance, with ADRS ranging from 0 to 160%, making the use
of this interpolator impractical. The Shepard interpolation was found to be much
more effective, although it required to determine the value of a power parameter,
which expresses how jagged is the response surface of the design space. A low
value of this power parameter will produce a smooth interpolation, while a higher
value could better follow a more jagged curve, but could also introduce overfitting.
The results of [27] were effectively replicated in the considered design space using
a power of 16, which was found by parameter screening (�103 evaluations).

Finally, algorithms in class 4 require to set bounds to the effects of parameter
variations on the configuration’s metrics. The quantification of these bounds is
left to the designer’s experience or can be determined via statistical modeling.
This means detailed analysis of each design space and a large setup effort. The
main difference between MDP and MOMDP is that the former is fundamentally a
single-objective optimization algorithm. To effectively discover a Pareto set, MDP
“sweeps” the design space according to a set of scalarizing values that express the
desired trade-off between the different objective functions. To determine the size and
values of these scalarizing values for the design space under evaluation, hundreds of
additional evaluations are required. MOMDP does not require this screening phase,
and its only parameter (the accuracy �) is in fact the average simulation error and
can be chosen without effort.

It is worth noting that designer experience can reduce or remove the need for
parameter discovery activities for all the aforementioned algorithms.

6.4.5.2 Convergence Rate
For the comparison in this chapter, each algorithm’s parameters were optimally
tuned but the evaluations needed for screening and initial parameter estimation are
not accounted for. Concerning ADRS, since exhaustive search is not possible, the
reference Pareto set is the best Pareto set generated compounding all evaluations
performed by all algorithms, which covered a sizable portion of the entire design
space (around 30%).
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Fig. 6.5 The percentage of points in the design space evaluated by each algorithm for similar
levels of accuracy, that is, �1% (From [29])

Figure 6.5 shows the percentage of the design space (i.e., the number of
evaluations divided by the number of points in the design space) explored by
each algorithm in order to reach an ADRS of approximately 1% on average.
Note that it was not possible for all the algorithms to converge to the exact same
quality result, and some algorithms show high variability. In fact, SMOSA and
NSGA often do not converge to acceptable solutions. The final accuracy values
obtained are shown in Fig. 6.6. Please note that the histograms and the error bars
in Figs. 6.5, 6.6, 6.7, 6.8 and 6.9 show average values and standard deviations,
respectively, for each algorithm over 30 experiments. No negative percentage
actually resulted during the experiments.

Figure 6.5 shows that the improvement can be worth the extra setup effort for
class 3 and 4 algorithms: MDP, MOMDP, and RESPIR have a factor 10 reduction in
the number of evaluations and a much tighter convergence (i.e., smaller variance
of the results). Concerning class 2 algorithms, the performance is very similar,
with IMMOGLS appearing to have the best combination of accuracy, number of
evaluations, and variance. APRS still provides excellent results given the zero-effort
setup, although with at least twice as many evaluations when compared to class 2
algorithms.

6.4.5.3 Quality of the Approximate Pareto Set
Figure 6.7 shows the number of Pareto points found by each algorithm, normalized
by the average number found (for each benchmark).

The performance of most algorithms does not appear to show any statistically
significant difference, with the exception of RESPIR, which finds, on average, 25%
more points than all the other algorithms but with a slightly higher variance. Once
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Fig. 6.6 Accuracy (ADRS) reached by each algorithm at convergence (From [29])
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Fig. 6.7 The average number of points in the approximate Pareto set found by each algorithm,
normalized with the average for each benchmark (From [29])

again, SMOSA and NSGA display the poorest results. It is worth noting that some
of the points found by RESPIR are Pareto-covered by the points found by the other
algorithms: the number of points on the actual Pareto curve is smaller than what was
found by RESPIR.

Concerning non-uniformity and concentration, all algorithms behave similarly,
satisfyingly covering the design space and without concentrating on specific
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algorithm (From [29])

areas. Again, no statistically significant difference between the algorithms can be
observed, with the only exception of SMOSA and NSGA, which produced the
worst results as well as higher variance. Results are presented in Figs. 6.8, 6.9
and 6.10.
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6.4.5.4 Scalability
The scalability column of Table 6.3 tells how an algorithm’s performance degrades
with the increasing size of the design space: more scalable algorithms can be applied
to more complex design spaces with lower effort. To test the effective scalability of
each algorithm, the size of the design space was progressively increased, starting
with three parameters and adding the remaining three one by one.

Most algorithms of classes 1 and 2 are very scalable: the number of parameters –
or the number of values per parameter – does not affect the overall result, even
though the number of additional evaluations needed grows proportionally with the
number of parameters (i.e., remains around �10–15% of the design space).

Although APRS require little setup effort, its applicability to large design spaces
cannot be guaranteed. In fact, the already very high number of evaluations required
increases exponentially with the design space size, practically limiting its use to
small design spaces with fast evaluations.

RESPIR (class 3) scales well to design spaces with many parameters, but only
if few values per parameter are present. This is due to one of the main limitations
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of central composite design: it can only consider three levels for each parameter,
therefore reducing the accuracy of the method in presence of many parameter
values, especially if they lead to non-linear behavior. The number of evaluations
for convergence remains �4% of the design space.

Finally, class 4 algorithms scale orthogonally with respect to class 3: they
scale well with the number of values per parameter, but not when the number
of parameters increases. While adding a parameter requires defining new bounds,
adding new values comes without effort, and the number of evaluations needed
increases less than linearly [3]. One drawback of MDP when compared to MOMDP
is that it requires the estimation of an additional parameter (˛; see [3]) when
increasing the size of the design space, which might require additional evaluations.

6.5 Discussion

Selection of the best algorithm for a particular application is not an easy task, and
it requires trading-off setup effort, scalability, expected number of simulations, and
accuracy. Looking at the result from Sect. 6.4, one can draw some general guidelines
according to the cost of each evaluation (in terms, e.g., of simulation time) and the
size of the design space.

High evaluation costs make algorithms requiring a low number of simulations
more appealing, even if they have a high upfront setup cost. On the contrary, if
evaluations have moderate costs, one might want to trade-off a higher number
of evaluations for a no-effort setup. Similarly, large design spaces favor scalable
algorithms, while smaller spaces do not justify the extra work required to apply
sophisticated algorithms.

In order to estimate the actual convergence time of an algorithm i , one must
take into consideration the design space size (jS j points), the time required by each
simulation/evaluation (Tsim seconds), the percentage of the design space explored
before reaching convergence (�i ), and the setup time T

setup
i of the algorithm:

T actual
i D .�i � jS j � Tsim/ C T

setup
i (6.5)

The values of �i ’s are reported in Fig. 6.5. Regarding the T
setup
i values, the

qualitative information in Table 6.3 was translated into a 100- to 30-h range:
observations showed that algorithms having one “effort star” can be set up in a few
minutes, while algorithms with five “effort stars” require more than a day of work.

Figure 6.11 presents four plots: the size of the design space appears on the x
axis while the time required by each simulation appears on the y axis. In each plot,
areas are labeled with the name of the most suitable algorithm according to Eq. 6.5.
Subplots (a) and (b) report the result for algorithms able to obtain ADRS of about
1%, whether domain knowledge is available (a) or not (b). Subplots (c) and (d) relax
the ADRS requirement to about 5%.

Whether or not domain knowledge is available, multi-objective multiple start
local search (MOMSLS) and adaptive windows Pareto random search (APRS) are
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Fig. 6.11 Recommended algorithms for different design space size, simulation time and desired
ADRS, whether domain knowledge is available or not. The number after each algorithm name
indicates its class (From [29]). (a) ADRS � 1%, w/ domain knowledge. (b) ADRS � 1%, w/o
domain knowledge. (c) ADRS � 5%, w/ domain knowledge. (d) ADRS � 5%, w/o domain
knowledge

the most appealing solutions for small to medium design spaces with inexpensive
evaluations. As explained in Sect. 6.4, APRS is a heuristic algorithm that requires
very little setup effort, making it the ideal choice when simplicity is valued more
than raw performance. MOMSLS is considerably faster but also more likely to
produce a larger ADRS.

In large design spaces with high cost evaluations – if domain knowledge is
available – the multi-objective MDP algorithm (MOMDP) [1] clearly grants better
performance, both in terms of fast convergence to a very small ADRS and quality
of the Pareto set.

When one cannot obtain or exploit domain knowledge, the choice is split between
the very high-quality Response Surface Pareto Iterative Refinement (RESPIR) algo-
rithm and the Ishibuchi-Murata MO Genetic Local Search (IMMOGLS) algorithm.
Both these algorithms are suited for very large design spaces.
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Table 6.4 Recommended
algorithms for space size and
evaluation effort

Design space size w/ knowledge

Eval cost Small Medium Large

Low APRS PMA IMMOGLS

Medium PMA RESPIR RESPIR

High RESPIR MOMDP MOMDP

Design space size w/o knowledge

Eval cost Small Medium Large

Low APRS PMA IMMOGLS

Medium PMA RESPIR IMMOGLS

High RESPIR RESPIR RESPIR

However, it is worth noting that the IMMOGLS algorithm usually requires a
larger number of evaluations, therefore is not recommended when dealing with
high cost simulation. Pareto Simulated Annealing (PSA) is a valid alternative to
IMMOGLS when a larger ADRS is acceptable.

What one can conclude from Fig. 6.11 is that algorithms with small setup times
(i.e., the ones in classes 1 and 2) are especially suitable for simple problems
with relatively small design spaces and/or short simulation times. On the other
hand, complex algorithms in classes 3 and 4 usually compensate for their longer
configuration times when the exploration problem is sufficiently challenging.

These recommendations (summarized in Table 6.4) are qualitative, but do take
into account all the parameters discussed in Sect. 6.4.

6.6 Existing Frameworks

All the algorithms presented in this chapter have an open-source implementation.
There are many optimization tools that can be used or adapted for design space
exploration. It is generally advisable to use an existing, well-tested implementation
of one of these algorithms instead of going for the homebrew solution. The reason
is that the most common open-source frameworks are used by many developers, and
many of the issues and bugs have been found just by the sheer volume of users.

Most frameworks are available in the form of libraries to be used with a specific
language or development environment. In the following, examples of existing
frameworks are given, providing a short analysis of their strong and weak points.

6.6.1 jMetal

jMetal [7] is an object-oriented Java-based framework for multi-objective opti-
mization with metaheuristics. It provides 12 different multi-objective algorithms,
as well as some single-objective metaheuristics. jMetal is one of the most popular
frameworks available and has a number of advantages:
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• It is based on Java, that is, it is platform independent and the API is easily
accessible by a programmer.

• It provides a graphical user interface and a set of test problems with quality
indicators.

• It provides support for the parallel execution for a subset of its algorithms.

The main disadvantage of jMetal arises from one of its strong points: being written
in Java, jMetal does not have optimal performance, and its parallel performance
does not scale very well. Despite this, jMetal is one of the most comprehensive
existing frameworks, and its utilization is recommended if the algorithm of interest
is present in its library.

6.6.2 PaGMO/PyGMO

PaGMO (https://github.com/esa/pagmo/) is a C++ optimization framework initially
developed by the European Space Agency for the optimization of interplanetary
trajectories. The framework focuses on novel algorithms, parallelism, and perfor-
mance. Compared to jMetal, PaGMO provides similar algorithms, but all of them
are tuned for massively parallel execution. Therefore, PaGMO has an edge in terms
of exploration performance. As jMetal, PaGMO comes with sample problems,
metrics, and extension abilities. PaGMO also has Python bindings (PyGMO), which
make it accessible with very simple scripts.

The main disadvantage of PaGMO is that despite having been in developing for
a few years, it is not as user-friendly as jMetal: the installation is only from source,
there is no graphical user interface, and its documentation incomplete. PaGMO is
therefore recommended to the more experienced programmer or to the user with
extreme need for performance.

6.6.3 MOHMLib++

The Multiple Objective MetaHeuristics Library in C++ (MOMHLib++) [16] is a
C++ library providing 15 optimization algorithms. It is not as developed or main-
tained as jMetal or PaGMO, but it has few dependencies and it is very simple to use.

MOHMLib++ has no graphical user interface, no support for massively parallel
execution, and no scripting language bindings. However, its small size and simplic-
ity are usually very attractive to an unambitious developer looking to find a quick
solution to an optimization or design exploration problem.

6.6.4 NASA

NASA (Non Ad-hoc Search Algorithm) [17] is not a collection of search algorithms
but rather a DSE framework characterized by its modularity. Because of this reason,
NASA can be used orthogonally and together with the strategies implemented, for

https://github.com/esa/pagmo/
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example, by MOHMLib++. The infrastructure of NASA is implemented in C++
and consists of several modules (including a search module, a feasibility checker,
a simulator, and an evaluator) that can be extended or replaced by its user in plug-
and-play fashion.

The main advantage of NASA is, indeed, its modularity. NASA allows the
designer to fully decouple important functionalities (such as the choice of a
search algorithm and the evaluation of multiple performance metrics) with the
aid of only three interface files. Moreover, NASA is already integrated with two
widely used system-level simulators – CASSE and Sesame – and it supports the
parallel exploration of design space dimensions that are deemed independent by
the designer. A shortcoming of NASA is the lack of pre-implemented search
methodologies other than a proprietary GA, making the joint use of one of the
previous frameworks a must.

6.7 Conclusions

Concluding, this chapter presented a classification and comparative analysis of 15
of the best and most recent multi-objective design exploration algorithms. The
algorithms were applied to the exploration of a multi-processor platform and they
were compared for setup effort, number of evaluations, quality of the resulting
approximate Pareto set, and scalability. The obtained results were then used as
guidelines for the choice of the algorithm best suited to the properties of a target
design space. In particular, the experiments determined the most promising algo-
rithms when considering design space size and evaluation effort. Finally, a list of
reusable, open frameworks implementing DSE optimization strategies is provided.
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