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Abstract

The ForSyDe methodology aims to push system design to a higher level of
abstraction by combining the functional programming paradigm with the theory
of Models of Computation (MoCs). A key concept of ForSyDe is the use of
higher-order functions as process constructors to create processes. This leads
to well-defined and well-structured ForSyDe models and gives a solid base for
formal analysis. The book chapter introduces the basic concepts of the ForSyDe
modeling framework and presents libraries for several MoCs and MoC interfaces
for the modeling of heterogeneous systems, including support for the modeling
of run-time reconfigurable processes.

The formal nature of ForSyDe enables transformational design refinement
using both semantic-preserving and nonsemantic-preserving design transforma-
tions. The chapter also introduces a general synthesis concept based on process
constructors, which is exemplified by means of a hardware synthesis tool for
synchronous ForSyDe models. Most examples in the chapter are modeled with
the Haskell version of ForSyDe. However, to illustrate that ForSyDe is language-
independent, the chapter also contains a short overview of SystemC-ForSyDe.
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4.1 Introduction

Due to the ever increasing complexity of system-on-chip platforms and the con-
tinuous need for more powerful applications, industry has to cope with enormous
challenges and faces exploding verification costs when designing state-of-the-art
embedded systems. Still there are no systematic methods that can guarantee correct
and efficient implementations at reasonable costs, in particular for systems that have
to satisfy extra-functional properties like real-time behavior.

The problem is not new and well recognized. In 2007, Sangiovanni-Vincentelli
discusses the problems of System-Level Design (SLD) [51] and states that “in-
novation in design tools has slowed down significantly as we approach a limit in
the complexity of systems we can design today satisfying increasing constraints
on time-to-market and correctness. The EDA community has not succeeded as of
today in establishing a new layer of abstraction universally agreed upon that could
provide productivity gains similar to the ones of the traditional design flow (Register
Transfer Level (RTL) to GDSII) when it was first introduced.”

The Formal System Design (ForSyDe) methodology addresses these challenges
and aims at pushing the design entry to a considerably higher level of abstraction,
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Fig. 4.1 ForSyDe system design flow [48]

by combining a formal base in form of the theory of Models of Computation
(MoCs) [30] with an elegant system modeling technique based on the functional
programming paradigm. This formal foundation enables the development of design
transformation and synthesis techniques to convert the system model into the final
implementation on a given target platform.

Figure 4.1 illustrates the ideas of the ForSyDe design flow as described in
Sander’s PhD thesis from 2003 [48]. The system design process starts with the
development of an abstract, formal and functional specification model at a high
abstraction level. The model is formal since it has a well-defined syntax and se-
mantics. Furthermore, the model is based on well-defined models of computations,
providing a clean mathematical formalism and an abstract communication model.
It is abstract and functional since a system is modeled as a mathematical function
of the input signals. This formal base of ForSyDe gives a good foundation for the
integration of formal methods.

The synthesis process is divided into two phases. First, the specification model
is refined into a more detailed implementation model by the stepwise application
of design transformations. Since the specification model and implementation model
are based on the same semantics, the same validation and verification techniques,
i.e., simulation or formal verification, can be applied to both models. Design
transformation is conducted in the functional domain. Inside the functional domain,
a system model is expressed as a function using the semantics of ForSyDe. The
second step in the synthesis phase is the mapping of the implementation model onto
a given architecture. This phase comprises activities like partitioning, allocation of
resources, and code generation. In the implementation mapping phase, the design
process leaves the functional domain and enters the implementation domain, where
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the design is described with “implementation-level languages,” i.e., languages that
efficiently express the details of the target architecture, such as synthesizable VHDL
or Verilog for hardware and C for software running on a microcontroller. The task
of the refinement process is to optimize the specification model and to add the
necessary implementation details in order to allow for an efficient mapping of the
implementation model onto the chosen architecture.

The objective of this book chapter is to give an overview of the current state
of the ForSyDe design methodology, where special focus is given to the modeling
framework. The whole chapter is written in a tutorial style, enabling the reader to
experiment with the ForSyDe modeling and synthesis framework. Links to more
detailed information are provided in the corresponding sections of the chapter. For
readers not familiar with the functional programming language Haskell, a short
overview of Haskell is provided in the appendix.

The chapter is structured as follows. Section 4.2 introduces the ForSyDe model-
ing framework and its key concepts, like signals, processes, process constructors,
and MoC interfaces. Several ForSyDe MoCs are introduced and exemplified
using the Haskell version of ForSyDe by concrete examples. Furthermore, the
section presents the suitability of the functional paradigm to model reconfigurable
processes, which in turn can be evolved to model adaptive systems. Finally,
Sect. 4.2 concludes with a larger modeling case study consisting of several MoCs to
illustrate the potential of the ForSyDe modeling framework. Section 4.3 introduces
the ideas of transformational design refinement inside the functional domain and
the use of the characteristic function to illustrate the consequences of semantic-
preserving and nonsemantic-preserving design transformations to the designer. The
synthesis of ForSyDe models to a target language is presented in Sect. 4.4. In
particular, the section gives the general synthesis concepts that can be applied
to any target architecture and exemplifies the general ideas by means of the
ForSyDe hardware synthesis tool, which converts synchronous ForSyDe models to
synthesizable VHDL. Section 4.5 illustrates the language independence of ForSyDe
by introducing SystemC-ForSyDe, which implements the ForSyDe semantics in an
industrial design language. Section 4.6 discusses related approaches, and finally
Sect. 4.7 concludes the paper.

4.2 The ForSyDe Modeling Framework

In ForSyDe, a system is modeled as hierarchical concurrent process network.
Processes communicate with each other only via signals. ForSyDe supports several
Models of Computation (MoCs) and allows processes belonging to different models
of computation to communicate via MoC interfaces as illustrated in Fig. 4.2. In order
to formally describe the computational model of ForSyDe, the chapter uses a similar
definition as the tagged signal model by Lee and Sangiovanni-Vincentelli [30].

The ForSyDe modeling elements are introduced and discussed in Sects. 4.2.1
and 4.2.2 using the synchronous model of computation and the Haskell implemen-
tation of the ForSyDe modeling framework, in short Haskell-ForSyDe. Section 4.2.3
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Fig. 4.2 A ForSyDe model is a hierarchical concurrent process network. Processes of different
models of computation can communicate with each other via MoC interfaces. The process P5 is
created through process composition of the two processes P5;1 and P5;2

contains a deeper discussion of the synchronous MoC and also introduces additional
ForSyDeMoCs. Heterogeneous ForSyDe models can be created by MoC interfaces,
which are discussed in Sect. 4.2.4. Section 4.2.5 shows the usage of functions as
signal values to model reconfigurable processes, and finally Sect. 4.2.6 concludes
the discussion of the modeling framework with a larger modeling case study. All
examples in this section have been modeled with the forsyde-shallow library,
which is available on https://github.com/forsyde/forsyde-shallow, and have been run
using version 7.10.3 of the Glasgow Haskell Compiler ghc.

It is important to point out that due to its pure functional paradigm, Haskell is
a perfect match to the ForSyDe modeling framework. Still, the ForSyDe modeling
formalism is language-independent and can be implemented in different languages.
A good example is the SystemC implementation of ForSyDe, SystemC-ForSyDe,
which is discussed in Sect. 4.5.

4.2.1 Signals

Processes communicate with each other by writing to and reading from signals. A
signal is a sequence of events, where each event has a tag and a value. Tags can
be used to model physical time, the order of events, and other key properties of the
computational model. In the ForSyDe modeling framework, a signal is modeled as
a list of events, where the tag of the event is either implicitly given by the event’s
position in the list as in the ForSyDe synchronous MoC or can be explicitly specified
as in the case of the continuous-time or discrete-time MoC. The interpretation of
tags is defined by the MoC. An identical tag of two events in different signals does
not necessarily imply that these events happen at the same time. All events in a
signal must have values of the same type. Signals are written as fe0; e1; e2; : : : g,
where ei D .ti ; vi / denotes the tag ti and the value vi of the i -th event in the signal.

https://github.com/forsyde/forsyde-shallow


104 I. Sander et al.

In general, signals can be finite or infinite sequences of events and S is the set of all
signals. The type of a signal with values of type D is denoted S.D/.

In order to distinguish ForSyDe signals from normal lists in Haskell, there is a
special data type Signal a for signals carrying values of data type a. A signal of
data type a is modeled as

data Signal a = NullS
| a :- Signal a

and

s1 = 1:-2:-3:-4:-NullS

models a signal s1 with integer values and has the data type Signal Int. The
Signal data type is isomorphic to Haskell’s list data type. The Haskell version
of ForSyDe outputs signals in a more readable form, i.e., s1 will be presented
as {1,2,3,4}. The function signal can be used to convert a Haskell list into a
ForSyDe signal, so another signal s2 can be created by

s2 = signal [10,20,30,40]

resulting in the signal {10,20,30,40}.
The signals described so far have been finite signals, but infinite signals can

be modeled in Haskell as well due to Haskell’s lazy evaluation mechanism. The
function constS creates an infinite signal of constant values.

constS x = x :- constS x

A full evaluation of the signal constS 5 would not terminate. However, finite
parts of infinite signals can be evaluated due to Haskell’s call-by-need evaluation
mechanism. The function takeS can be used for this purpose and returns the first n

values of a signal, e.g., takeS 3 (constS 5) evaluates to {5,5,5}.

4.2.2 Processes

Processes are defined as functions on signals

p W Sm ! Sn D S � S � � � � � S
„ ƒ‚ …

m

! .S � S � � � � � S
„ ƒ‚ …

n

/:

The set of all processes is P .
Processes are functions in the sense that for a given set of input signals, always

the same set of output signals is returned. Thus s D s0 ) p.s/ D p.s0/ is valid
for a process with one input signal and one output signal. Note, that this still allows
processes to have an internal state. A process does not necessarily react identical
to the same event applied at different times. But it will produce the same, possibly
infinite, output signal when confronted with identical, possibly infinite, input signals
provided it starts with the same initial state.
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For processes with arbitrary number of input and output signals, the notation
can become cumbersome to read. Hence, for the sake of simplicity, this chapter
uses mostly processes with one input and one output only. This is not a lack of
generality since it is straightforward to introduce zip and unzip processes which
merge two input signals into one output signal and split one output signal into two
output signals, respectively [27]. These processes together with appropriate process
composition allow to express arbitrary behavior.

4.2.2.1 Process Constructors
Figure 4.3 illustrates the concept of process constructor, which is a key concept
in ForSyDe originating from higher-order functions in functional programming
languages. ForSyDe defines a set of well-defined process constructors, which are
used to create processes. A process constructor pc takes zero or more side-effect-
free functions f1; f2; : : : ; fk and zero or more values v1; v2; : : : ; vl as arguments
and returns a process p 2 P .

p D pc.f1; f2; : : : ; fk; v1; v2; : : : ; vl /

The functions represent the process behavior and have no notion of concurrency.
They simply take arguments and produce results. The values model configuration
parameters or the initial state of a process. The process constructor is responsible for
establishing communication with other processes via signals. It defines the time rep-
resentation, the communication interface, and the synchronization semantics. This
separation of concerns leads to an elegant mathematical formalism that facilitates
design analysis and design transformation. It is important to point out that most
programming languages do not prevent the designer from creating functions that
have side-effects, for instance by accessing a global variable inside a C-function.
Since Haskell is a pure functional language, functions are side-effect free by design,
but this property is not guaranteed in the SystemC version of ForSyDe (Sect. 4.5),
where the designer has the responsibility not to use functions with side-effect.

A set of process constructors determines a particular MoC. The concept of
process constructors ensures a systematic and clean separation of computation
and communication. A function that defines the computation of a process can
in principle be used to instantiate processes in different computational models.
However, a computational model may impose constraints on functions. For instance,
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the synchronous MoC requires a function to take exactly one event on each input and
to produce exactly one event for each output (Sect. 4.2.3.1). Processes belonging to a
data-flow MoC can consume and produce more than one token during each iteration,
which has to be reflected in the computation functions for data-flow processes
(Sect. 4.2.3.2).

The synchronous MoC is used to illustrate the usage of basic process construc-
tors, which can be divided into combinational and sequential process constructors.
A corresponding set of process constructors exists in the ForSyDe libraries for the
other models of computation. Due to the total order of events in the synchronous
MoC, the tag of an event is implicitly given by its position in the signal, so that
synchronous ForSyDe signals do not carry an explicit tag.

A combinational process constructor creates combinational processes, i.e.,
processes that have no internal state. The basic combinational process constructor
in the synchronous MoC is mapSY, which applies a function f to all signal values.
Thus a process twice that doubles all input values of a synchronous signal s is
modeled as

twice s = mapSY (*2) s

and can simulate the process twice with the input signal s1 as twice s1, which
yields {2,4,6,8}. An adder can be modeled by

adder s1 s2 = zipWithSY (+) s1 s2

The process constructor zipWithSY applies a function f pairwise onto two syn-
chronous signals. Hence, adder s1 s2 yields {11,22,33,44} as output signal.
The naming mapSY, zipWithSY, zipWith3SY, . . . originates from functional pro-
gramming, but to simplify for industrial designers the following aliases have been
defined in ForSyDe for combinational process constructors: combSY, comb2SY,
comb3SY, . . .

A sequential process is a stateful process, where an output value depends not
only on the current input values but also on the current state. The basic sequential
process constructor is delaySY, which creates a process that delays a synchronous
signal by one event cycle and where the current output value is given by the current
state of the process. A register process can be modeled by

register s = delaySY 0 s

Here, the first argument to delaySY , in this case 0, is the initial state of the sequential
process delaySY 0. Then register s1 creates the output signal {0,1,2,3,4},
where 0, the initial state, is the value of the initial event. More powerful sequential
processes and process constructors for finite state machines can be created by
process composition as explained in the following section.

4.2.2.2 Process Composition
New processes can be created by composition of other processes to form a
hierarchical process network. Figure 4.4 shows a model of a process counter that
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Fig. 4.4 The counter is modeled as concurrent process network. The process network is expressed
as set of equations

is modeled with three processes: the combinational process Pnextstate that calculates
the next state, the sequential process Pstate that holds the current state, and the
combinational process Poutput that models the output decoder. The counter shall
output the value TICK, when the state is 0, otherwise the event is absent. The
possibility of the absence of an event is a special property of the synchronous MoC.
It is modeled in ForSyDe by means of a special data type

data AbstExt a = Prst a
| Abst

expressing that an event can either be present, and then has a value, or absent.
Figure 4.4 illustrates how more complex stateful sequential processes can be

built by process composition around a basic sequential delay process that exists in
all ForSyDe MoCs. It is worth to mention, that sequential processes in ForSyDe
have a local state. However, due to its foundation in form of the theory of models
of computation [30], where processes can only share information via signals, there
is nothing like a shared global state in form of a shared variable. Since ForSyDe
processes require side-effect-free functions as arguments, ForSyDe processes are
deterministic in the sense that they will give the same output signals for the same
history of input signals.

Zero-delay feedback loops in the synchronous MoC and related MoCs can
cause causality problems, where a system specification might have no solution,
a unique solution, or several solutions. ForSyDe deals with zero-delay feedback
loops in a pragmatic way by simply forbidding it, following the same approach as
the synchronous programming language Lustre [23]. More sophisticated solutions
either calculate the least fix-point, as adopted by the synchronous languages Esterel
[7] or Quartz [52], or using a relational approach, as adopted by the synchronous
language Signal [12]. Another practical alternative is to introduce another level in
the tag system, as adopted in VHDL, which includes micro steps in form of a delta-
delay.
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Listing 1 System model of counter in Haskell-ForSyDe

1 module Counter where
2
3 import ForSyDe.Shallow
4
5 data Direction = UP
6 | HOLD deriving (Show)
7
8 data Clock = TICK deriving (Show)
9

10 -- Step 1: Specification of process network
11 counter s_input = s_output
12 where s_output = p_output s_state
13 s_state = p_state s_nextstate
14 s_nextstate = p_nextstate s_state s_input
15
16 -- Step 2: Selection of process constructors
17 p_nextstate = zipWithSY nextstate
18 p_state = delaySY 0
19 p_output = mapSY output
20
21 -- Step 3: Specification of leaf functions
22 nextstate state HOLD = state
23 nextstate 4 UP = 0
24 nextstate state UP = state + 1
25
26 output 0 = Prst TICK
27 output _ = Abst

A top-down design of a system model in ForSyDe is conducted in three steps:

1. The designer sketches the process network including the selection of the MoC
and the communication between the processes.

2. The designer selects suitable process constructors for all processes in the process
network, alternatively expresses a high-level process by a composition of other
processes. In Fig. 4.4, the process constructors zipWithSY and mapSY are used to
form combinational processes, while the process constructor delaySY is used to
model a process with internal state.

3. The designer formulates the arguments to the process constructors, i.e., the leaf
functions (nextstate, output) and other parameters (initial state for delaySY is 0),
to form ForSyDe processes.

Listing 1 shows the full ForSyDe model of the counter in Haskell-ForSyDe,
including data types for the input (Direction) and output signals (Clock).

Haskell is a strongly typed language and although no data types are given,
Haskell can infer the data type of the process counter to

counter :: Signal Direction -> Signal (AbstExt Clock)
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This means that counter is a function that takes an input signal with data of type
Direction and produces a signal with possibly absent events of type Clock. A
simulation of the counter in ForSyDe shows the absent events as ’_’-characters.

*Counter> counter (signal ([HOLD,UP,HOLD,UP,UP,UP,UP,HOLD,UP]))
{TICK,TICK,_,_,_,_,_,TICK,TICK,_}

4.2.3 ForSyDe Models of Computation

The Haskell-ForSyDe library supports several MoCs. The following subsections
introduce the synchronous MoC (Sect. 4.2.3.1), two data-flow MoCs (Sect. 4.2.3.2),
and finally the continuous-time MoC (Sect. 4.2.3.3). These three MoCs form a good
base for the challenging design of Cyber-Physical Systems (CPSs), which integrate
computation with physical processes [14]. The computation system consisting of
software and digital hardware is naturally modeled with data-flow MoCs and
synchronous MoC, while the physical process or plant is usually modeled with
a continuous-time MoC. Section 4.2.6 presents a case study that integrates the
presented MoCs of this section.

4.2.3.1 Synchronous Model of Computation (MoC)
The family of synchronous languages [5, 6], consisting of languages like Esterel
[7], Lustre [23], Signal [12], or Quartz [52], is based on the synchronous MoC and
uses the perfect synchrony assumption, i.e., neither computation nor communication
takes time. Timing is entirely determined by the arriving of input events because the
system processes input samples in zero time and then waits until the next input
arrives. If the implementation of the system is fast enough to process all input
before the next sample arrives, it will behave exactly as the specification model.
�Chapter 2, “Quartz: A Synchronous Language for Model-Based Design of Re-
active Embedded Systems” contains a more detailed discussion about synchronous
languages in general and the synchronous language Quartz in particular.

Synchronous processes are defined by the following specific characteristic. All
synchronous processes consume and produce exactly one event on each input or
output in each evaluation cycle, which implies a total order of all events in any
signal inside a synchronous MoC. Events with the same tag appear at the same time
instance. The set of synchronous processes is PSY � P .

To model asynchronous or sporadic events like a reset signal, ForSyDe uses the
special value ? to model the absence of an event. A value set V that is extended
with the absent value ? is denoted V? D V [ f?g. It is often practical to abstract a
non-absent value with the value >. For convenience we call an event with an absent
value an absent event and an event with a non-absent value a present event.

Figure 4.5 gives a formal definition of the set of basic process constructors and
processes, which are needed to model a system in the synchronous MoC. In other
models of computations, the set of basic process constructors is similar. Process
constructors in the synchronous domain have the suffix “SY .” Together with process
composition, this set of combinational process constructors is sufficient to model
systems inside the synchronous MoC.

http://dx.doi.org/10.1007/978-94-017-7267-9_3
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Fig. 4.5 Formal definition of the basic process constructors combSYn, delaySY, and the basic
processes zipSY and unzipSY

A combinational process constructor combSYn takes a function f W D1 � � � � �

Dn ! E as argument and returns a process p W S.D1/ � � � � � S.Dn/ ! S.E/

with no internal state. The delay process constructor delaySY takes only one value
s0 W D as argument and produces a process p W S.D/ ! S.D/ that delays
the input signal one cycle. The supplied value is the initial value of the output
signal. The basic processes zipSYn and unzipSYn are required because a ForSyDe
process is a mathematical function, which can only have a single signal as output.
However, it is possible to model a process that has a signal of tuples as output and
convert it with the process unzipSYn into a tuple of n signals. The process zipSYn

converts a tuple of signals into a signal of tuples. Other process constructors are
defined for convenience, such as the state machine constructor mooreSYn, which
is used to model a finite state machine, where the output depends only on the
current state.

Figure 4.6 illustrates the process constructor mooreSY , which takes two func-
tions, ns and o, and a value s0 as arguments. The function ns calculates the next
state, the function o calculates the output, and the value s0 gives the initial state.
Thus instead of specifying the counter of Fig. 4.4 with an explicit process network,
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zipWithSY n+1
ns

delaySY
s0

mapSY
o

si1

sin

sns sstate so

mooreSY n(ns , o, s0)

Fig. 4.6 The process constructor mooreSYn creates a synchronous process that models a state
machine, where the output depends only on the state

the designer can use the process constructor mooreSY together with the arguments
for ns, o, and s0 to model the counter, i.e.,

counter = mooreSY nextstate output 0

This model has exactly the same behavior as the counter of Listing 1. The
ForSyDe library also includes the mealySY process constructor to model syn-
chronous Mealy FSMs, where the output depends not only on the state but on the
input signal as well.

4.2.3.2 Data-Flow Models of Computation
ForSyDe provides several libraries for data-flow models of computation. These
MoCs are untimed and there is no total order between events in two different
signals, only a partial order exists. Many data-flow models exist in the literature
ranging from models providing a high degree of expressiveness at the cost of low
analyzability, like dynamic data flow, to models providing high analyzability at the
cost of limited expressiveness, like synchronous data flow. �Chapter 3, “SysteMoC:
A Data-Flow Programming Language for Codesign” gives a very detailed overview
about the most common data-flow Model of Computation (MoC) and introduces
SysteMoC, a language to model and design data-flow systems based on SystemC.

This section will introduce two of ForSyDe’s untimed data-flow MoCs: the
untimed MoC provides a high level of expressiveness, while the synchronous data
flow (SDF) MoC provides a high level of analyzability.

The ForSyDe SDF MoC follows the definition of synchronous data flow [29].
An SDF actor is created by process constructors, which take consumption rates,
production rates, and a function as arguments and produce a process (actor) as result.
Internally, an actor process actorSDFm;n with m input and n output signals is created
by a composition of a zipWithSDFm process constructor and an unzipSDFn process.

Figure 4.7 illustrates the usage of the SDF MoC library by creating a system
that repetitively takes two tokens from an input signal and compares them with the
current maximum. The system model consists of two processes, which are created
using an actorSDF2;2 and a delaySDF process constructor. The process constructor
actorSDF2;2 takes three arguments. The first one, (2,1), gives the consumption rate
for the input signals. The second one, (2,1), gives the production rate for the output

http://dx.doi.org/10.1007/978-94-017-7267-9_4
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Fig. 4.7 Process network of
an SDF model that calculates
the current maximum and
discards the other values

actorSDF 2,2
(2, 1)(2, 1)

f

input discarded

newMax

delaySDF
0

2

1

1

2

1

1

signals, and the third one f gives the computation function that operates on the input
tokens. The initial value for the maximum is set to 0, given by the argument to the
delaySDF process constructor. In each iteration the current maximum is compared
with two new input values to determine a new maximum. The new maximum is fed
back to the system, while the two other values are discarded.

Listing 2 An SDF model that calculates the current maximum and discards the other
values

1 system input = (discarded, newMax)
2 where (discarded, newMax)
3 = actor22SDF (2,1) (2,1) f input curMax
4 curMax = delaySDF 0 newMax
5
6 f [a, b] [c] = [(delete newMax [a,b,c], [newMax])]
7 where newMax = maximum [a,b,c]

The corresponding ForSyDe code is given in Listing 2. The function arguments
in the SDF-MoC operate on lists and return lists as output. This can be seen in Line 6
of Listing 2, where the function f takes lists of different size as input and returns
another list with tuples of lists as output values. The standard Haskell function
delete removes an element from a list and outputs the list in reversed order. A
simulation of the process network returns the expected result in the form of a tuple
of signals. The first signal consists of the discarded values, with a changed order
due to the reversed output of the function delete, while the second signal consists
of the current maximum values.

*SDF> system (signal [1..10])
({1,0,3,2,5,4,7,6,9,8},{2,4,6,8,10})

The usage of the SDF MoC library ensures a well-defined and analyzable SDF
model, where all processes behave according to the rules of the SDF-MoC.

In contrast to the SDF MoC, the untimed MoC of ForSyDe gives a high
grade of expressiveness at the cost of losing analyzability. The reason is that
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processes in the untimed MoC base the decision on how many tokens to be
consumed and produced during an iteration on the current state of the process.
This enables to model processes that vary the consumption and production rates
during their run time. The expressiveness of the untimed MoC is best illustrated
using the process constructor mealyU, which creates a state machine of Mealy
type. The first argument is a function � that operates on the state of the process
and returns the number of tokens to be consumed in the next iteration. Listing 3
illustrates the use of the mealyU process constructor and the � -function by a tutorial
example.

Listing 3 An untimed model based on the process constructor mealyU consuming a
varying number of input tokens in each iteration

1 system = mealyU gamma nextstate output 0
2 where gamma state = state + 1
3 nextstate state xs = length xs
4 output state xs = [state]

The initial state of the system is 0 given by the last argument of the mealyU
process constructor (Line 1). Thus due to the � -function (Line 2), a single token
will be consumed in the first iteration. The next state is determined by the function
nextstate (Line 3), which is the number of the consumed tokens during an iteration,
i.e., one token in the first iteration. Thus the result of the � -function will be 2 in
the second iteration and consequently an increasing number of tokens is consumed
in following iterations. The function output outputs the current state of the process
(Line 4). The simulation below shows the expected results and stops when there are
not enough tokens in the input signal.

*Untimed> system (signal [1..100])
{0,1,2,3,4,5,6,7,8,9,10,11,12}

4.2.3.3 Continuous Time Model of Computation
The time base, i.e., the tag, for the continuous-time MoC is given by the set
of the positive real numbers, t 2 RC, allowing to model physical time. To
model continuous-time systems, ForSyDe exploits one key property of functional
programming languages: functions are first-class citizens and can be treated as
normal values. A continuous-time signal is defined as a set of sub-signals, where
each sub-signal is defined by its time interval and the function that is executed during
this time interval. A signal s1 that has the constant value 1 during the time interval
between 0 and 0.4 and the constant value �0:5 during the time interval between 0.4
and 1.0 is modeled as

s1 = signal [SubsigCT ((\t -> 1.0), (0,0.4)),
SubsigCT ((\t -> -0.5), (0.4,1.0))]
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Fig. 4.8 The continuous-time signals s1 and s2 plotted (Resolution: 5 ms)

where t-> 1.0 and t-> -0.5 are the functions yielding a constant 1 or a constant
0.5, respectively. In a similar way, a continuous-time signal for a sine wave can be
constructed, and the ForSyDe library allows to model sine waves, with the function
sineWave, which takes the frequency in Hz of the sine wave as argument. The signal
s2 models a sine wave with the frequency 4 Hz during the time interval between 0
and 1.0.

s2 = sineWave 4 (0,1.0)

The signals can be plotted using the ForSyDe command plotCT’ with the desired
resolution as illustrated in Fig. 4.8. To generate the plots, plotCT’ requires an
installation of gnuplot.

plotCT’ 5e-3 [(s1, "s1"), (s2, "s2")]

Please note that due to the lazy evaluation of Haskell, ForSyDe only calculates
the results of the functions when needed, for instance to plot the graph with the
given resolution. Otherwise, functions are treated as normal values.

The process constructors in the continuous-time MoC correspond to the process
constructors in the synchronous, i.e., mapCT, zipWithCT, or delayCT. Processes are
created and composed in the same way as in the synchronous MoC. The process p1

that adds two continuous-time signals and the process p2 that multiplies two signals
are modeled as follows:

p1 = zipWithCT (+)
p2 = zipWithCT (*)

Figure 4.9 shows the plot of the operations p1 s1 s2 and p2 s1 s2.
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p2 s1 s2 = zipWithCT (*) s1 s2

Fig. 4.9 Operations on the continuous-time signals s1 and s2 (Resolution: 5 ms)

4.2.4 Model of Computation Interfaces

ForSyDe supports heterogeneity through MoC interfaces, which are special types of
processes used to connect signals belonging to different MoCs. Classical examples
for practical MoC interfaces are analog-to-digital and digital-to-analog converters.
Corresponding MoC interfaces also exist in ForSyDe for the connection of the
continuous-time MoC and the synchronous MoC, in the form of ct2sy and
sy2ct. Both interfaces are inspired by practical A/D and D/A converters.

The MoC interface ct2sy corresponds to an A/D converter and is an ideal
process in the sense that is does not perform quantization of the input signal; it only
samples the input signals according to the given sample period. To model a real A/D
converter, an additional synchronous ForSyDe process quantizer is required that
takes the minimal and maximal signal values and the number of bits as input and
produces a quantized signal. There are two modes for the MoC interface sy2ct,
which corresponds to a D/A converter. In DAhold-mode, the continuous-time
output follows directly the synchronous input value for the whole sampling period,
while in DAlinear-mode, a smooth transition between two adjacent synchronous
values is done.

Listing 4 and the plot of the output signals in Fig. 4.10 illustrate the use of the
MoC interfaces between the continuous-time MoC and synchronous MoC.

The example shows the effects of both an ideal A/D converter adc_ideal
on the output signal s5 and a nonideal A/D converter adc_non_ideal with
a quantization stage by means of the output signal s6. ForSyDe provides a few
standard MoC interfaces but allows designers to write their own MoC interfaces.
These interfaces can be on all abstraction levels and might be ideal, as in the case
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Listing 4 Illustration of the use of MoC interfaces by means of the ct2sy and
sy2ct, which are used to model ideal and nonideal A/D converters and a D/A
converter. The output signals are plotted in Fig. 4.10

1 -- Ideal A/D-converter
2 adc_ideal = ct2sy 0.02
3 -- Non-ideal A/D-converter with quantizer
4 quantizer = mapSY (quantize (-1.0, 1.0) 4)
5 adc_non_ideal = quantizer . (ct2sy 0.02)
6 -- D/A-converter using DAhold-mode
7 dac = sy2ct DAhold 0.02
8
9 -- Sine wave as input signals

10 s4 = sineWave 1 (0,1.0)
11
12 -- Output signals : s6 is inverted for illustration purposes
13 s5 = (dac . adc_ideal) s4
14 negator = mapSY (* (-1.0))
15 s6 = (dac . negator . adc_non_ideal) s4

−1

−0.5

 0

 0.5

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
seconds

s5
s6

Fig. 4.10 The signal s5 shows the effect of the sampling period on the input sine wave, but
does not use any bit-level quantization. The signal s6 shows also the effect of quantization with
a resolution of 4 bits on a negated signal

for the standard ct2sy MoC interface, or can be nonideal as in the case of the
adc_non_ideal, which in itself is a MoC interface created by the composition
of ct2sy and the synchronous quantizer.
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reconfigSYm

i1

im

o

sf

pf = reconfigSYm
where

o = p f (s f ,(i1, . . . , im))
o[k] = s f [k](i1[k], i2[k], . . . , im[k])

Fig. 4.11 The process reconfigSYm models a reconfigurable process, where the function that the
process executes is controlled by an input signal carrying functions

4.2.5 Reconfigurable Processes

The property of functional languages, that functions are regarded as first-class
citizens, has already been used for the continuous-time MoC library. ForSyDe
exploits this key property also to model reconfigurable processes, i.e., processes that
change their behavior over time, by introducing signals carrying functions as event
values. An example is the synchronous signal sf , which has functions on numbers
as signal values.

sf D f.C/; .�/; .�/; .C/g

Figure 4.11 illustrates how a signal sf W S.D1�� � ��Dm ! E/, where the values
of the signal are functions, serves as input signal for a reconfigurable process. The
reconfigurable process pf W S.D1/�� � ��S.Dm/�S.D1�� � ��Dm ! E/ ! S.E/

executes always the current value, i.e., a function, of the signal sf . This means that
the reconfigurable process does not need to provide the code for different modes of
functions, because they are supplied from the outside. Reconfigurable processes can
be implemented by run-time reconfigurable hardware or software, where the new
functions can be loaded into a reconfigurable area, such as an FPGA or memory
block, during operation.

Using the classification introduced by McKinley in [36], reconfigurable ForSyDe
processes belong to the category of compositional adaptation. In contrast, most
modeling frameworks offer only parameter adaptation, where adaptivity is changed
by parameter settings or the existence of different system modes usually imple-
mented by if-then-else statements.

Reconfigurable processes can be used to create a self-adaptive process, as
illustrated in Fig. 4.12, where the executed function of the process is triggered by the
change of the values of the input or output signals. The self-adaptive process psa is
constructed as a process network consisting of a reconfigurable preconfig and another
process pcontrol that controls the functionality of the reconfigurable process preconfig.
At the highest level of abstraction, we assume adaptation to be instantaneous. Thus
the change of functionality indicated by a new value of the signal s occurs at the
same instant as the input or output values that trigger the change of the functionality
of the adaptive process.
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Fig. 4.12 A self-adaptive
process psa is modeled as a
process network of an
adaptive process and an
additional process. The signal
sf carries functions as values
as illustrated in Fig. 4.11

reconfigSYm

i1

im

o

Pcontrol

sf

psa

skey

genEnc genDec

encoder decoder

sencFs
Encoding
Functions

sdecFs
Decoding
Functions

sencsinput soutput

Reconfigurable Processes

Fig. 4.13 Encoder-decoder

In order to show that reconfigurability can be treated as a first-class citizen in
ForSyDe, we illustrate how the existing synchronous ForSyDe process constructor
combSYn in conjunction with the function application operator .$/ can be used to
model a synchronous reconfigurable process reconfigSYn. The function application
operator is defined as f $ x = f x and enables the application of functions on
signal values.

reconfigSY = combSY ($)
reconfig2SY = comb3SY ($)

Figure 4.13 shows a tutorial example to model run-time reconfigurability using
a synchronous system model with two reconfigurable processes. A signal is
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encoded with an encoding function and later the encoded signal is decoded with
a decoding function. The signal skey is an input to both the genEnc and genDec
processes. The processes encoder and decoder are reconfigurable processes and
have signals carrying functions as inputs. Figure 4.13 models reconfigurability at
a high abstraction level, where the reconfiguration of the reconfigurable process is
assumed to be instantaneous and does not consume any time. The corresponding
ForSyDe source code is given in Listing 5.

Listing 5 ForSyDe source code for the encoder-decoder example

1 module EncoderDecoder where
2
3 import ForSyDe.Shallow
4
5 reconfigSY fs xs = zipWithSY ($) fs xs
6
7 genEnc s_key = mapSY f s_key
8 where f x y = y + x
9

10 genDec s_key = mapSY f s_key
11 where f x y = y - x
12
13 encoder s_encFs xs = reconfigSY s_encFs xs
14
15 decoder s_decFs xs = reconfigSY s_decFs xs
16
17 system s_key s_input = (s_enc, s_output)
18 where s_output = decoder s_decFs s_enc
19 s_enc = encoder s_encFs s_input
20 s_encFs = genEnc s_key
21 s_decFs = genDec s_key\vspace*{5pt}

The simulation with the signal s_key = signal [1,4,6,1,1], which
carries the encoding keys, and an input signal s_input = signal [1,2,3,
4,5] yields the expected output

*EncoderDecoder> system s_key s_input
({2,6,9,5,6},{1,2,3,4,5})

where the output is a tuple of two signals. The first signal {2,6,9,5,6} is the
encoded signal senc and the second signal {1,2,3,4,5} is the decoded output
signal soutput.

The processes encoder and decoder in Fig. 4.13 can be further refined in
consecutive design steps to take reconfiguration time and the need for buffers into
account. This would reflect the nature of partial and run-time reconfigurable FPGAs.
For a more detailed discussion about the modeling and refinement of reconfigurable
and adaptive systems in ForSyDe, see [50].
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4.2.6 Modeling Case Study

To illustrate the capability of the ForSyDe modeling approach, a case study from
the European FP6 ANDRES project [25] will be used. The case study models an
Amplitude Shift Key (ASK) transceiver and combines three different MoCs: the
continuous-time MoC, the synchronous MoC, and the untimed MoC.

The structure of the system is illustrated in Fig. 4.14. A synchronous signal of
integers enters the system in (1) and is converted to a signal of bit vectors, which are
then encoded. The encoded signal is converted into a serial bit stream, before it is
converted into a continuous-time signal in (2). This signal is then modulated using
an amplitude shift key modulation and amplified before it leaves the sender of the
transceiver in (3). In order to test the system, a Gaussian noise (4) is added to the
signal resulting in a noisy signal in (5). This signal is received by the transceiver
and is converted from the continuous-time MoC to the untimed MoC. Then the
serialized signal is converted into a signal of bit vectors (6), before it is decoded and
converted to an output signal of integers (7).

The system has an inbuilt mechanism to deal with noise during transmission. In
case bit errors are detected after (6), the adaptive power controller (8) increases the
gain and the amplification of the transmitted signal will be increased in the process
adaptGain (9).

The operation of the system is visible in the simulation in Fig. 4.15. At the start
of the simulation, all input signals are either fully available to the simulator as in the
case of the synchronous input signal (1) or are defined as source processes, like in
the case of the Gaussian noise generator (4), which can produce an infinite signal
thanks to Haskell’s lazy evaluation mechanism. The simulation is data-driven and
ends when the final event in the synchronous input signal (1) has been processed.
The model contains several MoC interfaces, which define the relation between the
tag systems of the different MoCs as discussed in Sect. 4.2.4. The synchronous
input signal (1) is represented as a signal of integers. The Gaussian noise increases
between 2 and 3 ms (4). This causes a bit error in the third event of the output
signal (7). The error is detected and causes to amplify the encoded signal to be
transmitted in the following event cycle from 3 to 4 ms (3). The following event is
received correctly, which can also be seen from the noisy ASK signal in (5) and the
amplification power is lowered again to normal level.

4.3 Transformational Design Refinement

The ForSyDe design process starts with the development of an initial abstract
specification model that defines the behavior of the system as a function between
system inputs and system outputs based on the tagged signal model [30]. A central
idea of ForSyDe is to exploit the formal nature of this functional system model
for design transformation and to refine the specification model by the application of
well-defined design transformations into a lower-level implementation model, which
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Fig. 4.15 Simulation of the ASK transceiver case study

is then synthesized into the target platform (Sect. 4.4). Since both the specification
and the implementation model are based on the same ForSyDe semantics, as
described in Sect. 4.2, they can be simulated using the same testbench as long as
the specification of the inputs and outputs do not change during the refinement
process.

The transformational design refinement process requires both semantic-
preserving transformations, which do not change the meaning, i.e., the timely and
functional behavior, of the model, and nonsemantic-preserving transformations or
design decisions, which change the meaning of the model. Nonsemantic-preserving
design decisions are required to improve the efficiency of the model, for instance,
to refine an infinite buffer into a finite buffer or for data type refinement, but require
an additional verification effort.

In order to give the designer information about the implications on the behavior
of a refined process due to the application of a design transformation rule, ForSyDe
has introduced the concept of characteristic function and exemplified it for the
synchronous MoC [49]. The characteristic function FPN of a process network PN,
where

PN .i1; : : : ; im/ D .o1; : : : ; on/
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Fig. 4.16 Transformation of a combinational function into a balanced, pipelined tree structure
(m D 4)

expresses the functional behavior of a process network as the dependence of the
output events at tag j on the input signals, i.e.,

FPN.i1; : : : ; im; j / D ..T .o1Œj �/; V .o1Œj �/; : : : ; .T .onŒj �/; V .onŒj �///

where T .e/ denotes the tag of the event e, V .e/ denotes the value of the event e,
and sŒj � denotes the j -th event of a signal s. Thus T .oi Œj �/ and V .oi Œj �/ give the
tag and the value of the j -th event oi Œj � of the output signal oi . The characteristic
function utilizes the property of the tagged signal model that divides an event
into tag and value. This enables to compare the behavior of two different process
networks with respect to both timing (tag) and computation function (value).

Figure 4.16 illustrates transformational design refinement using the semantic-
preserving transformation rule BalancedTree and the design decision PipelinedTree
in order to convert a process network PN performing the mathematical function
f .x1; x2; : : : ; xm/ D x1 ˝ x2 ˝ � � � ˝ xm, where m D 2k I k 2 NC, into a pipelined
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representation PN0 that requires two input functions. The characteristic function
informs the designer about the implication of the design transformation, which in
this case is a delay of the output compared to the original process network PN by k

event cycles, i.e.,

FPN0.i1; : : : ; im; j / D FdelaySYk.s0/ıPN.i1; : : : ; im; j /I 8j � k

In other words, after this transformation, the refined process network will yield
the same output values as the original process network after a delay of k event
cycles. Thus during transformational design refinement, the characteristic function
is used to inform the designer on both changes in the timely behavior and changes
of the output values for a given design transformation rule.

The implication can be used by the designer to verify the local consequences of
the design transformation. However, a transformation like PipelinedTree also affects
the global timing of a larger process network and has to be compensated in feedback
loops or parallel paths in the global process network. This section can only give an
overview about transformational design in ForSyDe. For a more detailed discussion,
see [49] as main reference but also [45], which focuses mainly on nonsemantic-
preserving transformations and discusses the verification of design decisions at the
local level and gives a method for restoring time correctness at the global level. So
far only the concepts for design transformations have been proposed [45, 49], the
automation of the design transformation is still a topic for future work.

4.4 Synthesis of ForSyDe Models

Thanks to the well-defined structure of ForSyDe models, it is possible to give
a general scheme for the synthesis of a ForSyDe implementation model into an
implementation on a given target platform. The general synthesis flow is described
in Sect. 4.4.1 and then exemplified by hardware synthesis of ForSyDe models
belonging to the synchronous MoC in Sect. 4.4.2. The general synthesis concepts
have also been applied for software synthesis toward a single processor as part of a
case study on Hardware/Software Codesign (HSCD) [32]. Furthermore, there exists
a first version of a synthesis tool f2cc targeting GPGPUs from abstract ForSyDe
specifications where the functions are expressed in C-code [11].

Please note that this section deals with the translation of ForSyDe models into
the target implementation. The refinement of the specification model through design
transformations into the implementation model has been the topic of Sect. 4.3.

4.4.1 General ForSyDe Synthesis Concepts

ForSyDe models are structured as hierarchical concurrent process networks, where
each process is either (1) composed of other processes communicating via signals, is
(2) constructed by means of a process constructor, or is (3) a basic process. In order
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to synthesize a system model into a target implementation, synthesis rules have to
be developed for these different cases.

1. Synthesis of concurrent process networks. ForSyDe process networks commu-
nicate via signals according to a well-defined model of computation. The process
network needs to be translated into a corresponding implementation in the target
language that obeys the properties of the model of computation.

2. Synthesis of processes created by process constructors. Each process con-
structor has to be implemented into the corresponding pattern in the target
implementation. As a second step, the arguments of the process constructors, i.e.,
pure functions and values, have to be translated into the target implementation.

3. Synthesis of basic processes. Basic processes like zipSY and unzipSY need to be
implemented in the target implementation.

4.4.2 Hardware Synthesis

The general synthesis concept is illustrated by means of the synthesis of ForSyDe
system models belonging to the synchronous MoC into digital hardware, more pre-
cisely into the corresponding VHDL code. The translation of synchronous ForSyDe
models is straightforward. The synchronous MoC can be faithfully implemented in
synchronous hardware, where the total order of events is preserved by the use of
hardware clocks. Furthermore, both ForSyDe system models and VHDL models
are based on concurrent processes communicating via signals.

Figure 4.17 shows how ForSyDe processes are translated to VHDL components,
while ForSyDe signals are translated to VHDL signals.

In order to synthesize ForSyDe processes based on process constructors to the
corresponding hardware, the corresponding pattern for each process constructor
has to be identified in VHDL, and the arguments of the process constructors, pure
functions and variables have to be translated to synthesizable VHDL. Figure 4.18
shows the translation of the ForSyDe process constructors mapSY, delaySY, and

ForSyDe Model VHDL Model

P1

P2

P3

C1

C2

C3

Component Mapping

Signal Mapping

Fig. 4.17 Hardware synthesis of process networks



126 I. Sander et al.

f g

v

mooreSY

v

delaySY

f

mapSY
fHW

Register

CLK

fHW
Register

CLK
gHW

Fig. 4.18 Hardware synthesis of process constructors

mooreSY into the corresponding hardware patterns. Finally, the side-effect-free
ForSyDe functions, which are the arguments of the process constructors, are
translated into the corresponding VHDL functions.

4.4.3 ForSyDe Hardware Synthesis Tool

Based on the concepts presented in the previous sections, a hardware synthesis
back end has been developed for ForSyDe [1]. The hardware synthesis tool has
been implemented as deep-embedded domain-specific language in contrast to the
shallow-embedded version of ForSyDe discussed in Sect. 4.2, which has been
developed for simulation. In the deep-embedded version of ForSyDe, the system
knows about its own structure, and ForSyDe’s embedded compiler can operate on
the abstract syntax tree to perform different analysis and transformation activities,
such as simulation of the system or translation into a target language, e.g., VHDL
in the case of the hardware synthesis tool. Thus there is no need for external parsers
to compile a deep-embedded ForSyDe model. So far the deep-embedded version
mainly supports hardware synthesis from the synchronous MoC, but using the same
technique different back ends, like SW synthesis to C, can be developed within the
embedded compiler.

In order to get access to the internal structure of the system model, the deep-
embedded version of ForSyDe relies on several advanced Haskell techniques, which
also affects the syntax of ForSyDe system models. In particular the impact of
Template Haskell [55] is clearly visible in the definition of ForSyDe functions,
but enables that all details of the system model are known to the embedded
compiler at compile time. All examples in this section have been modeled with the
forsyde-deep library, which is available on https://github.com/forsyde/forsyde-
deep, and have been run using version 7.10.3 of the Glasgow Haskell Compiler ghc.

Listing 6 shows the synthesizable model of a counter in deep-embedded
ForSyDe. The counter consists of a single process counterProc, which is created

https://github.com/forsyde/forsyde-deep
https://github.com/forsyde/forsyde-deep
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Listing 6 A synthesizable counter in the deep-embedded version of Haskell-
ForSyDe

1 -- Enable Language Extension: Template Haskell
2 {-# LANGUAGE TemplateHaskell #-}
3
4 module CounterHW (Direction, counterSys) where
5
6 import ForSyDe.Deep
7 import Data.Int
8
9 type Direction = Bit

10
11 nextStateFun :: ProcFun (Int8 -> Direction -> Int8)
12 nextStateFun = $(newProcFun
13 [d| nextState state dir
14 = if dir == H then
15 if state < 9 then state + 1
16 else 0
17 else
18 if state == 0 then 9
19 else state - 1
20 |])
21
22 counterProc :: Signal Direction -> Signal Int8
23 counterProc = scanldSY "counterProc" nextStateFun 0
24
25 counterSys :: SysDef (Signal Direction -> Signal Int8)
26 counterSys = newSysDef counterProc "Counter" ["direction"]
27 ["number"]

as finite state machine without output decoder by means of the process constructor
scanldSY and the function argument nextStateFun. The reason for the special
syntax inside nextStateFun, i.e., $(newProcFun [d| ... |]), is the use of
Template Haskell to get access to the internal structure of the system model. Deep-
embedded ForSyDe introduces the concept of system as a new hierarchical level. A
system has a name, input and output ports, and there is full information about its
internal structure, so that functions operating on the internal structure of the system
can be defined for analysis, simulation or synthesis. An example is the simulation
command simulate that enables the simulation of a system.

*CounterHW> simulate counterSys [L,H,H,H,H,L,L,L,L]
[0,9,0,1,2,3,2,1,0]

New systems can be created by instantiation of system components and their
composition into a new system as illustrated in Listing 7, where a new system is
created through composition of the counter and a seven-segment decoder. Please
note that in order to define vectors of fixed size, which is critical for hardware
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systems, a new synthesizable data type for fixed-sized vectors FSVec has been
defined for ForSyDe. The size of the vector is a part of the type and given by a
data type constructor Dx, where x is the size of the vector.

Listing 7 Larger systems can be composed of instantiated components using a set
of equations

1 module CounterSystemHW where
2
3 import ForSyDe.Deep
4 import CounterHW
5 import SevenSegmentDecoderHW
6 -- omitted additional import declarations
7
8 systemProc :: Signal Direction -> Signal (FSVec D7 Bit)
9 systemProc dir = sevenSeg

10 where
11 sevenSeg = (instantiate "sevenSegDec" sevenSegDecSys)
12 counterOut
13 counterOut = (instantiate "counter" counterSys) dir
14
15 system :: SysDef (Signal Direction -> Signal (FSVec D7 Bit))
16 system = newSysDef systemProc "system" ["in"] ["out"]

Listing 8 The ForSyDe synthesis tool interacts directly with the Altera Quartus tool

1 compileQuartus_CounterSystem :: IO ()
2 compileQuartus_CounterSystem = writeVHDLOps vhdlOps system
3 where
4 vhdlOps = defaultVHDLOps{execQuartus=Just quartusOps}
5 quartusOps
6 = QuartusOps{action=FullCompilation,
7 fMax=Just 50, -- in MHz
8 fpgaFamiliyDevice=Just ("CycloneII",
9 Just "EP2C35F672C6"),

10 pinAssigs=[("in", "PIN_N25"), -- SW0
11 ("resetn", "PIN_N26"), -- SW1
12 ("clock","PIN_G26"), -- KEY[0]
13 ("out[6]","PIN_AF10"), -- HEX0[0]
14 ...
15 ("out[0]","PIN_V13") ] -- HEX0[6]
16 }

The deep-embedded ForSyDe tool provides a direct link to the Altera Quartus
synthesis tool. The ForSyDe compiler generates the VHDL code and passes it
together with optional design constraints and pin assignments to Quartus, which
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generates the netlist for the circuit. Listing 8 shows the ForSyDe code for the
synthesis of the counter to an Altera DE2/35 University board.

4.5 SystemC-ForSyDe

The formal definition of ForSyDe is based on the functional programming paradigm,
so a pure functional language like Haskell is a perfect fit for ForSyDe. Nevertheless,
the ForSyDe modeling framework is language independent. To make ForSyDe
attractive for industrial designers, a SystemC version of the ForSyDe modeling
framework has been created, which follows the spirit and semantics of the formal
ForSyDe framework. This section gives a short overview about the nature of
SystemC-ForSyDe by using the synchronous counter example from Fig. 4.4. A more
detailed discussion on SystemC-ForSyDe is given in [2].

Listing 9 shows the code for the counter in SystemC-ForSyDe, which has the
same structure as the corresponding Haskell model of Listing 1. The functions for
the next state and the output need to be declared as side-effect-free functions, and are
arguments for the combinational process constructors scomb2 and scomb to create
the processes nextstate and outputdecode. Here, scomb2 and scomb are special
versions of comb2 and comb, requiring present events as inputs. Process constructors
are implemented as C++ template classes where the template parameters determine
the input/output types, and the constructor arguments are either values or functions.
The process del1 is created with the delay-process constructor. Finally, process
networks can be expressed in SystemC-ForSyDe as composite processes, which can
be regarded as netlists created by binding signals to processes through the newly
introduced concept of ports.

A SystemC-ForSyDe model is also aware of its internal structure, which means
that introspection can be used to operate on the system structure. Hence, it is
possible to extract graph representations, which can be used for subsequent phases
in the design flow, such as design space exploration or synthesis. Figure 4.19 shows
an automatically generated graphical representation of the SystemC model from
Listing 9 to illustrate the capabilities of introspection in SystemC-ForSyDe.

SystemC-ForSyDe supports a similar set of MoCs as Haskell-ForSyDe. All the
MoCs discussed in the Sect. 4.2.3 are also supported by SystemC-ForSyDe libraries,
which are publicly available from the ForSyDe web page [19].

counter

next_state
scomb2

state
delay

output
scomb

Fig. 4.19 Generated graphical representation of the counter in SystemC using the tool f2dot
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Listing 9 The counter example in the SystemC version of ForSyDe

1 #include <forsyde.hpp>
2
3 using namespace ForSyDe;
4
5 typedef enum Direction { up, hold } Direction;
6 typedef enum Clock { tick } Clock;
7
8 void nextstate_f(int& ns, const int& s, const Direction& in) {
9 switch (in) { case up : ns = (s + 1)

10 case hold : ns = s; break; }
11 }
12
13 void output_f(abst_ext<Clock>& out, const int& s) {
14 switch (s) { case 0 : out = abst_ext<Clock>(tick); break;
15 default : out = abst_ext<Clock>(); }
16 }
17
18 SC_MODULE(counter) {
19 // Declaration of inputs, outputs and intermediate signals
20 SY::in_port<Direction> input;
21 SY::out_port<abst_ext<Clock>> output;
22 SY::signal<int> next_state, state1, state2;
23
24 // Module architecture: constructing processes and binding
25 signals SC_CTOR(counter) {
26 // Process that computes the next state
27 auto nextstate = new SY::scomb2<int, int, Direction>
28 ("next_state", nextstate_f);
29 nextstate->iport1(state1);
30 nextstate->iport2(input);
31 nextstate->oport1(next_state);
32
33 // Sequential process that stores the state value
34 auto del1 = new SY::delay<int>("state", 0);
35 del1->iport1(next_state);
36 del1->oport1(state1);
37 del1->oport1(state2);
38
39 // Process that decodes the output
40 auto outputdecode = new SY::scomb<abst_ext<Clock>, int>
41 ("output", output_f);
42 outputdecode->iport1(state2);
43 outputdecode->oport1(output);
44 }
45 };
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4.6 Related Work

Researchers have for many years promoted methods that push the design entry to
a higher level of abstraction by the usage of formal models and transformations
in the design process. In 1997, Edwards et al. [16] expressed their beliefs “that
the design approach should be based on the use of one or more formal methods
to describe the behavior of the system at a high level of abstraction, before a
decision on its decomposition into hardware and software is taken.” Furthermore,
they stated that “the final implementation of the system should be made by using
automatic synthesis from this high level of abstraction to ensure implementations,
that are ‘correct by construction.”’ In 1998, Skillicorn and Talia discussed models of
computation for parallel architectures in [58]. They argued that “a model must hide
most of the details from programmers if they are to be able to manage, intellectually,
the creation of software” and that “as much as possible of the exact structure of the
executing program should be inserted by the translation mechanism (compiler and
run-time system) rather than by the programmer.” Furthermore, they pointed out
that “models ought to be as abstract and simple as possible.” Also Keutzer et al.
[28] stressed that “to be effective a design methodology that addresses complex
systems must start at high levels of abstraction.” They promoted “the use of formal
models and transformations in system design so that verification and synthesis can
be applied to advantage in the design methodology” and argued that “the most
important point for functional specification is the underlying mathematical model
of computation.”

Although the arguments for a more formal and disciplined design approach have
been known for a long time, there still exists no formal and systematic design
methodology that can be employed in an industrial setting. The IEEE standard
language SystemC [26] has been inspired by SpecC [15] and is implemented as C++
class library. SystemC provides a discrete-event simulation kernel, and has been
the base for several approaches towards a more formal design process. SystemC-
AMS [59], an extension of SystemC based on a timed data-flow MoC, enables
the modelling of analog and hybrid systems. HetSC [24] is based on the standard
SystemC kernel and targets heterogeneous systems. HetSC supports the designer
by a set of modeling primitives with additional supporting rules and guidelines for
different MoCs. In comparison to ForSyDe, this approach is less formal, since it
is difficult to enforce well-defined models. SysteMoC [18], which is described in
more detail in �Chap. 3, “SysteMoC: A Data-Flow Programming Language for
Codesign”, is based on SystemC and addresses dynamic data-flow applications. Sys-
teMoC’s modeling technique enables to describe both statically analyzable actors
and expressive dynamic actors. An actor is modeled as a state machine that separates
the computational part of the actor from the processing of tokens, which is modeled
as actor state machine. SysteMoC provides analysis methods operating on the actor
state machine that can detect the analyzable portion of the system model, for which

http://dx.doi.org/10.1007/978-94-017-7267-9_4
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powerful data-flow analysis methods exist. The Ptolemy project [17, 44] studies the
usage of well-defined MoCs for the design of heterogeneous, concurrent embedded
and cyber-physical systems. Ptolemy uses an actor-oriented model, where actors
communicate with each other by sending messages. Ptolemy introduces the concept
of director, where the director defines the semantics of the underlying set of actors
and thus specifies the MoC. Heterogeneous models can be created due to the concept
of hierarchy, where each director defines the interaction of the actors on its own
level. ForSyDe supports a generic mechanism, where each process is associated
with a MoC and where the execution of the process network is only based on data
dependences. Thus no central synchronization is required, which is a prerequisite
for efficient simulation on parallel and distributed architectures.

Several researchers have used declarative languages to address system design
from a more formal perspective. Reekie used Haskell for the modeling purpose of
digital signal processing applications, where streams are modeled as infinite lists
and processes are created by higher-order functions [46]. Reekie also proposed
semantic-preserving transformations based on equational reasoning to convert a
model into a more efficient form. The relational language Ruby has been developed
for the design of hardware circuits using a structural representation of basic
hardware components and connection patterns. This structured concept has been
extended for software to formulate a vision on HSCD [33] based on Ruby. Lava
[10] borrows many concepts from Ruby, but is embedded in the functional language
Haskell. It provides a variety of powerful connection patterns, access to formal
methods and translation to VHDL. There exist several versions of Lava: Chalmers
Lava [10], Xilinx Lava [56], and most recently Kansas Lava [22]. The goal of
Kansas Lava is to scale up the ideas in Lava to operate on larger circuits and to use
larger basic components. In contrast to the structural approach of Lava and Ruby,
Mycroft and Sharpe have taken a behavioral approach as base for the development
of the languages SAFL (statically allocated functional language) and SAFL+ [54].
Although these languages have been primarily designed for hardware design, they
have been used in [40] for HSCD. SAFL offers the application of semantic-
preserving transformations and can synthesize programs in a resource-aware style,
where functions that are called several times result in shared resources. The Hawk
[35] language, based on Haskell, addresses the modeling, simulation and verification
of microprocessors, where it exploits the formal base of Haskell. Hardware ML
(HML) [31] is based on the functional programming language Standard ML [39].
It has been designed as an alternative to VHDL with a direct mapping of the HML
constructs to the corresponding VHDL code. C�ash [3] is a functional hardware
description language that uses a subset of Haskell for the purpose of describing
hardware. Haskell functions denote components and the C�ash-compiler converts
C�ash-descriptions into the corresponding hardware implementation. There are
several approaches to generate target code for GPUs from Haskell-based domain-
specific languages. Examples are Nikola [34] and Obsidian [60].

ForSyDe has been inspired by the work of Reekie and is based on the same
modeling approach for signals and processes. The work of Mycroft and Sharp
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shares the same ambition as ForSyDe to move system design to a higher level of
abstraction, but followed a different modeling approach. Furthermore, refinement
is restricted to semantic-preserving transformations. C�ash, Lava, Ruby, and HML
are developed as languages for hardware design and operate on a lower abstraction
level than ForSyDe. Their main objective is to provide a formally sound alternative
to VHDL and Verilog. In contrast, ForSyDe addresses the modeling and design of
embedded and cyber-physical design, and views VHDL merely as a target language.
Hawk focuses on processor design with a focus on modeling and verification
of instruction set and architecture, and does not support hardware synthesis.
Furthermore, ForSyDe is the only declarative approach that is based on model of
computation theory and that provides several models of computation and MoC
interfaces.

The ForSyDe concept of process constructors is heavily influenced by the work
of Skillicorn on homomorphic skeletons [57]. The term skeleton, coined by Cole
[13] in his seminal work on algorithmic skeletons, has been used in the parallel
programming community to denote an abstract building block that has a predefined
implementation on a parallel machine. In order to obtain an implementation, the
abstract program must be composed of these skeletons. The advantage of such an
approach is that it raises the level of abstraction, because programmers program
in their language and do not even have to be aware of the underlying parallel
architecture. Specialists can be used to design the implementation of these skeletons.
Using the Bird-Meertens formalism, Bird demonstrates how to derive programs
from specifications by equational reasoning using lists [8], arrays, and trees [9] as
data types. As Skillicorn points out, implementations with guaranteed performance
can be built for computers that are based on standard topologies. Also cost measures
can be provided since the complete schedule of computation and communication is
known from the implementation of the skeleton.

The influential CIP (computer-aided, intuition-guided programming) project
investigated transformational program construction [4]. CIP follows a top-down
approach that starts with a formulation of the formal specification which is
then converted via well-defined semantic-preserving transformations into a final
program. The authors stated the following advantages of this approach in [4]: (a)
the final program is correct by construction; (b) the transitions can be described
by schematic rules and thus be reused for a whole class of problems; (c) due to
formality the whole process can be supported by the computer; (d) the overall
structure is no longer fixed throughout the development process, so that the approach
is quite flexible.

The development of a successful practical design transformation system is a
huge challenge. The transformation framework does not only need to provide a
sufficient number of transformation rules, but has also to derive a sequence of
transformations steps that yield a correct and efficient implementation. So far
transformational approaches have mainly been used for small general purpose
programming modules with a high demand on formal correctness. The prob-
lem is aggravated in the embedded systems domain, because of extra-functional
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design constraints and restricted resources. Most approaches for transformational
hardware design are restricted to semantic-preserving transformations [43, 53],
while ForSyDe’s support of nonsemantic transformations enables to integrate the
refinement techniques in the area of high-level synthesis [21,37] as design decisions.
The result of transformational design refinement from a high-level general purpose
language is largely dependent on the initial specification due to the very large
design space that can only partly explored [62]. The problem is of fundamental
character and also known as syntactic variance problem in high-level synthesis
[20]. The problem is naturally smaller in domain-specific languages like ForSyDe
with a smaller set of building blocks, but it cannot be eliminated still exists. A
more detailed overview on program transformation is given in [41], while [42]
concentrates on transformation techniques for functional and logical programs.

4.7 Conclusion

The ForSyDe design methodology aims at pushing system design to a higher level
of abstraction and provides means to enable a correct-by-construction design flow.
ForSyDe is based on a solid formal foundation in form of a well-defined functional
system model and a theoretical base in form of model of computation theory. The
chapter gave an overview about the key concepts in ForSyDe and illustrated its
heterogeneous system modeling using its Haskell version, which can be viewed as
a perfect match with the underlying formal framework. Furthermore, the chapter
also discussed how to convert an abstract system model into a final implementation
by transformational design refinement followed by system synthesis. The ForSyDe
framework is language-independent and can even be realized in other languages,
which has been demonstrated by the SystemC version of ForSyDe that has been
developed for industrial designers.

ForSyDe is an active research project that covers the whole design flow. In
addition to system modeling, design refinement and system synthesis, current
research focuses also on the development of a design flow for mixed-criticality
multi-processor applications sharing the same platform. Here, the underlying formal
models of computation and the concept of process constructors enable to create
analysis models from the ForSyDe system models. These analysis models can
then be used in the critical design space exploration activity to find efficient
implementations on shared multi-processor platforms. A first implementation of
the design space exploration (DSE) tool, which uses constraint programming and
takes communication on shared resources into account, is presented in [47]. Once an
efficient mapping with the corresponding schedules has been calculated by the DSE
tool, the schedule and the function arguments of the process constructors need to
be synthesized to the processors on the target platform. Future research will develop
the synthesis concepts for multi-processor platforms based on the synthesis concepts
presented in Sect. 4.4.
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Appendix: Introduction to Haskell

This section gives a short introduction to functional languages and Haskell to give
readers who are not familiar with functional programming additional background
information. For more information on Haskell, visit the Haskell home page [61].

A functional program is a function that receives the program’s input as argument
and delivers the program’s output as result. The main function of a program is
defined in terms of other functions, which can be composed of still other functions
until at the bottom of the functional hierarchy the functions are language primitives.
Haskell is a pure functional language, where each function is free from side-effects.
This means given the same inputs, which in case of ForSyDe could be a set of input
signals, a Haskell function will always produce identical outputs. Thus the whole
functional program is free from side-effects and thus behaves totally deterministic.
Since all functions are free from side-effects, the order of evaluation is only given by
data dependencies. But this means also that there may exist several possible orders
for the execution of a functional program.

Considering the function

f .x; y/ D u.h.x/; g.y//

the data dependencies imply that the functions h.x/ and g.y/ have to be evaluated
before u..h.x/; g.y// can be evaluated. However, since there is no data dependency
between the functions h and g, there are the following possible orders of execu-
tion:

• h.x/ is evaluated before g.y/;
• g.y/ is evaluated before h.x/;
• h.x/ and g.y/ are evaluated in parallel.

Thus functional programs contain implicit parallelism, which is very useful when
dealing with embedded system applications, since they typically have a considerable
amount of built-in parallelism. Of course it is also possible to parallelize imperative
languages like C++, but it is much more difficult to extract parallelism from
programs in such languages, since the flow of control is also expressed by the order
of statements.

In addition to common data types, such as Bool, Int, and Double, Haskell also
defines lists and tuples. An example for a list is [1,2,3,4] :: [Integer], which
is a list of integers. The notation “::” means “has type.” An example for a tuple,
which is a structure of different types is (’A’, 3) :: (Char, Integer) where
the first element is a character and the second one is an integer. Haskell has adopted
the Hindley-Milner type system [38], which is not only strongly typed but also
uses type inference to determine the type of every expression instead of relying
on explicit-type declarations.
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Haskell is based on the lambda-calculus and allows to write functions in curried
form, where the arguments are written by juxtaposition. The following Haskell
function add is written in curried form.

add :: Num a => a -> a -> a
add x y = x + y

Since ‘->’ associates from right to left, the type of add can also be read as

add :: Num a => a -> (a -> a)

This means that given the first argument, which is of a numeric type a, it returns
a function from a to a. This enables partial application of a curried function. New
functions can then be defined by applying the first argument, e.g.,

inc x = add 1
dec x = dec 1

These functions only have one argument and the following type

inc :: Num a => a -> a
dec :: Num a => a -> a

Another powerful concept in functional languages is the higher-order function,
which is adopted in ForSyDe for process constructors. A higher-order function is
a function that takes functions as argument and/or produces a function as output.
An example of a higher-order function is map, which takes a function and a list as
argument and applies (“maps”) the function f on each value in the list. The function
map is defined as follows

map f [] = [] -- Pattern 1 (empty list)
map f (x:xs) = f x : map f xs -- Pattern 2 (all other lists)

The higher-order function map uses an additional feature of Haskell, which is
called pattern matching and is illustrated by the evaluation of map (+1) [1,2,3].

map (+1) [1,2,3]
) map (+1) (1:[2,3]) Pattern 2 matches
) 1+1 : map (+1) [2,3] Evaluation of Pattern 2
) 2 : map (+1) (2:[3]) Pattern 2 matches
) 2 : 2+1 : map (+1) [3] Evaluation of Pattern 2
) 2 : 3 : map (+1) (3:[]) Pattern 2 matches
) 2 : 3 : 3+1 : map (+1) [] Evaluation of Pattern 2
) 2 : 3 : 4 : map (+1) [] Pattern 1 matches
) 2 : 3 : 4 : [] Evaluation of Pattern 2
) [2,3,4]

During an evaluation the patterns are tested from the top to the bottom. If a
pattern, the left-hand side, matches, the corresponding right-hand side is evaluated.
The expression map (+1) [1,2,3] does not match the first pattern since the list
is not empty ([]). The second pattern matches, since (x:xs) matches a list that is
constructed of a single value and a list. Since the second pattern matches, the right-
hand side of this pattern is evaluated. This procedure is repeated recursively until
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the first pattern matches, where the right-hand side does not include a new function
call. As this example shows, lists are constructed and processed from head to tail.

The higher-order function map can now be used with all functions and lists that
fulfill the type declaration for map, which Haskell infers as

map :: (a -> b) -> [a] -> [b]

Another important higher-order function is function composition, which is
expressed by the composition operator ‘.’.

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)

This definition uses “lambda abstractions” and is read as follows. The higher-order
function f . g produces a function that takes a value x as argument and produces
the value f .g.x//. The expression f = (+3) . (*4) creates a function f that
performs f .x/ D 4x C 3. Function composition is extremely useful in ForSyDe
since it allows to merge processes in a structured way.

Haskell allows to define own data types using a data declaration. It allows for
recursive and polymorphic declarations. A data type for a list could be recursively
defined as

data AList a = Empty
| Cons a (AList a)

The declaration has two data constructors. The data constructor Empty constructs
the empty list and Cons constructs a list by adding a value of type a to a list. Thus
Cons 1 (Cons 2 (Cons 3 Empty)) constructs a list of numbers. The term type
constructor denotes a constructor that yields a type. In this case AList is a type
constructor. As mentioned before, the list data type is predefined in Haskell. Here
[] corresponds to Empty and : to Cons. [a] corresponds to AList a. The ForSyDe
Signal is defined in the same way as the data type AList, see Sect. 4.2.1.
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