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Abstract

Computations in hardware/software systems are inherently performed concur-
rently. Hence, modeling hardware/software systems requires notions of con-
currency. Data-flow models have been and are still successfully applied in
the modeling of hardware/software systems. In this chapter, we motivate and
introduce the usage of data-flow models. Moreover, we discuss the expressive-
ness and analyzability of different data-flow Models of Computation (MoCs).
Subsequently, we present SysteMoC, an approach supporting many data-flow
MoCs based on the system description language SystemC. Besides specifying
data-flow models, SystemMoC also permits the automatic classification of each
different part of an application modeled in SysteMoC into a least expressive but
most analyzable MoC. This classification is the key to further optimization in
later design stages of hardware/software systems such as exploration of design
alternatives as well as automatic code generation and hardware synthesis. Such
optimization and refinement steps are employed as part of the SYSTEMCODE-
SIGNER design flow that uses SysteMoC as its input language.
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Acronyms

BDF Boolean Data Flow
CIC Common Intermediate Code
CPU Central Processing Unit
CSDF Cyclo-Static Data Flow
DDF Dennis Data Flow
DFG Data-Flow Graph
DSE Design Space Exploration
FIFO First-In First-Out
FSM Finite-State Machine
FunState Functions Driven by State Machines
HSCD Hardware/Software Codesign
HSDF Homogeneous (Synchronous) Data Flow
KPN Kahn Process Network
MoC Model of Computation
NDF Non-Determinate Data Flow
SDF Synchronous Data Flow
SysteMoC SystemC Models of Computation
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3.1 Introduction

Due to the rising capabilities of embedded systems, their complexity has also
increased tremendously. As a consequence, embedded systems are no longer
implemented on a single computational resource, but in the form of a com-
plex hardware/software system consisting of multiple connected heterogeneous
resources including processor cores, hardware accelerators, and complex commu-
nication infrastructure to connect all these components. Hence, languages used
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for implementing and modeling applications to be mapped to such embedded
systems need the ability to reflect and exploit the parallelism inherent in such target
architectures.

Although threads seem to be a small step from sequential computation, in fact, they
represent a huge step. They discard the most essential and appealing properties of sequential
computation: understandability, predictability, and determinism.

— From “The Problem with Threads,” by Edward A. Lee [27]

The above observation causes problems for the traditional implementation of
embedded systems via sequential programming languages, as these languages
typically handle concurrency only by using threads. Data flow, in contrast, is
a modeling paradigm well-suited for the modeling of concurrent systems by
concurrent actors that perform computation depending on the availability of tokens
carrying data transmitted between them via First-In First-Out (FIFO) channels.
Thus, data-flow models are particularly useful for modeling streaming applications
as commonly found in the multimedia or networking domain and, hence, are
a natural fit for modeling embedded systems, which should be implemented as
codesigned hardware/software systems.

Over the last decades, many data-flow Models of Computation (MoCs) have
been developed. They are usually classified according to their expressiveness, i.e.,
which kind of applications can be modeled by using a given data-flow MoC. It
can be observed that analyzability of data-flow MoCs is inversely related to their
expressiveness, i.e., there are problems which are decidable for less expressive
data-flow MoCs, but are not decidable for more expressive ones (see Fig. 3.1).
As analyzability of properties such as required bandwidth of channels, deadlock
freedom, or schedulability issues is very important in early design phases of an
embedded system, data-flow MoCs with a high analyzability are usually desirable.
For example, scheduling of actors on computational resources at compile time
(static scheduling) is usually preferred over scheduling at run time (dynamic
scheduling) in order to reduce the overhead incurred by the scheduling strategy.
However, static schedules can only be computed for data-flow MoCs with limited
expressiveness, as discussed below.

In Sect. 3.2, we give a survey and classify different data-flow models start-
ing with static data-flow models and subsequently increasing the expressiveness
of the models up to Non-Determinate Data Flow (NDF) [26]. Based on these
discussions, we will introduce the SystemC Models of Computation (SysteMoC)
modeling language [11,12] by example in Sect. 3.3. This language has strong formal
underpinnings in data-flow modeling, but with the distinction that the expressiveness
of the data-flow model used by an actor is not chosen in advance but determined
from the implementation of the actor [12, 45]. Later on, in Sect. 3.4, we will
provide a definition of the formal semantics of the language. To support modeling
of even very complex real-world applications, the SysteMoC language realizes
the NDF model. Nonetheless, to enable some SysteMoC applications to reap the
benefits of analyzability of less expressive MoCs, the SysteMoC language—in
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static data-flow MoCs dynamic data-flow MoCs
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Fig. 3.1 Depicted above is a hierarchy [40] of various data-flow MoCs. The hierarchy is
partitioned into static (light blue) data-flow MoCs and dynamic (light red) data-flow MoCs. A
detailed explanation of the three static data-flow MoCs Homogeneous (Synchronous) Data Flow
(HSDF), Synchronous Data Flow (SDF), and Cyclo-Static Data Flow (CSDF) that are well known
from literature will be given in Sect. 3.2.2. Moreover, the dynamic data-flow MoCs Boolean Data
Flow (BDF), Dennis Data Flow (DDF), Kahn Process Networks (KPNs), and Non-Determinate
Data Flow (NDF) will be discussed in Sect. 3.2.3

contrast to general design languages such as SystemC—enforces a distinction
between communication and computation of an actor. In Sect. 3.5, it will be shown
how this distinction between communication and computation can be exploited
in order to classify a SysteMoC actor into one of the static data-flow models
(light blue in Fig. 3.1) in the hierarchy of data-flow model expressiveness. Hence,
if the high expressiveness of SysteMoC is not used by a SysteMoC actor, then
analysis techniques may detect this and classify the actor into a data-flow model
of lower expressiveness but higher analyzability. The classification provides only
a sufficient criterion if a general SysteMoC actor conforms to one of the static
data-flow models. This limitation stems from the fact that the problem in general is
undecidable. The chapter concludes with an overview of the SYSTEMCODESIGNER,
a codesign framework based on SysteMoC as its design language. Here, we will
give examples how SysteMoC may not only be used to integrate with Design Space
Exploration (DSE) (More details on the DSE part within SYSTEMCODESIGNER can
be found in �Chap. 7, “Hybrid Optimization Techniques for System-Level Design
Space Exploration”.), but also subsequent hardware/software code generation in the
refinement to its final implementation.

3.2 Overview of Basic Data-Flow Models

Data flow is a modeling paradigm well-suited for the modeling of concurrent
systems by concurrently executing actors. Thus, data flow is a natural fit for
the modeling of embedded hardware/software systems where the interaction and
execution (control) of its functions is ruled by the availability of data. In the case
of control-dominated systems, the synchronous approach presented in �Chap. 2,
“Quartz: A Synchronous Language for Model-Based Design of Reactive Embedded
Systems” is more convenient for their modeling. In the following, a general

http://dx.doi.org/10.1007/978-94-017-7267-9_8
http://dx.doi.org/10.1007/978-94-017-7267-9_3
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introduction to data flow is given in Sect. 3.2.1. Moreover, the trade-off between
analyzability and expressiveness of these MoCs will be discussed. Data-flow models
can be classified into static data-flow models, known for their high analyzability
but low expressiveness, and dynamic data-flow models, known for their high
expressiveness but low analyzability. Next, three important static data-flow models
HSDF [6], SDF [28], and CSDF [3] known from literature will be recapitulated
in Sect. 3.2.2. Finally, in Sect. 3.2.3, dynamic data-flow models such as KPNs [24] as
well as usual realizations of them in the form of DDF [7] and BDF [5] are discussed.

3.2.1 Data Flow

A Data-Flow Graph (DFG) [24] is a graph consisting of vertices called actors and
directed edges called channels. Whereas actors are used to model functionality, thus
computations to be executed, channels represent data communication and storage
requiring memory for their implementation. If not otherwise stated, channel memory
is conceptually considered to be unbounded, thus representing a possibly infinite
amount of storage. Moreover, the computation of an actor is usually [7] separated
into distinct steps. These steps are called actor firings. An actor firing is an atomic
computation step that consumes a number of data items called tokens from each
incoming channel and produces a number of tokens on each outgoing channel. More
formally, a DFG is defined as follows:

Definition 1 (Data-Flow Graph). A DFG is a directed graph g D .A; C /, where
the set of vertices A represents the set of actors and the set of edges C � A � A

represents the set of channels. Additionally, a delay function delay W C ! V �

is given. (The “*”-operator is used to denote Kleene closure of a value set. It
generates the set of all possible finite and infinite sequences of values from the
value set, that is X� D [n 2 N0 W Xn. N0 denotes the set of non-negative integers,
that is f 0; 1; 2; : : : g.) It assigns to each channel .asrc; asnk/ D c 2 C a (possibly
empty) sequence of initial tokens. (In some data-flow models that abstract from
token values, the delay function may only return a non-negative integer that denotes
the number of initial tokens on the channel. In such a context, the number of initial
tokens may also be called the delay of a channel.) The set V is the set of data values
which can be carried by a token. Finally, a channel capacity can be stated via the
channel capacity function size W C ! N0 that denotes the maximal number of
tokens a channel can store.

An example of a very simple DFG according to Definition 1 is depicted in
Fig. 3.2. It consists of two actors a1 and a2 which are connected by a channel c1.
A channel has, if not otherwise stated, an infinite channel capacity, i.e., it can store
an infinite number of tokens that are in transit between the two actors connected
by the channel. For notational convenience, the src and snk functions are used to
refer, respectively, to the source actor, e.g., src.c1/ D a1, and the sink actor, e.g.,
snk.c1/ D a2, of a channel.
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Fig. 3.2 A DFG consisting of a single channel communicating data produced by actor a1 and
consumed by actor a2. (a) Initial state of the DFG g. (b) Token production by actor a1. (c) Token
consumption by actor a2. (d) Initial state is again reached after consumption of the token. (e) After
production of a second token by actor a1. (f) Production of a third token by a1 while actor a2 is
consuming the second token

The channel c1 enables a transmission of data values �1; �2; �3; : : : from a1 to
a2. Each data value is carried by a token. For data-flow models, a token represents
the atomic unit of data production and consumption. Tokens are generally queued
(as exemplified in Fig. 3.2b, e, f) and de-queued (Fig. 3.2c, f) on a channel in FIFO
order. Between Fig. 3.2a, b, an actor firing of actor a1 has occurred, producing a
token with value �1. Next, in Fig. 3.2c, the first actor firing of actor a2 consumes the
token and its contained data value �1. The state of a DFG is given by the number
and values of tokens on each channel as well as, possibly, the internal states of all
actors. For analysis purposes of static data-flow models, the values of these tokens
as well as the internal state of all actors may be ignored. Hence, a state equivalent
to the initial state is again reached in Fig. 3.2d. The significance of this observation
will be discussed in more detail in Sect. 3.2.2.1.

In Fig. 3.2d–f, another two tokens (�2 and �3) are produced by actor a1 and the
second token (�2) is in the process of being consumed by actor a2. A resulting
next state of the DFG after the second firing of actor a2 is not depicted in
Fig. 3.2, but consists of the DFG where only the token with value �3 remains on
the channel.

An actor is fireable (also called enabled) if and only if all the tokens the next
actor firing will consume are present on the input channels of the actor, e.g., the
actor a2 is enabled in Fig. 3.2b, c, e, f as a token, which is the only token that will
be consumed by a firing of a2, is present on the channel.

The literature on data-flow MoCs is very broad. Indeed, decades of research
[1, 3, 5–7, 11–14, 16–19, 21, 22, 24, 28, 29, 31, 33, 34, 41, 45] into its applications
have led to a multitude of different data-flow models. All of them make different
trade-offs between their expressiveness and their analyzability, e.g., with respect to
deadlock freedom, the ability to be executed in bounded memory, or the possibility
to be scheduled at compile time. In the following, the most important data-flow
MoCs are briefly reviewed, starting with those data-flow models with the least
expressiveness.
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3.2.2 Static Data Flow

Of primary interest for the expressiveness of a data-flow model are production and
consumption rates. The production rate (prod.c/) of an actor firing to a connected
channel c is the number of tokens which are produced by that actor on the channel
while firing. Consider Fig. 3.2b as an example where the first firing of actor a1

produces one token onto channel c1. Therefore, the production rate of the first
firing of actor a1 to channel c1 is one. The consumption rate (cons.c/) is defined
analogously, e.g., Fig. 3.2c depicts a situation where the first firing of actor a2

consumes one token from channel c1. Thus, the consumption rate of the first firing
of actor a2 from channel c1 is one. That is, the consumption rate of an actor firing
from a connected channel is the number of tokens which are consumed by that actor
from the channel while firing.

Now, an actor is called a static data-flow actor if its production and consumption
rates are (1) not dependent on the values of the tokens which are consumed by
the actor, (2) not dependent on the points in time at which tokens arrive on the
input channels or free places become available at the output channels, and (3)
not dependent on some random process. Thus, the communication behavior of a
static actor can be fully predicted at compile time. The consumption and production
rates of an actor are even further constrained in well-known static data-flow models,
which are presented in the following.

3.2.2.1 Homogeneous Data Flow
The simplest data-flow model is Homogeneous (Synchronous) Data Flow (HSDF).
(Note that the term synchronous in the name of two data-flow MoCs introduced
in this chapter was coined in the original paper [29], but is, unfortunately, totally
independent from the semantics of the term as used for synchronous languages that
were introduced in �Chap. 2, “Quartz: A Synchronous Language for Model-Based
Design of Reactive Embedded Systems”.) Data-flow graphs corresponding to
this data-flow model are also known as marked graphs [6] in literature. The
communication behavior of HSDF actors is constrained in such a way that each
actor firing must produce and consume exactly one token on, respectively, each
outgoing and incoming channel, i.e., 8c 2 C W cons.c/ D prod.c/ D 1. Due to
the low modeling power of the HSDF model, it is also highly analyzable; e.g., if
each actor in an HSDF has fired exactly once, then the graph will be back to its
initial state. If we assume that the DFG depicted in Fig. 3.2 is an HSDF graph, then
firing actors a1 and a2 both once will transmit one token (�1) over the channel and
lead back to the initial state (shown in Fig. 3.2a–d) where no token is present on the
channel. These two actor firings ha1; a2i realize a so-called iteration of the graph. It
is proven in [6] that an HSDF graph has such an iteration if and only if each directed
cycle of the graph contains at least one initial token. Briefly, a deadlock results in
case there exists a cycle without any initial tokens in the graph because each actor
that is part of this cycle can never fire as it awaits the production of a token by its
predecessor actor in the cycle.

http://dx.doi.org/10.1007/978-94-017-7267-9_3
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Fig. 3.3 Example of a Synchronous Data Flow graph and a sequence of actor firings realizing the
iteration of the graph. (a) Initial state of the SDF graph. (b) After firing of actor a3. (c) After firing
of actor a1. (d) After firing of actor a2. (e) After firing of actor a2. (f) After firing of actor a3 (The
next firing of actor a2 will lead back to the initial state)

3.2.2.2 Synchronous Data Flow
In the Synchronous Data Flow (SDF) [29] MoC, the communication behavior of the
actors is constrained to have consumption and production rates being constant for
all firings of an actor. Moreover, consumption and production rates for all connected
channels are assumed to be arbitrary positive integer constants. Therefore, in SDF,
the consumption and production rates can be expressed by the consumption rate
function cons W C ! N and the production rate function prod W C ! N that
specify for each channel c 2 C , respectively, the number of consumed tokens from
the channel by an actor firing of the actor snk.c/ and the number of produced tokens
onto the channel by an actor firing of the actor src.c/. (The symbol N is used to
denote the set of natural numbers, that is the set f 1; 2; 3; : : : g.)

In visual representations of SDF graphs, as usual, the consumption and produc-
tion rates are annotated at the beginnings and endings of the channel edges. An
example of an SDF graph is depicted in Fig. 3.3a. Consumption and production
rates of one, e.g., cons.c1/ D 1, are traditionally not annotated to reduce clutter.

The question arises which conditions are necessary and sufficient for the
existence of an iteration of a SDF graph. It is proven in [28] that such an iteration
can be determined by balance equations. Each balance equation corresponds to
one channel in the SDF graph. The balance equation for a channel c is given
as: �src.c/ � prod.c/ D �snk.c/ � cons.c/, where the variable �src.c/ denotes the
number of actor firings of the actor producing tokens onto channel c while �snk.c/

denotes the number of actor firings of the actor consuming tokens from channel
c. Given prod.c/ and cons.c/, the left and right sides of the equation denote the
number of tokens that have been produced and consumed by the �src.c/ source actor
and �snk.c/ sink actor firings, respectively. For the graph depicted in Fig. 3.3a, the
balance equations corresponding to the three channels c1 to c3 of the graphs are
as follows:

�a1 � 3 D �a2 � 1 �a2 � 2 D �a3 � 3 �a3 � 3 D �a2 � 2 (3.1)
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For an iteration, both sides of the equation must balance, otherwise an iteration
would not bring the graph into the same state as it has started from. Hence, a solution
besides the trivial zero solution is a necessary condition [28] for the existence of an
iteration. If there exists such a solution for a static DFG, then this graph is called
consistent.

In Equation (3.1), the number of firings for the actors a1 to a3 are given by �a1

to �a3 , respectively. Using the convention established in [2], the minimum positive
integer solution to the set of balance equations, e.g., �rep D .�a1 ; �a2 ; �a3/ D

.1; 3; 2/, is called the repetition vector �rep of an SDF graph. The length of
this iteration is determined by summing all the entries of the repetition vector,
e.g., for the SDF graph in Fig. 3.3a, the iteration can be realized by a sequence
ha3; a1; a2; a2; a3; a2i of �a1 C �a2 C �a3 D 6 actor firings as shown in Fig. 3.3a–f.

However, the existence of a repetition vector does not guarantee that a sequence
of actor firings can be found that realizes the iteration. To exemplify, the four initial
tokens of the SDF graph depicted in Fig. 3.3a are removed. This does not change
the calculation or existence of the repetition vector of the SDF graph. However,
without any initial tokens, neither actor a2 nor actor a3 can ever be fired. In general,
a necessary and sufficient criterion of the existence of the iteration is to test whether
a computed repetition vector may also execute as an iterative deadlock-free schedule
by firing each fireable actor as many times as implied by the repetition vector until
the iteration is finished or a deadlock has occurred. Note that in the general case, the
length of the iteration may be exponential in the size of the SDF graph. Hence, in
contrast to HSDF models, where the question of the existence of an iteration can be
answered in polynomial time [20], the problem is only solvable in exponential time
for SDF graphs [32].

3.2.2.3 Cyclo-Static Data Flow
An extension of the SDF model is Cyclo-Static Data Flow (CSDF). In the CSDF [3]
MoC, the communication behavior of an actor is extended to allow for cyclically
varying consumption and production rates between actor firings. The length of this
cycle is known as the number � of phases of a CSDF actor. An actor firing of a
CSDF actor is also known as a CSDF phase. To accommodate the cyclically varying
consumption and production rates, the consumption and production rate functions
have to be extended to return vectors of length � (the number of phases of the CSDF
actor consuming or producing tokens), i.e., the functions cons W C ! N

�
0 and

prod W C ! N
�
0 specify for each channel c 2 C a vector .n0; n1; : : : ; n��1/ where

each vector entry corresponds to the consumption or production rate of the CSDF
actor in the corresponding phase.

The question whether there exists an iteration can again be answered by solving
the appropriate balance equations—answering the question of the consistency of
the CSDF graph—and if the graph is consistent by testing whether the computed
repetition vector may also execute as an iterative deadlock-free schedule. For the
purpose of calculating the repetition vector, all CSDF actors can be replaced by
SDF actors with consumption and production rates derived by summing all rates in
the corresponding vectors of consumption and production rates of the CSDF actors.
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Hence, the balance equation for a channel c from actor asrc to actor asnk with the
respective production and consumption rates prod.c/ D .n0; n1; : : : n�src�1/ and
cons.c/ D .m0; m1; : : : m�snk�1/ is as follows:

�asrc

�src
� .n0 C n1 C : : : C n�src�1/ D

�asnk

�snk
� .m0 C m1 C : : : C m�snk�1/

As is the case for SDF models, the smallest positive integer solution of the balance
equations uniquely determines the (minimal) repetition vector of the CSDF graph.
Finally, the existence of a valid iteration corresponding to the repetition vector needs
to be verified as—like in SDF—the existence of the repetition vector is only a
necessary but not sufficient criterion for the existence of the iteration.

3.2.3 Dynamic Data Flow

In contrast to static data-flow models, where the consumption and production rates
cannot be influenced by the values of the consumed tokens, dynamic data-flow
actors can vary their consumption and production rates depending on the history of
the consumed tokens and also on the tokens to be consumed. Dynamic data flow
is the first introduced data-flow model where consumption and production rates
depend on the data values being consumed and produced.

3.2.3.1 Boolean Data Flow
Boolean Data Flow (BDF) [5] can be seen as an extension of the class of static data-
flow models by introducing two dynamic actor types, the switch actor and the select
actor. In the following, the notion of ports will be used interchangeably with the
channels connected to these ports. Hence, expressions like cons.i/ and prod.o/ are
used to refer to the consumption rate and production rate on the channel connected
to the respective input or output port. This enables us to depict an actor and show its
implementation in isolation, e.g., as has been used in Fig. 3.4.

Input ports of actor
a b

aswt

Output ports of actoraswt

aswti1

ot

of

ictrl

Input ports of actor asel

Output port of actorasel

aselif

it o1

ictrl

Fig. 3.4 Shown here are the BDF switch and select actors with their corresponding input and
output ports. The color scheme chosen to distinguish static and dynamic actors has been selected
according to the colors marking static and dynamic MoCs in Fig. 3.1. (a) Depiction of the switch
actor aswt in isolation. (b) Depiction of the select actor asel in isolation
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Moreover, let t (true) and f (false) denote the Boolean truth values. The switch
actor, depending on the truth value of a control token (see Fig. 3.4a) from its control
input port ictrl, forwards a token from its input port i1 to either its true (ot) or its false
(of) output port. The select actor acts in the opposite way, i.e., depending on the truth
value of a control token (see Fig. 3.4b) from its control input port ictrl, it forwards a
token from either its true (it) or its false (if) input port to its output port o1.

The usage of these two dynamic actor types together with the arithmetic
primitives enable the construction of arbitrary control flow structures. The channels
(of infinite capacity) can be used to represent an infinite memory. Simple arithmetic
operations are supported by BDF via its ability to model static actors, e.g., like
an SDF actor implementing an addition. Together with the control flow logic, a
Turing machine can be implemented by the BDF model [5]. Hence, the existence
of iterations or the problem of execution in bounded memory is in general already
undecidable for BDF graphs.

3.2.3.2 Dennis Data Flow
Dennis Data Flow (DDF) [7] is an extension of BDF by allowing all dynamic actors
that are realizable by using (blocking) read and (blocking) write communication
primitives. Code inside DDF actors is assumed to be executed sequentially, e.g., as
seen in Fig. 3.5b, c. A blocking read or write primitive is used to receive (see Lines 3
to 4) or transmit (see Lines 5 to 6) one data value on an input or output channel,
respectively. Once a blocking read or write primitive is invoked, the execution of the
actor will block until the data value has been successfully received or transmitted.
Hence, at most one blocking read or write primitive can be active at one point in
time.

All MoCs more general than BDF according to Fig. 3.1 are Turing complete.
However, one aspect of difference is the modeling power of a single actor. An

i1

o2

o1

i2

o1

o2i2

i1

i1

i2

o1

o2

c2c1

a1

a2

gγγγ

A data-flow subgraph
consisting of two HSDF
actors

1: procedure a1
2: while t do
3: n1 ← read(a1.i1)
4: n2 ← read(a1.i2)
5: write(a1.o1,n1)
6: write(a1.o2,n2)
7: end while
8: end procedure

Implementation of the
HSDF actor a1 via the
read and write operations
provided by DDF

a b c
1: procedure a2
2: while t do
3: ν1 ← read(a2.i1)
4: ν2 ← read(a2.i2)
5: write(a2.o1,n1)
6: write(a2.o2,n2)
7: end while
8: end procedure

Implementation of the
HSDF actor a2 via the
read and write operations
provided by DDF

Fig. 3.5 Depicted above (see (a)) is the subgraph g� that can be connected with input and output
ports i1, i2, o1, and o2 to an unspecified environment. The subgraph consists of two DDF actors a1

(see (b)) and a2 (see (c)) that both implement a communication behavior that corresponds to the
HSDF MoC
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important question here is whether it is possible to take an arbitrary connected
subgraph of a DFG, e.g., the one shown in Fig. 3.5a, and represent it as an actor
in the data-flow model. This property is called compositionality of the MoC. If a
data-flow model is compositional, then the highly desirable operation of abstraction
becomes seamlessly possible. An abstraction operation can be performed by hiding
the implementation complexity of an arbitrary connected subgraph of the model
behind the interface of an actor. If the data-flow model is compositional, then this
composite actor, which represents the subgraph, can be handled like any other actor
in the system. Otherwise, the composite actor, e.g., the actor a� that represents the
subgraph g� , is always an exception and needs special treatment.

To exemplify, we consider the question of the least expressive MoC required to
express the composite actor a� for the subgraph g� . All HSDF actors can also be
represented by DDF actors, e.g., as shown in Fig. 3.5b, c for the actors a1 and a2

of the subgraph g� . In contrast, due to the constraint that DDF actors can only use
(blocking) read to access data from their input ports, there is no composite actor
a� that corresponds to the DDF MoC. Here, the problematic situation is that the
composite actor a� has to first produce a token on either output port o1 or output
port o2 depending on whether a token arrives first at either input port i1 or input port
i2, respectively. However, due to the (blocking) read semantics of DDF, there is no
possibility to detect on which input port a token arrives first. Once an input port has
been chosen for a read access, the DDF actor cannot process any tokens from any
other input port until a token has been successfully read.

Moreover, as the MoCs HSDF, SDF, CSDF, and BDF are all less expressive
than DDF, there is also no composite actor a� that corresponds to one of these less
expressive MoCs. Hence, as the actors a1 and a2 are of the least expressive MoC
HSDF and the composite actor cannot be expressed via the DDF MoC, all MoCs up
to and including DDF are non-compositional. In contrast, as will be shown in the
next section, the composite actor a� can be expressed as the Kahn function �a�

.
One could argue that the expressiveness of a DDF actor is not a proper superset

of the expressiveness of an HSDF actor due to the issue of atomicity in the
consumption and production of tokens that is implied by the notion of firing
of an HSDF actor. In contrast, read or write communication primitives used by
DDF actors consume or produce tokens in isolation, thus allowing the firing of
other actors to interrupt a sequence of read or write communication primitives
in the DDF actor. However, if we consider DFGs containing only actors of the
expressiveness KPN and below, then the issue of atomicity is not a relevant criterion
for the functionality of a DFG due to the sequence determinate [30] nature of such
DFGs. Briefly, if a DFG is sequence determinate, then the behavior of the DFG is
independent from the sequence of actor firings that are taken to schedule the graph.
Thus, if a sequence of read or write communication primitives is interrupted by other
actor firings or not does not influence the functionality of the DFG. In conclusion,
the issue of atomicity is not relevant for the proof of non-compositionality of MoCs
DDF and below.

If atomicity should also be considered in the hierarchy of data-flow model
expressiveness, then the semantics of DDF must be extended to allow grouping of
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sequences of read or write communication primitives to be executed atomically or
not at all. Unsurprisingly, such an extension of the semantics of DDF still does not
allow a DDF actor to model the data-flow subgraph g� from Fig. 3.5a.

3.2.3.3 Kahn Process Networks
Kahn Process Networks (KPNs) are one of the oldest data-flow MoCs. The original
paper [24] of Kahn used a denotational semantics to describe the behavior of a KPN
actor. In this denotational semantics, an actor a is described by a Kahn function �a.
To exemplify, the two (identical) HSDF actors a1 and a2 in Fig. 3.5a are represented
by the two (identical) Kahn functions �a1 and �a2 given in Equation (3.2).

�a1.sx; sy/ D �a2.sx; sy/ D

(
.hi; hi/ if #sx D 0 _ #sy D 0

.hhd.sx/i; hhd.sy/i/
�!a �a1.tl.sx/; tl.sy// otherwise

(3.2)

Here, a so-called signal s 2 S � V � is (a possibly infinite) sequence of values
carried by the tokens being transported over a channel, e.g., h5; 8; 7i for a sequence
of three values. The length of a signal, i.e., the number of values contained in it, will
be denoted by the #s notation, e.g., #h5; 8; 7i D 3. The hd.s/ and the tl.s/ notations
are used to access the head of a sequence and, respectively, the tail of a sequence,
i.e., the sequence without its head.

Considering Equation (3.2), we see that the Kahn function returns a tuple of
empty sequences .hi; hi/ if at least one of the input signals sx or sy is empty, i.e.,
their length is zero. Otherwise, the Kahn function is called recursively with the tails
of both input sequences, i.e., �a1.tl.sx/; tl.sy//, and the result of this computation is
concatenated to the tuple of single value sequences containing the head of both input
sequences, i.e., .hhd.sx/i; hhd.sy/i/. To demonstrate, we perform the following
Kahn function application:

�a1.h5; 8; 7i; h9; 8i/ D .hhd.h5; 8; 7i/i; hhd.h9; 8i/i/
�!

a �a1.tl.h5; 8; 7i/; tl.h9; 8i//

D .h5i; h9i/
�!

a �a1.h8; 7i; h8i/ D .h5i; h9i/
�!

a .h8i; h8i/
�!

a �a1.h7i; hi/

D .h5i; h9i/
�!

a .h8i; h8i/
�!

a .hi; hi/ D .h5iah8iahi; h9iah8iahi/

D .h5; 8i; h9; 8i/

Here, the “a”-operator is used to concatenate two sequences, and the “
�!a ”-operator

is applied to tuples of signals by pointwise extension of the “a”-operator.
In general, a Kahn function �a W Sn ! Sm transforms n value sequences on its

n input ports to m value sequences on its m output ports. All Kahn functions are
required [30] to be Scott-continuous. In practice, this means that appending values
to the input sequences of the Kahn function can only result in appending values to
the resulting output sequences, i.e., if �a.si1 ; si2 ; : : : sin / D .so1 ; so2 ; : : : som/, then
�a.sa

i1
s0i1 ; sa

i2
s0i2 ; : : : sa

in
s0in / D .sa

o1
s0o1

; sa
o2

s0o2
; : : : sa

om
s0om

/.
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Fig. 3.6 Above (see (a)), the subgraph g� from Fig. 3.5 is depicted with the corresponding
annotations to express it as a partial KPN. Moreover, in (b) and (c) the internal states encountered
in the application of Kahn function �a�

are illustrated

The behavior of a KPN is given by the least fixed point of an equation
system that represents the connections of these actors to each other, e.g., as given
in Equations (3.3) and (3.4) for the topology shown in Fig. 3.6a. The connection
between actors a1 and a2 is provided by the signal sc1 (see Equation (3.3)) produced
by actor a1 and the signal sc2 (see Equation (3.4)) produced by actor a2. The
initial tokens �ini1 and �ini2 on the channels c1 and c2 connecting these two actors
are modeled by prepending the corresponding initial token value in front of the
corresponding signal, e.g., h�ini1iasc1 prepends the value �ini1 in front of the values
carried by the signal sc1 .

.so1 ; sc1/ D �a1.si1 ; h�ini2iasc2/ (3.3)

.so2 ; sc2/ D �a2.si2 ; h�ini1iasc1/ (3.4)

It turns out that such an equation system, e.g., Equations (3.2), (3.3), and (3.4),
has a least fixed point for any input signal [30], and the function mapping the
input signal to the corresponding fixed point solution of the equation system again
represents a Kahn function. In that sense, the KPN model—in contrast to DDF
and all MoCs of lower expressive power—is compositional. Another important
characteristic emerges from this fact. The behavior of a KPN model and all MoCs of
lower expressive power, be it a complete graph or a subgraph, is independent from
the scheduling of actors, which is given by the operational implementation. Such
data-flow models are called sequence determinate [30]. However, due to the non-
compositionality of DDF, the resulting Kahn function is not generally representable
via the operational semantics of DDF.

To exemplify, the Kahn function �a�
—that is, the expression of the com-

posite actor a� as a Kahn function—for the least fixed point of the Equa-
tions (3.2), (3.3), and (3.4) is given below. This function is defined via the main
Kahn function �a�

(given in Equation (3.5)) and the two helper functions �h1 and
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�h2 (given in Equations (3.6) and (3.7)) that recursively call each other. The main
Kahn function �a�

is active in the state shown in Fig. 3.6a and can call either helper
function �h1 or �h2 depending on whether a token is present at the head of either
the input signal si1 or the input signal si2 , respectively. This will lead to the states
depicted in Fig. 3.6b, c. From these states, via a call to the main Kahn function �a�

,
a transition back to the start state is performed if a token is present at the head of
input signal si2 (for helper function �h1) or input signal si1 (for helper function �h2).

�a�
.si1 ; si2 / D

8̂<
:̂

.hhd.si1 /i; hi/
�!a �h1.tl.si1 /; si2 / if #si1 � 1

.hi; hhd.si2/i/
�!a �h2.si1 ; tl.si2// if #si2 � 1

.hi; hi/ otherwise

(3.5)

where �h1.si1 ; si2 / D

(
.hi; hhd.si2 /i/

�!a �a�
.si1 ; tl.si2// if #si2 � 1

.hi; hi/ otherwise
(3.6)

where �h2.si1 ; si2 / D

(
.hhd.si1/i; hi/

�!a �a�
.tl.si1 /; si2 / if #si1 � 1

.hi; hi/ otherwise
(3.7)

Data-flow models with higher expressiveness are of the Non-Determinate Data
Flow (NDF) MoC. This model as well as all previously discussed data-flow MoCs
may be specified in the SystemC-based actor-oriented language SysteMoC that will
be introduced in the next section.

3.3 Informal Introduction to SysteMoC

In this section, the SysteMoC modeling language [11, 12], a class library based
on SystemC, will be presented. In SysteMoC parlance, data-flow graphs are called
network graphs. As a running example, a network graph (see Fig. 3.7) of an
application implementing Newton’s iterative square root algorithm will be used
throughout this section. Network graphs are very similar to DFGs as introduced
in Definition 1, but are bipartite graphs consisting of channels c 2 C and actors
a 2 A. These vertices are connected via point-to-point connections between a
channel and either an actor input or an output port. This acknowledges the fact
that actors and channels must both be realized by some kind of resource and,
hence, during DSE [25] a binding of vertices to resources of an architecture has
to be explored. The network graph gsqr implements Newton’s iterative algorithm
for calculating the square roots of an infinite input sequence generated by the Src
actor a1. Here, the square root values are computed by Newton’s iterative algorithm
realized via the SqrLoop actor a2 performing error bound checking and the actors
a3 - a4 performing an approximation step. After satisfying the error bound, the result
is transported to the Sink actor a5.

In the following, we will learn how to realize a network graph by instantiating
actors and FIFO channels as well as connecting these FIFO channels with the ports
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Fig. 3.7 The network graph gsqr [10] displayed above implements Newton’s iterative algorithm
for calculating square roots. Actors are bordered dark blue and shaded according to their MoC
(see Fig. 3.1 on page 62), while channels are depicted in green

of the actors. Next, in Sect. 3.3.2, we will study how to write the actor classes that
are instantiated in the previous step. Finally, in Sect. 3.3.3, it will be shown how to
specify the consumption and production rates exhibited by these actors via usage of
so-called actor Finite-State Machines (FSMs).

3.3.1 Specification of the Network Graph

SysteMoC is an open source C++ class library. Hence, all components mentioned in
the previous section are represented by C++ classes. As an example, we will specify
the SqrRoot C++ class that corresponds to the gsqr DFG from Fig. 3.7 in Listing 1.
All C++ classes representing DFGs must be derived from the smoc_graph base
class provided by the SysteMoC library, e.g., as is shown in Line 1. All actors of
a DFG must be instantiated in the constructor of the corresponding class, e.g., the
lines colored dark blue as is shown in Lines 3 to 7 declaring the actor member
variables that are instantiated in the constructor in Line 11. Subsequently, in the
body of the constructor, e.g., Lines 12 to 20, which are colored green, the FIFO
channels c1; c2 : : : c6 are connected to the input and output ports of these actors via
the connectNodePorts method of SysteMoC.

In the simplest case (Lines 12 to 15), the connectNodePorts method takes
two arguments: the output port o, from where the channel starts, and the input
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Listing 1 Corresponding SqrRoot [10] class for the network graph gsqr

1 class SqrRoot: public smoc_graph {
2 protected:
3 Src a1 ;
4 SqrLoop a2 ;
5 Approx a3 ;
6 Dup a4 ;
7 Sink a5 ;
8 public:
9 SqrRoot(sc_module_name name)

10 : smoc_graph(name),
11 a1 ( "a1" ) , a2 ( "a2" ) , a3 ( "a3" ) , a4 ( "a4" ) , a5 ( "a5" ) {
12 connectNodePorts ( a1 . o1 , a2 . i 1 ) ; // c1

13 connectNodePorts ( a2 . o1 , a3 . i 1 ) ; // c2

14 connectNodePorts ( a2 . o2 , a5 . i 1 ) ; // c6

15 connectNodePorts ( a4 . o2 , a2 . i 2 ) ; // c5

16 connectNodePorts ( a3 . o1 , a4 . i1 , // c4

17 smoc_fifo<double> ( 2 ) ) ; // size.c4/ D 2

18 connectNodePorts ( a4 . o1 , a3 . i2 , // c3

19 smoc_fifo<double> ( 3 ) // size.c3/ D 3

20 << 2 . 0 ) ; // delay.c3/ D h2:0i
21 }
22 };

port i , which is the destination of the channel. However, it is also possible to
explicitly parameterize the created channel c with its channel capacity of size.c/

tokens and a sequence of initial tokens delay.c/. To exemplify, consider Lines 17
and 19, where a third parameter, the channel initializer smoc_fifo<T>(n)
« initial tokens: : :, is given to the method connectNodePorts. If no
channel initializer is given, then a FIFO channel with a channel capacity of one
token and without any initial tokens is created between the output port o and the
input port i . If a channel initializer is given, then it must be parameterized with the
data type T carried by the channel and the channel capacity n in units of tokens.
If initial tokens are required, these can be provided to the channel initializer via a
sequence of “«”-operators each followed by an initial token, e.g., « �1 « �2 « : : : �n.
Consider Line 17 as an example of how to specify a FIFO channel with a channel
capacity of two tokens. In this case, the channel initializer is parameterized with the
C++ double data type, denoting that the token values carried by the channel will
be of the C++ double data type. An example for providing an initial token is given
in Line 20, where the “«”-operator is used to provide the double value 2:0 as an
initial token for the created channel between the ports a4:o1 and a3:i2.

3.3.2 Specification of Actors

Each actor in SysteMoC is represented by a C++ class, e.g., the class SqrLoop
as defined in the following Listing 2 is representing the actor a2 shown in Fig. 3.7,
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that is derived from the smoc_actor base class (see Listing 2 Line 1) provided
by the SysteMoC library. The input and output ports of an actor are specified by
member variables of type smoc_port_in and smoc_port_out as exemplified
in Listing 2 Lines 3 and 4, respectively. (Standard SystemC FIFO ports could not be
used as the semantics of SysteMoC FIFOs extends standard FIFO semantics by the
concept of a random-access region as shown in Fig. 3.9.) Furthermore, actors can
have member variables, e.g., the variable v declared in Line 6. The functionality
of an actor is represented by methods of the class, e.g., for the SqrLoop actor,
the Lines 8 to 11 in Listing 2. Moreover, these methods are distinguished into
actions (colored cyan), which can modify member variables, and guards (colored
brown), which are declared as constmethods and, hence, are not allowed to update
the member variables. Later, in Sect. 3.3.3, it will be discussed how these action and
guard methods are used as part of the actor FSM.

The copyStore method is responsible for forwarding the input token value on
input port i1 to the output port o1 and storing the value into the member variable
v for later replication on the output port o1 by the method copyInput. This
replication is required if the achieved accuracy by one square root iteration step
by actor a3 is below the bound determined by the guard check. On the other hand,
if the approximation is within the error bound, then the action copyApprox is
executed to forward this approximation to the output port o2.

Note that actions themselves do not control token production or consumption, but
only read or write values of input or output tokens via the syntax i[n] and o[m]
that is used in Listing 2 and Fig. 3.9 to access the nth token relative to the read
pointer, respectively, the mth token relative to the write pointer of the ring buffer
(see Fig. 3.9) that realizes the channel that is connected to the corresponding port.
The communication behavior, i.e., token production and consumption, is controlled
solely by the actor FSM as will be detailed next.

Listing 2 SysteMoC implementation of the SqrLoop actor a2

1 class SqrLoop: public smoc_actor {
2 public:
3 smoc_port_in<double> i1 , i2;
4 smoc_port_out<double> o1 , o2;
5 private:
6 double v;
7
8 void copyStore ( ) { o1 [ 0 ] = v = i 1 [ 0 ] ; }
9 void copyInput ( ) { o1 [ 0 ] = v ; }

10 void copyApprox ( ) { o2 [ 0 ] = i 2 [ 0 ] ; }
11 bool check ( ) const {return fabs ( v�i 2 [0 ]� i 2 [ 0 ] ) < 0 . 0 1 ; }
12
13 smoc_firing_state start , loop;
14 public:
15 SqrLoop(sc_module_name name);
16 };
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Fig. 3.8 The SqrLoop
actor [10] from the network
graph shown in Fig. 3.7 is
composed of a set of input
ports I and a set of output
ports O , its functionality F ,
and its FSM R. The
functionality can be further
subdivided into actions
(colored cyan) and guards
(colored brown) as used by
the FSM
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3.3.3 Specification of the Communication Behavior

The communication behavior of an actor is separated strictly from the functional
behavior of the actor on purpose. The communication behavior describes how and
under what condition tokens are consumed and produced by an actor. In SysteMoC,
the abstraction is done by representation of the communication behavior of an actor
by its actor FSM, e.g., as seen in Fig. 3.8. More formally, a SysteMoC actor can be
defined as follows:

Definition 2 (Actor [11]). An actor is a tuple a D .I; O; F; R/ containing a set of
actor input ports I and actor output ports O , the actor functionality F D Faction [

Fguard partitioned into a set of actions and a set of guards, as well as the actor FSM
R that is determining the communication behavior of the actor.

To exemplify, the methods copyStore, copyInput, and copyApprox
(see Lines 8 to 10 in Listing 2) correspond to their respective actions, i.e., fcopyStore,
fcopyInput, fcopyApprox 2 Faction. Finally, the guard fcheck 2 Fguard is represented by
the const method check declared in Line 11.

For example, in state qstart, transition t1 may be taken if there exists at least one
token on input port i1 .#i1 � 1/ and at least one free place on the FIFO connected to
output port o1 .#o1 � 1/. Once this condition is fulfilled, t1 is taken and the action
fcopyStore executed. The transition or actor firing ends with the consumption of one
token from i1 and production of one token at the output port o1 with the value
computed according to the function fcopyStore shown in Listing 2. The actor FSM
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Listing 3 SysteMoC implementation of the SqrLoop actor a2

1 class SqrLoop: public smoc_actor {
2 ...
3 smoc_firing_state start , loop;
4 public:
5 SqrLoop(sc_module_name name)
6 : smoc_actor(name , start),
7 i1("i1"), i2("i2"), o1("o1"), o2("o2"),
8 start("start"), loop("loop")
9 {

10 start =
11 i 1 ( 1 ) >>
12 o1 ( 1 ) >>
13 SMOC_CALL ( SqrLoop : : copyStore ) >> loop
14 ;
15 loop =
16 ( i 2 ( 1 ) && SMOC_GUARD ( SqrLoop : : check ) ) >>
17 o2 ( 1 ) >>
18 SMOC_CALL ( SqrLoop : : copyApprox ) >> start
19 |
20 ( i 2 ( 1 ) && !SMOC_GUARD ( SqrLoop : : check ) ) >>
21 o1 ( 1 ) >>
22 SMOC_CALL ( SqrLoop : : copyInput ) >> loop
23 ;
24 }
25 };

of the SqrLoop actor as depicted in Fig. 3.8 is constructed by the code shown in
Listing 3 Lines 10 to 23.

The states Q of the actor FSM themselves are represented by member variables
of type smoc_firing_state, e.g., the state start and loop in Line 3, that is
Q D f qstart; qloop g. The initial state of the actor FSM is determined by providing
the base class smoc_actor with the corresponding state. For the SqrLoop actor,
the initial state q0 is set in Line 6 to qstart (start).

The syntax for naming SystemC and also SysteMoC entities is demonstrated in
Lines 7 and 8, where the actor input and output ports as well as the states of the
actor FSM are named, respectively. However, in the interest of conciseness, it will
be assumed that all SystemC/SysteMoC entities are named like their declarations in
the source code shown in the following examples, but this naming will not be shown
explicitly.

The transition t1 from qstart to qloop is given in Lines 11 to 13. Here, guards are
again colored brown while actions are colored cyan. In detail, we use the syntax
i(n) and o(m) to express the condition that at least n tokens, respectively, at
least m free places must be present on the channel connected to the input port
i and the channel connected to the output port o. Methods of the class used
as actions or guard functions must be marked via usage of the SMOC_CALL or
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SMOC_GUARD macros, respectively. Transitions t2 and t3 are defined accordingly
in Lines 16 to 18 and Lines 20 to 22. As can be seen, SysteMoC—in contrast to
KPN [24] and FunState (The model was initially published [42] as State Machine
Controlled Flow Diagrams (SCF), but in later literature it is referred to as FunState,
which is a short for Functions Driven by State Machines.) [41]—distinguishes its
functions further into actions faction 2 Faction and guards fguard 2 Fguard . To
exemplify, the SqrLoop actor depicted in Fig. 3.8 is considered. This actor has
three actions Faction D f fcopyStore; fcopyInput; fcopyApprox g and one guard function
Fguard D f fcheck g. Naturally, the guard fcheck is only used in a transition guard of
the FSM R while the actions of the FSM are drawn from the set of actions Faction.

In SysteMoC, each FSM state is defined explicitly by an assignment of a list of
outgoing transitions. To exemplify, the state qstart is defined in Listing 3 Line 10
by assigning transition t1 (Lines 11 to 13) to it. If a state has multiple outgoing
transitions, e.g., state qloop with the transitions t2 (Lines 16 to 18) and t3 (Lines 20
to 22), then the outgoing transitions are joined via the “|”-operator (Line 19) and
assigned to the state variable (Line 15).

3.4 Semantics and Execution Behavior of SysteMoC

More formally, an actor FSM resembles the FSM definition from FunState [41], but
with slightly different definitions for actions and guards and defined as follows:

Definition 3 (Actor FSM [11]). The FSM R of an actor a is a tuple .Q; q0; T /

containing a finite set of states Q, an initial state q0 2 Q, and a finite set of
transitions T . A transition t 2 T itself is a tuple .qsrc; k; faction; qdst/ containing the
source state qsrc 2 Q, from where the transition is originating, and the destination
state qdst 2 Q, which will become the next current state after the execution of the
transition starting from the current state qsrc. Furthermore, if the transition t is taken,
then an action faction from the set of functions of the actor functionality a:Faction

will be executed. (We use the “:”-operator, e.g., a:Faction, for member access of
tuples whose members have been explicitly named in their definition, e.g., member
Faction of the actor a from Definition 2.) Finally, the execution of the transition t

itself is guarded by the guard k.

A transition t will be called an outgoing transition of a state q if and only if
the state q is the source state t:qsrc of the transition. Correspondingly, a transition
will be called an incoming transition of a state q if and only if the state q is the
destination state t:qdst of the transition. Furthermore, a transition is enabled if and
only if its guard k evaluates to t and it is an outgoing transition of the current state
of the actor.

An actor is enabled if and only if it has at least one enabled transition. The
firing of an actor corresponds to a non-deterministic selection and execution of one
transition out of the set of enabled transitions of the actor. In general, if multiple
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actors have enabled transitions, then the transition, and hence its corresponding
actor, is chosen non-deterministically out of the set of all enabled transitions in all
actors. In summary, the execution of a SysteMoC model can be divided into three
phases:

• Determine the set of enabled transitions by checking each transition in each actor
of the model. If this set is empty, then the simulation of the model will terminate.

• Select a transition t from the set of enabled transitions, and fire the corresponding
actor by executing the selected transition t , thus computing the associated action
faction.

• Subsequently, consume and produce tokens as encoded in the selected transition
t . This might enable new transitions. Go back to the first step.

In contrast to FunState [41], a guard k is more structured. Moreover, it is
partitioned into the following three components:

• The input guard which encodes a conjunction of input predicates on the
number of available tokens on the input ports, e.g., #i1 � 1 denotes an input
predicate that tests if at least one token is available at the actor input port i1.
Hence, consumption rates can be associated with each transition by the cons W

.T �I / ! N0 function that determines for each transition and input port/channel
combination the number of tokens that have to be at least present to enable the
transition.

• The output guard which encodes a conjunction of output predicates on the
number of free places on the output ports, e.g., #o1 � 1 denotes an output
predicate that tests if at least one free place is available at the actor output
port o1. Thus, production rates can be associated with each transition by the
prod W .T � O/ ! N0 function that specifies for each transition and output
port/channel combination the number of free places that must be at least available
to enable the transition.

• The functionality guard which encodes a logical composition of guard functions
of the actor, e.g., :fcheck annotated to the transition t3 of the actor FSM of the
actor a2 in Fig. 3.8. Hence, the functionality guard depends on the functionality
state and the token values on the input ports.

Here, the notion of a functionality state qfunc 2 Qfunc of an actor is used.
The functionality state is an abstract representation of the C++ variables in the
real implementation of a SysteMoC actor. This functionality state is required for
notational completeness, that is for the formal definitions of action and guard
functions, i.e., faction W Qfunc � S jI j ! Qfunc � S jOj and fguard W Qfunc � S jI j !

f t; f g. (The usual notation jX j is used to denote the cardinality of a set X .) Both
types of functions depend on the functionality state of their actor. Furthermore, an
action may update this state, while a guard function may not. Hence, all SysteMoC
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actor firings are sequentialized over this functionality state. Therefore, multiple
actor firings of the same actor cannot be executed in parallel. That is, in data-flow
parlance, all SysteMoC actors have a virtual self-loop with one initial token that
corresponds to qfunc 2 Qfunc. However, as the functionality state is not used for any
optimization and analysis algorithms presented in this chapter, it has been excluded
from Definition 2.

Note that the consumption and production rate functions also specify the number
of tokens that are consumed/produced on the input/output ports if a transition t is
taken. That is, 8i 2 I W cons.i; t:faction/ D cons.t; i/ ^ 8fguard contained in t:k W

cons.i; fguard / � cons.t; i/ and 8o 2 O W prod.t:faction; o/ D prod.t; o/. Hence,
for a SysteMoC model to be well formed, the number of tokens accessed on the
different input and output ports by an action t:faction associated with the transition
t as well as the guard functions fguard used in the transition guard t:k has to conform
to the consumption and production rates of the transition.

We enforce this requirement by checking that access to tokens by actions and
guards via the ports, e.g., the syntax i[n] and o[m] that is used in Fig. 3.9,
Listing 2 to access the nth token relative to the read pointer, respectively, the mth
token relative to the write pointer, does not access tokens outside the so-called
random-access region that is controlled by the actor FSM as will be explained in the
following. Hence, as only tokens inside the random-access region can be modified
by the actions or read by the guards, the actor FSM fully controls the communication
behavior of the actor.

To exemplify, we consider a simple example with just one source and one sink
actor connected by a single channel as depicted in Fig. 3.9. Here, the random-access
regions are marked by bold brown-bordered boxes.

Both actors a1 and a2 are in the process of executing their respective actions fsink

and fsrc. Thus, the guards #i1 � 3 and #o1 � 2 are satisfied, but the three tokens and
two free places are not yet consumed and produced, respectively, but only reserved
for consumption and production when execution of the actions finishes. Then, the
read and write pointers of the FIFO channels will also be advanced by the actor
FSMs by three, respective, two, tokens. Before the execution of the actions is started,
the random-access regions are sized according to the guards of the transitions that
are currently taken. During the execution of the actions, random access and update
of all data values of the tokens contained in the random-access regions—but not
outside these regions—is allowed by the executing actions.

Finally, for a SysteMoC model to be well formed, no sharing of state between
actors via global variables is allowed. This requirement cannot be enforced by
the SysteMoC library itself and is also usually not a problem in the code of
the actor itself, but in library code that is used by the actor. A discussion of
modeling library dependencies via library tasks and the problem of persistent states
inside these libraries is tackled by the Common Intermediate Code (CIC) model
that is introduced in �Chap. 29, “HOPES: Programming Platform Approach for
Embedded Systems Design”.

http://dx.doi.org/10.1007/978-94-017-7267-9_1
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Fig. 3.9 Depicted above is a simple source-sink example that is used to explain the semantics of a
SysteMoC FIFO associated with the channel c1. The buffer memory of the channel c1 is organized
as a ring buffer with its associated read and write pointers. The buffer memory has a capacity of 11
tokens (depicted as light green cells inside the green-bordered box representing the buffer memory)
and is already filled with 6 tokens (the 6 solid black dots). From the remaining five free places, two
places have been reserved (the two black-bordered but white-filled dots) by the actor FSM a2:R

for the execution of the action fsrc. These reserved places correspond to tokens that have not yet
been associated with data values �. It is the responsibility of the action to compute the missing
data values. Finally, for each function invocation and for each channel accessed by the invoked
function, a random-access region is defined for accessing the channel. Hence, two random-access
regions (depicted as bold brown-bordered boxes) are shown in the above figure

3.5 Analysis of SysteMoC Models

SysteMoC permits modeling of non-determinate data-flow graphs. However, when
using SysteMoC models as an input to Hardware/Software Codesign (HSCD) flows,
it is advantageous for reason of analyzability to identify parts of the model, which
belong to restricted MoCs. Thanks to its formal representation of the firing behavior
of an actor by an actor FSM, MoC identification can be performed within SysteMoC
for its actors. In the following, we present the representation as well as identification
of SDF and CSDF actors. The ability of classification [12,45] serves as a distinction
between SysteMoC and Ptolemy [8,23,35] as well as ForSyDe, which is introduced
in �Chap. 4, “ForSyDe: System Design Using a Functional Language and Models
of Computation”, and similar approaches that use distinct modeling libraries for
each different MoC. For example, in Ptolemy each actor is associated with a director
which explicitly specifies the MoC under which the actor is executed. This is

http://dx.doi.org/10.1007/978-94-017-7267-9_5
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important as the data-flow model of SysteMoC is chosen in order to provide greatest
expressiveness. Hence, the analyzability of a general SysteMoC specification (e.g.,
with respect to deadlock freedom or the ability to be executed in bounded memory)
is limited. Nonetheless, only very simple actors will be classified as belonging to the
static data-flow domain. Hence, a more detailed discussion as well as identification
of BDF and DDF actors can be found in [44]. Scheduling algorithms that take
advantage of this information are provided in [5] for the BDF MoC. Optimizations
for more expressive MoCs is an ongoing topic of current research.

3.5.1 Representing SDF and CSDF Actors in SysteMoC

As SysteMoC permits modeling of quite general types of data-flow graphs, it
is also possible to represent any SDF and CSDF actor in SysteMoC. Given
a CSDF graph as defined in Definition 1 and using the ancillary definitions
of the cons and prod functions as described in Sect. 3.2.2.3, then for a given
CSDF actor a, a functionally equivalent SysteMoC actor a0 can be constructed
as follows: First, the input ports I and output ports O of the SysteMoC actor
a0 correspond to the incoming and outgoing channels of the CSDF actor a,
respectively. Assuming that this actor has � CSDF phases, then the corresponding
actor FSM R is built by generating a state for each phase of the CSDF actor, i.e.,
Q D fq0; q1; : : : q��1g, and marking the state q0 as the initial state of the FSM. Next,
these states are connected such that the resulting transitions form a single cycle, i.e.,
T D f.q0; k0; fphase0

; q1/; .q1; k1; fphase1
; q2/; : : : .q��1; k��1; fphase��1

; q0/g. As
an example, the resulting FSM R of the CSDF actor a3 is shown in Fig. 3.10b. Here,
the actions fphase0

; fphase1
; : : : fphase��1

are associated with the firing of the CSDF
actor in the corresponding phase. The token consumption and production rates
encoded by the guards k0; k1; : : : k��1 and given by the functions cons W .T � I / !

N0 and prod W .T � O/ ! N0 of the SysteMoC model can be directly derived from
the functions cons W C ! N

�
0 and prod W C ! N

�
0 of the CSDF graph. Remember

that we use the notion of ports interchangeably with the channels connected to these
ports. Hence, we can define the cons and prod functions of the SysteMoC model as
follows:

prod.tl ; o/ D nl where .n0; n1; : : : n��1/ D prod.o/ 8l 2 f0; 1; : : : � � 1g; o 2 O

cons.tl ; i / D ml where .m0; m1; : : : m��1/ D cons.i/ 8l 2 f0; 1; : : : � � 1g; i 2 I

To exemplify, for the CSDF actor a3 from Fig. 3.10c, the resulting normalized
actor FSM is shown in Fig. 3.10b. Corresponding to the first phase, transition t0
consumes one token from i1 and produces seven tokens on o1. The second phase
embodied by transition t1 consumes two tokens from i1 and produces one token on
o1. The remaining phases are derived accordingly.
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Fig. 3.10 Example translations of an SDF and a CSDF actor into SysteMoC. (a) SysteMoC
realization of the SDF actor a1 from the DFG below. (b) SysteMoC realization of the CSDF actor
a3 from the DFG below. (c) Example of a CSDF graph also containing an SDF actor

3.5.2 SDF and CSDF Semantics Identification for SysteMoC Actors

In order to be able to apply MoC-specific analysis methods such as deadlock analy-
sis or generation of static schedules, it is important to recognize individual actors or
subgraphs thereof belonging to well-known data-flow models of computation such
as HSDF, SDF, and CSDF. While it is possible to transform any static data-flow
actor into a SysteMoC actor as described above, it is much more difficult to check if
a given SysteMoC actor shows SDF or CSDF semantics. It will be shown that this
can be accomplished by inspection and analysis of the actor FSM of a SysteMoC
actor.

The most basic representation of static actors encoded as actor FSMs can be
seen in Fig. 3.10. To exemplify, the SDF actor depicted in Fig. 3.10a contains only
one transition, which produces six tokens onto the actor output port o1. Clearly,
the actor exhibits a static communication behavior corresponding to the SDF MoC.
However, for the classification algorithm to be able to ignore the guard functions
used by an actor FSM, certain assumptions have to be made. It will be assumed
that given sufficient tokens and free places on the actor input and output ports, at
least one of the guards of the outgoing transitions will evaluate to true, and, hence,
there exists at least one enabled outgoing transition. This is required in order to
be able to activate the equivalent SDF or CSDF actor an infinite number of times.
It will also be assumed that an actor will consume or produce tokens every now
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and then. These assumptions are not erroneous as, otherwise, there exists an infinite
loop in the execution of the actor where a cycle of the FSM is traversed and each
transition in this cycle neither consumes nor produces any tokens. This can clearly
be identified as a bug in the implementation of the actor, similar to an action of a
transition that never terminates. For the exact mathematical definition of the above-
given requirements, see [45].

The idea of the classification algorithm is to check if the communication behavior
of a given actor can be reduced to a basic representation, which can be easily
classified into the SDF or CSDF MoC. Note that the basic representations for both
SDF and CSDF models are FSMs with a single cycle, e.g., as depicted for the CSDF
actor in Fig. 3.10b.

Yet, not all actor FSMs satisfy this condition (see Fig. 3.11). However, some of
them, e.g., Fig. 3.11b, c, still show the communication behavior of a static actor. It
can be distinguished if the analysis of the actor functionality state (see Definition 2)
is required to decide whether an actor is a static actor, e.g., Fig. 3.11c, or not, e.g.,
Fig. 3.11b. In the following, the actor functionality state will not be considered.
Therefore, the presented classification algorithm will fail to classify Fig. 3.11c
as a static actor, but will achieve the classification as static for the actor shown
in Fig. 3.11b. In that sense, the algorithm only provides a sufficient criterion for
the problem of static actor detection. A sufficient and necessary criterion cannot be
given as the problem is undecidable in the general case.

The algorithm starts by deriving a set of classification candidates solely on the
basis of the specified actor FSM. Each candidate is later checked for consistency
with the entire FSM state space via Algorithm 1 that will be explained in detail later
in this section. If one of the classification candidates is accepted by Algorithm 1,
then the actor is recognized as a CSDF actor where the CSDF phases are given by
the accepted classification candidate.

Definition 4 (Classification Candidate [45]). A possible CSDF behavior of a
given actor is captured by a classification candidate � D h�0; �1; : : : ���1i where
each � D .cons; prod/ represents a phase of the CSDF behavior and � is the number
of phases.

To exemplify, Fig. 3.10b is considered. In this case, four phases are present, i.e.,
� D 4, where the first phase (�0) consumes one token from i1 and produces seven
tokens on o1, the second phase (�1) consumes two tokens from i1 and produces one
token on o1, the third phase (�2) consumes six tokens and produces two, and the
final phase (�3) only consumes one token.

It can be observed that all paths starting from the initial actor FSM state q0 must
comply with the classification candidate. Furthermore, as CSDF exhibits cyclic
behavior, the paths must also contain a cycle. The classification algorithm will
search for such a path p D ht1; t2; : : : ; tni of transitions ti in the actor FSM starting
from the initial state q0. The path can be decomposed into an acyclic prefix path
pa and a cyclic path pc such that p D pa

a pc , i.e., pa D ht0; t1; : : : tl�1i being the
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Fig. 3.11 Various actor FSMs that do not match the basic representation of static actors as
exemplified in Fig. 3.10. (a) Visualized above is the actor a2 with an actor FSM that cannot be
converted to a basic representation of static actors. (b) Shown is the actor a3 containing an actor
FSM that can be converted to basic CSDF representation. (c) Shown is an actor that seems to
belong to the dynamic domain, but exhibits CSDF behavior due to the manipulation of the Boolean
variable b. Hence, leading to a cyclic execution of the transitions t1, t3, and t2 of its actor FSM

prefix and pc D htl ; tlC1; : : : tn�1i being the cyclic part, that is tl :qsrc D tn�1:qdst.
After such a path p has been found, a set of classification candidates can be derived
from the set of all nonempty prefixes fp0 v p j #p0 2 f 1; 2; : : : n gg of the path p.
(Here, the “v”-operator denotes that a sequence is a prefix of some other sequence,
e.g., h3; 1i v h3; 1i v h3; 1; 2i v h3; 1; 2; : : :i, but h3; 1i 6v h4; 1; 2i as well as
h3; 1i 6v h3i.) A classification candidate � D h�0; �1; : : : ���1i is derived from
a nonempty prefix p0 by (1) unifying adjacent transitions tj , tjC1 according to
the below given transition contraction condition until no more contractions can be
performed and (2) deriving the CSDF phases �j of the classification candidate from
the transitions tj of the contracted path computed in step (1).

Definition 5 (Transition Contraction Condition [12]). Two transitions tj and
tjC1 of a prefix path p0 can be contracted if tj only consumes tokens, i.e.,
prod.tj ; O/ D 0, or tjC1 only produces tokens, i.e., cons.tjC1; I / D 0. (For
notational brevity, the construct cons.t; I / D .ni1 ; ni2 : : : ; ni

jI j

/ D ncons is used
to denote the vector ncons of numbers of tokens consumed by taking the transition.
The equivalent notation prod.t; O/ is also used similarly for produced tokens.) The
resulting transition t 0 has the combined consumption and production rates given
as cons.t 0; I / D cons.tj ; I / C cons.tjC1; I / and prod.t 0; O/ D prod.tj ; O/ C

prod.tjC1; O/.
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Algorithm 1 Validation of a classification candidate � for the actor FSM R

1: function VALIDATECLASSCAND(�; R)
2: � D #� F Number of CSDF phases �

3: h�0; �1; : : : ���1i D � F CSDF phases �0; �1; : : : ���1

4: !0 D .0; �0:cons; �0:prod/ F Initial annotation tuple
5: queue hi F Set up the empty queue for breadth-first search
6: ann ; F Set up the empty set of annotations
7: queue queuea.R:q0/ F Enqueue R:q0

8: ann ann[f .R:q0; !0/ g F Annotate the initial tuple
9: while #queue > 0 do FWhile the queue is not empty

10: qsrc D hd.queue/ F Get head of queue
11: !src D ann.qsrc/ F Get annotation tuple for state qsrc

12: queue tl.queue/ F Dequeue head from queue
13: for all t 2 R:T where t:qsrc D qsrc do
14: if !src:cons 6� cons.t; I /_ !src:prod 6� prod.t; O/ then
15: return f F Reject � due to failed transition criterion I
16: end if
17: if !src:cons 6D cons.t; I /^ prod.t; O/ 6D 0 then
18: return f F Reject � due to failed transition criterion II
19: end if
20: !dst derive from !src and t as given by Equation (3.8)
21: if 9!0

dst W .t:qdst; !0

dst/ 2 ann then F Annotated tuple present?
22: if !0

dst ¤ !dst then F Check annotated tuple for consistency
23: return f F Reject classification candidate �

24: end if
25: else F No tuple annotate to state t:qdst

26: ann ann[f .t:qdst; !dst/ g F Annotate tuple !dst

27: queue queuea.t:qdst/ F Enqueue t:qdst

28: end if
29: end for
30: end while
31: return t F Accept classification candidate �

32: end function

For clarification, Fig. 3.11a, b are considered and it is assumed that the path
p D ht1; t3; t4i has been found. Hence, the set of all nonempty prefixes is
f ht1i; ht1; t3i; ht1; t3; t4i g. In both depicted FSMs, the transition t2 consumes and
produces exactly as many tokens as the transition sequence ht3; t4i. However, the
transition sequence ht3; t4i in Fig. 3.11b can be contracted as t3 only consumes
tokens while transition sequence ht3; t4i in Fig. 3.11a cannot be contracted. Hence,
for Fig. 3.11b, the classification candidate � D h�0; �1i derived from the prefix
p0 D ht1; t3; t4i is as follows:

�0:cons D cons.t1; I / D .1; 0/

�0:prod D prod.t1; O/ D .1; 0/

�1:cons D cons.t3; I / C cons.t4; I / D .0; 1/

�1:prod D prod.t3; O/ C prod.t4; O/ D .0; 1/
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On the other hand, for Fig. 3.11a, the classification candidate � D h�0; �1; �2i

derived from the prefix p0 D ht1; t3; t4i does not exhibit any contractions and is
depicted below as:

�0:cons D .1; 0/ �0:prod D .1; 0/

�1:cons D .0; 0/ �1:prod D .0; 1/

�2:cons D .0; 1/ �2:prod D .0; 0/

The underlying reasons for the transition contraction condition from Definition 5
are discussed in the following. To illustrate, the data-flow graph depicted in
Fig. 3.12a which uses two actors a2 and a3 containing the FSMs from Fig. 3.11a, b
is considered. Obviously, there exist dependencies between the transitions in a legal
transition trace of the actors a2 and a3 as shown in Fig. 3.12b.

For example, it can be seen in Fig. 3.12c that if the transition sequence ht3; t4i

of actor a3 is contracted into a single transition tc , then the resulting dependencies
of tc are exactly the same as for transition t2. This is the reason why the FSM from
Fig. 3.11b can be classified into a CSDF actor. Furthermore, the contraction is a
valid transformation as it does not change the set of possible transition sequences
of the whole data-flow graph, apart from the substitution of the transition sequence
ht3; t4i by the transition tc . This can be seen by comparing the possible transition
sequences depicted in Fig. 3.12b, c. Compacting the transition sequence ht3; t4i of
actor a3 generates the transition tc , which is inducing the data dependency that the
token produced on port o2 by the transition tc depends on the token consumed on
port i2 by the transition tc . However, the previous transition sequence ht3; t4i also
induces this data dependency as t4 can only be taken after t3.

In contrast to this, the contraction of the transition sequence ht3; t4i of actor
a2 into a transition td does introduce a new erroneous data dependency from
the consumption of a token on i2 to the production of a token on o2. The data
dependency is erroneous as the original transition sequence ht3; t4i has no such
dependency as it first produces the token on o2 before trying to consume a token
on i2. Indeed, an erroneous contraction might introduce a deadlock into the system
as can be seen in Fig. 3.12d where the transition td is part of two dependency cycles
a2:td ! a3:t2 ! a2:td and a2:td ! a3:t3 ! a3:t4 ! a2:td which are not present
in the original dependency structure depicted in Fig. 3.12b.

After the set of classification candidates has been derived from the actor FSM,
each candidate is checked for validity by Algorithm 1. The checks are performed
sequentially starting from the classification candidate derived from the shortest
prefix p0 to the candidate derived from the full path p. If a candidate is accepted
by Algorithm 1, then the actor is a CSDF actor with phases as given by the accepted
classification candidate �.

The main idea of the validation algorithm is to check a classification candidate
against all possible transition sequences reachable from the initial state of the actor
FSM. However, due to the existence of contracted transitions in the classification
candidate as well as in the actor FSM, a simple matching of a phase �j to
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Shown is a DFG containing the actors a2 and a3 from Figure 3.11. Due to mutual dependencies
between the actor firings of the actors a2 and a3, actor a2 will never execute transition t2. On the
other hand, actor a3 is free to choose either the transition sequence 〈t3, t4〉 or the transition t2 in
its execution trace.
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t1 t2

t4

t1

t3
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Shown are the dependencies in
the transition trace of actor a2
and a3. Two dependency cycles
are already present (marked bold
black) that cause the inability
to fire transition t2 of actor a2.
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tc
a3
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Shown are the dependencies for
the contraction of the transition
sequence 〈t3, t4〉 of actor a3 into
the transition tc. One can observe
that no additional de-pendency
cycles have been introduced by
this contraction.

td

t1 t2 t1

t3 t4

t1 t2
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t3

a3
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Shown are the dependencies
for the contraction of the
transition sequence 〈t3, t4〉 of
actor a2 into the transition td.
Thus, inducing two (marked
bold red) erroneous dependency
cycles.

Fig. 3.12 Given (see (a)) is an example DFG containing two actors a2 and a3 used to show valid
and invalid transition contractions. For this purpose, dependencies in transition sequences of both
actors are shown in (b), (c), and (d). Here, dashed lines represent dependencies induced by the
availability of data (tokens) and solid lines represent dependencies induced by the sequential nature
of the FSM. Dependency cycles in these transition traces are marked by bolding the corresponding
edges

an FSM transition is infeasible. Instead, a CSDF phase �j is matched by a
transition sequence. To keep track of the number of tokens already produced and
consumed for a CSDF phase, each FSM state qn will be annotated with a tuple
!n D .j; cons; prod/ where cons and prod are the vectors of number of tokens which
are still to be consumed and produced to complete the consumption and production
of the CSDF phase �j and j denotes the CSDF phase which should be matched.

The validation algorithm starts by deriving the tuple !0 (see Line 4) for the
initial state q0 from the first CSDF phase �0 of the classification candidate �. The
algorithm uses the set ann as a function !n D ann.qn/ from an FSM state to its
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annotated tuple !n. Initially, the ann set is empty (see Line 6) denoting that all
function values ann.qn/ are undefined, and hence no tuples have been annotated.
The annotation of tuples starts with the initial tuple !0 D ann.q0/ for the initial
state q0 by adding the corresponding association to the ann set in Line 8.

The algorithm proceeds by performing a breadth-first search (see Lines 5, 9, 12
and 27) of all states qn of the FSM R starting from the initial state q0 (see Line 7).
For each visited state qsrc (see Line 10) its annotated tuple !src will be derived from
the set ann (see Line 11) and the corresponding outgoing transitions t of the state
qsrc (see Line 13) are checked against the annotated tuple !src (see Lines 14 to 19)
via the transition criteria as given below:

Definition 6 (Transition Criterion I [45]). Each outgoing transition t 2 Tsrc D

ft 2 T j t:qsrc D qsrcg of a visited FSM state qsrc 2 Q must consume and produce
less or equal tokens than specified by the annotated tuple !src, i.e., 8t 2 Tsrc W

!src:cons � cons.t; I / ^ !src:prod � prod.t; O/. Otherwise, the annotated tuple
!src is invalid and the classification candidate � will be rejected.

Definition 7 (Transition Criterion II [45]). Each outgoing transition t 2 Tsrc D

ft 2 T j t:qsrc D qsrcg of a visited FSM state qsrc 2 Q must not produce tokens
if there are still tokens to be consumed in that phase after the transition t has been
taken, i.e., 8t 2 Tsrc W !src:cons D cons.t; I / _ prod.t; O/ D 0. Otherwise, the
annotated tuple !src is invalid and the classification candidate � will be rejected.

Transition criterion I ensures that a matched transition sequence consumes and
produces exactly the number of tokens as specified by the CSDF phase � of the
classification candidate. Transition criterion II ensures that a transition sequence
induces the same data dependencies as the CSDF phase � of the classification
candidate. If the transition does not conform to the above transition criteria, then
the classification candidate is invalid and will be rejected (see Lines 15 and 18).
Otherwise, that is conforming to both criteria, the matched transition sequence can
be condensed via Definition 5 to the matched CSDF phase.

After the transition has been checked, the tuple !dst for annotation at the
transition destination state t:qdst is computed in Line 20 according to the equation
given below:

consleft D !src:cons � cons.t; I /

prodleft D !src:prod � prod.t; O/

j 0 D .!src:j C 1/ mod �

!dst D

�
.!src:j; consleft; prodleft/ if consleft ¤ 0 ^ prodleft ¤ 0

.j 0; �j 0 :cons; �j 0 :prod/ otherwise

(3.8)

In the above equation, consleft and prodleft denote the consumption and production
vectors remaining to match the CSDF phase �j . If these remaining consumption and
production vectors are both the zero vector, then the matching of the CSDF phase �j
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to a transition sequence has been completed. Hence, the tuple !dst will be computed
to match the next CSDF phase �.jC1/ mod � . (The notation n D l mod m for values
l 2 Z D f : : : ; �2; �1; 0; 1; 2; : : : g; m 2 N D f 1; 2; : : : g is used to denote the
common residue n 2 f 0; 1; 2; : : : m � 1 g which is a non-negative integer smaller
than m such that l � n .mod m/.) Otherwise, the tuple !dst will use the updated
remaining consumption and production vectors as given by consleft and prodleft.

Finally, if no tuple is annotated to the destination state t:qdst, then the computed
tuple !dst is annotated to the destination state in Line 26 and the destination
state is appended to the queue for the breadth-first search in Line 27. Otherwise,
an annotated tuple is already present for the destination state (see Line 21). If
this annotated tuple !0dst and the computed tuple !dst are inconsistent, then the
classification candidate will be rejected (see Lines 21 to 23).

3.6 Hardware/Software Codesign with SysteMoC

SysteMoC is the core language of the SYSTEMCODESIGNER [15, 25] codesign
framework and HSCD flow, which is briefly outlined in Fig. 3.13. In Step 1,
the application to be implemented is written in SysteMoC. During an extraction
step (Step 2 in Fig. 3.13), the SysteMoC actors and channels as well as their
connections are automatically extracted from the SysteMoC application. As a result,
the network graph as defined in Sect. 3.3 can be used as input to the DSE of
the SYSTEMCODESIGNER flow. As a second input to DSE, the possible variety
of architectures is modeled by an architecture graph [4] that is specified by the
designer in Step 3. The architecture graph is composed of resources (shaded
orange) and edges connecting two resources that are able to communicate with each
other. Within SYSTEMCODESIGNER, resources are usually modeled at a granularity
of processors, hardware accelerators, communication buses, centralized switches
(crossbars), decentralized switches (Networks on Chip), memories. In this context,
edges of the architecture graph are interpreted as links. Finally, mapping edges
(black) are specified within Step 3 by the designer for each actor (bordered blue)
and each channel (shaded green) of the network graph. A mapping edge indicates the
option to implement and execute an actor on the resource it points to. For a channel,
the corresponding mapping edge represents the possibility to use the associated
resource as buffer for messages sent over the channel. Both graphs, i.e., network
graph and architecture graph, together with the mapping edges form a specification
graph [4] that serves as input for DSE in Step 4.

To exemplify the concept of a specification graph, we use again the network
graph implementing Newton’s iterative square root algorithm introduced in Sect. 3.3
and also depicted in Fig. 3.13 as part of the specification graph. Due to the
approximation part of the square root algorithm, actor a3 requires floating point
division. In contrast, actor a2 requires floating point multiplication to check if
the error bound is already satisfied. Considering the architecture graph, a Central
Processing Unit (CPU) rCPU, a dedicated hardware accelerator rHW for actor a3, a
memory rMEM, and two buses rP2P and rBUS can be identified. Let us assume that
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Fig. 3.13 Overview of a codesign flow using SysteMoC as input language for design space
exploration of hardware/software alternatives as well as for subsequent code generation and
hardware synthesis of each actor called SYSTEMCODESIGNER [15, 25]

rCPU is a slow CPU that has no hardware support for floating point calculations.
Hence, floating point calculations must be emulated in software. Thus, while all
actors can be mapped to the CPU (see Fig. 3.14a), the actor a3 will perform
significantly worse on the CPU as compared to an implementation alternative
(see Fig. 3.14b) where it is mapped to its dedicated hardware accelerator rHW that
is connected to the CPU via the point-to-point link rP2P. Finally, the memory rMEM,
which is connected by the bus rBUS to the CPU, is used to provide the program
memory required by the CPU to implement the actors bound to the CPU as well as
the buffer memory required by the channels of the network graph.
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Fig. 3.14 Depicted above are two possible hardware/software implementation alternatives for
Newton’s iterative square root algorithm. (a) A mapping of actors using resource rCPU that requires
software emulation to support floating point operations. (b) A mapping of actors using all available
resources that have initially been specified in the architecture graph

As discussed above, the network graph of a specification can now be im-
plemented in various ways (cf. Fig. 3.14). In DSE, different mappings of actors
and communication channels to physical resources are explored. Resources of the
architecture graph not being a target of a mapping are eliminated. As the mapping is
independent of the actual MoC, any SysteMoC application can be explored during
DSE. The DSE methodology tackles the problem of the exponential explosion of
the number of ways the desired functionality can be implemented in an embedded
system by performing an automatic optimization of the implementation of the
functionality. For a more comprehensive overview of the DSE techniques supported
within SYSTEMCODESIGNER, the interested reader is referred to �Chap. 7,
“Hybrid Optimization Techniques for System-Level Design Space Exploration”.

Moreover, the optimization needs a way to compare implementations with
each other. Within SYSTEMCODESIGNER, a simulative performance analysis is
performed for SysteMoC applications. For this purpose, a simulative evaluator [38]
is realized by parameterizing [39, 43] a given SysteMoC application in such a way
that it conforms to the design decisions taken by the DSE. This is established using
run-time configurability via the VPC-Plugin [39] or MAESTRO-Plugin [36] in
order to model the design decisions taken during DSE. As performance estimation
is done by discrete-event simulation, only average case performance can be assessed
during exploration for general SysteMoC models. Yet, if the explored network
graph is substituted by less expressive models, e.g., by a static data-flow graph, a
simple task graph, etc., then also formal model-based analysis techniques for timing,
performance, and other objectives of interest such as reliability may be selected and
added; see the box analytical evaluators in Fig. 3.13.

http://dx.doi.org/10.1007/978-94-017-7267-9_8
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Finally, a SysteMoC application may serve as a golden model from which virtual
prototypes for selected implementations can be derived as well via usage of a
synthesis back-end (Step 7 in Fig. 3.13) for an implementation alternative selected
by the designer (Step 6) from the output of the automatic optimization, i.e., the
set of non-dominated or even Pareto-optimal implementations. During synthesis,
actors are refined (compiled, synthesized) according to their binding. For this
purpose, SYSTEMCODESIGNER currently supports hardware synthesis based on
Cadence’s Cynthesizer. The communication is refined with respect to the chosen
model of communication, i.e., shared memory or message passing. So far [15],
only shared memory communication using shared address spaces and point-to-
point communications using hardware queue implementations are supported in the
SYSTEMCODESIGNER synthesis back-end.

An important aspect of the SYSTEMCODESIGNER flow not shown in Fig. 3.13
is the exploitation of the analysis capability of SysteMoC applications. Although
dynamic SysteMoC models can be automatically optimized and assessed by simu-
lation, an additional optimization can be performed for static actors (cf. Sect. 3.5).
SYSTEMCODESIGNER supports [37] the automatic clustering of subgraphs consist-
ing of static actors. Clustering is a transformation where a subgraph of static actors
is replaced by a single composite actor implementing a quasi-static schedule of the
clustered static actors [17, 18]. Such a transformation can reduce the scheduling
overhead resulting from dynamic scheduling significantly. For more information
about clustering cf. [9].

3.7 Conclusions

Data-flow Models of Computation (MoCs) are well suited for the modeling of many
applications that are targeted to heterogeneous hardware/software systems. Due to
the inherently concurrent behavior of actors, partitioning into hardware and software
blocks can be done at the granularity of actors. It is our recommendation therefore to
think in terms of actors when designing a system because of the natural concurrency
available in these models. However, there is a trade-off between expressiveness and
analyzability of different data-flow MoCs. In this chapter, different data-flow models
have been presented in a consistent framework. Moreover, SysteMoC, a MoC with
a very high expressiveness, has been discussed. Its most outstanding property is
the option to automatically identify if a SysteMoC actor uses this expressiveness or
if it can be classified to belong to a more restricted data-flow MoC. In the latter
case, this knowledge increases the analyzability. This advantage may be greatly
exploited also during later optimization phases as well as during code generation
and hardware synthesis from actor specifications to final hardware/software system
implementations.
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