
39Codesign Case Study on Transport-
Triggered Architectures

Jarmo Takala, Pekka Jääskeläinen, and Teemu Pitkänen

Abstract

Application-specific processors are used to obtain the efficiency of fixed-function
application-specific integrated circuits and flexibility of software implementa-
tions on programmable processors. The efficiency is achieved by tailoring the
processor architecture according to the requirements of the application while
the flexibility is provided by the programmability. In this chapter, we introduce
a hardware/software codesign environment for developing application-specific
processors, which is using processor templates based on the transport-triggering
paradigm, hence the name transport-triggered architecture (TTA). Fast Fourier
transform (FFT) is used as an example application to illustrate the customization.
Specific features of FFTs are discussed, and we show how those can be exploited
in FFT implementations. We have customized a TTA processor for FFT, and
its energy efficiency is compared against several other FFT implementations to
prove the potential of the concept.

Acronyms

ADF Architecture Description File
ASIC Application-Specific Integrated Circuit
ASP Application-Specific Processor
CORDIC COordinate Rotational DIgital Computer
DFT Discrete Fourier Transfrom
DIF Decimation-in-Frequency
DIT Decimation-in-Time
DSP Digital Signal Processor

J. Takala (�) • P. Jääskeläinen
Tampere University of Technology, Tampere, Finland
e-mail: jarmo.takala@tut.fi; pekka.jaaskelainen@tut.fi

Teemu Pitkänen
Ajat Oy, Espoo, Finland
e-mail: teemu.pitkanen@ajat.fi

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_39

1303

mailto:jarmo.takala@tut.fi; pekka.jaaskelainen@tut.fi
mailto:teemu.pitkanen@ajat.fi

1304 J. Takala et al.

FFT Fast Fourier Transform
HDB Hardware Database
IR Intermediate Representation
OSAL Operation Set Abstraction Layer
RTL Register Transfer Level
TCE TTA-based Codesign Environment
TTA Transport-Triggered Architecture

Contents

39.1 Introduction . 1304
39.2 Transport-Triggered Architecture Template . 1305
39.3 Design Flow for Customizing Transport-Triggered Architectures 1310
39.4 Discrete Fourier Transform and Its Fast Algorithms . 1312

39.4.1 Radix-p Algorithms . 1313
39.4.2 Radix-2r Algorithms . 1314
39.4.3 Mixed-Radix FFT. 1317

39.5 Building Blocks and Optimizations . 1320
39.5.1 In-Place Computations . 1320
39.5.2 Permutations and Operand Access . 1320
39.5.3 Twiddle Factors . 1324

39.6 Customized FFT Architecture Based on Transport Triggering 1330
39.7 Energy Efficiency Comparison . 1333
39.8 Conclusions . 1335
References . 1335

39.1 Introduction

Application-Specific Processors (ASPs) are used to obtain the efficiency of fixed-
function Application-Specific Integrated Circuits (ASICs) and flexibility of soft-
ware implementations on programmable processors. The efficiency is obtained by
tailoring the processor architecture according to the requirements of the appli-
cation as discussed earlier in �Chap. 12, “Application-Specific Processors” and
�Chap. 33, “Hardware/Software Codesign Across Many Cadence Technologies”.
The simplest customization is to start with existing architecture and remove all
the resources, which are not needed to execute the given application. In a similar
fashion, an ASP may be constructed from library components, i.e., components
are reused; thus the design process is shorter than in ASIC design. Even better
efficiency can be obtained if the specific computation patterns in the application
are identified and those are converted as accelerators or user-specific function units
in the architecture.

The design space for application-specific processors is huge, and finding a su-
itable architecture for a given application will be an exhaustive work. The optimiza-
tion strategies for design space exploration are covered in �Chap. 6, “Optimization
Strategies in Design Space Exploration” and architecture design space exploration

http://dx.doi.org/10.1007/978-94-017-7267-9_13
http://dx.doi.org/10.1007/978-94-017-7267-9_33
http://dx.doi.org/10.1007/978-94-017-7267-9_7

39 Codesign Case Study on Transport-Triggered Architectures 1305

in �Chap. 8, “Architecture and Cross-Layer Design Space Exploration”. Determin-
ing the machine code for an arbitrary processor architecture is extremely a difficult
and time-consuming task especially when the processor contains parallelism. This
work can be alleviated by limiting the search space. Such a constraint can be created
by defining a processor template, which provides a set of customization parameters
to vary the processor candidates. The limited set of parameters allows retargeting
the software development toolchain; thus machine code of the given application
can be generated on the customized architecture. The processor customization is an
iterative process, thus during each iteration there is a need to port the application
program to the new processor. This calls either for a manual assembly language
program rewrite or a retargetable compiler, which can adapt to the changes in the
architecture.

In this chapter, we introduce a processor template based on transport triggering
paradigm and a software/hardware codesign environment supporting this template.
We illustrate the use of the template and design environment by using Fast
Fourier Transform (FFT) as an example application. FFT is used to compute
Discrete Fourier Transfrom (DFT) of a sequence, which in turn converts the time
domain representation of a digital signal to a frequency domain representation. The
definition of DFT contains redundancy, and several methods have been proposed
to avoid these redundancies. In general any method for computing DFT with lower
arithmetic complexity than DFT is called a fast Fourier transform. FFT has been
considered as “the most important numerical algorithm of our lifetime” [36], and
nowadays it has gained popularity as frequency division has been used in many
modern wireless communications standards.

In this chapter, we discuss FFT algorithms and illustrate some of their properties,
which can be exploited when implementing the transform. This chapter shows
how these properties can be exploited in implementations and a processor tailored
for FFT is described. The energy efficiency of the tailored processor is compared
against several implementations from the literature to show the efficiency of the
approach.

39.2 Transport-Triggered Architecture Template

In this chapter, we use exposed data path as one of the characteristics of the
architectural template, i.e., a template where many processor data-path details are
visible to the programmer who can directly control those resources. Examples of
such architectures are, e.g., MOVE [11], MOVE-Pro [18], FlexCore [42], STA [8],
and ELM [12]. In particular, we exploit transport triggering paradigm [10], which
defines that operation execution is initiated by data transport rather than operation
defining the data transports as in traditional programming models. In Transport-
Triggered Architecture (TTA) programming model, the program defines only data
moves and the operations occur as side effects of data transports. In a way, transport
triggering evokes the traditional data-flow model of execution. Operands to a
function unit are moved via an interconnection network to input ports, and one of

http://dx.doi.org/10.1007/978-94-017-7267-9_9

1306 J. Takala et al.

ALU0

RF0

LSU0 LSU1

Data Memory

 RF1 RF2

Immediate
Unit

Instruction
Unit

ALU1

Instruction Memory

Socket

Transport Bus

Functional Unit

Port

Triggering Port

Connection

Fig. 39.1 TTA processor organization

the ports is dedicated as a trigger. Whenever data is moved to the trigger port, the
operation execution is initiated. The program defines only the data moves on the
interconnection network; thus the TTA processor has only one instruction: move.
As the program defines moves in the interconnection network, the TTA processors
have a programmer-exposed interconnection network.

An example TTA processor is depicted in Fig. 39.1. The interconnection network
in this processor contains five transport buses implying that at most five data
transports can be executed simultaneously. This also implies that each instruction
contains five move slots, where each slot specifies the data transport carried out in
each bus. The figure illustrates execution of an instruction with three parallel moves,
i.e., instruction has three move slots:

#4 ! ALU1.i0.ADD; RF2.r3 ! ALU1.i1; RF0.r1 ! LSU0.i0.STW

On the first transport bus, an immediate value is moved to the input port 0 of the
function unit ALU1. The immediate value is actually obtained from the immediate
unit, which has only one output port. As the function units can perform several
operations, the move carries also information about the operation to be executed;
opcode ADD is transported to function unit along with the operand. The second
bus transports an operand from register r3 through the output port 0 of the register
file RF2 to the input port 1 of the ALU1. The third bus is used to transport a value
from register r1 in the register file RF0 through the output port 1 to the input port
0 of the load-store unit LSU0. The third move contains an opcode indicating that
the transported word is to be stored to memory. The actual store address has been
defined by another move to port 1 of the LSU0. The remaining two move slots are
empty; thus the corresponding two buses are not used in this instruction. Thus they
can be considered executing a NOP.

39 Codesign Case Study on Transport-Triggered Architectures 1307

bus#0

a

b

bus#1
bus#2
bus#3
bus#4

i0 i1

address
decode

control buses

...

o0 opcode

bus#0
bus#1
bus#2
bus#3
bus#4

Fig. 39.2 Principal socket interface for function units: (a) high-abstraction-level representation
and (b) structure

Figure 39.1 shows that the instructions control the operation of each transport
bus through the instruction unit. The connection to each bus convoys control
information, e.g., the source and destination of the transport move, possible opcode
for the operation to be executed, etc. The function units are connected to the trans-
port buses with the aid of sockets. The interconnection network in the architectural
template consists of buses and sockets. The principal concept of sockets is illustrated
in Fig. 39.2; each port of a function unit has a socket, which defines the connections
to the buses. When the control information in a bus indicates that the port is the
destination for the current move instruction, data from the bus is passed to the port.
In a similar fashion, data from the source port is forwarded to the bus.

The architecture template defines that one of the input ports is a trigger port and
a move to this port triggers the specified operation. The concept is illustrated in
Fig. 39.3, where the trigger port is indicated by a cross in the input port. It should
be noted that a function unit has only one trigger port. A move to this port will
latch data from the bus to trigger register, and the operation execution starts with
operands from the trigger port and other operand registers; the function unit in
Fig. 39.3 expects two operands; thus there is one trigger register and one operand
register. The operand to the operand register can be moved by an earlier instruction.
The operand can also be moved in the same instruction as the trigger port moves
if there are buses available to carry out the move. In Fig. 39.1, the first bus is used
to transport an operand to trigger port of ALU1. The second bus moves the other
operand from RF3; thus the operands for the specified ADD operation are moved
to function unit at the same cycle. The move over the third bus triggers the store
operation, but the actual store address has been moved to the input port 1 of LSU0
by an earlier instruction.

1308 J. Takala et al.

FU

b

a

i0 i1

logic

logic

operand

result

logic

o0

pipeline register

pipeline register

glbl_lock

rqst_lock

t_load

o_load

V

V

V

trigger
opcode

Fig. 39.3 Pipelined function unit based on semi-virtual latching: (a) high-abstraction-level
representation and (b) principal block diagram. The result register in the output is optional

In TTAs, function units can be pipelined, and in the template, semi-virtual time
latching [10] method is used, where valid bits control the pipeline as depicted
in Fig. 39.3b. The pipeline starts an operation whenever there is a move to the
trigger port, i.e., the o_load signal is active. As valid bits control the pipeline,
a single pipeline stage is active only once for one trigger move. For example,
Fig. 39.3b illustrates a case, where the result can be read from the result register
three instructions after the trigger move.

An external or internal event can lock the processor (glbl_lock signal is active);
all the function units in the processor have their pipelines stalled. The architectural
template requires each operation in a function unit to have a deterministic latency
such that the result read for the operation can be scheduled properly. If the function
unit faces an unexpected longer latency operation, e.g., a memory refresh cycle or
a function unit has iterative operation of which latency depends on the inputs, the
unit can request the processor to be locked by activating the rqst_lock signal until
the ongoing operation is completed.

In traditional statically scheduled machines, the timing between operand load,
operation execution, and result store is fixed at design time. In TTAs, the timing is
defined at compile time. For example, multiplication instruction defines completely
when the operands are read from the registers R0 and R1 and result is stored to
register R3:
MUL R3, R2, R1
while in TTA the corresponding operation can be specified with three different
moves. When assuming a single transport bus and a function unit, which performs
only multiplication and that the input port 0 is the trigger port, the previous
instruction would be:

RF.r2 ! MUL.i1;
RF.r1 ! MUL.i0;
MUL.o0 ! RF.r3

39 Codesign Case Study on Transport-Triggered Architectures 1309

or if two transport buses are available:

RF.r2 ! MUL.i1; RF.r1 ! MUL.i0;
MUL.o0 ! RF.r3;

However, the moves can even be scheduled over a large block of instructions:

RF.r2 ! MUL.i1; . . . ; . . . ;
:::

. . . ; . . . ; RF.r1 ! MUL.i0;
:::

MUL.o0 ! RF.r3; . . . ; . . . ;

The previous examples show that there is a high degree of freedom on scheduling
the moves over move slots in neighboring instructions compared to traditional
statically scheduled machines, which makes the TTA scheduling a challenging
problem.

The TTA instruction format reminds horizontal microcode, which usually shows
poor instruction density. However, experiments show that the instruction overhead
due to the exposed data-path control is negligible when comparing to the savings
if the workload is data-intensive and the interconnection network is carefully
optimized [21, 43].

The exposed data-path template opens unique optimization opportunities. For
example, due to the explicit result transfers, the function units are independently
executing isolated modular components in the data path. In the point of view of
processor design methodology, the modularity allows point-and-click style tailoring
of the data-path resources from existing processor component databases. It also
means the function units can have arbitrary latencies and pipeline lengths from a
single cycle because there is no hazard detection hardware. There is no practical
limit to the number of outputs produced by operations.

The TTA template allows the processor to be customized in various ways. User
can define the sets of basic TTA components to be included in the architecture. The
number of register files can be varied, and each register file can have additional
specifications: the number of registers, word width, and the number of read/write
ports. Function units can be tailored by varying the number of function units, and
for each function unit, it is possible to define the operation set implemented by the
function unit, the number of input and output ports, the width of the ports, resource
sharing/pipelining, and accessed address space (in case of a load-store unit). The
operation set can be varied, and for each operation the number of operands, the
number and data type of results and operands, and operation state data can be
parametrized. Instruction encoding can be varied and the core can support a number
of instruction formats. For each instruction format, the immediate (constant) support
can be determined. Parameters related to address spaces include the number of
address spaces. For each address space, size, address range, and the numerical id
(referred to from program code) can be varied. Finally the parametrization allows
even specification of multi-core systems.

1310 J. Takala et al.

An interesting customizable aspect in TTA processors is the interconnection
network. As it is visible to the programmer, user can carefully tailor the connectivity
according to the application. Another useful feature is the support for multiple
disjoint address spaces: one can add one or more private address spaces for local
memories inside a core that can be accessed using address space type qualifier
attributes in the input C code.

39.3 Design Flow for Customizing Transport-Triggered
Architectures

The design work described in this chapter is carried out with the TTA-based Code-
sign Environment TTA-based Codesign Environment (TCE) [40]. The codesign
process supported by the TCE tools is illustrated in Fig. 39.4. Initially, the designer
has a set of requirements and goals placed to the end result.

The iterative customization process starts with an initial predesigned architecture,
which contains minimal resources to compile an arbitrary C program to run on
the machine. The designer can add, modify, and remove architecture components
using a graphical user interface tool called Processor Designer (ProDe) shown
in Fig. 39.5, which creates the processor description in Architecture Description
File (ADF) format. Each iteration of the processor can be evaluated by compiling
the application code on the architecture with retargetable high-level language
compiler and simulating the resulting parallel assembly code with the instruction-set
simulator.

The simulator shows statistics of the run time of the program and the utilization
of the different data-path components, indicating bottlenecks in the design. The
processor simulator provides a compiled simulation engine for fast evaluation cycles
and a more accurate interpretive engine for software debugging which supports
common software debugging features such as breakpoints.

An essential feature in the processor customization process is the inclusion
of custom operations. For a completely new processor operation, the designer
describes the operation simulation behavior in C/C++ to Operation Set Abstraction

Architecture
Customization

(ProDe)

Retargetable
Compiler
(tcecc)

Retargetable
Simulator

(ttasim/proxim)

Processor
RTL Generator

(ProGe)

Requirements Hardware Databases
(HDB)

Architecture
Definition File (ADF)

HLL Program HDL Description

Statistics
Target technology

synthesis and
evaluation

Operation Set DB
(OSAL)

Checks UsesUses & edits

Evaluates

Uses

Creates

C
reates

Creates
Adds

Designer

Fig. 39.4 TCE design flow for tailoring TTA processors

39 Codesign Case Study on Transport-Triggered Architectures 1311

Fig. 39.5 Graphical user interface for ProDe tool

Layer (OSAL) database, estimates its latency in instruction cycles when imple-
mented in hardware, and adds the operation to one of the function units in the
architecture. This way it is possible to see the effects of the custom hardware to
the cycle count, before deciding whether to include it in the design or not.

When a design point fulfilling the requirements has been found, or more accurate
statistics of a design point is needed, the designer can generate synthesizable
Register Transfer Level (RTL) description of the processor with processor generator
(ProGe). For this step, the designer has to add RTL descriptions of the user-
specific custom function units to Hardware Database (HDB). In order to alleviate
this process, the function unit implementation is automatically verified against
its architecture simulation model. The generated RTL can be synthesized with
third party synthesis and simulation tools to obtain more detailed statistics of
the processor. The TCE environment has an automated process to optimize the
interconnection network, e.g., merging buses [43], removing function units until
the performance does not increase, or removing connections which do not decrease
the performance. The connectivity between components in larger TTA designs is
hard to manage manually due to the huge space of options.

Manual assembly language coding would be the last optimization step after the
final processor architecture has been selected. During the design process, however,
assembly language is not feasible due to the architecture iteration process; whenever
the architecture is changed, the affected parts of the assembly code would need to
be rewritten.

In general, high-level language compilers cannot automatically exploit the
complex custom operations in the processor for accelerating the program execution.
Often compilers cannot extract all the inherent parallelism from the program de-
scription to exploit all the parallel processor resources. As high-level programming
is typically preferred, the key tool in TCE is the retargetable software compiler,
tcecc. The compiler uses LLVM [29] compiler framework as a backbone. The
compiler supports C/C++ languages and has also support for the parallel OpenCL
standard [22], in particular with pocl library [23]. The frontend supports the ISO

1312 J. Takala et al.

C/C++,
OpenCL C

Bitcode libs:
libc (newlib), etc. LLVM Passes

Compiler
frontend

Clang, llvm-gcc,...

LLVM bitcode
linker

LLVM optimizer
(whole program)

bit-
code

bit-
code

Architecture
description

ADF

Operation
descriptions

OSAL

Parallel
TTA program

Instruction
selector

Register
allocator

Other
target opts.

LLVM IR
to

TCE IR
conversion

Instruction
scheduler +

TTA specific opts.

TCE libraries
LLVM code generation framework

Retargetable TTA backend

bitcode

Standard L LVM tools

TCE code generation

Fig. 39.6 tcecc compiler

C99 standard with a few exceptions, most of the C++98 language constructs, and a
subset of OpenCL C. Although TCE tools support multi-threading and multi-core
systems [24], in this chapter we limit the discussion to single thread operation.

The main compilation phases of tcecc are shown in Fig. 39.6. Initially, LLVM’s
Clang frontend converts the source code to the LLVM internal representation. After
the frontend has compiled the source code to LLVM bytecode, the utility software
libraries are linked in, producing a fully linked self-contained bytecode program.
Then standard LLVM Intermediate Representation (IR) optimization passes are
applied to the bytecode-level program, and the whole-program optimizations can be
applied aggressively. The optimized bytecode is then passed to the TCE retargetable
code generation.

User-specific custom operations can be described in OSAL database as data-
flow graphs consisting of primitive operations, which the LLVM instruction selector
automatically attempts to detect and replace in the program code. Complex custom
operations consisting of several primitive operations and dependencies between
them or custom operations producing multiple results may not be automatically
detected from intermediate code. Therefore, tcecc produces intrinsics that can be
used manually in the source code.

39.4 Discrete Fourier Transform and Its Fast Algorithms

DFT is used to convert a finite sequence of equally spaced samples to a sequence
of coefficients of a finite combination of complex sinusoids. In other words, the
time domain representation of an N -point discrete time signal x.n/ is converted to
frequency domain representation X.r/ as follows [31]:

39 Codesign Case Study on Transport-Triggered Architectures 1313

X.r/ D

N �1X

nD0

x.n/W rn
N ; r D 0; 1; � � � ; N � 1; (39.1)

where the coefficients WN are defined as

WN D e�j 2�=N D cos .2�=N / � j sin .2�=N / ; (39.2)

where j denotes the imaginary unit. As the coefficients WN are composed of
sine and cosine functions, the coefficients W rn

N have symmetry and periodicity
properties, which implies that the DFT defined in (39.1) contains redundancy. By
exploiting the underlying properties of the coefficients W rn

N , several fast algorithms
for DFT, i.e., FFTs, have been developed over the years. The most popular FFT
is the Cooley-Tukey algorithm [9], where divide and conquer paradigm is used
to decompose DFT into a set of smaller DFTs. In particular, the Cooley-Tukey
principle states that a DFT of length N D PQ can be computed with the aid of
P -point DFT and Q-point DFT.

39.4.1 Radix-p Algorithms

If a factor N is not a prime, the Cooley-Tukey principle can be recursively applied
and the larger DFT will be computed with the aid of several smaller DFTs.
Especially, when the DFT length is a power of a prime, i.e., N D pq , then the
N -point DFT can be computed with the aid of p-point DFTs constructed in q

computing stages. As the resulting fast algorithm contains only p-point DFTs, it is
called a radix-p FFT. The most popular approach is radix-2 FFT algorithm, where
the DFT is decomposed recursively until the entire algorithm is computed with the
aid of 2-point DFTs as follows:

X.r/ D

N
2 �1X

nD0

x.2n/W 2nr
N C

N
2 �1X

nD0

x.2n C 1/W 2nrC1
N

D

N
2 �1X

nD0

x.2n/W 2nr
N
2

C W r
N

N
2 �1X

nD0

x.2n C 1/W 2nr
N
2

; r D 0; 1; � � � ; N � 1:

(39.3)

This equation shows coefficients

WN D e�j 2�=N (39.4)

for the N -th root of unity. Its powers are referred to as twiddle factors.
The DFT decomposition can be carried out with two principal approaches:

Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF). In DIT approach,

1314 J. Takala et al.

W 0
8

0
a b

W 0
8

W 0
8

W 0
8

W 0
8

W2
8

W 0
8

W2
8

W 0
8

W1
8

W2
8

W3
8

4

2

6

1

5

3

7

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

W 0
8

0

-1

W 0
8

-1

W 0
8

-1

W 0
8

-1

-1

-1

-1

-1

W 0
8

W2
8

W 0
8

W2
8

-1

-1

-1

-1

W 0
8

W1
8

W2
8

W3
8

4

2

6

1

5

3

7

0

1

2

3

4

5

6

7

Fig. 39.7 Signal-flow graphs of 8-point radix-2 FFT: (a) decimation-in-time and (b) decimation-
in-frequency algorithm. Circles represent addition

the decomposition is started in time domain sequence, while in DIF approach, the
decomposition is started on frequency domain sequence. Both the approaches are
illustrated in Fig. 39.7, where the signal-flow graphs of 8-point FFT derived with
both approaches are shown. In the 8-point transform, the computations are carried
out in three computing stages, where each column contains four 2-point DFTs. The
principal computation building block in the radix-2 FFT is 2-point DFT in (39.3),
which is also called a radix-2 butterfly. In Fig. 39.7, the weights �1 and W r

N denote
multiplication.

This work concentrates on the DIT approach, while both the DIT and DIF
approaches result in the same arithmetic complexity but can be some other
implementation-related differences. When implementing the algorithms with fixed-
point arithmetic, there will be difference in the numeric accuracy due to quanti-
zations carried out during the computations. Although the differences in signal-to-
noise ratio (SNR) can be small, the DIT approach will result in better SNR in radix-2
algorithms [2]. Therefore, in this chapter, we exploit the DIT algorithms.

In the radix-2 butterfly, one complex multiplication and two complex additions
are needed, each stage contains N =2 butterflies, and the number of the stages is
log2 N , which gives the total of N

2
log2 N complex multiplications and N log2 N

additions for an N -point transform.

39.4.2 Radix-2r Algorithms

Traditionally the most popular FFT have been the radix-2 FFTs, where computations
are based on 2-input, 2-output butterflies depicted in Fig. 39.8. The radix-2 FFT is
a special case in the class of radix-2s FFTs [7]. The arithmetic complexity of FFT
can be reduced by using greater than two radix if many of the complex coefficients
turn out to be trivial (˙1 or ˙j). Let us consider the basic equation of the DFT in

39 Codesign Case Study on Transport-Triggered Architectures 1315

x0

x1 -1WN
b

y1

y0 x0

x1 -1 WN
b

y1

y0

x

a b

c
0

x1 -i
-1
i

-1

-1

i

-i

-1
x2

x3

y2

y1

y0

y3

WN
b

WN
2b

WN
3b

Fig. 39.8 FFT butterflies according to (a) radix-2 DIT algorithm in Fig. 39.7a, (b) radix-2 DIF
algorithm in Fig. 39.7b, and radix-4 DIT algorithm in Fig. 39.9b

(39.1) and divide the original N -point problem to four partial sums by dividing the
system to four sub problems, where the length of problem is N =4:

X.r/ D

N �1X

nD1

x.n/W rn
N

D

N =4�1X

nD0

x.4n/W
r.4n/

N C

N =4�1X

nD0

x.4n C 1/W
r.4nC1/

N C

N =4�1X

nD0

x.4n C 2/W
r.4nC2/

N

C

N =4�1X

nD0

x.4n C 3/W
r.4nC3/

N ; r D 0; 1; � � � ; N � 1: (39.5)

This method results in a radix-4 algorithm, where computations are based on 4-
point DFT. This approach has benefits in terms of arithmetic complexity as 4-point
DFT can be computed with trivial coefficients. In matrix form, the 4-point and 2-
point DFT, F4 and F2, respectively, can be defined as

F4 D

0

BB@

1 1 1 1

1 �i �1 i

1 �1 1 �1

1 i �1 �i

1

CCA I F2 D

�
1 1

1 �1

�
: (39.6)

While the radix-2 FFT has log2 N computing stages, the radix-4 algorithm has
only log4 N stages, which results in significant savings in arithmetic complexity;
e.g., a 64-point FFT can be computed in three stages while the radix-2 algorithm
requires six computing stages. The arithmetic complexity for an N -point radix-4
FFT is 3N

4
log4 N complex multiplications and 3N log4 N complex additions. The

savings in multiplications (twiddle factors) are illustrated in Fig. 39.9.
From the implementation point of view, the lower number of arithmetic oper-

ations provides potential for faster computation and energy savings. In addition,

1316 J. Takala et al.

F2

F2

a b

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F4

F4

F4

F4

F4

F4

F4

F4

Fig. 39.9 Signal-flow graphs of in-place DIT FFTs: 16-point (a) radix-2 and (b) radix-4 FFT.
Triangles represent a non-trivial twiddle factor

the latency of computations can be shorter. Besides lower arithmetic complexity,
the radix-4 FFT provides also other advantages. The lower number of butterfly
computation stages implies that, in memory based systems, less memory accesses
are required. This speeds up the computations, reduces energy consumption, and
relaxes the memory bandwidth requirements.

In this chapter, we exploit the in-order input, permuted output DIT radix-4 FFT
defined as

F22n D R22n

"
0Y

sDn�1

ŒP s
22n �T .I2.2n�2/ ˝ F4/Ds

22nP s
22n

#
; (39.7)

where RN is a permutation matrix defined as

R4n D

nY

kD2

I4.n�k/ ˝ P4k;4; (39.8)

P s
N is a permutation matrix of order N defined as

P s
2n D I4s ˝ P2.n�2s/;2.n�2s�2/ ; (39.9)

and Ds
N is a diagonal matrix containing N D 4n twiddle factors as follows:

Ds
N D Qs

N

2

4
N =4�1M

kD0

diag
�
1; W

bk2sC1=N c

4sC1 ; W
2bk2sC1=N c

4sC1 ; W
3bk2sC1=N c

4sC1

�
3

5 I (39.10)

Qs
N D

sY

kD0

P4.s�k/;4 ˝ IN =4.s�k/ : (39.11)

39 Codesign Case Study on Transport-Triggered Architectures 1317

In the previous, ˝ denotes tensor product, i.e.,

�
0 1

2 1

�
˝ A D

�
0 A

2A A

�
(39.12)

and ˚ denotes direct sum, i.e.,

A ˚ B D

�
A 0

0 B

�
: (39.13)

An example of FFT from (39.7) is depicted in Fig. 39.10.
The arithmetic complexity can further be reduced by selecting on even higher

radix. However, in radix-8 and higher, the butterflies will contain nontrivial
coefficients, and therefore, the relative arithmetic complexity is not decreasing as
much. While radix-8 computations are applicable as they provide some advantages
in specific implementation styles, higher radices are seldom used.

The main drawback of the radix-p FFTs is the fact that the length of the transform
has to be a power of radix, N D ps; i.e., radix-4 algorithms can only be applied
when the transform length is a power of four. When the radix is higher, there are
less sequence sizes where the algorithm can be applied. Due to this fact, radix-2
FFTs have been popular.

39.4.3 Mixed-Radix FFT

A method to reduce the arithmetic complexity compared to radix-2 FFT but still to
support power of two transform lengths is mixed-radix approach, where the DFT
decomposition contains several radices, e.g., the results of a 32-point FFT can be
computed with two radix-4 stages and a single radix-2 stage. An example of mixed-
radix FFT is shown in Fig. 39.11, where the signal-flow graph of a 32-point in-order
input, permuted output DIT FFT based on radix-4 and radix-2 is illustrated.

In this chapter, we exploit the mixed-radix approach consisting of radix-4 and
radix-2 computations, which provides best of the both worlds: lower arithmetic
complexity of radix-4 FFTs and support for all the power-of-two transform sizes
of radix-2 FFTs. The mixed-radix FFT consisting of radix-4 processing columns
followed by a single radix-2 column can be defined as

F22nC1DO2.2nC1/ .I22n ˝ F2/ C2.2nC1/

"
0Y

sDn�1

ŒP s
2.2nC1/ �

T .I2.2n�1/ ˝ F4/Ds
2.2nC1/P

s
2.2nC1/

#
;

(39.14)

where the matrices P s
N and Ds

N are defined in (39.9) and (39.10), respectively. The
matrix ON is a permutation matrix given as

ON D .I2 ˝ R4n/ PN;2 ; N D 22nC1: (39.15)

1318 J. Takala et al.

F4

F4

F4

F4

4
8
12

4
8
12

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

4
8
12

4
8
12

F4

F4

F4

8
16
24

F4

8
16
24

F4

8
16
24

F4

8
16
24

F4

12
24
36

F4

12
24
36

F4

12
24
36

F4

12
24
36

F4
4
8
12

F4
8
16
24

F4

12
24
36

F4

1
2
3

F4

5
10
15

F4

9
18
27

F4

13
26
39

F4

2
4
6

F4

6
12
18

F4

10
20
30

F4

14
28
42

F4

F4

3
6
9

F4

7
14
21

F4

11
22
33

F4

15
30
45

0
16
32
48
4

20
36

56
12
28
44
60
1

17
33
49
5

21
37
53
9

25
41
57
13
29
45
61
2

18
34
50

52
8

24
40

6
22
38
54
10
26
42
58
14
30
46
62
3

19
35
51
7

23
39
55
11
27
43
59
15
31
47
63

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

Fig. 39.10 Signal-flow graph of 64-point radix-4 DIT FFT. Numbers in the processing columns
denote exponent k of twiddle factor, W k

64

39 Codesign Case Study on Transport-Triggered Architectures 1319

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F4

F4

F4

F4

F4

F4

F4

F4

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F4

F4

F4

F4

F4

F4

F4

F4

0
16
4

20
8

24
12
28
1

17
5

21
9

25
13
29
2

18
6

22
10
26
14
30
3

19
7

23
11
27
15
31

2
4
6

2
4
6

4
8
12

4
8
12

6
12
18

6
12
18 15

11

7

3

14

10

6

2

13

9

5

1

12

8

4

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

Fig. 39.11 Signal-flow graph of 32-point mixed-radix DIT in-place FFT algorithm

The matrix CN contains the twiddle factors for the radix-2 processing stage, and it
is defined as

CN D Q
log4.N =2/

N

N =2�1M

kD0

diag
�
1; W k

N

�
; N D 22nC1; (39.16)

where the permutation matrix Qs
N is defined in (39.11).

The mixed-radix approach allows us to design a system supporting multiple
power-of-two FFT sizes. For example, in order to support the IEEE 802.16.1
OFDMA PHY [20], 256-point and 2048-point FFT transforms have to be realized,
but the radix-4 FFT cannot be used to compute a 2048-point FFT, while mixed-radix
approach is usable.

1320 J. Takala et al.

39.5 Building Blocks and Optimizations

In TTAs, application-specific function units could be exploited. One possible
candidate for a special unit can be found by chaining up the operations executed;
if an operation pattern is repeated in the application, it is a good candidate
for a user-specific function unit. Such operation patterns can be, e.g., memory
address generation, complex-valued addition, and complex-valued multiplication.
The special units can also contain more specialized and complex functions like
twiddle factor generator. The TTA template supports different latencies; thus the
special function units can be pipelined to an arbitrary number of stages.

In this section, we discuss several properties of the previous FFT algorithms,
which can be exploited when implementing the algorithm. In particular, the special
features are used to construct user-specific functional units, which can be used in a
TTA processor to speed up FFT computations.

39.5.1 In-Place Computations

In general, FFT algorithms are block processing algorithms, where computing
is performed in processing stages consisting of butterfly computations. This is
depicted in the signal-flow graphs of the algorithms, e.g., Figs. 39.9 and 39.11.
Often in software implementations, double buffering [16] is used, i.e., operands are
stored in an array and results are stored to another array and the role of buffers is
exchanged for the next iteration. However, the previous signal-flow graphs illustrate
that after the input operands for the butterfly operations are available and read
from the memory locations, those operands are not needed any more, and the
corresponding memory locations can be used to store the results of the butterfly. The
results are used as operands for the butterflies in the following computing stage, i.e.,
computations can be performed in-place [26]. Exploitation of this property reduces
significantly the memory requirements of software implementations.

39.5.2 Permutations and Operand Access

The FFT computations can be divided in butterfly computations, e.g., radix-2 FFT
shown in Fig. 39.9a consists of 2-point butterfly computations, which each requires
two operands and produces two results. The operands for butterflies are obtained
with stride access, i.e., if the input sequence is stored in a memory array in order,
the operands for butterfly computations in the first computing stage are located N =2

apart in the memory. In the second stage, the operands are N =4 apart. In software
implementations, the operand index computation requires arithmetic operations, but,
in application-specific implementations, this can be realized with lower complexity.
When investigating the index addressing at bit level, it can be noted that addresses
N =2 apart can be obtained from a linear address simply with the aid of rotation [7].

39 Codesign Case Study on Transport-Triggered Architectures 1321

A linear address .aN �1; aN �2; : : : ; a0/ is rotated to the right to obtain the operand
access index .a0; aN �1; aN �2; : : : ; a1/. For example, the 2nd butterfly in the first
processing stage in Fig. 39.9a reads operands from addresses 1 and 9; thus the
mappings are 210 D 00102 ! 110 D 00012 and 310 D 00112 ! 910 D 10012.
It should be noted that the access pattern of the operands for butterfly computations
depends on the butterfly state s in the FFT signal-flow graph.

Different FFT algorithms have different operand access patterns. The operand
indices for the first two processing stages of 64-point radix-4 DIT FFT in Fig 39.10
are listed in Fig. 39.12. The figure shows the decimal and binary representations of
the indices, which reveal that the address mapping from linear address to operand
index is a rotation. In the first stage shown in Fig. 39.12a, the bit-level mapping
is rotation of two bits to the right in a 6-bit address. In the second stage listed in
Fig. 39.12b, we can still see the same rotation of two bits to the right, but at this time
the field to be rotated contains only four bits. This can be extended to a systematic
method illustrated in Fig. 39.13; operand address mapping in 22k-point radix-4 DIT
FFT in bit level is a rotation of two bits to the right in the .2.k � s// least significant
bits in the 2k-bit linear address.

The mixed-radix approach uses yet another mechanism. Let us consider the
mixed-radix FFT in Fig. 39.11. It should be noted that the length of the transform
is now N D 22kC1, i.e., the index has an odd number of bits. The operand access
sequence in the first processing stage is listed in Fig. 39.14a, which shows that the
mapping in the bit level is rotation of two bits to the right in the 5-bit address.
The addressing sequence in the second processing stage is listed in Fig. 39.14b,
which indicates that the mapping is again 2-bit rotation, but the bit field to be rotated
contains the three least significant bits in the address. The systematic mapping for
mixed-radix FFT defined in (39.14) is illustrated in Fig. 39.15: operand address

0
a b

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
32
48
1
17
33
49
2
18
34
50
3
19
35
51

000000 000000
000001 010000
000010 100000
000011 110000
000100 000001
000101 010001
000110
000111
001000
001001
001010
001011
001100

001110
001101

001111

100001
110001
000010
010010
100010
110010
000011

100011
010011

110011

Linear idx Operand idx
000000
000001
000010
000011
000100

000110
000101

000111
001000
001001
001010
001011
001100

001110
001101

001111

000000
000100
001000
001100
000001

001001
000101

001101
000010
000110
001010
001110
000011

001011
000111

001111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Linear idx Operand idx
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
15

Fig. 39.12 Operand address sequences 64-point FFT in Fig. 39.10: (a) the first computation stage,
s D 0, and (b) the second computation stage, s D 1

1322 J. Takala et al.

...s = n-1

s = n-2

s = 0

linear

a2a3a4a5a6

... a0an-1an-2an-3 a1a2a3a4a5a6

... a4a5a6

... a7a1 a0 an-1 a8 a2a3a4a5a6

a2a3a0a1

s = 1 ... a7a0 an-3 a8 a2a3a4a5a6

an-2an-3
an-1an-2 a1

an-4an-5

an-1an-2an-3an-4an-5

an-1an-2an-3an-4an-5
a0a1

s = n-3 ... a4a5a6 a2a3a0a1an-1an-2an-3an-4an-5

Fig. 39.13 Bit-level operand address mapping for a 22k-point in-order, permuted output radix-4
DIT FFT. n D 2k

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
8
16
24
1
9
17
25
2
10
18
26
3
11
19
27

00000 00000
00001 01000
00010 10000
00011 11000
00101 00001
00110 01001
00110
00111
01000
01001
01010
01011
01100

01110
01101

01111

10001
11001
00010
01010
10010
11010
00011

10011
01011

11011

Linear idx Operand idx
00000
00001
00010
00011
00100

00110
00101

00111
01000
01001
01010
01011
01100

01110
01101

01111

00000
00010
00100
00110
00001

00101
00011

00111
01000
01010
01100
01110
01001

01101
01011

01111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Linear idx Operand idx
0
2
4
6
1
3
5
7
8
10
12
14
9
11
13
15

a b

Fig. 39.14 Operand address sequences for 32-point mixed radix-4 and radix-2 FFT in Fig. 39.11:
(a) the first computation stage, s D 0, and (b) the second computation stage, s D 1

...s = n-1

s = n-2

s = 0

linear

a2a3a4a5a6

... a0an-1an-2an-3 a1a2a3a4a5a6

... a4a5a6

... a7a1 a0 an-1 a8 a2a3a4a5a6

a2a3 a0a1

an-2an-3

an-4an-5

an-1an-2an-3an-4an-5

an-1an-2an-3an-4an-5
a0a1

s = n-3 ... a4a5a6 a2a3a0a1an-1an-2an-3an-4an-5

s = 1 ... a7a0 an-3 a8 a2a3a4a5a6an-1an-2 a1

Fig. 39.15 Bit-level operand address mapping for a 22kC1-point in-order, permuted output mixed
radix-4 and radix-2 DIT FFT. n D 2k C 1

mapping in 22kC1-point mixed-radix DIT FFT in bit level is a rotation of two bits to
the right in the .2.k � s/ C1/ least significant bits in the .2k C1/-bit linear address.

There is yet another address mapping-related property in FFTs; the transforms
contain permutations either in input or output or both. In radix-2 FFTs, the input
or output permutations are the well-known bit-reversed permutations as seen in

39 Codesign Case Study on Transport-Triggered Architectures 1323

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
32
48
4
20
36
52
8
24
40
56
12
28
44
60

000000 000000
000001 010000
000010 100000
000011 110000
000100 000100
000101 010100
000110
000111
001000
001001
001010
001011
001100

001110
001101

001111

100100
110100
001000
011000
101000
111000
001100

101100
011100

111100

Linear idx Operand idx

010000 00000116 1

reversed

linear

a

b
... a0an-1an-2an-3 a1a2a3a4a5a6

... an-5a1 a0 a3 an-2an-1an-4an-3an-6a2 a5

an-4an-5

an-8

Fig. 39.16 Bit-level address mapping for output permutation in a 2n-point in-order, permuted
output radix-4 DIT FFT. n D 2k

Fig. 39.9a. The address mapping is obtained simply by reversing the bit-level
representation of the address. For example, in Fig. 39.9a, the addressing sequence
is (0; 8; 4; 12; 2; : : : ; 15), which is obtained from the linear address in bit level as
010 D 00002 ! 010 D 00002, 110 D 00012 ! 810 D 10002, 210 D 00102 ! 04 D

01002, 310 D 00112 ! 1210 D 11002, etc. It should also be noted that the inverse
permutation of bit reversal is the same bit reversal.

The transforms considered in this chapter, radix-4 and mixed-radix algorithms
defined in Eqs. (39.7) and (39.14), respectively, contain output permutations, and
the permutations are different than in radix-2 algorithms. The output reordering in
64-point radix-4 algorithm illustrated in Fig. 39.10 is listed in Fig. 39.16a. The bit-
level representation shows that the 6-bit linear address is reversed in 2-bit fields to
obtain the index of the permuted element. The general method for address mapping
for output permutation in a 22k-point radix-4 DIT FFT is depicted in Fig. 39.16b;
the address mapping is reversal of 2-bit fields in a 2k-bit address.

The mixed-radix FFT has a different output permutation. The 32-point FFT in
Fig. 39.11 has the output index sequence listed in Fig. 39.17a, which again shows the
reversal of 2-bit fields. However, this time the address field contains an odd number
of bits; thus the least significant bit is moved to the most significant bit. The general
case for 22kC1-point FFT is depicted in Fig. 39.17b. By using the previous bit-level
presentations, the complexity of address generation can be reduced significantly
compared to using worldwide arithmetic operations.

1324 J. Takala et al.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
4
20
8
24
12
28
1
17
5
21
9
25
13
29

00000 00000
00001 10000
00010 00100
00011 10100
00100 01000
00101 11000
00110
00111
01000
01001
01010
01011
01100

01110
01101

01111

01100
11100
00001
10001
00101
10101
01001

01101
11001

11101

Lineaa

b

r idx Operand idx

10000 0001016 2

reversed

linear ... a0an-1an-2an-3 a1a2a3a4a5a6

... an-5a0 a2 a1 an-2an-1an-4an-3an-6a4 a3

an-4an-5

an-8

Fig. 39.17 Bit-level address mapping for output permutation in a 2n-point in-order, permuted
output mixed-radix DIT FFT. n D 2k C 1

39.5.3 Twiddle Factors

The twiddle factors defined in (39.4) are an integral part of FFT algorithms, and
often these coefficients are stored in a look-up table and fetched during computation
of the algorithms. While this is a simple and quick method for short transforms, the
table size increases superlinearly with the transform size. Therefore, the coefficients
are created at run time when working with longer transforms.

The twiddle factors are actually complex roots of unity evenly spaced in the unit
circle on complex plane [7] as seen in Fig. 39.18. The number of different factors
depends on the FFT size N and the type of the fast algorithm. For example, radix-2
algorithms contain N

2
log2 N twiddle factors, but there are only N

2
different factors.

According to (39.10), in a radix-4 algorithm, there are three nontrivial twiddle
factors in each butterfly, thus there is a total of 3

4
N log4 N nontrivial twiddle factors

while only
�

N
2

� 1
�

are unique.
The twiddle factors can be formed by using trigonometric functions, which are,

however, expensive. The coefficients can be computed with fast algorithms, which
exploit the trigonometric identities of twiddle factors, e.g., Singleton’s method [35].
Then the coefficients can be computed on the fly, when they are needed. The twiddle
factors can be generated as piecewise polynomial approximation of a function.
Polynomial approximation requires multiplications and additions to compute the
value of a function with given parameters. It should also be noted that the com-
plexity of the polynomial-based algorithm increases significantly with the required

39 Codesign Case Study on Transport-Triggered Architectures 1325

W 0
16

W 1
16

W 2
16

W 3
16W 4

16W 5
16

W 6
16

W 7
16

B0
B1B2

B3

W64
5

W64
6

W64
7

W64
8

W64
4

W64
3

W64
2

W64
1

W64
0

W64
10

W64
12

W64
14

W64
15

W64
9

W64
11

W64
13

W64
16W64

18W64
20

W64
22

W64
24

W64
26

W64
21

W64
28

W64
30

W64
33

W

a

b

64
36

W64
39

W64
42

W64
45

W64
27

-1

+j

B0
B1B2

B3

B4
B5

Fig. 39.18 Twiddle factors of (a) 16-point radix-2 and (b) 64-point radix-4 FFT in the complex
plane

output precision. In [14], second-order polynomial approximation is combined with
Horner’s rule to compute the sine and cosine values.

Recursive twiddle factor generation is based on recursive feedback difference
equations for sine and cosine functions. This approach is less complex compared
to the polynomial, one iteration uses two real-valued multiplications and two real-
valued additions to produce a complex-valued result. The drawback of the algorithm

1326 J. Takala et al.

is error propagation of the finite numbers due to the feedback structure of the
algorithm. In [6], a method to reduce the complexity of error propagation circuit
is proposed. The accuracy is improved with a correction table containing N

8
3-bit

entries. The area cost is reduced by sharing the same multiplier and adder for both
real and imaginary parts, which doubles the latency. The method uses two look-up
tables for cosine and sine values, and both tables require log2 N � 2 entries. The
drawback is that the method generates an ordered sequence of twiddle factors; thus
it supports only a specific type of FFT algorithms and the reported unit supports only
radix-2 DIF FFT. In these algorithms, the large number of iterations will increase
the length of computation kernel. This might increase the need for intermediate
storage, i.e., registers. Also the large number of multiplications will increase the
power consumption of twiddle factor generation.

Another method to compute the twiddle factors is to exploit the COordinate
Rotational DIgital Computer (CORDIC) algorithm [13, 25, 44]. All of the trigono-
metric functions can be evaluated by rotating a unit vector in complex plane. This
operation is effectively performed iteratively with the CORDIC algorithm. The
general rotation transform at iteration t can be given as

�
XtC1 D Xt cos � � Yt sin �

YtC1 D Yt cos � C Xt sin �
; (39.17)

where .XtC1; YtC1/ is the resulting vector generated by rotation of an angle � from
the original vector .Xt ; Yt /, i.e., the resulting vector rotates in the unit circle in
similar fashion as the twiddle factors. Therefore, the CORDIC algorithm can be used
to compute the twiddle factors, generating the sine and cosine values. In particular,
CORDIC is used for replacing the twiddle factors with rotation information and,
therefore, avoids multiplication with the twiddle factor by replacing it with rotation
realized with additions.

The CORDIC multiplier consumes less power compared to a traditional mul-
tiplier. For example, in [47], a pipelined CORDIC unit consumed roughly 20%
less power than the traditional complex-valued multiplier while the area cost was
about the same. Recursive CORDIC iteration saves area compared to look-up-
based twiddle factors, but it introduces longer latency. In [47], the rotation angle
constants for generating all the twiddle factors for an N -point FFT are stored in a
look-up table with log2 N entries, while in [15], the twiddle factors are generated
without pre-calculated coefficients. The CORDIC algorithm is iterative; thus it can
be pipelined easily and it lends itself to pipelined FFT architectures. However, the
dynamic power consumption with a large number of iterations and/or long pipeline
will be higher than in a look-up table-based approach. This will be the case, when
longer word widths are used, i.e., increased accuracy calls for more iterations.
Traditionally the CORDIC has mainly been used in fixed-function ASICs, but it
can be used to accelerate computations in a programmable processor as reported

39 Codesign Case Study on Transport-Triggered Architectures 1327

in [34]. The authors describe instruction extensions for CORDIC operations, and
there are separate instructions for vectoring and rotation mode.

Another approach is to exploit look-up tables and read the coefficients from
the tables. In many cases, the look-up tables are stored in ROM, but, in software
implementations, data memory is used to store the coefficients. The simplest design,
radix-2, requires N

2
log2 N twiddle factors to be stored in the table. However, such

a table contains redundancy as many of the coefficients are the same. In [27, 46],
a method to reduce the number of coefficients in radix-2 algorithms to N

2
is

proposed. Such a table can be used only for a sequential implementation, but, in
[28], a method is proposed, which allows the N =2 entries to be distributed over
2P ; P D 0; 1; : : : ; log2

�
N
2

�
� 1 sub-tables such that those can be accessed by 2P

butterfly units simultaneously.
The previous twiddle factor table contains still redundancy: as the twiddle factors

are equally spaced in unit circle on the complex plane, there is symmetry as
illustrated in Fig. 39.18a. We can note that the real and imaginary parts of the twiddle
factors in the octants B0 and B1 can be used to obtain the twiddle factors required
in the octants B2 and B3. The number of look-up table entries in the radix-2 case
can be reduced down to N

4
C 1. Such an approach has been presented in [3, 30, 39].

In this method, the twiddle factors from the octants B0 and B1 in Fig. 39.18 are
stored to the look-up table, and the rest of twiddle factors are generated simply by
interchanging the real and imaginary parts of the coefficient and changing the sign
according to the octant.

In the previous, the symmetry among different quadrants is exploited, but the
symmetry between real and imaginary parts of the twiddle factors is not exploited.
This would allow all the twiddle factors to be generated from only one octant, B0

in Fig. 39.18a. In [17], method is shown, which avoids these redundancy twiddle
factors for radix-2 FFTs are created with the aid of N

8
C1 complex-valued constants.

In [32], this is extended to cover also radix-4 FFTs. The method can be used to
construct twiddle factors for several transform sizes.

The redundancy in twiddle factors can easily be seen in Fig. 39.19; in order
to represent all the different twiddle factors in 64-point radix-4 FFT, only the
nine twiddle factors in the octant B0 are needed. For example, twiddle factor
W 14

64 in the octant B1 is obtained with the aid of W 2
64 in octant B0: W 14

64 D

�iW 2
64

�
, where � denotes complex conjugate. In a similar fashion, W 18

64 D �iW 2
64.

In general case, for an N -point transform, we store the values from B0 to a
table M :

M D .M0; M1; : : : ; MN =8/; (39.18)

where an entry Mk in the table represents a twiddle factor W k
N , which is computed

based on the exponent k as follows:

1328 J. Takala et al.

(1
.0
0,
0.
00

)

(1
.0
0,
-0
.1
0)

(0
.9
8,
-0
.2
0)

(0
.9
6,
-0
.2
9)

(0
.9
2,
-0
.3
8)

(0
.8
8,
-0
.4
7)

(0
.8
3,
-0
.5
6)

(0
.7
7,
-0
.6
3)

(0
.7
1,
-0
.7
1)

0 64
W

1 64
W

2 64
W

3 64
W

4 64
W

5 64
W

6 64
W

7 64
W

8 64
W

(0
.0
0,
-1
.0
0)

(0
.1
0,
-1
.0
0)

(0
.2
0,
-0
.9
8)

(0
.2
9,
-0
.9
6)

(0
.3
8,
-0
.9
2)

(0
.4
7,
-0
.8
8)

(0
.5
6,
-0
.8
3)

(0
.6
3,
-0
.7
7)

(-
1.
00

,0
.1
0)

(-
0.
92

,0
.3
8)

(-
0.
77

,0
.6
3)

B
0

B
1

B
2

B
3

B
4

B
5

(-
0.
20

,-0
.9
8)

(-
0.
38

,-0
.9
2)

(-
0.
47

,-0
.8
8)

(-
0.
56

,-0
.8
3)

(-
0.
71

,-0
.7
1)

(-
0.
98

,-0
.2
0)

(-
0.
92

,-0
.3
8)

(-
0.
88

,-0
.4
7)

(-
0.
83

,-0
.5
6)

(-
0.
29

,0
.9
6)

(-
0.
56

,0
.8
3)

16 64
W

15 64
W

14 64
W

13 64
W

12 64
W

11 64
W

10 64
W

9 64
W

18 64
W

20 64
W

21 64
W

22 64
W

24 64
W

30 64
W

28 64
W

27 64
W

26 64
W

33 64
W

36 64
W

39 64
W

45 64
W

42 64
W

ra
di

x-
4

FF
T-

64
M

ix
ed

-ra
di

x
FF

T-
32

ra
di

x-
4

FF
T-

16
Fi

g
.

3
9

.1
9

Tw
id

dl
e

fa
ct

or
s

in
16

-p
oi

nt
ra

di
x-

4
FF

T,
32

-p
oi

nt
m

ix
ed

-r
ad

ix
,a

nd
64

-p
oi

nt
ra

di
x-

4
FF

T
s

in
th

e
di

ff
er

en
to

ct
an

ts
in

co
m

pl
ex

pl
an

e
in

Fi
g.

39
.1

8b

39 Codesign Case Study on Transport-Triggered Architectures 1329

W k
N D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

MA , when 0 � k � N
8

�j MA
� , when N

8
< k < N

4

�j MA , when N
4

� k � 3N
8

�MA
� , when 3N

8
< k < N

2

�MA , when N
2

� k � 5N
8

j MA
� , when 5N

8
< k

; (39.19)

where A is an index to the look-up table M obtained from the given exponent k.
For N -point FFT, N D 2n, k is represented with n bits; thus when using two’s
complement representation, the .n � 2/-bit index A is obtained simply as

A D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

kŒn � 3 W 0� , when 0 � k � N
8

� kŒn � 3 W 0� C 1 , when N
8

< k < N
4

kŒn � 3 W 0� , when N
4

� k � 3N
8

� kŒn � 3 W 0� C 1 , when 3N
8

< k < N
2

kŒn � 3 W 0� , when N
2

� k � 5N
8

� kŒn � 3 W 0� C 1 , when 5N
8

< k

; (39.20)

where kŒa W b� denotes the bit field .ka; ka�1; : : : ; kbC1; kb/ of a two’s complement
number k D .kn�1; : : : ; k1; k0/ and � is the bit-wise complement operation.

The look-up table can be used to create the twiddle factors in all the power-
of-two FFTs smaller than N . This can be seen in Fig. 39.19: the twiddle factors
in a 32-point mixed-radix FFT are a subset of twiddle factors in 64-point radix-4
FFT. The access to the table requires only a simple manipulation of parameter k

as the twiddle factors in a 32-point FFT are every second twiddle factor in a 64-
point FFT. In a similar fashion, the twiddle factors in a 16-point radix-4 FFT are a
subset of twiddle factors in the 32-point FFT. A block diagram of a twiddle factor
unit supporting all the power-of-two FFTs with 16-bit real and 16-bit imaginary
precision is illustrated in Fig. 39.20. The actual twiddle factor generation requires
only negation of sine and cosine values read from the look-up table as defined in
(39.18). According to (39.20), the index to the look-up table is formed with simple
operations: increment and complement, and modification of complex entries from
the table uses only few simple gates and two full adders.

R

3
k(5:0)

q(2:0)

r(2:0)
w(3:0)

q(0)

LUT M0
1

M0
1

msb
lsb

msb
lsb3

16

q(2)q(0)q(2)q(0) q(2)

1616

16

Re(WN
k)

Im(WN
k)

Re
Im

ci
co

ci

ci

R

Fig. 39.20 Twiddle factor unit supporting all the power-of-two FFTs up to 64-points [32]

1330 J. Takala et al.

39.6 Customized FFT Architecture Based on Transport
Triggering

The properties and optimizations discussed in the previous section can be used to
tailor a single-thread transport-triggered processor for FFT computations. In this
section, we describe the architecture, which is tailored by incorporating special
function units discussed in the previous section.

The TTA template has been tailored according to the needs of radix-4 and
mixed-radix FFT, and the resulting architecture can be seen in Fig. 39.21. The
processor contains a set of standard function units, which has simply been taken
from TCE hardware database, i.e., no design effort has been used to those units.
The standard units include an instruction unit for controlling the operation, an
immediate unit for extracting an immediate value from an instruction and passing
it to the interconnection network, load/store units for accessing the data memories,
a logical unit for standard logical operations, a comparator unit, and a shifter unit
for arithmetic and logical shifts. There are several register files, which imply that
the several temporary variables are accessed in the iteration kernel. There is one
Boolean register for storing results of comparison, and this register can be used for
predication to avoid costly branches.

The processor uses 32-bit arithmetic and packs a complex number in a single
32-bit word. There are 18 buses in the interconnection network; 17 are 32-bit buses
(many of those are point-to-point buses), and there is a single 1-bit bus, which is
used to transfer the Boolean results from comparisons. All these buses are generated
by the ProGe tool once the processor architecture has been described with ProDe
tool. The data memory is organized as a parallel memory consisting of two single-
port memories with switching, which allows memories to be accessed through either
of the two load/store units. This organization allows two memory accesses per clock

cadd

instruction memory

ld/st

iuinst u

agfgen

17 32-bit buses , one 1-bit bus

rf1 rf2 rf3 rf4 rf5 rf6 rf7 rf8

cmulld/st

rf9

data memory

rf10 rf11 rfb

cmp shift

add

lu

Fig. 39.21 Block diagram of TTA processor tailored for FFT computations. fgen twiddle
factor generation unit, ld/st load/store unit, lu logical unit, cmp compare unit, shift shift unit,
cadd complex-valued butterfly adder, ag operand address generation unit, cmul complex-valued
multiplier, rf register file, rfb Boolean register, add adder unit, inst u instruction unit, iu immediate
unit

39 Codesign Case Study on Transport-Triggered Architectures 1331

+/- M

+/-
+/-

j

j

O1

O2

O3

O4
TO

a b

pcode
+O

O

Transform Length
rotator

Linear Index

O

T

Base Address

Butterfly Stage
Absolute Address

Fig. 39.22 Block diagram of (a) complex-valued butterfly adder and (b) operand address
generator

cycle. The energy efficiency of the parallel memory is significantly better than the
corresponding dual-port memory.

Finally, the processor has four special function units. The hardware structure of
the units has been designed manually by exploiting the standard unit interface of
the TTA template. There are separate units for complex-valued multiplication and
complex-valued butterfly addition. The complex adder unit computes for different
additions of four operands defined in 4-point DFT and two summations from 2-
point DFT in (39.6). The block diagram of the complex butterfly unit is depicted
in Fig. 39.22a. The unit has four operand ports and computes one of the outputs
of butterfly operation when the opcode is transferred to the trigger port. The idea is
that the four operands can be stored in the input registers over four consecutive clock
cycles; thus there is no need to move operands, which reduces power consumption.
The same unit can also be used to compute radix-2 butterflies when realizing mixed-
radix FFTs.

The operand addresses are computed with a dedicated address generator unit
illustrated in Fig. 39.22b. This is simply a rotator with an adder for adding the
rotated index to the base address of the memory array. Once again, the linear index
address is used as trigger port; thus during the FFT computations, all the other
parameters are kept in input registers and operand moves can be avoided. If standard
native arithmetic operations would be used for operand generation, it would take up
to six operations. Here the customized unit can generate operand address at every
clock cycle, which is sufficient to support two load/store units, as we perform in-
place computations, i.e., the same address is used to read operand and store result.

The complex-valued twiddle factors are generated with a dedicated twiddle factor
unit, which is based on the principle illustrated in Fig. 39.20. The unit can generate a
new twiddle factor at rate of one per cycle. There are also some standard functional
units for supporting control code. Many of the functional units are pipelined to
support high clock frequency. The units have been designed such that during the
FFT kernel computations, the throughput is one operation per clock cycle.

The programmability of the processor is usually limited if heavy customizations
are used, i.e., when general-purpose functional units are removed. However, this
architecture is still programmable, but the performance in general applications is
limited. The TCE tools can be used to compile code on the customized architecture.

The code for FFT application is developed by exploiting heavily software
pipelining and loop unrolling. Figure 39.23 shows the reservation table of the 17
buses during the computation of radix-4 FFT. Each color in the figure denotes move

1332 J. Takala et al.

prolog kernel epilog

Fig. 39.23 Reservation table for the radix-4 FFT code

instructions related to computation of a single radix-4 butterfly with twiddle factors.
The figure shows that the many of the resources are fully reserved during the kernel
computation. The actual computation kernel contains 16 instructions while it could
have been also shorter. However, the intermediate results are stored in register files
over few clock cycles; thus the shorter kernel would require that the intermediate
values would be stored in a FIFO type of storage. This would need data to be moved
from register to register every cycle, which would consume extra power. Therefore,
the intermediate values are kept in registers and kernel code need to be accessed
from memory. However, in this specific case, we exploited code compression [19];
thus the instruction word is short.

Two versions of processors are developed: one with larger memory for supporting
all the power-of-two FFT up to 16k-points and another version with smaller memory
to support only 1-point FFT. Both the processors have the same processor core, but
data memory and software are different.

Both the processors can perform two memory accesses per cycle; thus the
overhead of the system can be compared by determining the theoretical lower
bound for the number of memory cycles required for computing 1024-point radix-4
FFT. The radix-4 computation requires 1024 log4.1024/ memory reads and memory
writes; thus for a two-port memory, a total of 5121 memory accesses are needed. In
the customized TTA core, computation of 1k-point FFT takes 5208 cycles; thus it
shows really low overhead. The processors have been synthesized on a 130nm IC
technology, and analysis shows maximum clock frequency of 250 MHz at 1.5 V
supply voltage and 140 MHz at 1.1 V. The processor core takes 33 kgates, and in
the smaller memory configuration for 1k-point FFT, memory is 30 kgates, while
the larger memory supporting 16k-point FFT takes 240 kgates. The total power
consumption for 1k-point FFT is 59 mW@250 MHz with 1.5 V supply voltage,
where the smaller memory uses 16 mW. The most power hungry unit in the core
is the twiddle factor generator, which takes about 23% of the core area and 7% of
the power consumption. When several transform sizes are supported with the larger

39 Codesign Case Study on Transport-Triggered Architectures 1333

memory, the power consumption is higher when mixed-radix code is executed, e.g.,
computing

The major effort in the actual design work was spent on finding out the specific
features of the algorithm, which can be exploited to speed up the computations. The
effect of candidate features was analyzed by creating a high-abstraction-level model
of the function unit, which was then used in simulator. Once the unit was verified
to be useful, only then RTL code for the unit was developed; thus there was a need
to develop RTL code only for four units. The RTL for the processor was generated
with ProGe tool, and the design was synthesized with commercial IC design tools.

39.7 Energy Efficiency Comparison

Power consumption is a usual design metric when designing energy-efficient
systems. However, power consumption depends on several issues: computing
resources, memories, caches, computation cycles, operating voltage, and operation
frequency. The energy efficiency can be compared by measuring the energy
consumed for performing a reference task. Here we compare the energy efficiency
by measuring how many 1024-point FFTs can be computed with energy of 1 mJ.
This approach tries to compensate the effect of computational speed, but there are
other implementation-specific parameters, which have a great effect on the result.

There are still some parameters, which may differ, such the implementations
should be normalized. Although exact scaling of the characteristics of an implemen-
tation on a specific IC technology to another technology is difficult, even impossible,
there are several normalization methods proposed in the literature. A normalization
method for IC technologies is proposed in [38], which tries to take into account
many architectural aspects and implementation-specific features; the normalized
energy consumption of a system, EN , is defined as

EN D E
LrU

2
r

�
1
3
W 2

r C 2
3
Wr

�

LU 2
�

1
3
W 2 C 2

3
W

� ; (39.21)

where E is the energy consumption of the system implemented on a specific IC
technology, W is the word length of the system, U is the supply voltage of the
implementation, and L is feature size of the specific IC technology on which the
system has been implemented. The energy consumption of the implemented system
is normalized for the same system implemented on reference technology, where
Lr is the feature size of the reference IC technology, Ur is the supply voltage of
reference technology, and Wr is the word length of the reference design.

We have compared the energy efficiency of the developed TTA processor
against several other FFT implementations by using the previous normalization. The
following parameter set has been used: Lf = 130 nm, Ur = 1.5 V, and Wr = 16 bits.

The energy efficiency comparisons are shown in Table 39.1. As expected FFT
implementation on a general-purpose processor [5] has low energy efficiency.

1334 J. Takala et al.

Table 39.1 Energy efficiency comparison of various normalized FFT implementations measured
as the number of executed 1024-point FFTs with energy of 1 mJ.

Design Tech. Class WL VCC tclk tFF T Efficiency

[nm] [bits] [V] [MHz] [�s] [FFT/mJ]

[5] 65 GPP 16 1:2 1000 63 1 �

[41] 130 DSP 16 1:5 720 8 100 �

[37] 45 ASIC 32 0:9 650 2 1007

[4] 180 ASIC 13 1:8 51 61 748

[38] 180 ASIC 14 1:8 5 220 755

[45] 65 ASP 16 1:2 150 6 633 �

[16] 130 ASP 16 1:5 320 14 1170 �

[1] 180 ASP 16 1:8 280 37 61 �

TTA [33] 130 ASP 16 1:5 250 21 809

VCC Supply voltage, WL Word length, tclk Clock period, tFFT FFT execution time, GPP General-
purpose processor, DSP Digital signal processor, ASIC Application-specific integrated circuit, ASP
Application-specific processor
� Energy does not include memories.

The Digital Signal Processor (DSP) in [41] can achieve high performance, but
the energy efficiency in high-speed mode is lower than in low-power mode, i.e.,
lower frequency and supply voltage. In addition, the high performance calls for
manually optimized assembly code. It should be noted that the energy figures
exclude memories.

The application-specific processor in [1] contains user-specific function units,
e.g., for address generation and butterfly computations. There are two complex-
valued multipliers and three complex-valued adders. The twiddle factors are stored
in the main memory. The pipeline architecture in [37] realizes data permutation with
the aid of delay lines, where data traverses through the registers introducing high
dynamic power consumption. It is not known if the twiddle factor memories and
address generators are included in the energy figures. Another pipelined processor
is proposed in [38], which uses block floating-point number representation with
10-bit mantissa and 4-bit shared exponent. The short floating-point word allows
CORDIC pipeline to be shortened. If larger word lengths are needed, e.g., to support
larger FFTs or to improve the signal-to-noise ratio, the pipeline depth needs to be
increased, which increases the power consumption.

A cache-memory architecture is described in [4], where a small data cache is used
to reduce accesses to the main memory. The processor uses 13-bit complex data type
and supports FFT size up to 1024-points. In [45], a small cache memory is also used.
The twiddle factors are stored in the main memory, which adds power consumption.
Unfortunately, caches or memories are excluded from the energy figures.

The application-specific processor in [16] has two small caches to reduce access
to the main memory, and these are accessed in ping-pong fashion to avoid stall
cycles when transferring the results to the main memory. The processor uses�

N
8

C 1
�

complex-valued coefficients to compute the twiddle factors. External data

39 Codesign Case Study on Transport-Triggered Architectures 1335

memories are not included in the energy figures. In addition, the power consumption
figures are coarse estimates obtained from a processor design tool.

39.8 Conclusions

In this chapter, we described transport-triggered architecture template, which can be
used to develop application-specific processors. In addition, we introduced the TCE
hardware/software codesign environment for developing tailored implementations
based on TTA processors. The TCE provides tool support for iterative processor
customization starting from high-level programming languages and contains retar-
getable compiler, which speeds up the iterative customization significantly. The
tools produce synthesizable RTL description of the TTA processor and generates
instruction parallel binary code. TCE is available as a liberally licensed open-source
project and can be downloaded from the web page [40]. We also customized a
TTA processor for FFT application and showed that the highly customized but still
programmable processor possesses energy efficiency close to fixed-function ASIC
implementations.

Acknowledgments The authors thank the Finnish Funding Agency for Innovation in the context
of the FiDiPro project StreamPro (decision no. 40142/14).

References

1. Baek JH, Kim SD, Sunwoo MH (2008) SPOCS: application specific signal pro-
cessor for OFDM communication systems. J Signal Process Syst 53(3):383–397.
doi: 10.1007/s11265-008-0240-4

2. Chang WH, Nguyen TQ (2008) On the fixed-point accuracy analysis of FFT algorithms. IEEE
Trans Signal Proc 56(10):4673–4682

3. Chang YN, Parhi KK (1999) Efficient FFT implementation using digit-serial arithmetic. In:
Proceedings of IEEE international workshop signal processing system, Taipei, pp 645–653.
doi: 10.1109/SIPS.1999.822371

4. Chen CM, Hung CC, Huang YH (2010) An energy-efficient partial FFT processor for the
OFDMA communication system. IEEE Trans Circuits Syst II 57(2):136–140. doi: 10.1109/TC-
SII.2010.2040318

5. Cheng KT, Wang YC (2011) Using mobile GPU for general-purpose computing: a case study
of face recognition on smartphones. In: Proceedings of international symposium VLSI design
automation test, Hsinchu, pp 1–4. doi: 10.1109/VDAT.2011.5783575

6. Chi JC, Chen SG (2004) An efficient FFT twiddle factor generator. In: Proceeding of European
signal processing conference, Vienna, pp 1533–1536

7. Chu E, George, A (2000) Inside the FFT black box: serial and parallel fast Fourier transform
algorithms. CRC Press, Boca Raton

8. Cichon G, Robelly P, Seidel H, Matúš E, Bronzel M, Fettweis G (2004) Synchronous
transfer architecture (STA). In: Computer systems: architectures, modeling, and simulation.
Lecture notes in computer science, vol 3133. Springer, Berlin/Heidelberg, pp 193–207.
doi: 10.1007/978-3-540-27776-7_36

9. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier
series. Math Comput 19(90):297–301

http://dx.doi.org/10.1007/s11265-008-0240-4
http://dx.doi.org/10.1109/SIPS.1999.822371
http://dx.doi.org/10.1109/TCSII.2010.2040318
http://dx.doi.org/10.1109/VDAT.2011.5783575
http://dx.doi.org/10.1007/978-3-540-27776-7_36

1336 J. Takala et al.

10. Corporaal H (1997) Microprocessor architectures: from VLIW to TTA. Wiley, Chichester
11. Corporaal H, Mulder H (1991) MOVE: a framework for high-performance processor design.

In: Proceedings of ACM/IEEE conference on supercomputing, Albuquerque, pp 692–701.
doi: 10.1145/125826.126159

12. Dally W, Balfour J, Black-Shaffer D, Chen J, Harting R, Parikh V, Park J, Sheffield D (2008)
Efficient embedded computing. Computer 41:27–32. doi: 10.1109/MC.2008.224

13. Despain AM (1974) Fourier transform computers using CORDIC iterations. IEEE Trans
Comput C-23(10):993–1001. doi: 10.1109/T-C.1974.223800

14. Fanucci L, Roncella R, Saletti R (2001) A sine wave digital synthesizer based on a quadratic
approximation. In: Proceedings of IEEE international frequency control symposium PDA
exhibition, pp 806–810. doi: 10.1109/FREQ.2001.956385

15. Garrido M, Grajal J (2007) Efficient memoryless CORDIC for FFT computation. In: Proceed-
ings of IEEE international conference acoustics speech signal processing, Honolulu, vol 2,
pp 113–116. doi: 10.1109/ICASSP.2007.366185

16. Guan X, Fei Y, Lin H (2012) Hierarchical design of an application-specific instruction set
processor for high-throughput and scalable FFT processing. IEEE Trans VLSI Syst 20(3):
551–563. doi: 10.1109/TVLSI.2011.2105512

17. Hasan M, Arslan T (2002) FFT coefficient memory reduction technique for OFDM appli-
cations. In: IEEE international conference acoustics speech signal process, Orlando, vol 1,
pp 1085–1088

18. He Y, She D, Mesman B, Corporaal H (2011) MOVE-Pro: a low power and high code density
TTA architecture. In: Proceedings of international conference on embedded computer system:
architectures modeling simulation, pp 294–301. doi: 10.1109/SAMOS.2011.6045474

19. Heikkinen J, Takala J, Corporaal H (2009) Dictionary-based program compression
on customizable processor architectures. Microprocess Microsyst 33(2):139–153.
doi: 10.1016/j.micpro.2008.10.001

20. IEEE 802.16.1 (2012) IEEE standard for wireless MAN – advanced air interface for broadband
wireless access systems. Std 802.16.1–2012. IEEE

21. Jääskeläinen P, Kultala H, Viitanen T, Takala J (2014) Code density and energy efficiency of
exposed datapath architectures. J Signal Process Syst 1–16. doi: 10.1007/s11265-014-0924-x

22. Jääskeläinen P, de La Lama C, Huerta P, Takala J (2011) OpenCL-based design methodology
for application-specific processors. Transactions on HiPEAC 5. Available online

23. Jääskeläinen P, de La Lama CS, Schnetter E, Raiskila K, Takala J, Berg H
(2014) pocl: a performance-portable OpenCL implementation. Int J Parallel Prog 1–34.
doi: 10.1007/s10766-014-0320-y

24. Jääskeläinen P, Salminen E, de La Lama C, Takala J, Ignacio Martinez J (2011) TCEMC: a
co-design flow for application-specific multicores. In: Proceeding of international conference
on embedded computer system: architectures modeling and simulations, Samos, pp 85–92.
doi: 10.1109/SAMOS.2011.6045448

25. Jiang RM (2007) An area-efficient FFT architecture for OFDM digital video broadcasting.
IEEE Trans Consum Electron 53(4):1322–1326. doi: 10.1109/TCE.2007.4429219

26. Johnson H, Burrus C (1984) An in-order, in-place radix-2 FFT. In: IEEE international con-
ference on acoustics speech signal processing, vol 9, San Diego, pp 473–476. doi: 10.1109/I-
CASSP.1984.1172660

27. Johnsson SL, Krawitz RL, Frye R, MacDonald D (1989) A radix-2 FFT on connection
machine. In: Proceeding of ACM/IEEE conference on supercomputing, Reno, pp 809–819.
doi: 10.1145/76263.76355

28. Jui PC, Wey CL, Shiue MT (2013) Low-cost parallel FFT processors with conflict-free ROM-
based twiddle factor generator for DVB-T2 applications. In: Proceedings of IEEE international
midwest symposium circuits system, Columbus, pp 1003–1006

29. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis &
transformation. In: Proceedings of the 2004 international symposium on code generation and
optimization (CGO’04), Palo Alto

http://dx.doi.org/10.1145/125826.126159
http://dx.doi.org/10.1109/MC.2008.224
http://dx.doi.org/10.1109/T-C.1974.223800
http://dx.doi.org/10.1109/FREQ.2001.956385
http://dx.doi.org/10.1109/ICASSP.2007.366185
http://dx.doi.org/10.1109/TVLSI.2011.2105512
http://dx.doi.org/10.1109/SAMOS.2011.6045474
http://dx.doi.org/10.1016/j.micpro.2008.10.001
http://dx.doi.org/10.1007/s11265-014-0924-x
http://dx.doi.org/10.1007/s10766-014-0320-y
http://dx.doi.org/10.1109/SAMOS.2011.6045448
http://dx.doi.org/10.1109/TCE.2007.4429219
http://dx.doi.org/10.1109/ICASSP.1984.1172660
http://dx.doi.org/10.1145/76263.76355

39 Codesign Case Study on Transport-Triggered Architectures 1337

30. Ma Y, Wanhammar L (2000) A hardware efficient control of memory address-
ing for high-performance FFT processors. IEEE Trans Signal Process 48(3):917–921.
doi: 10.1109/78.824693

31. Oppenheim AV, Schafer RW (2010) Discrete-time signal processing, 3rd edn. Pearson, Upper
Saddle River

32. Pitkänen T, Partanen T, Takala J (2007) Low-power twiddle factor unit for FFT computation.
In: Vassiliadis S, Berekovic M, Hämäläinen T (eds) Embedded computer systems: archi-
tectures, modeling, and simulation. Proceeding of 7th international workshop SAMOS VII,
vol LNCS 4599. Springer, Berlin, pp 233–240. doi: 10.1007/978-3-540-73625-7_9

33. Pitkänen T, Takala J (2011) Low-power application-specific processor for FFT computations.
J Signal Process Syst 63(1):165–176. doi: 10.1007/s11265-010-0528-z

34. Senthilvelan M, Sima M, Iancu D, Schulte M, Glossner J (2013) Instruction set extensions
for matrix decompositions on software defined radio architectures. J Signal Process Syst
70:289–303. doi: 10.1007/s11265-012-0665-7

35. Singleton R (1967) A method for computing the fast Fourier transform with auxiliary memory
and limited high-speed memory. IEEE Trans Audio Electroacoust 15(2):91–98

36. Strang G (1994) Wavelets. Am Sci 82(3):250–255
37. Suleiman A, Saleh H, Hussein A, Akopian D (2008) A family of scalable FFT ar-

chitectures and an implementation of 1024-point radix-2 FFT for real-time communica-
tions. In: IEEE international conference on computer design, Lake Tahoe, pp 321–327.
doi: 10.1109/ICCD.2008.4751880

38. Tang SN, Liao CH, Chang TY (2012) An area- and energy-efficient multimode FFT pro-
cessor for WPAN/WLAN/WMAN systems. IEEE J Solid-State Circuits 47(6):1419–1435.
doi: 10.1109/JSSC.2012.2187406

39. Tang Y, Qian L, Wang Y, Savaria Y (2003) A new memory reference reduction method
for FFT implementation on DSP. In: Proceedings of ISCAS, Bangkok, vol 4, pp 496–499.
doi: 10.1109/ISCAS.2003.1205932

40. TTA-based co-design environment (2015). http://tce.cs.tut.fi. Accessed: 15 Jan 2016
41. Texas Instruments, Inc. (2003) TMS320C64x DSP Library programmer’s reference, Dallas
42. Thuresson M, Själander M, Björk M, Svensson L, Larsson-Edefors P, Stenström P (2007)

FlexCore: utilizing exposed datapath control for efficient computing. In: Proceedings of
international conference on embedded computer system: architectures modeling simulation,
Samos, pp 18–25. doi: 10.1109/ICSAMOS.2007.4285729

43. Viitanen T, Kultala H, Jääskeläinen P, Takala J (2014) Heuristics for greedy transport triggered
architecture interconnect exploration. In: Proceedings of international conference compilers ar-
chitecture synthesis embedded system, New Delhi, pp 2:1–2:7. doi: 10.1145/2656106.2656123

44. Volder JE (1959) The CORDIC trigonometric computing technique. IRE Trans Electron
Comput EC–8(3):330–334. doi: 10.1109/TEC.1959.5222693

45. Wang W, Li L, Zhang G, Liu D, Qiu J (2011) An application specific instruction set processor
optimized for FFT. In: IEEE international midwest symposium circuits and systems, Seoul,
pp 1–4. doi: 10.1109/MWSCAS.2011.6026391

46. Wanhammar L (1999) DSP integrated circuits. Academic Press, San Diego
47. Yu CY, Chen SG, Chih JC (2006) Efficient CORDIC designs for multi-mode OFDM FFT. In:

Proceedings IEEE international conference acoustics speech signal processing, vol 3, Toulouse,
pp III-1036–III-1039. doi: 10.1109/ICASSP.2006.1660834

http://dx.doi.org/10.1109/78.824693
http://dx.doi.org/10.1007/978-3-540-73625-7_9
http://dx.doi.org/10.1007/s11265-010-0528-z
http://dx.doi.org/10.1007/s11265-012-0665-7
http://dx.doi.org/10.1109/ICCD.2008.4751880
http://dx.doi.org/10.1109/JSSC.2012.2187406
http://dx.doi.org/10.1109/ISCAS.2003.1205932
http://tce.cs.tut.fi
http://dx.doi.org/10.1109/ICSAMOS.2007.4285729
http://dx.doi.org/10.1145/2656106.2656123
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/MWSCAS.2011.6026391
http://dx.doi.org/10.1109/ICASSP.2006.1660834

	39 Codesign Case Study on Transport-Triggered Architectures
	Contents
	39.1 Introduction
	39.2 Transport-Triggered Architecture Template
	39.3 Design Flow for Customizing Transport-Triggered Architectures
	39.4 Discrete Fourier Transform and Its Fast Algorithms
	39.4.1 Radix-p Algorithms
	39.4.2 Radix-2r Algorithms
	39.4.3 Mixed-Radix FFT

	39.5 Building Blocks and Optimizations
	39.5.1 In-Place Computations
	39.5.2 Permutations and Operand Access
	39.5.3 Twiddle Factors

	39.6 Customized FFT Architecture Based on Transport Triggering
	39.7 Energy Efficiency Comparison
	39.8 Conclusions
	References

