
37Control/Architecture Codesign for
Cyber-Physical Systems

Wanli Chang, Licong Zhang, Debayan Roy, and
Samarjit Chakraborty

Abstract

Control/architecture codesign has recently emerged as one popular research
focus in the context of cyber-physical systems. Many of the cyber-physical
systems pertaining to industrial applications are embedded control systems. With
the increasing size and complexity of such systems, the resource awareness in
the system design is becoming an important issue. Control/architecture codesign
methods integrate the design of controllers and the design of embedded platforms
to exploit the characteristics on both sides. This reduces the design conservative-
ness of the separate design paradigm while guaranteeing the correctness of the
system and thus helps to achieve more efficient design. In this chapter of the
handbook, we provide an overview on the control/architecture codesign in terms
of resource awareness and show three illustrative examples of state-of-the-art
approaches, targeting respectively at communication-aware, memory-aware, and
computation-aware design.

Acronyms

CFG Control-Flow Graph
CPS Cyber-Physical System
DSE Design Space Exploration
ECU Electronic Control Unit
E/E Electric and Electronic
EMB Electro-Mechanical Brake
ET Event-Triggered
FTDMA Flexible Time Division Multiple Access

W. Chang (�)
Singapore Institute of Technology, Singapore, Singapore
e-mail: wanli.chang@singaporetech.edu.sg

L. Zhang • D. Roy • S. Chakraborty
TU Munich, Munich, Germany
e-mail: licong.zhang@tum.de; debayan.roy@tum.de; samarjit@tum.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_37

1221

mailto:wanli.chang@singaporetech.edu.sg
mailto:licong.zhang@tum.de
mailto:debayan.roy@tum.de
mailto:samarjit@tum.de

1222 W. Chang et al.

LCS Live Cache States
MILP Mixed Integer Linear Programming
OS Operating System
PSO Particle Swarm Optimization
RCS Reaching Cache States
RTOS Real-Time Operating System
TDMA Time-Division Multiple Access
TT Time-Triggered
WCET Worst-Case Execution Time

Contents

37.1 Introduction . 1222
37.2 Embedded Control Systems . 1226

37.2.1 Embedded Systems Architecture . 1227
37.2.2 Feedback Control Systems . 1228

37.3 Communication-Aware Control/Architecture Codesign . 1231
37.3.1 Problem Setting . 1232
37.3.2 The Codesign Approach . 1235
37.3.3 Case Study . 1241

37.4 Memory-Aware Control/Architecture Codesign . 1243
37.4.1 Cache Analysis for Consecutive Executions of a Control Application 1244
37.4.2 Control Parameter Derivation . 1249
37.4.3 Case Study . 1251

37.5 Computation-Aware Control/Architecture Codesign . 1252
37.5.1 Time-Triggered Operating System . 1252
37.5.2 Multirate Closed-Loop Dynamics . 1254
37.5.3 Case Study . 1257

37.6 Conclusion . 1258
References . 1259

37.1 Introduction

Cyber-physical systems refer to systems where tight interaction between the
computational elements (cyber) and the physical entities (physical) is emphasized. A
typical example of a cyber-physical system is an embedded control system. In such
a system, software implementation of the controllers running on processing units are
used to control physical plants. As shown in Fig. 37.1, the processing units are con-
nected with sensors and actuators where the sensors measure the states of the plants,
the controllers compute the control input, and the actuators apply the control input
onto the physical plants. Today, cyber-physical systems have become commonplace
and can be found in the domains like automotive, avionics, industrial automation,
chemical engineering, etc. The automotive Electric and Electronic (E/E) system is
an example of such a system. In a modern vehicle, increasingly more functions are
realized by software mapped on the Electronic Control Unit (ECU). These include

37 Control/Architecture Codesign for Cyber-Physical Systems 1223

Processor on-chip memory

Bus

Flash I/O Sensor

Actuator
Processing Unit

Fig. 37.1 A processing unit with a processor and on-chip memory for program execution. Instruc-
tions are stored in the flash memory. Programmable I/O peripherals are used for communication
with sensors, actuators, and other processing units. For instance, Infineon XC23xxB Series, which
is widely used in automotive systems, has a single processor with a minimum operating frequency
of 20MHz. It is typically equipped with a small size of on-chip SRAM memory and up to 256 kB
flash memory [7].

the functions for vehicle dynamics control, body components control (e.g., doors
and lights), infotainment, and advanced driver assistance systems (ADAS). Some of
these functions have stringent timing requirements, and some demand processing
and transport of intensive data amount. The characteristics and performance of the
cyber part, i.e., the electronics and software, strongly influence the performance
of the physical part. In the case of safety-critical control functions, the timing
properties of the software implementation of the controllers, e.g., the sampling
period and the sensor-to-actuator delay, play a vital role in the control performance.
Therefore, with the Cyber-Physical System (CPS)-oriented thinking, more attention
is necessary for the implementation of the controllers in an embedded platform and
interplay between the embedded platform design and the control design.

The hardware architecture of the computational part of a cyber-physical system
consists mainly of one or more processing units. In case of a multiprocessor
architecture, the processing units are commonly connected by a communication
network, where data between different processing units can be transmitted. Typical
communication networks in this context include the FlexRay [3], CAN [13],
LIN [4], and MOST [5] in the automotive domain; AFDX i̧teAFDX and AS6802 [6]
in the avionics domain; and Profibus, Profinet [33], and EtherCAT in the industrial
automation domain. �Chapter. 24, “Networked Real-Time Embedded Systems”
provides a more detailed study on some important real-time communication pro-
tocols. These communication protocols implement different data transmission
approaches and are each suitable for a specific set of requirements. On each
processing unit, the computation is performed by tasks, each of which is typically
implemented by a piece of code. Multiple tasks can be grouped together to form
an application, where an independent function (e.g., a feedback control loop) is
performed. In a distributed application, where the tasks are mapped onto different
processing units, the data between the relevant tasks are transmitted over the
communication network. It is common that multiple tasks belonging to the same or
different applications are mapped on one processing unit. In this case, an operating
system (e.g., OSEK [1], eCos [18]) is sometimes used to coordinate task executions
and allocate resources for the tasks.

http://dx.doi.org/10.1007/978-94-017-7267-9_25

1224 W. Chang et al.

In many embedded systems in the context of cyber-physical systems, the applica-
tions are control applications, where the software implementation of the controllers
controls physical plants [28]. The design of controllers for these applications from a
control-theoretical perspective are well established. The control design methods can
be drawn from a large pool of research and practical expertise and experience that
have been accumulated in the control community in the past few decades. However,
little attention has been paid to the actual implementation of the controllers in the
embedded platforms. In this case, not only the control theoretical aspect of the
design problem needs to be taken into account, e.g., type of controllers and control
gains, but also the characteristics of the underlying embedded platforms. The design
aspects on the embedded system side include, for example, the task partitioning and
mapping, the scheduling of tasks and communication, and the allocation of memory
and cache. There is a tight interconnection between the control and the embedded
platform design [16]. For example, the results of the embedded platform design can
strongly influence the control performance through properties like sampling period,
delay, and jitter. Reversely, the requirements from the control design side also
influence the platform design. Conventionally the control and embedded platform
design are done separately and then integrated afterward. In this case, the engineers
on both sides need to make assumptions of the other side. Since most control
applications are safety critical, such assumptions are inevitably quite conservative
to guarantee the safety of the control applications. Due to this conservativeness,
usually the resources on the embedded platform, e.g., computation, communication,
memory, and energy resources, are not optimally utilized. On the other hand, these
resources on an embedded platform are quite limited, constrained by the size and
cost reasons. In recent years, both the size and complexity of the embedded systems
in industrial domains have increased drastically. In the automotive domain, for
example, a modern premium passenger car can contain up to 100 million lines of
software code [17]. In such a computation and data-intensive platform, resource-
efficient design has become a quite important issue. Therefore, the CPS community
has become increasingly conscious that some systematic design methods will be
necessary for design of resource-aware embedded control systems.

The resources on an embedded platform can be divided into different categories,
e.g., computation, communication, memory, energy, and input/output interfaces.
In the context of this chapter, three of the most important resources, namely, the
computation resource, the communication resource, and the memory resource, are
considered. In the following paragraphs, each of the aforementioned resources will
be explained in detail.

Communication resources can generally be represented as the bandwidth of a
communication bus or a network link, which denotes the number of bits that can be
transmitted per second. Therefore, there is only a limited amount of data that can be
transmitted within a specific time frame. More precise characterization of the com-
munication resource, however, is protocol specific. The communication protocols
implement different data transmission approaches, which can be broadly divided
into two different categories, namely, the Time-Triggered (TT) paradigm and the
Event-Triggered (ET) paradigm. For example, a Time-Division Multiple Access

37 Control/Architecture Codesign for Cyber-Physical Systems 1225

(TDMA) bus is a typical time-triggered bus communication. In this case, a period of
time is divided into multiple time slots, and the usage of the communication resource
can be represented directly by the number of utilized slots. In an industrial-sized
distributed embedded system, the communication resource is quite constrained. As
the size of the system increases, more processing units and data can be incrementally
mapped on to the communication bus or network. However, the bandwidth of a
communication protocol cannot be easily increased. Therefore, communication-
efficient design could enable the system to accommodate more applications or
enhance the performance of the applications. Related to this, in recent years,
there have been several works on integrated controller synthesis and task and
message scheduling of distributed embedded control systems, e.g., [20, 23, 34, 35].
However, most of these works, e.g., [20, 23, 34] only consider optimization of
control performance while satisfying communication constraints. In addition, there
have been several works, e.g., [29,39] on schedule optimization of distributed time-
triggered embedded systems where the objective is to minimize communication
bandwidth utilization while satisfying timing constraints. However, these works do
not consider control applications.

Memory resources mainly refer to the size of cache due to its high cost. Within a
processing unit, there are typically two levels of memory – cache and main memory.
In Fig. 37.1, the on-chip memory works as cache and the flash memory serves as
the main memory. The main memory has a large size and can thus store all the
application programs and data, but experiences high read/write latencies (hundreds
of processor cycles). The cache is faster (several processor cycles), but usually
limited in size. In this chapter, the focus is on instruction memory. It is assumed
that the access times of cache and main memory are tc and tm, respectively, where
tc � tm. When a processor executes an instruction, it checks the cache first. If
this instruction is located in the cache, it is a cache hit and the access time is tc .
If this instruction is not in the cache, the memory block containing it is fetched
from the main memory and then written into cache. This is called a cache miss
and the access time is tm. Afterward, when the same instruction is called again by
the processor, the access time is tc if it is still in the cache without being replaced.
Increasing the cache size and improving the cache reuse are two general methods to
reduce the execution time of a program. A program usually has different execution
paths resulting in different execution times, depending on the input. The Worst-Case
Execution Time (WCET) is defined to be the maximum length of time a program
takes to be executed. The WCET constrains the sampling period of a control
application, which is defined to be the duration between two consecutive executions
of a control program, and thus has significant impact on the control performance.
In resource-aware embedded control systems design, it is desirable to minimize the
cache size while satisfying the performance requirement or, equivalently, improve
the performance for a given memory. Therefore, on one hand, the cache reuse should
be maximized, and on the other hand, the controller must be suitably designed
to exploit the shortened sampling periods. There have been some works on cache
reuse maximization by employing code positioning during compile time [22,26,32]
and also during run time [11], but these cannot directly be applied to embedded

1226 W. Chang et al.

control systems as code rearrangement would impact the timing properties, and this
is difficult to incorporate while designing the controllers.

Computation resources usually mean the available execution time of a processor,
when the processing speed is given. Considering multiple applications sharing
one single-core processing unit, each application is allocated a certain period of
execution time. In general, the performance of an application can be improved if
it is allowed to access the processor longer. On a processor sometimes runs an
Operating System (OS). For instance, ERCOSek [1, 19] is a widely used time-
triggered OS on ECUs and only offers a limited set of predefined periods. It
implies that the sampling periods of control applications have to be taken from
this set. Generally, a shorter sampling period allows the controller to respond to
its plant more frequently and is thus potentially able to achieve better control
performance with an appropriately designed controller. The obvious downside is
a higher processor utilization, which is defined to be the WCET of an application
divided by its sampling period. This prevents more functions and applications from
being integrated onto the processing unit. Therefore, the controller should use
the largest possible sampling period that is able to fulfill the control performance
requirement and satisfy the system constraints. In most cases, the optimal sampling
period is not directly realizable on the OS. The conventional way to handle it
is to use the largest sampling period offered by the OS that is smaller than the
optimal one. This is a straightforward method, but leads to a waste of computational
resources. Toward this, there have been several works on state-feedback-based
optimal resource allocation to the control loops sharing the same processor, e.g.,
[14, 15, 21, 25, 30, 31]. All these works focus on online assignment of sampling
periods of the control loops based on the system dynamics like plant states,
disturbance, or error. However, an online decision-making must be very fast to
be effective, and therefore, there must be some heuristics involved. Therefore, an
offline schedule computation that guarantees performance and reduces the processor
utilization will be more desirable.

The rest of this chapter is organized as follows. In Sect. 37.2, the basics
of feedback control applications are briefly reviewed. In the three sections that
follow, three state-of-art approaches of different aspects in terms of resource-aware
algorithm/architecture codesign are explained, namely, the communication-aware
design (Sect. 37.3), the memory-aware design (Sect. 37.4), and the computation-
aware design (Sect. 37.5). Finally, Sect. 37.6 contains the concluding remarks.

37.2 Embedded Control Systems

In this section, some background knowledge for the embedded control systems
considered in this chapter is provided. Firstly, a brief introduction in the embedded
systems architecture is provided. Then the basics of feedback control systems as
well as the control performance metrics and the method for optimal pole placement
are explained.

37 Control/Architecture Codesign for Cyber-Physical Systems 1227

37.2.1 Embedded Systems Architecture

The architecture considered in this chapter does not refer to the processor architec-
ture, but the design parameters for the underlying hardware and the communication
for the embedded controllers. The architecture can either be a single ECU, as
shown in Fig. 37.1, or a distributed system consisting of multiple ECUs connected
by a communication network, as shown in Fig. 37.2. An embedded controller
mapped on such an architecture is usually implemented with one or multiple
tasks, where each task is a piece of software code running on the processor. A
controller can be partitioned into the sensor task, the controller task, and the actuator
task. The sensor task measures the state of the physical plant, the controller task
computes the control input, and the actuator task applies the control input onto the
physical plant. In a single processor architecture, these tasks are executed on the
same ECU, while in a distributed architecture, the sensor, controller, and actuator
tasks can also be mapped on different ECUs and the data between the tasks are
transferred over the network as messages. It is also common that tasks of different
controllers are mapped on common ECUs, where the communication, computation,
and memory resources are shared between these control applications. Therefore,
how to allocate the resources for the software implementation of the controllers
forms the problem of architecture design. More specifically, these design parameters
may include the task partition and mapping, the task and network scheduling, the
use of the cache, etc. Towards the design of these parameters, �Chap. 7, “Hybrid
Optimization Techniques for System-Level Design Space Exploration” provides an
overview of successful approaches for system-level design space exploration for
complex embedded systems.

ECU1 ECU2 ECU3

FlexRay

τs,1 τs,2

τs,4

τs,5

τs,3τa,3

τa,5τc,5

ms,1 mc,1

τc,1

τc,4

τc,2

τc,3τa,4

τa,1 τa,2

Fig. 37.2 An example of a distributed architecture for the embedded control systems. This
example consists of 3 ECUs connected by a FlexRay bus. Five control applications are mapped
on this architecture, where �s;i , �c;i , and �a;i denote respectively the sensor task, controller task,
and actuator task of the i th control application. Two messages over the communication bus for first
control application as well as the data dependency are shown

http://dx.doi.org/10.1007/978-94-017-7267-9_8

1228 W. Chang et al.

37.2.2 Feedback Control Systems

Throughout this chapter, linear single-input single-output (SISO) control applica-
tions are considered. The dynamic behavior is modeled by a set of differential
equations,

Px.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/; (37.1)

where x.t/ 2 R
n is the system state, y.t/ is the system output, and u.t/ is the

control input. The number of system states is n. A, B , and C are system matrices
of appropriate dimensions. System poles are eigenvalues of A. In a state-feedback
control algorithm, u.t/ is computed utilizing x.t/ (feedback signals) and is then
applied to the plant, which is expected to achieve certain desired behavior. In an
embedded implementation platform, the operations (measure x.t/, compute u.t/,
and apply u.t/) of a control loop are performed only at discrete time instants. In the
case where the sensor-to-actuator delay d is ignored, the continuous-time system
in (37.1) can be transformed into a discrete-time system with the sampling period h
which can be represented as [10]

xŒk C 1� D AdxŒk�C BduŒk�; yŒk� D CdxŒk�; (37.2)

where sampling instants are t D tk (k D 1; 2; 3; � � �) and h D tkC1 � tk . xŒk� and
uŒk� are the values of x.t/ and u.t/ at t D tk and

Ad D eAh; Bd D

Z h

0

.eAtdt/ � B; Cd D C: (37.3)

A system is asymptotically stable if the steady-state impulse response is zero,
i.e., limk!1 yıŒk� D 0. Toward this, uŒk� needs to be designed utilizing the states
xŒk� in a state-feedback controller. The general representation is as follows:

uŒk� D Kd � xŒk�C Fd � r; (37.4)

where Kd is the feedback gain, Fd is the feedforward gain, and r is the reference
value. Then, the system dynamics in (37.2) becomes

xŒk C 1� D .Ad C BdKd/xŒk�C BdFdr; (37.5)

i.e., closed-loop dynamics. Different locations of closed-loop system poles, i.e.,
eigenvalues of .AdCBdKd/, result in different system behaviors. Pole locations can
be decided by the pole-placement technique, and then the following characteristics
equation of H can be constructed with these poles as roots:

Hn C �1H
n�1 C �2H

n�2 C � � � C �n D 0: (37.6)

37 Control/Architecture Codesign for Cyber-Physical Systems 1229

Define

�c.Ad / D And C �1A
n�1
d C �2A

n�2
d C � � � C �nI; (37.7)

where I is the n-dimensional identity matrix. According to Ackermann’s for-
mula [8], the feedback gain to stabilize the system is calculated as

Kd D �Œ0 � � � 0 1� ��1 �c.Ad /; (37.8)

where � represents the controllability matrix of the system and is given by

� D ŒBd AdBd : : : An�1
d Bd � (37.9)

The static feedforward gain F is designed to achieve yŒk� ! r as k ! 1 and can
be computed by

Fd D
1

Cd .I � Ad � BdKd/�1Bd
: (37.10)

However, in a realistic implementation of a control application, a non-negligible
sensor-to-actuator delay needs to be taken into account. In the case, where the delay
is smaller or equal to one sampling period, i.e., 0 � d � h, the discrete-time system
in (37.2) becomes a sampled-data system [12] as

xŒk C 1� D AdxŒk�C Bd1.d/uŒk � 1�C Bd0.d/uŒk�; (37.11)

where

Bd0.Dc/ D

Z h�d

0

eAtdt � B; Bd1.d/ D

Z h

h�d

eAtdt � B: (37.12)

In (37.11), it is assumed that uŒ�1� D 0 for k D 0. Notice that xŒk C 1�

depends on both uŒk� and uŒk � 1�, since during the sensor-to-actuator delay,
uŒk� is not available and uŒk � 1� is applied to the plant. A new system state

zŒk� D
�
xŒk� uŒk � 1�

�T
is defined, and the transformed system becomes

zŒk C 1� D AaugzŒk�C BauguŒk�; yŒk� D CaugzŒk�; (37.13)

where

Aaug D

�
Ad Bd1.d/

0 0

�
; Baug D

�
Bd0.d/

I

�
; Caug D

�
Cd 0

�
: (37.14)

1230 W. Chang et al.

Next, apply the following input signal:

uŒk� D Kaug � zŒk�C Faug � r: (37.15)

The closed-loop system is then

zŒk C 1� D .Aaug C BaugKaug/zŒk�C BaugFaugr: (37.16)

The feedback gain Kaug can then be calculated according to (37.8) by replacing Ad
with Aaug and also replacing Ad and Bd with Aaug and Baug while computing the
controllability matrix � in (37.9). Similarly, the feedforward gain Faug is computed
according to (37.10) by replacing Ad , Bd , Cd , and Kd with Aaug , Baug , Caug , and
Kaug , respectively.

37.2.2.1 Control Performance Metrics
There are different metrics to measure the performance of a control system. In this
chapter, two common metrics to measure the control performance are considered.
(i) The steady-state performance of a control application which can be commonly
measured by a cost function [35], which in the discrete case can be represented as

J D

nX
kD0

Œ�uŒk�2 C .1 � �/�Œk�2�h; (37.17)

where � is a weight taking the value between 0 and 1, uŒk� is the control input and
�Œk� D jr � yŒk�j is the tracking error. (ii) The settling time, � , where � denotes the
time necessary for the system to reach and remain within 1% of the reference value

J D �: (37.18)

37.2.2.2 Optimal Pole Placement
For a control application, in order to design the controller which optimizes the
control performance for a given sampling period, an optimization problem for the
pole placement can be formulated. Decision variables are poles of the closed-loop
system. Therefore, the number of dimensions in the decision space is equal to the
number of states in the closed-loop system. The objective is to optimize the value
of the selected control performance metric. Absolute values of all poles have to be
less than unity to ensure system stability. The control input saturation needs to be
respected as well.

It is challenging to solve such a constrained non-convex optimization problem
with significant nonlinearity. Here, the Particle Swarm Optimization (PSO) tech-
nique, which is highly efficient and scalable [36], can be used. A group of particles
are randomly initialized in the decision space with positions and velocities. They
search for the optimum by iteratively updating their positions. The search is led by

37 Control/Architecture Codesign for Cyber-Physical Systems 1231

two points. The first is the local best point that has been reached by a particle. Every
particle has its own local best point. The second is the global best point that has
been reached considering all particles. A point that respects all constraints is always
better than a point that violates at least one constraint, no matter what their objective
values are. When comparing two points that either respect all constraints or violate
at least one constraint, the point with a better objective value is better.

The velocity of a particle is determined by the following equation:

Vnew D ˛0Vcurrent C ˛1rand.0; 1/.Plbest � Pcurrent/

C ˛2rand.0; 1/.Pgbest � Pcurrent/;
(37.19)

where Vnew is the new velocity, Vcurrent is the current velocity, Pcurrent is the current
position, Plbest is the local best point of this particle, and Pgbest is the best point of
all particles. rand.0; 1/ is a random number with uniform distribution from the open
interval .0; 1/. ˛0, ˛1 and ˛2 are parameters that can be determined empirically. The
new position of this particle is

Pnew D Pcurrent C Vnew: (37.20)

The algorithm is terminated once all particles have converged or the maximum
number of iterations has been reached. The time complexity of PSO is clearly
polynomial.

37.3 Communication-Aware Control/Architecture Codesign

In this section, a codesign approach that synthesizes simultaneously controllers,
task, and communication schedules for a FlexRay-based ECU network will be
introduced. The approach consists mainly of two stages, namely, the control design
stage and the cooptimization stage. This separation is necessary because the problem
deals with a large design space combining the dimensions of both control and
platform design. Therefore, the whole space is partitioned into smaller subspaces
while considering all feasible regions in the design space by exploiting some
domain-specific characteristics. In the control design stage, an optimal controller
is synthesized at each possible sampling period for each control application. This
is done by using the pole-placement control design method and exploring the
design space for poles using heuristics. In the cooptimization stage, a bi-objective
optimization problem is formulated, and a customized method is employed to
generate a number of feasible design parameter sets, where each set represents a
Pareto point reflecting the trade-off between the objectives of control performance
and bus utilization. Here, we will first explain the problem setting and then discuss
in detail the state-of-the-art control-communication codesign technique applicable
to such a setting.

1232 W. Chang et al.

37.3.1 Problem Setting

Distributed implementation: Consider a distributed architecture where a set of
ECUs represented by pi 2 P are connected through a FlexRay bus. A number of
control applications denoted by Ci 2 C are mapped on such an embedded platform.
Each control application Ci can be partitioned into three dependent application
tasks: (i) sensor task, �s;i , measures the system states (using sensors) of the physical
system if measurable; (ii) controller task, �c;i , computes the controller input based
on the measured system states; and (iii) actuator task, �a;i , applies the control input
(using actuators) to the physical system. Without loss of generality, assume that the
three tasks are mapped on different ECUs. Then the sensor values measured by �s;i
are sent on the bus through message fs;i , and the control input calculated by �c;i
is sent as message fc;i . The time between the start of sensor task and the end of
actuator task is defined as the sensor-to-actuator delay, denoted as d . As shown in
Fig. 37.3, this delay depends on the interplay between the task and communication
schedules.

ECU task model: Here, consider the case where time-triggered non-preemptive
scheduling scheme is exhibited by the Real-Time Operating System (RTOS) on
the ECUs. Each task of the control applications is considered to be periodic and
is defined by the tuple �x;i D fOx;i ; Px;i ; Ex;ig, where Ox;i , Px;i , and Ex;i denote
respectively the offset, the period, and the WCET of the task. Here, the subscript
x 2 fs; c; ag where s, c, or a respectively identifies sensor, controller, or actuator
task. The subscript i identifies the control application Ci it constitutes. Thus, if
Nt .�x;i ; k/ and Qt .�x;i ; k/ are defined as the starting and the latest finishing time of the
kth (k 2 Z

�) instance of task �i , then

Nt .�x;i ; k/ D Ox;i C kPx;i ; Qt .�x;i ; k/ D Ox;i C kPx;i CEx;i : (37.21)

A set of communication tasks are required besides the application tasks. The
communication task on the sending ECU writes the data produced by the application
tasks into the corresponding transmit buffers of the communication controller, and
on the receiving ECU, it reads the data from the corresponding receive buffers and

Fig. 37.3 Distributed
embedded control application ECU 1

ECU 2

ECU 3

Bus

sensor-to-actuator delay d

τs,i

τc,i

τa,i

fc,ifs,i

37 Control/Architecture Codesign for Cyber-Physical Systems 1233

forwards them to the application tasks. The nature of these communication tasks
depends on the specific implementation. Here, consider that the execution time of
all communication tasks is bounded by 	, and assume that a communication task is
scheduled directly after its corresponding application task at the sending side and
directly before the application task at the receiving side.

FlexRay communication: FlexRay [3] is an automotive communication protocol
usually applied for safety-critical applications. Although FlexRay communication
is discussed in detail in �Chap. 24, “Networked Real-Time Embedded Systems”,
few important points are reiterated here for better understanding of the problem
and the subsequent solution. Being a hybrid protocol, it offers both TT and
ET communication services. FlexRay is organized as a series of communication
cycles, the length of which is denoted as Tbus . Each communication cycle contains
mainly the static segment (ST) and optionally dynamic segment (DYN), where
the TT and ET communication services are implemented respectively. The static
segment applies the TDMA scheme and is split into a number of static slots
of equal length
. Here, the slots on the static segment can be represented as
SST D f1; 2; : : : ; Nsg, where Ns is the number of static slots. Once a static slot
is assigned, if no data is sent in a specific communication cycle, the static slot
will still be occupied. The dynamic segment follows a Flexible Time Division
Multiple Access (FTDMA) approach, where the segment is divided into a number
of mini-slots of equal length ı. A dynamic slot is a logical entity, which can
consist of one or more mini-slots, depending on whether data is sent on the slot
and how much data is sent. Once a dynamic slot is assigned, if no data is sent in
a communication cycle, only one mini-slot is consumed. If data is to be sent, a
number of mini-slots are occupied to accommodate the data. The dynamic slots can
be represented as SDYN D fNs C 1; : : : ; Ns C Nmsg, where Nms is the number of
mini-slots.

The communication cycles are organized as sequences of 64 cycles. In a se-
quence, each communication cycle is indexed by a cycle counter which counts from
0 to 63 and is then set to 0. A FlexRay schedule corresponding to the message fx;i
can be defined as �x;i D .sx;i ; qx;i ; rx;i /, where sx;i represents the slot number, qx;i
represents the base cycle, and rx;i represents the repetition rate. Here, the subscript
x 2 fs; cg where s or c respectively identifies sensor or control message. The
subscript i identifies the control application Ci it constitutes. Here, the repetition
rate rx;i is the number of communication cycles that elapse between two consecutive
transmissions of the same frame and takes the value rx;i 2 f2njn 2 f0; : : : ; 6gg. The
base cycle qx;i is the offset of the cycle counter. The sequence of 64 communication
cycles and some examples of FlexRay schedules are shown in Fig. 37.4. Here, the
FlexRay Version 3.0.1 [3] is considered, where slot multiplexing among different
ECUs is allowed. It means that a particular slot s 2 SST [SDYN can be assigned
to different ECUs in different communication cycles. Further consider all messages
are sent over the static segment of the FlexRay bus, i.e., on the static slots. The
starting and ending time of the kth instance (k 2 Z

�) of the FlexRay schedule �i ,
which are denoted respectively as Nt .�i ; k/ and Qt .�i ; k/, can be defined as

http://dx.doi.org/10.1007/978-94-017-7267-9_25

1234 W. Chang et al.

1 2 3 4 5 ...

......

......

......

......

......

0

1

2

3

63

...

Communication Cycle

Static Segment (ST) Dynamic Segment (DYN)

cy
cl

es
slots

........

Θs,1 Θc,1

Ns – 1 Ns + NmsNs

Fig. 37.4 An example of FlexRay schedules

Nt .�x;i ; k/ D qx;iTbus C krx;iTbus C .sx;i � 1/
;

Qt .�x;i ; k/ D qx;iTbus C krx;iTbus C sx;i
: (37.22)

For FlexRay time-triggered communication, the bus utilization can be defined as
the percentage of bandwidth of the static segment that is allocated to the control
applications. This can be represented as the percentage of static slots allocated to
the control applications in 64 consecutive communication cycles. In this case, the
smaller the value of U , the better is the resource efficiency as more number of slots
can be left vacant for use by other non-control applications. Now, let � denote
the set of all FlexRay schedules allocated to the control applications on the static
segment, where �x;i 2 � ; then the bus utilization U can be defined as

U D
100

64Ns

X
�x;i2�

64

rx;i
; (37.23)

where 64Ns is the total number of static slots in 64 consecutive communication
cycles. Here, rx;i represents the repetition rate of the message fx;i , and therefore, 64

rx;i

represents the number of static slot allocated to the message fx;i in 64 consecutive
communication cycles.

Control performance: Depending on the specific requirements of the control
application, one of the two performance metric discussed in Sect. 37.2.2.1 can
be used. For a specific control application Ci , Ji depends both on the sampling
period hi and the control gains Kaug;i and Faug;i . In both the performance metrics,
smaller value of J implies better control performance. In a system consisting of
multiple control applications with different plant models and performance metrics,

37 Control/Architecture Codesign for Cyber-Physical Systems 1235

it is required to normalize the control performance in order to compare and combine
them. Each control systemCi with control performance Ji must satisfy some control
performance requirement J ri defined by the user. Thus, the control performance can
be normalized as follows:

J ni D
100 � Ji

J ri
(37.24)

and thus the overall control performance of a set of control applications C can be
represented as a weighted sum

Jo D
X
Ci2C

wi J
n
i ; (37.25)

where wi stands for the weight and
P

i wi D 1.

Cooptimization problem: The cooptimization problem boils down to finding a set
of parameters for each Ci 2 C , which can be denoted as pari D f�s;i ; �c;i ; �a;i ; �s;i ;

�c;i ; hi ; Kaug;i ; Faug;i g, while optimizing the total FlexRay bus utilization and the
overall control performance given by Eqs. (37.23) and (37.25), respectively. Here,
the control parameters of Ci can be further defined as parci D fhi ;Kaug;i ; Faug;ig

and similarly the embedded platform parameters as parsi D f�s;i ; �c;i ; �a;i ; �s;i ;

�c;ig, where pari D parsi [parci . The parameter set of the whole system is
represented as P , where pari 2 P .

37.3.2 The Codesign Approach

37.3.2.1 Design Flow
Figure 37.5 shows the design flow of the codesign approach. The whole design
process is divided into two stages. In the first stage, for each control application,
possible controllers that optimize the control performance at different sampling
periods are synthesized and the results are recorded in a look-up table. In the second
stage, the cooptimization stage, both the control and the platform parameters are
synthesized based on the constraints, objectives, and the look-up tables obtained
in the first stage. Here, a bi-objective optimization problem is formulated, and
a customized approach is used to generate a Pareto front of the two objectives
considered. In this stage, the fact that the bus utilization objective U can only
take selected discrete values is exploited, and therefore, for each of those values,
a nested two-layered optimization technique is employed to find a feasible set of
parameters that represents a Pareto point and optimizes the control performance or
to prove that a corresponding Pareto point is not possible. Here, Layer 1 tries to find
a set of values of sampling periods corresponding to the set of control applications
such that it can represent a Pareto point and it optimizes the overall system control
performance for a given value of bus utilization. Then, Layer 2 tries to find a

1236 W. Chang et al.

Pareto Front

Generate
Pareto Point Candicate

IF all values of bus
utilization exploredYES

YES

Optimize
Control Performance

IF feasible, not
dominated

Find
Feasible Schedules

IF feasible

Valid Pareto Point
Add to Pareto Front

NO

NO
YES

Not Valid Pareto Point

NO

Return Pareto Front

Layer 2

Layer 1

Controller Design

Co-Optimization

User Selection

Constraints,
Plant Models,
Objectives

Control and Platform
Parameters

Stage 1

Stage 2

Control Performance
Look-up Table

Fig. 37.5 Design flow of the cooptimization approach

feasible schedule set (by solving a constraint programming problem) and control
gains (from the look-up tables) corresponding to the sampling period values of the
control applications determined in Layer 1. The nested two-layered optimization
technique is discussed in further detail in Sect. 37.3.2.4. Based on the Pareto front
thus obtained, the designer can select one set of parameters that is the most suitable
for the overall design requirements. The control design stage and the cooptimization
stage of this approach will be explained in detail in the following sections.

37.3.2.2 Controller Design
Besides the control plant model, the performance Ji of the control application
Ci depends mainly on three factors: (i) the sampling period hi , (ii) the sensor-to-
actuator delay di , and (iii) the control gains Kaug;i and Faug;i . Depending on each
combination of the sampling period and delay, a set of optimal control gains needs to
be designed. Here, consider schedules for the control tasks and the messages leading
to the case where the delay equals to the sampling period, i.e., di D hi . This would
reduce the dimensions of the design space from all three factors (i)–(iii) to only
(i) and (iii), thus reducing the complexity and enhancing the scalability. It should be
noted that this approach can be easily adapted to other cases with a fixed delay value
(e.g., di D Di , where Di is a constant and Di � hi) or a delay value proportional
to the sampling period (e.g., di D hi , where � 1). With di D hi , the closed-
loop system experiences one sampling period delay, and the pole-placement method

37 Control/Architecture Codesign for Cyber-Physical Systems 1237

reported in Sect. 37.2 can be used for such delayed system. To the best of our
knowledge, there is no standard closed-form optimal control design framework that
can be directly applied in such a delayed system. Therefore, the PSO-based optimal
pole-placement technique described in Sect. 37.2.2.2 is employed, which can be
quite computationally costly for higher-order control plants. However, making use
of the fact that the sampling period can only take discrete values, the design
space can be pruned. Since each control application Ci is implemented by the
tasks �s;i , �c;i , and �a;i and messages fs;i , fc;i , there is a dependency between the
sampling period hi and the repetition rate of the messages rs;i , rc;i , which can be
represented as

hi D rs;iTbus D rc;iTbus : (37.26)

Due to the fact that rs;i , rc;i can only take discrete values in f2kjk 2 f0; : : : ; 6gg, the
choice of hi is also constrained to the corresponding discrete values.

Denote the control performance as Ji D f .hi ;Kaug;i ; Faug;i /. Then the control
performance at each discrete value hki D 2kTbus of the sampling period can be
represented as Ji .hki / D g.Kk

aug;i ; F
k
aug;i /. The purpose of the controller design step

is to determine the control gains for each possible value of the sampling period
that optimizes the control performance. Employing the optimal pole-placement
technique, determine the set of control gainsKk�

aug;i , F
k�
aug;i that optimizes the control

performance to Gk�
i at sampling period hki , then represent the optimal control

performance at hki as J �
i .h

k
i / D Gk�

i . The control design problem can be translated
into the problem of finding for each discrete value hki , a set of gains Kk�

aug;i , F
k�
aug;i

that optimizes the control performance Ji .hki / to the value of Gk�
i .

After this stage, a look-up table for each control application Ci can be formulated
where for each of the possible sampling period hki an optimal control performance
Gk�
i corresponding to the control gains Kk�

aug;i , F
k�
aug;i can be assigned. In the

cooptimization stage, this set of tables will be used to formulate the objective of
overall control performance.

37.3.2.3 Optimization Problem Formulation
The system constraints for the FlexRay-based ECU system are well studied and
discussed in [23, 29, 35]. Here, we will state the majority of the constraints
formulated there.

(C1) Sampling period constraint: The tasks and messages of a control application
must have the same period of repetition which is also the sampling period of
the system. This constraint can be formulated as

8Ci 2 C ; x 2 fs; c; ag; y 2 fs; cg; Px;i D ry;iTbus D hi : (37.27)

(C2) Data-flow constraint: In a control application, all task executions and
message transmissions must be in correct temporal order, as illustrated in
Fig. 37.3. This can be formulated as set of constraints as

1238 W. Chang et al.

8k 2 Z
�; Ci 2 C ; Qt .�s;i ; k/C 	 < Nt.�s;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .
s;i ; k/ < Nt .�c;i ; k/ � 	;

8k 2 Z
�; Ci 2 C ; Qt .�c;i ; k/C 	 < Nt .�c;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .
c;i ; k/ < Nt .�a;i ; k/ � 	:

(37.28)

(C3) Sensor-to-actuator delay constraint: The constraint stating that the sensor-
to-actuator delay for the control applications is equal to exactly one sampling
period can be formulated as

8k 2 Z
�; Ci 2 C ; Qt .�a;i ; k C 1/ � Nt .�s;i ; k/ D hi : (37.29)

(C4) Non-overlapping task constraint: In a time-triggered non-preemptive
scheduling scheme as considered in this paper, when more than one task
is mapped on an ECU, they must be scheduled in such a way that they do not
overlap. This can be formulated as a constraint as

8 Ci ; Cj 2 C ; x; y 2 fs; c; ag; pk 2 P

8 fm 2 Z
�j0 � m < lcm.Px;i ; Py;j /=Px;ig;

fn 2 Z
�j0 � n < lcm.Px;i ; Py;j /=Py;j g

if �x;i ; �y;j 2 Tpk then Qt .�x;i ; m/C 	 � 1.x 2 fs; cg/ < Nt.�y;j ; n/

� 	 � 1.y 2 fc; ag/

or Qt .�y;j ; n/C 	 � 1.y 2 fs; cg/ < Nt .�x;i ; m/ � 	 � 1.x 2 fc; ag/;

(37.30)

where Tpk denotes the set of all tasks mapped on ECUEk . 1.:/ is the indicator
function and takes the value of 1 if the input is true and 0 if otherwise.

(C5) Nonoverlapping message constraint: FlexRay messages must be scheduled
in such a way that no two messages share the same slot in the same cycle. This
constraint can be established as

8 Ci ; Cj 2 C ; x; y 2 fs; cg

8fn 2 Z
�j0 � n < max.rx;i ; ry;j /=rx;ig;

fm 2 Z
�j0 � m < max.rx;i ; ry;j /=ry;j g;

if sx;i DD sy;j then qx;i C nrx;i ¤ qy;j Cmry;j : (37.31)

(C6) FlexRay scheduling constraint: Taking into consideration the scheduling
constraints imposed by the FlexRay protocol, it is required to constrain sx;i
and qx;i as

37 Control/Architecture Codesign for Cyber-Physical Systems 1239

8 Ci 2 C ; x 2 fs; cg; 1 � sx;i � Ns

8 Ci 2 C ; x 2 fs; cg; 0 � qx;i < rx;i :
(37.32)

In addition, the bus utilization U is constrained by the total number of static
slots available in 64 communication cycles.

U � 100: (37.33)

(C7) ECU scheduling constraint: On ECUs, for task schedules, consider

8 Ci 2 C ; x 2 fs; c; ag; 0 � Ox;i CEx;i < Px;i : (37.34)

Moreover, the ECU load cannot be more than 100%.

8pk 2 P; x 2 fs; c; ag;
X

�x;i2Tpk

Ex;i C 	 C 	 � 1.x 2 fcg/

Px;i
� 1:; (37.35)

(C8) Performance constraint: For each control system Ci with sampling period
hi , user specifies a control performance requirement J ri . As mentioned in
Sect. 37.3.2.2, a look-up table for each control system is developed which
contains the performance of seven possible controllers corresponding to seven
possible sampling periods. Therefore, the domain of hi , denoted as domŒhi �
is constrained according to control performance requirement as

8k 2 f0; 1; : : : 6g; J �
i .h

k
i / � J ri ” hki 2 domŒhi �: (37.36)

Now, let Ji represent the control performance of Ci . Therefore,

hi DD 2kTbus ” Ji DD J �
i .h

k
i /: (37.37)

As the objectives for the optimization problem, the overall system control perfor-
mance and the bus utilization are considered.

(O1) Overall system control performance:

Jo D
X
Ci2C

wi J
n
i D

X
Ci2C

wi
X
k

�i;kJ
n�
i .hki /; (37.38)

where �i;k are binary variables satisfying
P

k �i;k D 1 and J n�
i .hki /

represents the normalized optimal control performance of Ci at hki , which can
be formulated as

1240 W. Chang et al.

J n�
i .hki / D

100J �
i .h

k
i /

J ri
: (37.39)

(O2) Bus utilization: The bus utilization in this case can be defined as

U D
100

64Ns

X
Ci2C

�
64

rs;i
C
64

rc;i

�
D

100

64Ns

X
Ci2C

128Tbus

hi
: (37.40)

The value of the bus utilization can only take certain discrete values and is
bounded by the upper and lower limit UC and U�, which can be expressed as

UC D
100

64Ns

X
Ci2C

128Tbus

max
hi2domŒhi �

.hi /
; U� D

100

64Ns

X
Ci2C

128Tbus

min
hi2domŒhi �

.hi /
:

(37.41)

37.3.2.4 Multi-objective Optimization
As discussed above, the control and system codesign of the setting considered
can be formulated as a constrained optimization problem with two objectives,
namely, the bus utilization and overall control performance. In this case, the two
design objectives are noticed to be often conflicting, and therefore, as discussed
in �Chap. 6, “Optimization Strategies in Design Space Exploration”, a much more
informative and designer-friendly cooptimization approach is to first generate a
Pareto front, and let the designer explore the trade-off between the two objectives
according to his customized preference.

�Chapters 6, “Optimization Strategies in Design Space Exploration”, � 7,
“Hybrid Optimization Techniques for System-Level Design Space Exploration”,
and � 9, “Scenario-Based Design Space Exploration” have emphasized on hybrid
optimization techniques to solve such a Design Space Exploration (DSE) problem.
Such techniques depend heavily on problem characteristics, desired accuracy and
scalability, etc. Consequently, for this problem, a customized hybrid optimization
approach as shown in Fig. 37.5 is employed to obtain the desired Pareto front. Since
the objective on bus utilization U is discrete and only takes a limited number of
integers, first compute the maximum and minimum bus utilization UC and U�,
which bound the set of U . For each possible value of U from U� to UC, i.e., given
the equality constraint on U , solve the optimization problem with Jo as the single
objective and obtain a solution. The additional constraint is that Jo of this solution
has to be better than Jo of the last solution (Pareto criterion), in order to ensure that
all solutions are non-dominated. Therefore, the cooptimization problem with two
objectives is turned into a series of single-objective optimization problems, where
each may generate a Pareto point on the Pareto front.

Popular approaches like Mixed Integer Linear Programming (MILP) or meta-
heuristic methods cannot be applied directly to solve each of the single-objective
optimization problems. However, considering that some decision variables only
appear in constraints, but are not related to the objective, a nested two-layered

http://dx.doi.org/10.1007/978-94-017-7267-9_7
http://dx.doi.org/10.1007/978-94-017-7267-9_7
http://dx.doi.org/10.1007/978-94-017-7267-9_8
http://dx.doi.org/10.1007/978-94-017-7267-9_10

37 Control/Architecture Codesign for Cyber-Physical Systems 1241

technique is employed to solve each of the problems. On Layer 1, the outer
layer, consider only constraint (C8) and an equality constraint on bus utilization
U translated from (O2), and optimize the (O1). Decision variables related to the
objectives, i.e., the sampling periods, are determined. On Layer 2, the inner layer,
the remaining decision variables are synthesized satisfying the constraints (C1)–
(C7) while substituting the values of sampling periods based on the results of Layer
1. This process is iterative in the way that if the synthesis fails in Layer 2, the
algorithm goes back to Layer 1 for the next best solution until Pareto criterion is
satisfied. This optimization technique ensures optimality and also efficiency.

37.3.3 Case Study

In the case study, five control applications denoted as C D fC1; C2; C3; C4; C5g

are considered. For each of the control applications, a plant model derived from
the automotive domain is used. C1 to C5 represent respectively the DC motor
speed control (DCM), servo motor position control (DCP), the electronic braking
control (EBC), the car suspension (CSS), and the adaptive cruise control (ACC).
The hardware platform consists of three ECUs fE1;E2;E3g connected by FlexRay
bus. Tables 37.1 and 37.2 show the task mappings and FlexRay bus configuration,
respectively.

Figure 37.6 shows the results of the normalized optimal control performance for
each control application as the sampling period increases. The thick red dashed
line in the plot shows the normalized required performance for all the control
applications (i.e., 100%). Only the points below the red line meet the design
requirement for performance, and only these points will be considered in the
following cooptimization stage. The Pareto front of the whole system in the case

Table 37.1 Task mapping ECUs Tasks

E1 �s;1, �c;2, �a;3,

�a;4, �c;5
E2 �a;1, �s;2, �c;3,

�s;4, �s;5
E3 �c;1, �a;2, �s;3,

�c;4, �a;5

Table 37.2 FlexRay bus
configuration

Bus parameters Values

Bus speed 10 Mbps

Tbus 5 ms

N 25

M 237

 100 ms

ı 10 ms

1242 W. Chang et al.

Sampling Periods in log10 Scale [ms]

4

5 10 20 40 80 160 320

10

100

800

N
or

m
al

iz
ed

 C
on

tr
ol

 p
er

fo
rm

an
ce

 J
in

in
 lo

g 1
0

S
ca

le
 [%

]

DCM
DCP
EBC
CSS
ACC

Ji
r,n

Fig. 37.6 Control performance

5 10 15 20 25 30 35 40

Bus Resource Utilization
[as a % of static slots utilized]

40

45

50

55

60

65

A
ve

ra
ge

 C
on

tr
ol

 P
er

fo
rm

an
ce

[a
s

a
%

 o
f r

eq
ui

re
d

pe
rf

or
m

an
ce

]

Fig. 37.7 Pareto front

study obtained in the cooptimization stage is shown in Fig. 37.7. The value of the
bus utilization ranges from 5:25% to 40% of the bus bandwidth in the static segment.
The value of the control performance varies on an average from 42:92% to 62:54%
of the required value for each control application. It should be noted that for the
control performance defined here, the smaller the value, the better the performance.
It is obvious that there is a large freedom among these viable design points.

37 Control/Architecture Codesign for Cyber-Physical Systems 1243

37.4 Memory-Aware Control/Architecture Codesign

While the memory-aware optimization of embedded software has been discussed
in �Chap. 26, “Memory-Aware Optimization of Embedded Software for Multiple
Objectives”, in this section, how to exploit the instruction cache reuse to improve
the control performance is shown. Given a collection of control applications (e.g.,
C1, C2, C3) on one processing unit, it is conventional to run the control loops of
them in a round-robin fashion (C1, C2, C3, C1, C2, C3, � � �). Since the programs for
different control applications are different, the cache in this process is frequently
refreshed. This results in poor cache reuse and long WCET. In order to address
this issue, a memory-aware sampling order for the control applications can be
applied, using which cache reuse is improved and the WCET of each application is
reduced. In particular, we study a nonuniform sampling scheme, where the control
loop of each application is consecutively run multiple times – in order to increase
the cache reuse – before moving on to the next application (e.g., C1, C1, C1, C2,
C2, C2, C3, C3, C3, � � �). As illustrated in Fig. 37.8, where Ci.j / denotes the j th
execution of the control application Ci , before the first execution Ci.1/, the cache
is either empty (i.e., cold cache) or filled with instructions from other applications
that are not used by Ci (equivalent to cold cache). The WCET of Ci.1/ can be
computed by a number of existing standard techniques [9,37,38]. Before the second
execution Ci.2/, the instructions in the cache are from the same application Ci
and thus can be reused. This results in more cache hits and hence shorter WCET.
Depending on which path the program takes, the amount of WCET reduction varies.
Therefore, a technique is required to compute the guaranteed WCET reduction of
Ci.2/ and Ci.3/, independent of the path taken, which will be presented later in this
section. Control parameters of the systems, such as sampling periods and sensor-to-
actuator delays, are derived from the WCET results. A controller must be tailored
for the memory-aware nonuniform sampling orders, in order to improve the control
performance. In summary, two main techniques are required and explained as

START C1(3)

C2(3)

C1(1) C1(2)

C2(2) C2(1)

C3(3)C3(2)C3(1)

cold cache cache reuse cache reuse

cold cache
cache reusecache reuse

cold cache
cache reuse cache reuse

Fig. 37.8 An example memory-aware sampling order with three applications. Each application is
consecutively executed three times. After the first execution Ci .1/, some instructions in the cache
can be reused, and thus the WCETs of the following two executions are shortened

http://dx.doi.org/10.1007/978-94-017-7267-9_27

1244 W. Chang et al.

follows: (i) cache analysis to compute the guaranteed WCET reduction between two
consecutive executions of one program and (ii) controller design for the nonuniform
sampling.

37.4.1 Cache Analysis for Consecutive Executions of a Control
Application

As discussed in Sect. 37.1, a two-level memory hierarchy – cache and main
memory – is considered. More information about the memory architecture can be
found in �Chap. 13, “Memory Architectures”. There are Nc cache lines, denoted
as CL D fc0; c1; : : : ; cNc�1g, and the main memory has Nm blocks, denoted as
M D fm0;m1; : : : ; mNm�1g. Each memory block is mapped to a fixed cache line.
An example is shown in Fig. 37.9 for the illustration purpose, where there are four
cache lines and five memory blocks. A basic block is a straight-line sequence of code
with only one entry point and one exit point. This restriction makes a basic block

Entry

b1 :

Exit

c3

�

�

� � � �

� � �

� � �

m4

b3 : m4

m2

m2

m3

m3

m3

m1,m2,m3

m2m1m0

m0

c3

c3

c2c1c0

c0 c1 c2 c3

m4

m0

m0 m1 m2

m2 m3

m3

m3

b2 : m2,m3

b0 : m0

m2m0

m0

c0

c0

c0
c0 c3c2c1

c1

c1

c1

c1c0

c2

c2

c2

c2

c3

c3

c3

m1

�

RCSIN
b0

RCSIN
b2

RCSIN
b3

RCSOUT
b2

RCSOUT
b3

RCSOUT
b1

RCSIN
b1

Fig. 37.9 A motivational example for cache analysis. Five memory blocks are mapped to four
cache lines. Memory blocks executed by each basic block are shown. RCSIN and RCSOUT in
the initialization phase are illustrated

http://dx.doi.org/10.1007/978-94-017-7267-9_14

37 Control/Architecture Codesign for Cyber-Physical Systems 1245

highly amenable for program analysis. The presented Control-Flow Graph (CFG) in
Fig. 37.9, consisting of four basic blocks B D fb0; b1; b2; b3g, has all the three key
elements of a control program, i.e., sequential basic blocks, branches, and a loop.
Therefore, it is suitable for illustrating our cache analysis technique.

There are three key terms in cache analysis that are described as follows:

• Cache States: A cache state cs is described as a vector of Nc elements. Each
element csŒi �, where i 2 f0; 1; : : : ; Nc � 1g, represents the memory block in
the cache line ci . When the cache line ci holds the memory block mj , where
j 2 f0; 1; : : : ; Nm � 1g, csŒi � D mj . If ci is empty, it is denoted as csŒi � D ?. If
the memory block in ci is unknown, it is denoted as csŒi � D >. CS is the set of
all possible cache states.

• Reaching Cache States (RCS): RCS of a basic block bk , denoted as RCSbk , is
the set of all possible cache states when bk is reached via any incoming path.

• Live Cache States (LCS): LCS of a basic block bk , denoted as LCSbk , is the
set of all possible first memory references to cache lines at bk via any outgoing
path.

Since our focus is on WCET reduction between two consecutive executions of
Ci , it is necessary to compute RCS of the exit point in the first execution of
Ci and LCS of the entry point in the second execution of Ci . By comparing all
possible pairs of cache states, the guaranteed number of cache hits, and thus WCET
reduction can be calculated. In the following, computation of RCS and LCS is firstly
discussed.

In RCS computation, genbk is firstly defined as the cache state describing the last
executed memory block in every cache line for the basic block bk . Assuming that b0
in Fig. 37.9 executes m0 and then m4, instead of only m0, the last executed memory
block in c0 is m4. Therefore, genb0 is Œm4;?;?;?�. For the example in Fig. 37.9,

genb0 D Œm0;?;?;?�; genb1 D Œ?; m1;m2;m3�;

genb2 D Œ?;?; m2;m3�; genb3 D Œm4;?;?;?�:
(37.42)

There are two equations involved in the RCS computation that calculateRCSIN and
RCSOUT , where RCSIN of a basic block bk is the RCS before bk is executed and
RCSOUT is the set of all possible cache states after bk is executed. First, RCSOUTbk

can be calculated from RCSINbk as

RCSOUTbk
D fT .bk; cs/jcs 2 RCSINbk g; (37.43)

where T is a transfer function defined as follows: For any cache state cs 2 CS and
basic block bk 2 B , there is a cache state cs0 D T .bk; cs/, where for any cache
line ci 2 CL and i 2 f0; 1; : : : ; Nc � 1g,

1246 W. Chang et al.

Table 37.3 RCS computation for the motivational example

Basic block RCSIN RCSOUT

Initialization

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�g fŒm0;m1;m2;m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2;m3�g

b3 fŒm0;m1;m2;m3�; Œm0;>; m2;m3�g fŒm4;m1;m2;m3�; Œm4;>; m2;

m3�g

Fixed-point

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�; Œm0;m1;m2;m3�g fŒm0;m1;m2;m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2;m3�g

b3 fŒm0;m1;m2;m3�; Œm0;>; m2;m3�g fŒm4;m1;m2;m3�; Œm4;>; m2;

m3�g

cs0Œi � D

�
csŒi � W if genbk Œi � D ?I

genbk Œi � W otherwise:
(37.44)

RCSINbk can be calculated as

RCSINbk D
[

p2predecessor.bk/

RCSOUTp ; (37.45)

where predecessor.bk/ is the set of all immediate predecessors of bk .
The RCS computation is composed of two phases: initialization and fixed-point

computation. As illustrated with the example in Fig. 37.9, the initialization phase
starts from the entry basic block b0 with RCSINb0 D fŒ>;>;>;>�g. The element is
> since our analysis is independent of the program executed before b0. According
to (37.43), RCSOUTb0

is calculated to be fŒm0;>;>;>�g. Since b0 is the only
immediate predecessor of b2, RCSINb2 is equal to RCSOUTb0

based on (37.45). Due
to the self-loop, b1 has both itself and b0 as immediate predecessors. However, since
RCSOUTb1

has not been initialized yet, RCSINb1 is equal to RCSOUTb0
. In the same

manner, RCSOUTb1
, RCSOUTb2

, RCSINb3 , and RCSOUTb3
can be computed, following

the program flow as shown both in Fig. 37.9 and Table 37.3. The initialization phase
is completed once all basic blocks have been visited. The next phase is fixed-point
computation. RCSIN and RCSOUT of all basic blocks are computed iteratively
with (37.45) and (37.43). This phase is terminated once the fixed point is reached,
i.e., RCSIN and RCSOUT of all basic blocks remain unchanged. Let the program
RCS be the RCSOUT of the exit basic block, i.e., RCS D RCSOUTb3

. Results are
reported in Table 37.3.

The LCS computation can be done in a similar fashion. genbk is defined as
the cache state describing the first executed memory block in every cache line
for the basic block bk . Taking the same assumption when defining genbk for RCS
computation that b0 in Fig. 37.9 executes m0 and then m4, instead of only m0, the

37 Control/Architecture Codesign for Cyber-Physical Systems 1247

Table 37.4 LCS computation for the motivational example

Basic block LCSIN LCSOUT

Initialization

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2;m3�g

b1 fŒm4;>;>;>�g fŒm4;m1;m2;m3�g

b0 fŒm4;m1;m2;m3�; Œm4;>; m2;m3�g fŒm0;m1;m2;m3�; Œm0;>; m2;

m3�g

Fixed-point

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2;m3�g

b1 fŒm4;>;>;>�; Œm4;m1;m2;m3�g fŒm4;m1;m2;m3�g

b0 fŒm4;m1;m2;m3�; Œm4;>; m2;m3�g fŒm0;m1;m2;m3�; Œm0;>; m2;

m3�g

first executed memory block in c0 ism0. Therefore, genb0 is Œm0;?;?;?�. LCSIN

of a basic block bk is the LCS after bk is executed and can be derived from

LCSINbk D
[

s2successor.bk/

LCSOUTs ; (37.46)

where successor.bk/ is the set of all immediate successors of bk . LCSOUT of bk
is the LCS before bk is executed with

LCSOUTbk
D fT .bk; cs/jcs 2 LCSINbk g: (37.47)

LCS computation also comprises two phases of initialization and fixed-point
computation. The only difference is that the initialization phase starts from the exit
basic block and ends in the entry basic block. Detailed results for the motivational
example are reported in Table 37.4. Let the program LCS be the LCSOUT of the
entry basic block, i.e., LCS D LCSOUTb0

. It is noted that since the presented cache
analysis technique is based on the fixed-point computation over the program CFG,
it inherently handles loop structures in the CFG.

Conceptually, the program RCS is the set of all possible cache states after the
program finishes execution by any execution path, and the program LCS is the set of
all cache states, where each cache state contains memory blocks that may be firstly
referenced after the program starts execution, for any execution path to follow. Both
RCS and LCS could contain multiple cache states. Each pair with one cache state
cs from the program RCS and one cache state cs0 from the program LCS represents
one possible execution path between the two consecutive executions. For any cache
line ci in a pair, if csŒi � is equal to cs0Œi � and they are not equal to >, then there
is certainly a hit and thus WCET reduction. Whether there is a hit for a particular
cache line can be determined by the function H defined as follows:
8cs 2 CS , cs0 2 CS and ci 2 CL, where i 2 f0; 1; : : : ; Nc � 1g,

1248 W. Chang et al.

H .cs; cs0; ci / D

�
1 W if csŒi � D cs0Œi � ^ csŒi � ¤ ?I

0 W otherwise:
(37.48)

The number of hits can be counted with the function H T defined as
8cs 2 CS and cs0 2 CS ,

H T .cs; cs0/ D

Nc�1X
iD0

H .cs; cs0; ci /: (37.49)

The guaranteed number of hits among all possibilities is calculated as

G .RCS;LCS/ D min
cs2RCS;cs02LCS

.H T .cs; cs0//: (37.50)

Given that the main memory access time and the cache access time are respectively
tm and tc , the guaranteed WCET reduction is computed as

NEg D G .RCS;LCS/ � .tm � tc/

� G .RCS;LCS/ � tm;
(37.51)

where the approximation can be taken if tc � tm.
For the motivational example, there are two cache states in RCS (RCSOUTb3

) and
two cache states in LCS (LCSOUTb0

). In total, there are four pairs, and the number
of hits is calculated to be 3, 2, 2, and 2 with (37.49). Taking one of them as an
example, H T .Œm4;m1;m2;m3�; Œm0;m1;m2;m3�/ D 3. Therefore, the guaranteed
number of hits is 2 according to (37.50), no matter which path the program takes.
From (37.51), the guaranteed WCET reduction is 2 � .tm � tc/, or approximately
2 � tm, when tc � tm. It is noted that this result is obtained from the small example
used for illustration. More WCET reduction for larger realistic programs can be
expected.

Note that the direct-mapped cache (i.e., one-way set-associative cache) is as-
sumed in Fig. 37.9. The presented technique can be adapted to handle set-associative
cache. For example, considering fully associative cache, when computingRCSOUTb3

from RCSINb3 , the memory block m4 can be loaded to any cache line, which
gives RCSOUTb3

five more cache states, i.e., Œm0;m4;m2;m3�, Œm0;m1;m4;m3�,
Œm0;>; m4;m3�, Œm0;m1;m2;m4�, and Œm0;>; m2;m4�. From this, it can be ob-
served that the number of cache states in RCS and LCS is larger for set-associative
cache, which means that the guaranteed WCET reduction could be smaller. Details
can be found in [27]. Using the cache analysis technique presented in this section,
together with standard WCET analysis approaches, the effective WCET of Ci.2/
and subsequent executions of Ci can be derived. Shorter WCET leads to smaller
sampling period of the control system, which will be shown next.

37 Control/Architecture Codesign for Cyber-Physical Systems 1249

37.4.2 Control Parameter Derivation

We explore the relationship between WCET results and control parameters of two
example sampling schemes. S1 is the conventional memory-oblivious scheme and
summarized as follows:

C1.1/ ! C2.1/ ! C3.1/ ! C1.2/ ! C2.2/ !

C3.2/ ! C1.3/ ! C2.3/ ! C3.3/ ! � � � :
(37.52)

There is no cache reuse in S1 in the worst case, considering that different control
applications typically have different instructions to execute. In other words, when
Ci.j / starts execution, all instructions of Ci need to be brought into the cache from
the main memory. Therefore,

Ewc
i .1/ D Ewc

i .2/ D � � � D Ewc
i ; (37.53)

where Ewc
i .j / is the WCET of the j th execution for Ci . The WCET of the

application Ci is denoted by Ewc
i , since all executions of the same application have

equal WCET. Clearly, all control applications run with a uniform sampling period
of

h D
X
iD1;2;3

Ewc
i : (37.54)

Moreover, the sensor-to-actuator delay, which is defined to be the duration between
measuring the system state x.t/ and applying the control input u.t/, is given by

di D Ewc
i : (37.55)

It can be seen that a safe estimation of WCET, which can be done with standard
static analysis techniques [37], is very important. If the actual execution time is
longer than the computed WCET, the correct control input will not be ready when
the actuation is supposed to occur. The consequence could be severe degradation
of control performance. This is not acceptable especially for safety-critical control
applications.

S2 is an example of memory-aware sampling order as shown in Fig. 37.8:

C1.1/ ! C1.2/ ! C1.3/ ! C2.1/ ! C2.2/ !

C2.3/ ! C3.1/ ! C3.2/ ! C3.3/ ! � � � :
(37.56)

The effective WCET taking into account the cache reuse is denoted with NEwc
i .j /.

From the above discussion,
8i 2 f1; 2; 3g;

1250 W. Chang et al.

NEwc
i .1/ D Ewc

i ; (37.57)

since there is no cache reuse for the first execution of every application Ci.1/.
NEwc
i .2/ and NEwc

i .3/ are shorter than NEwc
i .1/ due to cache reuse. The amounts of

cache reuse are the same for Ci.2/ and Ci.3/ in the worst case. Denoting the
guaranteed WCET reduction as NE

g
i ,

8i 2 f1; 2; 3g;

NEwc
i .2/ D NEwc

i .3/ D NEwc
i .1/ � NE

g
i : (37.58)

From these varying WCETs, the sampling periods of all three applications can be
calculated. Taking C1 as an example, there are three sampling periods h1.1/, h1.2/,
and h1.3/, which repeat themselves periodically:

h1.1/ D NEwc
1 .1/; h1.2/ D NEwc

1 .2/; h1.3/ D NEwc
1 .3/C
; (37.59)

where
 is computed as

 D
X
iD2;3

X
jD1;2;3

NEwc
i .j /: (37.60)

Similar derivation can be done for C2 and C3. The average sampling period of an
application havg is

havg D

P
iD1;2;3

P
jD1;2;3

NEwc
i .j /

3
< h: (37.61)

According to (37.57) and (37.58),

havg <

P
iD1;2;3

3 �Ewc
i

3
: (37.62)

From (37.54),

havg < h: (37.63)

Moreover, the corresponding sensor-to-actuator delay di .j / also varies with cache
reuse as

8i 2 f1; 2; 3g;

di .1/ D hi .1/ D NEwc
i .1/; di .2/ D hi .2/ D NEwc

i .2/; di .3/ D NEwc
i .3/:

(37.64)

37 Control/Architecture Codesign for Cyber-Physical Systems 1251

As all control parameters have been derived, it can be observed that the sampling
period hi .j / of a control application is nonuniform for the memory-aware scheme.
The average sampling period of S2 is shorter than the uniform sampling period
of S1 as shown in (37.61), due to WCET reduction resulting from cache reuse. The
sensor-to-actuator delay di .j / varies as shown in (37.64). The next task is to develop
a controller design method to exploit shortened nonuniform sampling periods and
achieve better control performance. For the uniform sampling scheme, the sensor-
to-actuator delay di is shorter than the sampling period h. Therefore, the technique
reported in Sect. 37.2 is used. Details of the controller design technique considering
the nonuniform sampling are reported in the next section.

37.4.3 Case Study

Here a commonly used processing unit, equipped with a processor, on-chip memory
as cache and flash as main memory is considered, shown in Fig. 37.1 More about
the flash memory has been discussed in �Chap. 14, “Emerging and Nonvolatile
Memory”. As a case study, three control applications are considered. C1 is position
control of a servo motor. C2 is speed control of a DC motor. C3 is control of
an electronic wedge brake system. All three control applications run on the same
processor. The processor clock frequency is 20MHz. The cache is set to have 128
cache lines and each cache line is 16 bytes. When there is a cache hit, it takes 1
clock cycle to fetch the instruction, and when there is a cache miss, it takes 100
clock cycles. WCET results are reported in Table 37.5. Sampling periods of the two
sampling orders S1 and S2 are shown in Table 37.6. Control performances of three
applications under S1 and S2 are presented in Table 37.7, where the settling time
is taken as the performance metric. As an example, the system output responses of
C1 under both S1 and S2 are presented in Fig. 37.10. The control task considered
is to change the system output (i.e., the angular position of the servo motor) from
0 to 0.3 rad. From the above experimental results, it can be clearly seen that the

Table 37.5 WCET results with and without cache reuse for all three control applications

Application WCET without cache reuse WCET with cache reuse Reduction percentage

C1 907:55�s 452:15�s 50:18%

C2 645:25�s 175:00�s 72:88%

C3 749:15�s 234:35�s 68:72%

Table 37.6 Comparison of sampling periods between S1 and S2 for all three control applications.
The reduction percentage is computed according to the average sampling period

Application Sampling periods in S1 Sampling periods in S2 Reduction percentage

C1 2302�s 452�s – 452�s – 3121�s 42%

C2 2302�s 175�s – 175�s – 3675�s 42%

C3 2302�s 234�s – 234�s – 3557�s 42%

http://dx.doi.org/10.1007/978-94-017-7267-9_15

1252 W. Chang et al.

Table 37.7 Control performances for all three applications under S1 and S2

Application C1 C2 C3

Settling time for S1 31:2ms 26:8ms 25:2ms

Settling time for S2 21:5ms 21:1ms 20:4ms

Control performance improvement of S2 compared to S1 31:1% 21:3% 19:0%

0 1 1 2 2 3 3 4 4

·10−2

0.3

0.2

0.1

0

Time [s]

Sy
st

em
O

ut
pu

t y
[k

]
[r

ad
]

Memory-Oblivious Sampling Order S1
Memory-Aware Sampling Order S2

Fig. 37.10 Control system output of C1 under S1 and S2

memory-aware sampling order reduces the WCETs and sampling periods. With the
controller design method tailored for nonuniform sampling, control performances
are significantly improved.

37.5 Computation-Aware Control/Architecture Codesign

In this section, we show how to use a multirate controller to reduce the processor
utilization of a control application, while still fulfilling the control performance
requirement and system constraints. More information about the application-
specific processors can be found in �Chap. 12, “Application-Specific Processors”.

37.5.1 Time-Triggered Operating System

As an example, ERCOSek with the OSEK/VDX standard [1] is considered, which
specifies the basic properties of an OS to be used in the automotive domain.
In general, as an OSEK/VDX OS, ERCOSek supports preemptive fixed-priority
scheduling. That is, priorities are assigned to applications, and at any point in time,
the task with the highest priority among all active ones is executed. On ERCOSek,
tasks can be triggered by events (e.g., interrupts, alarms, etc.) or by time. In the
time-triggered scheme, each application gets released and is allowed to access
the processor periodically. There are various periods of release times and each
application is assigned one. Every time an application is released, its task gets the
chance to be executed. A time table containing all the periodic release times within

http://dx.doi.org/10.1007/978-94-017-7267-9_13

37 Control/Architecture Codesign for Cyber-Physical Systems 1253

Table 37.8 Example of an
ERCOSek time table

Time Release

0 ms Applications with periods of 2 ms/5 ms/10 ms

2 ms Applications with the period of 2 ms

4 ms Applications with the period of 2 ms

5 ms Applications with the period of 5 ms

6 ms Applications with the period of 2 ms

8 ms Applications with the period of 2 ms

10 ms Repeat actions at 0 ms

5ms
Sampling

2ms
Sampling

0

0 5 10 15 20

0 10 20

2 4 6 8 10 12 14 16 18 20

...

...

...
ms

10ms
Sampling

Allowed switching among 2ms, 5ms and 10ms

Fig. 37.11 Allowed switching instants among multiple sampling periods

the alleged hyperperiod (i.e., the minimum common multiple of all periods) needs to
be configured. An example with a set of three periods 2, 5, and 10 ms is illustrated in
Table 37.8. The hyperperiod is equal to 10 ms and the time table repeats itself every
10 ms by resetting the timer. Independent of the triggering mode (i.e., be it event
or time triggered), the assigned priority will still determine the execution order of
tasks. In the time-triggered scheme, a higher priority is typically assigned to the
application released with a shorter period, since this generally results in a more
efficient use of the processor.

Assuming the set of available periods restricted by ERCOSek to be �, control
applications have to be sampled with one period or a combination of multiple
periods from �. In the latter case, switching between two sampling periods can only
occur at the common multiplier of them, as illustrated in Fig. 37.11, considering
three sampling periods 2, 5, and 10 ms. Often, the optimal sampling period for a
control application does not belong to the set �. The simple and straightforward
method used in practice is to select the largest sampling period in � that is smaller
than the optimal one. This results in a higher processor load, which is another
important design aspect. Denoting Ewc

i to be the WCET of a control application
Ci , if the uniform sampling period is T , the processor load for Ci is

Li D
Ewc
i

T
: (37.65)

1254 W. Chang et al.

The upper bound on the load of any processor is 1. Considering a single processor p,

X
fi jCi runs onpg

Li � 1: (37.66)

Clearly, increasing the sampling period of a control application decreases its
processor load and thus potentially enables more applications to be integrated on
the processor.

37.5.2 Multirate Closed-Loop Dynamics

We consider a multirate controller switching between multiple sampling periods in
�, toward achieving an average sampling period close to the optimal one. The cyclic
sequence of sampling periods for a control application defines a schedule S :

S D fT1; T2; T3; : : : ; TN g; (37.67)

where 8j 2 f1; 2; : : : ; N g; Tj 2 �. It implies the sequence of sampling periods as

T1 ! T2 ! � � � ! TN ! T1 ! T2 ! � � � ! TN ! repeat

Following the assumption in (37.65) that the WCET of Ci isEwc
i , the processor load

for Ci over S is

Li D
NEwc

i

NP
jD1

Tj

: (37.68)

Dictated by the schedule S , N systems switch cyclically in a deterministic fashion.
When the sampling period tkC1 � tk D Tk;j , the dynamics is

xŒk C 1� D Ad.Tk;j /xŒk�C Bd.Tk;j /Kj xŒk�C Bd.Tk;j /Fj r: (37.69)

The controller design needs to be performance oriented, and the key is to compute
the feedback gain Kj for each system with pole placement, based on which the
static feedforward gain Fj can be derived with (37.10).

Referring to Fig. 37.12, after the first sampling interval of a switching cycle,

xŒk C 1� D Ad.Tk;1/xŒk�C Bd.Tk;1/ OK1xŒk�C Bd.Tk;1/F1r: (37.70)

It is noted that K1 is the feedback gain based on the most recent system state xŒk�
and used to compute the control input. OK1 is the equivalent feedback gain based
on the starting system state xŒk� of a switching cycle. In this case that only one

37 Control/Architecture Codesign for Cyber-Physical Systems 1255

Repeat

A switching cycle

Tk,NTk,2Tk,1

tk tk+1 tk+2Sampling Instants:

Sampling Periods:

x[k+N − 1]

tk+N − 1 tk+N
Feedback State:

x[k+N]x[k]x[k]x[k]x[k]

x[k] x[k + 1] x[k + 2] x[k+N]

Feedback State:

(K1,F1)(KN,FN)(K3,F3)(K2,F2)(K1,F1)Controller Gain:

K̂2 K̂3 K̂N K̂1K̂1
Controller Gain:

Fig. 37.12 Cyclically switched linear systems

sampling period is considered, OK1 D K1. The feedforward gain F1, which is related
toK1, is also based on the most recent system state and used to compute the control
input. The closed-loop system matrix is denoted as Acl;1 and

Acl;1 D Ad.Tk;1/C Bd.Tk;1/ OK1: (37.71)

OK1 can be designed by pole placement. Poles to place are eigenvalues of Acl;1. F1
is computed as per (37.10).

After the second sampling interval,

xŒk C 2� D Ad.Tk;2/xŒk C 1�C Bd.Tk;2/K2xŒk C 1�C Bd.Tk;2/F2r: (37.72)

To consider the overall dynamics of the first two sampling periods, the relation
between xŒk C 2� and xŒk� can be derived as

xŒk C 2� D Ad.Tk;2/Acl;1xŒk�C Bd.Tk;2/K2Acl;1xŒk�

C .Ad .Tk;2/C Bd.Tk;2/K2/Bd .Tk;1/F1r C Bd.Tk;2/F2r:
(37.73)

Let

OK2 D K2Acl;1; (37.74)

and (37.73) becomes

xŒk C 2� D Ad.Tk;2/Acl;1xŒk�C Bd.Tk;2/ OK2xŒk�

C .Ad .Tk;2/C Bd.Tk;2/K2/Bd .Tk;1/F1r C Bd.Tk;2/F2r:
(37.75)

Similar to (37.71),

Acl;2 D Ad.Tk;2/Acl;1 C Bd.Tk;2/ OK2: (37.76)

1256 W. Chang et al.

It is noted that (37.75) has the same form as (37.70). OK2 can be designed by pole
placement and K2 is derived with (37.74), as long as Acl;1 is non-singular. Poles to
place are eigenvalues of Acl;2. F2 is computed as per (37.10). Continuing the above
analysis,

8j 2 f1; 2; : : : ; N g

Acl;j D Ad.Tk;j /Acl;j�1 C Bd.Tk;j / OKj ; (37.77)

and Acl;0 D I can be defined. OKj can be designed by pole placement. Poles to place
are eigenvalues of Acl;j . As long as Acl;j�1 is non-singular, Kj is derived by

Kj D OKjA
�1
cl;j�1: (37.78)

Fj is computed as per (37.10).
Here the sensor-to-actuator delay is approximately equal to the WCET of the

executed control program. Since the control law is computed during the design
phase, such a control program generally has a short WCET. The sensor-to-actuator
delay is often negligible compared to the sampling periods given by the OS. In
general, when the sensor-to-actuator delay of a control task is large compared to
the sampling periods (e.g., in the memory-aware controller design of Sect. 37.4,
where the sampling periods are directly constrained by WCETs), our proposed
controller design technique can be extended to consider the delayed control input
with a number of methods reported in the literature [24].

An optimization problem for the pole placement can be formulated as presented
in Sect. 37.2.2.2. The number of dimensions in the decision space is nN – the
number of states of the application multiplied by the number of sampling periods in
the schedule. The optimization objective is the settling time. Absolute values of all
poles have to be less than unity to ensure system stability and larger than 0 to make
all Acl;j non-singular.

Optimization strategies for design space exploration have been discussed in
�Chap. 6, “Optimization Strategies in Design Space Exploration”. In this section,
to solve one optimization problem, the PSO algorithm is run multiple times with the
same number of particles, and we do not set the limit on the number of iterations.
If the objective value variation of the solution points from these runs exceeds a
certain threshold (e.g., 1%), the number of particles is increased. Considering the
stochastic nature of PSO, it is very likely that the optimal point has been found
when multiple runs generate similar objective values. It is noted that if the number
of sampling periods in the schedule is very large, which makes the number of
dimensions in the decision space very large, this method aiming to ensure optimality
can be computationally expensive. In this case, the number of particles and iterations
has to be limited, resulting in a compromise in optimality.

http://dx.doi.org/10.1007/978-94-017-7267-9_7

37 Control/Architecture Codesign for Cyber-Physical Systems 1257

Table 37.9 Settling times of three schedules

Schedule Settling time [ms] Requirement

S1 D f5 msg 253:69 Violated

S2 D f2 msg 110:44 Satisfied

S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg 128.6 ms Satisfied

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

1

2
·10−3

Time [s]

Sy
st

em
O

ut
pu

ty
[k

][
m

]

Schedule S1 = {5ms}
Schedule S2 = {2ms}
Schedule S3 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}

Fig. 37.13 System outputs of different schedules

37.5.3 Case Study

The presented multirate controller design technique is evaluated with an Electro-
Mechanical Brake (EMB) system used in automobiles. It can be modeled as (37.1)
with five system states. The control input is the voltage output of the onboard
battery and thus cannot exceed 12 V. Different controllers require different battery
voltage output profiles, and only those that respect the input constraint are possible
to implement. The constraint on the settling time is 150 ms. In the optimization,
the settling time is still treated as the objective to minimize and check the optimal
solution against this requirement. The WCET of the control program is 0.2 ms. The
control task is to change the system output (i.e., the position of the lever) from 0 to
2 mm. The set of available sampling periods offered by ERCOSek is

� D f1 ms; 2 ms; 5 ms; 10 ms; 20 ms; 50 ms; 100 ms; 200 ms; 500 ms; 1 sg:
(37.79)

As shown in Table 37.9 and Fig. 37.13, the schedule S1 D f5msg cannot meet the
settling time requirement. The largest sampling period smaller than 5 ms in � is
2 ms. The schedule S2 D f2 msg is able to fulfill all the requirements. According
to (37.65), the processor load of S2 is 0:1. Then a schedule switching between
2 ms and 5 ms is considered, S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg. This
sequence of sampling periods satisfies the OS requirement. The multirate controller
is designed as discussed earlier in this section. The WCET (0.2 ms) is much shorter
than the sampling periods (2 ms, 5 ms), and thus we neglect the sensor-to-actuator

1258 W. Chang et al.

delay. S3 has a slightly longer settling time than S2, but still fulfills the requirement.
According to (37.68), the processor load is 0:07, achieving a 30% reduction
compared to S2.

37.6 Conclusion

In this chapter, a basic introduction into the subject of control/architecture codesign
in the context of cyber-physical systems is provided. The control/architecture
codesign is an emerging field of research, where the design of control parameters
and embedded platform parameters are integrated in a holistic approach to reduce
conservativeness and achieve more efficient design of embedded control systems.
As the size and the complexity of the cyber-physical systems increase, resource-
efficient design has become one of the most important aspects in this context. In
this chapter, the motivation is firstly explained, and some basic concepts of the
control/architecture codesign are introduced. In addition, a brief summary on the
type of resources that can be considered in the codesign approaches is provided.
Then three examples of state-of-art codesign approaches, targeting respectively
at communication-aware design, memory-aware design, and computation-aware
design, are used to illustrate the basic thinking behind the control/architecture
codesign. In Sect. 37.3, a cooptimization framework is explained to codesign control
and platform parameters by solving a constraint-based multi-objective optimization
problem. This framework considers two objectives, namely, the resource utilization
and the overall control performance, and generates a Pareto front depicting the trade-
off options between the two objectives. In Sect. 37.4, how to exploit the instruction
cache reuse in a memory-aware sampling order to improve the control performance
is shown. Cache analysis is used to compute the guaranteed WCET reduction
between two consecutive executions of one control program. Control parameters
are derived based on the WCET results. The controller design is tailored for the
nonuniform sampling scheme. In Sect. 37.5, the OS constraint that only a limited
set of sampling periods are provided is considered. It is shown how a multirate
controller is used to reduce the processor utilization of a control application, while
still fulfilling the control performance requirement and system constraints. The
control/architecture codesign is, of course, a relatively new and open research field,
and thus the state-of-art approaches are certainly not limited to the ones shown in
this chapter. There are also some other research directions in this context that can be
explored. For example, power consumption is quite an important design factor, and
thus power-aware codesign methods could potentially lead to more power-efficient
designs. Furthermore, safety and fault tolerance are also important factors in cyber-
physical systems which can also be considered in codesign methods. In addition, the
three approaches shown in this chapter address individually a single resource. If the
complexity of the problem due to many design dimensions can be tackled, it would
be interesting to try to address simultaneous two or more resources in the codesign
and thus offer an even greater freedom for design trade-offs.

37 Control/Architecture Codesign for Cyber-Physical Systems 1259

References

1. OSEK/VDX operating system specification 2.2.3 (2005)
2. 664P7-1 aircraft data network, part 7, avionics full-duplex switched Ethernet network (2009)
3. The FlexRay communications system protocol specification, Version 3.0.1 (2010)
4. LIN specification package revision 2.2A (2010)
5. MOST specification rev. 3.0 E2 (2010)
6. AS6802 (2011) Time-triggered Ethernet
7. Infineon Product Brief XC2300B – Series (Accessed 12 May 2016). http://www.infineon.com/

dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
8. Ackermann J, Utkin VI (1994) Sliding mode control design based on Ackermann’s formula.

In: Proceedings of the 33rd IEEE conference on decision and control, vol 4, Lake Buena Vista,
pp 3622–3627. doi:10.1109/CDC.1994.411715

9. Andalam S, Sinha R, Roop P, Girault A, Reineke J (2013) Precise timing analysis for
direct-mapped caches. In: 2013 50th ACM/EDAC/IEEE design automation conference (DAC),
Austin, pp 1–10. doi:10.1145/2463209.2488917

10. Astrom KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers.
Princeton University Press, Princeton

11. Batcher KW, Walker RA (2008) Dynamic round-robin task scheduling to reduce cache misses
for embedded systems. In: 2008 Design, automation and test in Europe, Munich, pp 260–263.
doi:10.1109/DATE.2008.4484893

12. Bhave AY, Krogh BH (2008) Performance bounds on state-feedback controllers with network
delay. In: 47th IEEE conference on decision and control, CDC 2008, Cancun, pp 4608–4613.
doi:10.1109/CDC.2008.4739330

13. Bosch (1991) CAN Specification version 2.0. Stuttgart, Bosch
14. Castane R, Marti P, Velasco M, Cervin A, Henriksson D (2006) Resource management for

control tasks based on the transient dynamics of closed-loop systems. In: 18th Euromicro con-
ference on real-time systems (ECRTS’06), Dresden, pp 10, 182. doi:10.1109/ECRTS.2006.24

15. Cervin A, Velasco M, Marti P, Camacho A (2009) Optimal on-line sampling period assignment.
Research report, Lund University and Technical University of Catalonia

16. Chang W, Chakraborty S (2016) Resource-aware automotive control systems design: a cyber-
physical systems approach. Found Trends c� Electron Design Autom 10(4):249–369. http://dx.
doi.org/10.1561/1000000045

17. Charette RN (2009) This car runs on code. IEEE Spectrum. http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code

18. eCos. http://ecos.sourceware.org
19. Feiler PH (2003) Real-time application development with OSEK: a review of the OSEK

standards. Technical report, Carnegie Mellon University
20. Gaid MEMB, Cela A, Hamam Y (2006) Optimal integrated control and scheduling of

networked control systems with communication constraints: application to a car suspension
system. IEEE Trans Control Syst Technol 14(4):776–787. doi:10.1109/TCST.2006.872504

21. Gaid MEMB, Cela A, Hamam Y, Ionete C (2006) Optimal scheduling of control tasks
with state feedback resource allocation. In: 2006 American control conference, Minneapolis,
pp 310–315. doi:10.1109/ACC.2006.1655373

22. Gloy N, Smith MD (1999) Procedure placement using temporal-ordering information. ACM
Trans Program Lang Syst 21(5):977–1027. doi:10.1145/330249.330254

23. Goswami D, Lukasiewycz M, Schneider R, Chakraborty S (2012) Time-triggered implemen-
tations of mixed-criticality automotive software. In: 2012 Design, automation test in Europe
conference exhibition (DATE), Dresden, pp 1227–1232. doi:10.1109/DATE.2012.6176680

24. Goswami D, Schneider R, Chakraborty S (2014) Relaxing signal delay constraints in
distributed embedded controllers. IEEE Trans Control Syst Technol 22(6):2337–2345.
doi:10.1109/TCST.2014.2301795

http://www.infineon.com/dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
http://www.infineon.com/dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
http://dx.doi.org/10.1109/CDC.1994.411715
http://dx.doi.org/10.1145/2463209.2488917
http://dx.doi.org/10.1109/DATE.2008.4484893
http://dx.doi.org/10.1109/CDC.2008.4739330
http://dx.doi.org/10.1109/ECRTS.2006.24
http://dx.doi.org/10.1561/1000000045
http://dx.doi.org/10.1561/1000000045
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://ecos.sourceware.org
http://dx.doi.org/10.1109/TCST.2006.872504
http://dx.doi.org/10.1109/ACC.2006.1655373
http://dx.doi.org/10.1145/330249.330254
http://dx.doi.org/10.1109/DATE.2012.6176680
http://dx.doi.org/10.1109/TCST.2014.2301795

1260 W. Chang et al.

25. Henriksson D, Cervin A (2005) Optimal on-line sampling period assignment for real-time
control tasks based on plant state information. In: Proceedings of the 44th IEEE conference on
decision and control, Seville, pp 4469–4474. doi:10.1109/CDC.2005.1582866

26. Kalamationos J, Kaeli DR (1998) Temporal-based procedure reordering for improved in-
struction cache performance. In: Proceedings of fourth international symposium on high-
performance computer architecture, Las Vegas, pp 244–253. doi:10.1109/HPCA.1998.650563

27. Kleinsorge JC, Falk H, Marwedel P (2011) A synergetic approach to accurate analysis of cache-
related preemption delay. In: 2011 Proceedings of the international conference on embedded
software (EMSOFT), Taipei, pp 329–338. doi:10.1145/2038642.2038693

28. Liu X, Chen X, Kong F (2015) Utilization control and optimization of real-time embedded
systems. Found Trends c� Electron Design Autom 9(3):211–307. http://dx.doi.org/10.1561/
1000000042

29. Lukasiewycz M, GlaßM, Teich J, Milbredt P (2009) Flexray schedule optimization of the
static segment. In: Proceedings of the 7th IEEE/ACM international conference on hardware/-
software codesign and system synthesis, CODES+ISSS’09. ACM, New York, pp 363–372.
doi:10.1145/1629435.1629485

30. Marti P, Lin C, Brandt SA, Velasco M, Fuertes JM (2004) Optimal state feedback based
resource allocation for resource-constrained control tasks. In: Proceedings of 25th IEEE inter-
national on real-time systems symposium, Lisbon, pp 161–172. doi:10.1109/REAL.2004.39

31. Martí P, Lin C, Brandt SA, Velasco M, Fuertes JM (2009) Draco: efficient resource
management for resource-constrained control tasks. IEEE Trans Comput 58(1):90–105.
doi:10.1109/TC.2008.136

32. Pettis K, Hansen RC (1990) Profile guided code positioning. In: Proceedings of the ACM
SIGPLAN 1990 conference on programming language design and implementation, PLDI’90.
ACM, New York, pp 16–27. doi:10.1145/93542.93550

33. Pigan R, Metter M (2008) Automating with PROFINET, 2nd edn. Publicis Publishing,
Erlangen

34. Samii S, Cervin A, Eles P, Peng Z (2009) Integrated scheduling and synthesis of control
applications on distributed embedded systems. In: 2009 Design, automation test in Europe
conference exhibition, Nice, pp 57–62. doi:10.1109/DATE.2009.5090633

35. Schneider R, Goswami D, Zafar S, Lukasiewycz M, Chakraborty S (2011) Constraint-driven
synthesis and tool-support for flexray-based automotive control systems. In: Proceedings of the
seventh IEEE/ACM/IFIP international conference on hardware/software codesign and system
synthesis, CODES+ISSS’11. ACM, New York, pp 139–148. doi:10.1145/2039370.2039394

36. Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and
applications. Int J Comput Theory Eng 1(4):486–502

37. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,
Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The
worst-case execution-time problem – overview of methods and survey of tools. ACM Trans
Embed Comput Syst 7(3):36:1–36:53. doi:10.1145/1347375.1347389

38. Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Mem-
ory hierarchies, pipelines, and buses for future architectures in time-critical embedded
systems. IEEE Trans Comput Aided Des Integr Circuits Syst 28(7):966–978. doi:10.1109/T-
CAD.2009.2013287

39. Zeng H, Natale MD, Ghosal A, Sangiovanni-Vincentelli A (2011) Schedule optimization of
time-triggered systems communicating over the flexray static segment. IEEE Trans Ind Inf
7(1):1–17. doi:10.1109/TII.2010.2089465

http://dx.doi.org/10.1109/CDC.2005.1582866
http://dx.doi.org/10.1109/HPCA.1998.650563
http://dx.doi.org/10.1145/2038642.2038693
http://dx.doi.org/10.1561/1000000042
http://dx.doi.org/10.1561/1000000042
http://dx.doi.org/10.1145/1629435.1629485
http://dx.doi.org/10.1109/REAL.2004.39
http://dx.doi.org/10.1109/TC.2008.136
http://dx.doi.org/10.1145/93542.93550
http://dx.doi.org/10.1109/DATE.2009.5090633
http://dx.doi.org/10.1145/2039370.2039394
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TII.2010.2089465

	37 Control/Architecture Codesign for Cyber-Physical Systems
	Contents
	37.1 Introduction
	37.2 Embedded Control Systems
	37.2.1 Embedded Systems Architecture
	37.2.2 Feedback Control Systems
	37.2.2.1 Control Performance Metrics
	37.2.2.2 Optimal Pole Placement

	37.3 Communication-Aware Control/Architecture Codesign
	37.3.1 Problem Setting
	37.3.2 The Codesign Approach
	37.3.2.1 Design Flow
	37.3.2.2 Controller Design
	37.3.2.3 Optimization Problem Formulation
	37.3.2.4 Multi-objective Optimization

	37.3.3 Case Study

	37.4 Memory-Aware Control/Architecture Codesign
	37.4.1 Cache Analysis for Consecutive Executions of a Control Application
	37.4.2 Control Parameter Derivation
	37.4.3 Case Study

	37.5 Computation-Aware Control/Architecture Codesign
	37.5.1 Time-Triggered Operating System
	37.5.2 Multirate Closed-Loop Dynamics
	37.5.3 Case Study

	37.6 Conclusion
	References

