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Abstract

With domain-specific models of computation and widely-used hardware accel-
eration techniques, Hardware/Software Codesign (HSCD) has the potential of
being as agile as traditional software design, while approaching the performance
of custom hardware. However, due to increasing use of system heterogeneity,
multi-core processors, and hardware accelerators, along with traditional software
development challenges, codesign processes for complex systems are often slow
and error prone. The purpose of this chapter is to discuss a Computer-Aided
Design (CAD) framework, called the DSPCAD Framework, that addresses some
of these key development issues for the broad domain of Digital Signal Process-
ing (DSP) systems. The emphasis in the DSPCAD Framework on supporting
cross-platform, domain-specific approaches enables designers to rapidly arrive at
initial implementations for early feedback, and then systematically refine them
towards functionally correct and efficient solutions. The DSPCAD Framework
is centered on three complementary tools – the Data-flow Interchange Format
(DIF), LIghtweight Data-flow Environment (LIDE) and DSPCAD Integrative
Command Line Environment (DICE), which support flexible design experimen-
tation and orthogonalization across three major dimensions in model-based DSP
system design – abstract data-flow models, actor implementation languages,
and integration with platform-specific design tools. We demonstrate the utility
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of the DSPCAD Framework through a case study involving the mapping of
synchronous data-flow graphs onto hybrid CPU-GPU platforms.

Acronyms

ADT Abstract Data Type
API Application Programming Interface
BDF Boolean Data Flow
BPSK Binary PSK
CAD Computer-Aided Design
CAL Cal Actor Language
CFDF Core Functional Data Flow
CPU Central Processing Unit
CSDF Cyclo-Static Data Flow
CUDA Compute Unified Device Architecture
D2H Device-to-Host
DICE DSPCAD Integrative Command Line Environment
DIF Data-flow Interchange Format
DSP Digital Signal Processing
FCFS First-Come First-Serve
FIFO First-In First-Out
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
GLV Graph-Level Vectorization
GPU Graphics Processing Unit
H2D Host-to-Device
HDL Hardware Description Language
HSCD Hardware/Software Codesign
ITS Individual Test Subdirectory
LIDE LIghtweight Data-flow Environment
MDSDF Multi-Dimensional Synchronous Data Flow
MILP Mixed Integer Linear Programming
PREESM Parallel and Real-time Embedded Executives Scheduling Method
PSDF Parameterized Synchronous Data Flow
PSK Phase Shift Keying
PSM Parameterized Sets of Modes
QAM Quadrature Amplitude Modulation
QPSK Quadrature PSK
RVC Reconfigurable Video Coding
SADF Scenario-Aware Data Flow
SDF Synchronous Data Flow
SDR Software Defined Radio
SDTC Scheduling and Data Transfer Configuration
SysteMoC SystemC Models of Computation
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VF Vectorization Factor
WSDF Windowed Synchronous Data Flow
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36.1 Introduction

Software design processes have evolved rapidly over the past two decades. In
many areas, agile programming [1] has shown how software development benefits
from going to implementation quickly. By writing core functionality for key use
cases, software engineers can gain early feedback from real implementations,
and, thereby, features, performance, and platforms may be refined effectively and
quickly. Hardware/Software Codesign (HSCD) stands to inherit these same benefits
from agile design but in practice has not kept pace with traditional software
development evolution. Domain-specific models and languages that support fast
application descriptions already exist. However, compared to traditional software,
Hardware/Software tools to translate those descriptions to implementations are
inherently more complex. They must deal with traditional software development
issues, as well as system heterogeneity, multiple cores, and hardware accelerators.
Because of the diversity of applicable tools and approaches, many of the steps are
manual, ad hoc, or platform specific.
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The purpose of this chapter is to discuss a Computer-Aided Design (CAD)
framework for Digital Signal Processing (DSP) applications, called the DSPCAD
Framework, that addresses some of these key development issues for the broad
domain of DSP. The DSPCAD Framework achieves this by establishing a cross-
platform, domain-specific approach that enables designers to arrive at initial
implementations quickly for early feedback, and then systematically refine them
toward functionally correct and high-performance solutions. The keys to such an
approach include (a) lightweight design principles, which can be applied relatively
quickly and flexibly in the context of existing design processes and (b) software
techniques and tools that are grounded in data-flow models of computation.

36.1.1 Data Flow

Data-flow models have proven invaluable for DSP system design. Their graph-based
formalisms allow designers to describe applications in a natural yet semantically
rigorous way. As a result, data-flow languages are increasingly popular. Their
diversity, portability, and intuitive design have extended them to many application
areas and platform types within the broad DSP domain (e.g., see [3]). Modeling
applications through coarse-grain data-flow graphs is widespread in the DSP design
community, and a variety of data-flow models of computation have been developed
for DSP system design.

Common to each of these modeling paradigms is the representation of computa-
tional behavior in terms of data-flow graphs. In this context of DSP system design,
a data-flow graph is a directed graph G D .V; E/ in which each vertex (actor)
v 2 V represents a computational task, and each edge e 2 E represents First-In
First-Out (FIFO) communication of data values (tokens) from the actor src.e/ at the
source of e to the actor snk.e/ at the sink of e. Data-flow actors execute in terms of
discrete units of execution, called firings, which produce and consume tokens from
the incident edges. When data-flow graphs are used for behavioral modeling of DSP
systems, the graph represents application functionality with minimal details per-
taining to implementation. For example, how the FIFO communication associated
with each edge is mapped into and carried out through physical storage, and how
the execution of the actors is coordinated are implementation-related details that
are not part of the data-flow graph representation. Such orthogonalization between
behavioral aspects and key implementation aspects is an important feature of data-
flow-based DSP system design that can be leveraged in support of agile design
processes. For a detailed and rigorous treatment of general principles of data-flow
modeling for DSP system design, we refer the reader to [31], and for discussion on
the utility of orthogonalization in system-level design, we refer the reader to [28].

36.1.2 Data-Flow Modeling Variants

A distinguishing aspect of data-flow modeling for DSP system design is the
emphasis on characterizing the rates at which actors produce and consume tokens
from their incident edges, and the wide variety of different variants of data-flow
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models of computation that has evolved, due in large part to different assumptions
and formulations involved in these data-flow rates (e.g., see [3, 49]). For example,
Synchronous Data Flow (SDF) is a form of data flow in which each actor consumes
a constant number of tokens from each input port and produces a constant number
of tokens on each output port on every firing [30]. SDF can be viewed as an
important common denominator that is supported in some fashion across most
data-flow-based DSP design tools, and a wide variety of techniques for analyzing
SDF graphs and deriving efficient implementations from them has been developed
(e.g., see [3]). However, the restriction to constant-valued data-flow rates limits
the applicability of the SDF model. This has led to the study of alternative data-
flow models that provide more flexibility in specifying inter-actor communication.
Examples of such models include Boolean Data Flow (BDF), Core Functional Data
Flow (CFDF), Cyclo-Static Data Flow (CSDF), Multi-Dimensional Synchronous
Data Flow (MDSDF), Parameterized Synchronous Data Flow (PSDF), Scenario-
Aware Data Flow (SADF), and Windowed Synchronous Data Flow (WSDF) [6, 7,
9, 27, 34, 43, 51].

36.1.3 DSPCAD Framework

The DSPCAD Framework is a CAD framework that helps designers to apply the
formalisms of the data-flow paradigm in DSP-oriented, HSCD processes. The DSP-
CAD Framework is specifically oriented toward flexible and efficient exploration
of interactions and optimizations across different signal processing application
areas (e.g., speech processing, specific wireless communication standards, cognitive
radio, and medical image processing), alternative data-flow models of computation
(e.g., Boolean Data Flow (BDF), Core Functional Data Flow (CFDF), etc., as
listed in Sect. 36.1.2), and alternative target platforms along with their associated
platform-based tools (e.g., field programmable gate arrays, graphics processing
units, programmable digital signal processors, and low-power microcontrollers).

The DSPCAD Framework is based on three complementary subsystems, which
respectively provide a domain-specific modeling environment for experimenting
with alternative, DSP-oriented data-flow modeling techniques; a lightweight, cross-
platform environment for implementing DSP applications as data-flow graphs;
and a flexible project development tool that facilitates DSP system integration
and validation using different kinds of platform-based development tools. These
subsystems of the DSPCAD Framework are called, respectively, the Data-flow In-
terchange Format (DIF), LIghtweight Data-flow Environment (LIDE) and DSPCAD
Integrative Command Line Environment (DICE). While DIF, LIDE, and DICE can
be used independently as stand-alone tools, they offer significant synergy when
applied together for HSCD. The DSPCAD Framework is defined by such integrated
use of these three complementary tools.

In the remainder of this section, we provide brief overviews of DIF, LIDE,
and DICE. We cover these tools in more detail in Sects. 36.3, 36.4, and 36.5,
respectively. Then in Sect. 36.6, we demonstrate their integrated use in the DSPCAD
Framework to develop a platform-specific data-flow framework for mapping SDF
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graphs into Graphics Processing Unit (GPU) implementations. This case study is
presented to concretely demonstrate the DSPCAD Framework and its capability to
derive specialized data-flow tools based on specific data-flow modeling techniques
and target platforms. In Sect. 36.7, we summarize the developments of this chapter
and discuss ongoing directions of research in the DSPCAD Framework.

DIF – DIF provides application developers an approach to application specification
and modeling that is founded in data-flow semantics, accommodates a wide range
of specialized data-flow models of computation, and is tailored for DSP system
design [21, 22].

DIF is comprised of a custom language that provides an integrated set of
syntactic and semantic features that capture essential modeling information of
DSP applications without over-specification. DIF also includes a software package
for reading, analyzing, and optimizing applications described in the language.
Additionally, DIF supports mixed-grain graph topologies and hierarchical design
in specification of data-flow related, subsystem- and actor-specific information.
The data-flow semantic specification is based on data-flow modeling theory and
independent of any specialized design tool.

DIF serves as a natural design entry point for reasoning about a new application
or class of applications and for experimenting with alternative approaches to
modeling application functionality. LIDE and DICE complement these abstract
modeling features of DIF by supporting data-flow-based implementations on spe-
cific platforms.

LIDE – LIDE is a flexible, lightweight design environment that allows design-
ers to experiment with data-flow-based implementations directly on customized
programmable platforms. LIDE is “lightweight” in the sense that it is based on a
compact set of application programming interfaces that can be retargeted to different
platforms and integrated into different design processes relatively easily.

LIDE contains libraries of data-flow graph elements (“gems”), as described
in Sect. 36.1.1, and utilities that assist designers in modeling, simulating, and
implementing DSP systems using formal data-flow techniques. Here, by gems, we
mean actor and edge implementations. The libraries of data-flow gems (mostly actor
implementations) contained in LIDE provide useful building blocks that can be used
to construct signal processing applications and that can be used as examples that
designers can adapt to create their own, customized LIDE actors.

Schedules for LIDE-based implementations can be created directly by designers
using LIDE Application Programming Interfaces (APIs) or synthesized by DIF,
decreasing the time to initial implementation. Refinements based on initial imple-
mentations may occur at the data-flow level (e.g., using DIF) or at the schedule
implementation or gems level with LIDE, giving an application developer an
opportunity to efficiently refine designs in terms of performance or functionality.

DICE – DICE is a package of utilities that facilitates efficient management of
software projects. Key areas of emphasis in DICE are cross-platform operation,
support for model-based design methodologies, support for projects that integrate
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heterogeneous programming languages, and support for applying and integrating
different kinds of design and testing methodologies. The package facilitates research
and teaching of methods for implementation, testing, evolution, and revision of
engineering software. The package is a foundation for developing experimental
research software for techniques and tools in the area of DSP systems. The package
is cross-platform, supporting Linux, Mac OS, Solaris, and Windows (equipped with
Cygwin) platforms. By using LIDE along with DICE, designers can efficiently
create and execute unit tests for user-designed actors.

36.2 Related Work

In this section, we review a number of representative data-flow-based tools that are
applied to modeling, simulation, and synthesis of DSP systems. The intent in this
review is not to be comprehensive but rather to provide a sampling of representative,
research-oriented data-flow-based tools that are relevant to DSP system design. We
also summarize distinguishing aspects of the DSPCAD Framework in relation to the
state of the art in data-flow research for DSP. For broader and deeper coverage of
different data-flow-based design tools and methodologies, we refer the reader to [3].

36.2.1 Representative Tools

Parallel and Real-time Embedded Executives Scheduling Method (PREESM) is an
Eclipse-based code generation tool for signal processing systems [37,41]. PREESM
provides architecture modeling and scheduling techniques for multi-core digital
signal processors. In PREESM, applications are modeled as a hierarchical extension
of SDF called an algorithm graph, while the targeted architectures are modeled
as architecture graphs, which contain interconnections of abstracted processor
cores, hardware coprocessors, and communication media. PREESM then takes the
algorithm graph, architecture graph, and application parameters and constraints
as its inputs to automatically generate software implementations on multi-core
programmable digital signal processors.

The multi-processor scheduler in PREESM is based on the List and Fast Schedul-
ing methods described by Kwok [29]. A randomized version of the List Scheduling
method is first applied to return the best solution observed during a designer-
determined amount of time. The obtained best solution can be applied directly for
software synthesis or be used to initialize the population of a genetic algorithm for
further optimization. The capabilities of PREESM are demonstrated, for example,
by the rapid prototyping of a state-of-the-art computer vision application in [38].

SystemC Models of Computation (SysteMoC) is a SystemC-based library that
facilitates data-flow-based HSCD for DSP systems. Actor design in SysteMoC
is based on a model that includes a set of functions and an actor Finite-State
Machine (FSM). The set of functions is partitioned into actions, which are used
for data processing and guards, which are used to check for enabled transitions in
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the actor FSM. In [19], an MPEG-4 decoder application is provided as a case study
to demonstrate the capability of SysteMoC to support system synthesis as well as
design space exploration for HSCD processes. For more details about SysteMoC,
we refer the reader to �Chap. 3, “SysteMoC: A Data-Flow Programming Language
for Codesign”.

Cal Actor Language (CAL) is a data-flow programming language that can be
applied to develop hardware and software implementations [11]. Like designs in
SysteMoC, CAL programs incorporate an integration of data flow and state machine
semantics. Actor specification in CAL includes actions, guards, port patterns,
priorities, and transitions between actions. Thus, data-flow actor design in CAL is
similar to that in SysteMoC and (as we will see in Sect. 36.4) LIDE in terms of
an underlying, state-machine-integrated, data-flow model of computation. A major
advance provided by CAL has been through its use in a recent MPEG standard for
Reconfigurable Video Coding (RVC) [25].

36.2.2 Distinguishing Aspects of the DSPCAD Framework

Perhaps the most unique aspects of the DSPCAD Framework compared to other
data-flow tools such as PREESM, SysteMoC, and CAL are the (1) emphasis
on orthogonalization across three major dimensions in model-based DSP system
design – abstract data-flow models, actor implementation languages, and integration
with platform-specific design tools – and (2) support for a wide variety of different
data-flow modelings styles. Feature 1 here is achieved in the DSPCAD Framework
through the complementary objectives of DIF, LIDE, and DICE, respectively.

Support for Feature 2 in the DSPCAD Framework is threefold. First, DIF is
agnostic to any particular data-flow model of computation and is designed to
support a large and easily extensible variety of models. Second, LIDE is based on
a highly expressive form of data-flow CFDF, which is useful as a common model
for working with and integrating heterogeneous data-flow models of computation.
This is because various specialized forms of data flow can be formulated as
special cases of CFDF (e.g., see [44]). More details about CFDF are discussed
in Sect. 36.3.1. Third, LIDE contains flexible support for parameterizing data-flow
actors and manipulating actor and graph parameters dynamically. This capability is
useful for experimenting with various parametric data-flow concepts, such as PSDF,
and parameterized and interfaced data-flow [9] meta model, and the hierarchical
reconfiguration methodologies developed in the Ptolemy project [35].

The DSPCAD Framework can be used in complementary ways with other DSP
design environments, such as those described above. The modularity and specialized
areas of emphasis within DIF, LIDE, and DICE make each of these component tools
useful for integration with other design environments. For example, DIF has been
employed as an intermediate representation to analyze CAL programs and derive
statically schedulable regions from within dynamic data-flow specifications [16],
and, in the PREESM project, the CFDF model of computation employed by

http://dx.doi.org/10.1007/978-94-017-7267-9_4
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LIDE has been used to represent dynamic data-flow behavior for applying novel
architectural models during design space exploration [39].

Although the DSPCAD Framework is not limited to any specific domain of signal
processing applications, the components of the framework have been applied and
demonstrated most extensively to date in the areas of wireless communications,
wireless sensor networks, and embedded computer vision. For elaboration on HSCD
topics in these latter two domains, we refer the reader to �Chap. 38, “Wireless
Sensor Networks” and �Chap. 40, “Embedded Computer Vision” respectively.

36.3 Data-Flow Interchange Format Overview

DIF provides a model-based design environment for representing, analyzing, simu-
lating, and synthesizing DSP systems. DIF focuses on data-flow graph modeling and
analysis methods where the details of actors and edges of a graph are abstracted in
the form of arbitrary actor and edge attributes. In particular, implementation details
of actors and edges are not specified as part of DIF representations.

The DIF environment is composed of the DIF language and the DIF package. The
DIF language is a design language for specifying mixed-grain data-flow models for
DSP systems. The DIF package, a software package that is built around the DIF
language, contains a large variety of data-flow graph analysis and transformation
tools for DSP application models that are represented in DIF. More specifically,
the DIF package provides tools for (1) representing DSP applications using various
types of data-flow models, (2) analyzing and optimizing system designs using data-
flow models, and (3) synthesizing software from data-flow graphs. The software
synthesis capabilities of DIF assume that actor implementations are developed
separately (outside of the DIF environment) and linked to their associated actor
models as synthesis-related attributes, such as the names of the files that contain the
actor implementation code.

Unlike most data-flow-based design environments, which are based on some
forms of static data-flow model or other specialized forms of data flow, DIF is
designed specifically to facilitate formal representation, interchange, and analysis
of different kinds of data-flow models and to support an extensible family of both
static and dynamic data-flow models. Models supported in the current version of
DIF include SDF [30], CSDF [6], MDSDF [34], BDF [7], PSDF [2], and CFDF.
DIF also provides various analysis, simulation, and synthesis tools for CFDF
models and its specialized forms. As motivated in Sect. 36.2, CFDF is useful as
a common model for working with and integrating heterogeneous data-flow models
of computation [44], which makes it especially useful for the purposes of the
DIF environment. Examples of data-flow tools within the DIF package are tools
for CFDF functional simulation [43], SDF software synthesis for programmable
digital signal processors [23], and quasi-static scheduling from dynamic data-flow
specifications [16, 42]. Due to the important role of CFDF in DIF, we introduce
background on CFDF in the following section.

http://dx.doi.org/10.1007/978-94-017-7267-9_38
http://dx.doi.org/10.1007/978-94-017-7267-9_40
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36.3.1 Core Functional Data Flow

CFDF is a dynamic data-flow model of computation in which the behavior of an
actor A is decomposed into a set of modes modes.A/. Each firing of A is associated
with a specific mode in modes.A/. For each mode m 2 modes.A/, the data-
flow rates (numbers of tokens produced or consumed) for all actor ports are fixed.
However, these rates can vary across different modes, which allows for the modeling
of dynamic data-flow behavior.

When a CFDF actor A fires in a particular mode m, it produces and consumes
data from its incident ports based on the constant production and consumption rates
associated with m, and it also determines the next mode z 2 modes.A/ for the actor,
which is the mode that will be active during the next firing of A. The next mode
may be determined statically as a property of each mode or may be data dependent.
Combinations of data-dependent next mode determination and heterogeneous data-
flow rates across different modes can be used to specify actors that have different
kinds of dynamic data-flow characteristics.

A CFDF actor has associated with it two computational functions, called the
enable and invoke functions of the actor. These functions provide standard interfaces
for working with the actor in the context of a schedule for the enclosing data-flow
graph. The enable function for a given actor A returns a Boolean value that indicates
whether or not there is sufficient data on the input edges and sufficient empty space
on the output edges to accommodate the firing of A in its next mode.

The invoke function of an actor, on the other hand, executes the actor according
to its designated next mode and does so without any use of blocking reads or
writes on actor ports – that is, data is consumed and produced without checking for
availability of data or empty space, respectively. It is assumed that these checks will
be performed (a) either statically, dynamically (using the enable method), or using a
combination of static and dynamic techniques and (b) before the associated firings
are dispatched with the invoke function. Thus, overhead or reduced predictability
due to such checking need not be incurred during execution of the invoke function.
This decomposition of actor functionality into distinct enable and invoke functions
can be viewed as a formal separation of concerns between the checking of an actor’s
fireability conditions and execution of the core processing associated with a firing.

Various existing data-flow modeling techniques, including SDF, CSDF, and
BDF, can be formulated as special cases of CFDF [44]. For further details on CFDF
semantics, we refer the reader to [43, 44].

36.3.2 Reconfigurable Modulator Example

Here, we present a practical application as an example of CFDF modeling.
Figure 36.1a shows a dynamically reconfigurable modulator application (RMOD)
that supports multiple source rates and multiple Phase Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM) schemes. Actor C reads two run-time
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a

b c

Fig. 36.1 CFDF modeling of a reconfigurable modulator (RMOD) application supporting multi-
ple source data rate and modulation schemes. (a) CFDF model of the RMOD application (b) Mode
transitions of actor S . (c) Mode transitions of actor T

S1

S2

ModeMode Edge:T→FEdge:S→TEdge:S→T Edge:C→TEdge:C→S
INITINIT

BPSK
QPSK
16QAM

a b

0
0

0

0

1

1
1

–1
–1

–1

–2

–4

00

0

0 2

1

Fig. 36.2 Data-flow tables. (a) Table for actor S . (b) Table for actor T

parameters, r and m, corresponding to the source data rate and modulation scheme,
respectively, and sends these parameter values to the actors S and T . S and T in
turn are two CFDF actors that each have multiple modes and data-dependent mode
transitions, as illustrated in Figs. 36.1b and c, respectively.

Both S and T are initialized to begin execution in their respective INIT modes.
In its INIT mode, S reads the source data rate r and switches to either S1 or S2

depending on the value of r . Similarly, in its INIT mode, T reads the modulation
scheme index m and switches to one of the 3 modes, Binary PSK (BPSK),
Quadrature PSK (QPSK), or 16-QAM, depending on m. S and T have different
production and consumption rates in different modes.

Figure 36.2 shows the data-flow tables for actors S and T . A data-flow table Z

for a CFDF actor A specifies the data-flow behavior for the available modes in the
actor. Each entry ZŒ�; p� corresponds to a mode � 2 modes.A/ and input or output
port p of A. If p is an output port of A, then ZŒ�; p� gives the number of tokens
produced on the edge connected to p during a firing of A in mode �. Similarly, if
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p is an input port, then ZŒ�; p� D �c, where c is the number of tokens consumed
during mode � from the edge connected to p.

In the column headings for the data-flow tables shown in Fig. 36.2, each port is
represented by the edge that is connected to the port. If m D 1, then T executes in
the BPSK mode and consumes only 1 token on its input edge. On the other hand, if
m D 4, then T executes in the 16-QAM mode and consumes 4 tokens on its input
edge. After firing in their respective BPSK or 16-QAM modes, S and T switch
back to their INIT modes and await new values of r and m for the next round of
computation. The remaining actors are SDF actors that consume/produce a single
token on each of their input/output edges every time they fire.

36.3.3 Data-Flow Graph Specification in the DIF Language

As discussed above, the DIF language is a design language for specifying mixed-
grain data-flow models in terms of a variety of different forms of data flow [22].
The DIF language provides a C-like, textual syntax for human-readable description
of data-flow structure. An XML-based version of the DIF language, called DIFML,
is also provided for structured exchange of data-flow graph information between
different tools and formats [17]. DIF is based on a block-structured syntax and
allows specifications to be modularized across multiple files through integration
with the C preprocessor. As an example, a DIF specification of the RMOD
application is shown in Listing 1.

Listing 1 DIF Language specification of the RMOD application

CFDF RMOD {
topology {
nodes = C, S, T, F, M, P, X, K;
edges = e1(C, S), e2(C, T), e3(S, T), e4(T, F),

e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K);
}
actor C {
name = "mod_ctrl";
out_r = e1; out_m = e2; /* Assign edges to ports */

}
actor S {
name = "mod_src";
in_ctrl = e1; out_data = e3;
mode_count = 3;

}
actor T {
name = "mod_lut";
in_ctrl = e1; in_bits = e3; out_symbol = e4;
mode_count = 4;

}
/* Other actor definitions */
/* ... */

}
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In this example, the RMOD application is described using CFDF semantics,
which is represented by the cfdf keyword in DIF. The topology block defines
the actors (nodes) and edges of the data-flow graph and associates a unique identifier
with each actor and each edge. Because data-flow graphs are directed graphs, each
edge is represented as an ordered pair .u; v/, where u is the source actor and v

is the sink actor. Each actor can be associated with an optional actor block,
where attributes associated with the actor are defined. The attributes can provide
arbitrary information associated with the actor using a combination of built-in and
user-defined attribute specifiers. In the example of Listing 1, the actor block
specifies the following attributes: (1) the name of the implementation associated
with the actor (to help differentiate between alternative implementations for the
same abstract actor model), (2) input/output port connections with the incident
edges, and (3) the number of CFDF modes for the actor.

In addition to the language features illustrated in Listing 1, DIF also supports
a variety of other features for specifying information pertaining to data-flow-based
application models. For example, DIF supports hierarchical specification, where an
actor in one graph can be linked with a “nested” subgraph to promote top-down
decomposition of complex graphical models and to help support different forms of
semantic hierarchy, such as those involved in parameterized data-flow semantics [2].
Another feature in DIF is support for topological patterns, which enable compact,
parameterized descriptions of various kinds of graphical patterns (e.g., chain, ring,
and butterfly patterns) for instantiating and connecting actors and edges [46].

36.3.4 Model-Based Design and Integration Using DIF

The DIF package provides an integrated set of models and methods, illustrated
in Fig. 36.3, for developing customized data-flow-model-based design flows tar-
geted to different areas of signal processing, and different kinds of target platforms.
As opposed to being developed primarily as a stand-alone data-flow tool, DIF is
designed for flexibility in integrating established or novel data-flow capabilities into
arbitrary model-based design environments for DSP. For example, Zaki presents
a DIF-based tool for mapping Software Defined Radio (SDR) applications into
GPU implementations, and integrating the derived mapping solutions into GNU
Radio, which is a widely used environment for SDR system design [52]. As another
example, DIF has been integrated to provide data-flow analysis and transformation
capabilities for the popular data-flow language called CAL, which was discussed
previously in Sect. 36.2.1. For details on this application of DIF to CAL, we refer
the reader to [16,17], while readers can find details about the CAL language in [10].

The DIF package consists of three major parts: the DIF representation, DIF-based
graph analysis and transformation techniques, and tools for simulation and software
synthesis.
DIF representation. The DIF package provides an extensible set of data structures
that represent data-flow-based application models, as they are specified in the DIF
language and as they are transformed into alternative models for the purposes of
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Fig. 36.3 Overview of the DIF package

analysis, optimization, or software synthesis. These graphical data structures are
collectively referred to as the DIF intermediate representation or “DIF represen-
tation” for short. The initial DIF representation (before any transformations are
applied) for a given DIF language specification is constructed by the DIF front-
end tools, which are centered on a Java-based parser. This parser is developed using
the SableCC compiler framework [13].
Analysis and Transformation Techniques. The DIF package provides implemen-
tations of a large set of methods for data-flow model analysis and transformation,
including methods for scheduling, and buffer management. These methods operate
on the graphical data structures within the DIF representation. The analysis and
transformation techniques provided in DIF are useful in many aspects of data-flow-
based design and implementation.
Simulation and Software Synthesis. DIF presently includes a number of tools for
simulation and software synthesis from data-flow models. Functional DIF (FDIF)
simulates CFDF-based models where actor functionality is programmed in terms of
CFDF semantics using Java [43] along with CFDF-specific APIs. FDIF is designed
especially to help designers to efficiently prototype and validate alternative kinds of
static, dynamic, and quasi-static scheduling strategies. The DIF-to-C tool generates
C code that is optimized for efficient execution on programmable digital signal
processors [23]. The software synthesis capabilities in DIF-to-C are integrated
with a variety of analysis and transformation techniques in DIF so that designers
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can apply different combinations of transformations to explore trade-offs among
data memory requirements, code size, and execution speed. DIF-GPU is a newly
developed software synthesis tool that is targeted to heterogeneous CPU–GPU
platforms. Currently, DIF-GPU generates multi-threaded Compute Unified Device
Architecture (CUDA) application code that can utilize both Central Processing
Units (CPUs) and GPUs for implementation of high-performance DSP systems.
Further details on DIF-GPU are discussed in Sect. 36.6.

36.4 Lightweight Data-Flow Environment

LIDE facilitates design and implementation of DSP actors and systems using a
structured, CFDF-based data-flow approach that can be integrated with a wide
variety of platform-oriented languages, such as C, CUDA, OpenCL, Verilog, and
VHDL [47, 48]. LIDE is centered on a compact set of abstract APIs for developing
data-flow actors and edges. These APIs are (1) defined in terms of fundamental
data-flow principles, (2) independent of any specific programming language, and
(3) readily retargetable across a wide variety of specific languages for DSP
implementation, including the platform-oriented languages listed above.

LIDE is designed with a primary objective of allowing DSP system designers
to apply and experiment with data-flow techniques relatively easily in the context
of their existing design processes, language preferences, and target platforms. This
objective is supported by the compact collection of retargetable, language-agnostic
APIs that LIDE is based on. LIDE also provides collections of pre-designed data-
flow gems, as described in Sect. 36.1.3.

When LIDE is integrated with a specific programming language XYZ for
implementing gems, we refer to the resulting integrated design tool as LIDE-XYZ
or in some cases as LIDE-X if X is used as an abbreviation for XYZ. Existing
subsystems within LIDE include LIDE-C, LIDE-CUDA, LIDE-V, and LIDE-OCL,
where the latter two represent the integration of LIDE with the Verilog Hardware
Description Language (HDL) and OpenCL, respectively.

36.4.1 Actor Design in LIDE

As described previously, actor implementation in LIDE is based on the CFDF model
of computation. This choice of CFDF as the modeling foundation for LIDE is
motivated by the high expressive power of CFDF, and its utility in working with
heterogeneous forms of data flow [44].

Actor design in LIDE includes four basic interface functions, which are referred
to as the construct, enable, invoke, and terminate functions of an actor. The construct
function instantiates an actor and performs pre-execution initialization of the actor,
such as initializing values of actor parameters and allocating storage that is related
to the state of the actor. Conversely, the terminate function performs any operations
that are required for “closing out” the actor after the enclosing graph has finished
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executing. Such operations include freeing memory that has been allocated in the
corresponding construct function.

The enable and invoke functions provide direct interfaces for key concepts of
CFDF semantics, which were discussed in Sect. 36.3.1. As one would guess, the
enable and invoke functions in LIDE are defined to provide implementations for
the enable and invoke functions in CFDF semantics. We employ a minor abuse of
terminology here, where this pair of functions is defined with the same names in
both LIDE (a design tool) and CFDF (a model of computation). Where there may be
confusion, one may qualify a reference to the function with an appropriate reference
to the tool or model (e.g., “the LIDE enable function”).

The enable and invoke functions in LIDE provide flexible interfaces for imple-
menting arbitrary schedulers, including static, dynamic, and quasi-static schedulers,
for executing data-flow graph implementations. The enable function is implemented
by the actor programmer to check whether or not the actor has sufficient tokens on
its input ports and enough empty space on its output ports to support a single firing in
next CFDF mode of execution that is currently associated with the actor. Similarly,
the invoke function is implemented to execute a single firing of the actor according
to its next mode. The invoke function should also update the next mode of the actor,
which in turn determines the conditions that will be checked by the enable function
if it is called prior to the next actor firing.

When the invoke function is called, it is assumed that sufficient input tokens
and output space are available (since there is a separate API function dedicated
to checking these conditions). Thus, the actor programmer should not implement
checks for these conditions within the invoke function. These conditions should be
satisfied – as part of the design rules of any tool that implements CFDF semantics –
before calling the invoke function to execute a given actor firing.

We emphasize that in a given scheduler for an enclosing data-flow graph, it is not
always necessary to call the enable function of an actor before calling the invoke
function. In particular, such calls to the enable function can be bypassed at run
time if the corresponding conditions are guaranteed through other forms of analysis,
including any combination of static, dynamic, and hybrid static/dynamic analysis.
For example, when implementing the scheduler for a LIDE-based data-flow graph
that consists only of SDF or CSDF actors, the use of the enable function can be
avoided entirely if a static schedule is employed [6, 30]. This allows designers in
LIDE to more effectively utilize the large collection of available static scheduling
techniques for SDF and CSDF representations (e.g., see [3, 8, 12, 14, 36, 40, 45]).

For more details on actor implementation in LIDE, we refer the reader to [48].

36.4.2 Parameterized Sets of Modes

Actor design in LIDE naturally supports the concept of Parameterized Sets of
Modes (PSM), which is a modeling enhancement to CFDF that enables designers to
more concisely specify and work with actor behavior that involves groups of related
modes [33].
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For example, consider an actor A that has two input ports in1 and in2, and a
single output port out. The actor starts execution in a mode called read_length,
which consumes a single, positive integer-valued token from in1, and stores this
consumed value in a state variable N . The value of the input token consumed from
in1 is restricted to fall in the range f1; 2; : : : ; M g, where M is a parameter of A.
In the next firing, the actor consumes a vector spanning N input tokens from in2,
computes the maximum of these N values, outputs the result (as a single token) on
out, and determines its next mode to be the read_length mode. Thus, intuitively,
the actor executes through alternate firings where (a) a vector length is read and
used to determine the consumption rate of a subsequent mode, and then in this
subsequent mode, (b) a vector is read and processed to produce a single output
token.

Using standard CFDF notation, we can represent this as an actor that has .M C1/

distinct modes, i.e., as M different “vector processing modes” in addition to the
read_length mode. However, such a representation can become unwieldy, especially
if M is large. A PSM is a level of abstraction that allows us to group together a
collection of related modes with one or more parameters that are used to select a
unique mode from the collection at run time. These parameters can be determined
statically or dynamically, allowing for significant flexibility in how PSMs are
applied to actor design.

In this simple vector processing example, the M vector processing modes can
be grouped together into a single PSM vect_proc, and with an associated parameter
vect_len whose value corresponds to the value of the actor state variable N .

Technically, an actor mode in LIDE corresponds to a PSM rather than an
individual CFDF actor mode. A LIDE actor can produce or consume different
numbers of tokens in the same mode as long as the data-flow rates are all uniquely
determined by the LIDE actor mode PSM and the values of the actor parameters that
are associated with that PSM. Such unique determination of data-flow rates ensures
that the underlying actor behavior corresponds to CFDF semantics, while allowing
the code to be developed and the actor functionality to be reasoned about in terms
of the higher-level PSM abstraction.

For a more formal and thorough development of PSM-based modeling, we refer
the reader to [33].

36.4.3 Implementation in LIDE

In this section, we discuss details of design and implementation of data-flow
components in LIDE using an example based on LIDE-C. In LIDE-C, data-flow
gems are implemented in the C language. A collection of gems and utilities is
provided as part of LIDE-C. These can be linked through various LIDE-C libraries
into data-flow graph implementations, and they can also serve as useful templates
or examples to help users develop new gems for their applications.

More specifically, LIDE-C contains a set of libraries called gems, and another
library called tools. Basic actor and edge FIFO implementations are provided in
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gems, while basic utilities, including a simple scheduler, are accessible in tools.
The scheduler provided in LIDE-C is a basic form of CFDF scheduler, called a
canonical scheduler [44]. This form of scheduler can be applied to arbitrary data-
flow graphs in LIDE-C. Because it is general and easy to use, it is useful for
functional validation and rapid prototyping. However, it is relatively inefficient, as
it is designed for simplicity and generality, rather than for efficiency.

More efficient schedulers can be implemented by LIDE-C designers using the
core LIDE APIs, including the enable and invoke functions for the actors. Each
LIDE-C actor, as a concrete form of LIDE actor, must have implementations of
these functions. LIDE-C schedulers can also be generated automatically through
software synthesis tools.

36.4.3.1 Data-Flow Graph Components
In LIDE-C, gems (actors and FIFOs) are implemented as Abstract Data Types
(ADTs) in C. Such ADT-based implementation provides a C-based, object-oriented
design approach for actors and FIFOs in LIDE-C. As we discussed in Sect. 36.4.1,
each LIDE actor has four standard interface functions. The developer of an actor in
LIDE-C must provide implementations of these functions as methods – referred to
as the new, enable, invoke, and terminate methods – of the ADT for the
actor.

An analogous process is followed for FIFO design in LIDE-C and in related
targets of LIDE, including LIDE-CUDA and LIDE-OCL. In particular, users can
define any number of different FIFO types (e.g., corresponding to different forms
of physical implementation, such as mappings to different kinds of memories),
where each FIFO type is designed as an ADT. For example, in LIDE-OCL, which
is currently developed for hybrid CPU-GPU implementation platforms, two FIFO
ADTs are available – one for implementation of the FIFO on a CPU and another for
implementation on a GPU.

The abstract (language-agnostic) LIDE API contains a set of required interface
functions for FIFOs that implement edges in LIDE programs. In LIDE-C, FIFOs
are implemented as ADTs where the required interface functions are implemented
as methods of these ADTs. Required interface functions for FIFOs in LIDE include
functions for construction and termination (analogous to the construct and terminate
functions for actors), reading (consuming) tokens, writing (producing) tokens,
querying the number of tokens that currently reside in a FIFO, and querying the
capacity of a FIFO. The capacity of a FIFO in LIDE is specified through an
argument to the construct function of the FIFO.

Listing 2 shows the function prototypes for the new, enable, invoke, and
terminatemethods in LIDE-C. In addition to these interface functions, designers
can add auxiliary functions in their actor implementations. For working with actor
parameters, components in the LIDE-C libraries employ a common convention of
using corresponding set and get methods associated with each parameter (e.g.,
set_tap_count, get_tap_count).
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Listing 2 The format for function prototypes of the new, enable, invoke, and terminate methods
of a LIDE-C actor

lide_c_<actor_name>_context_type *
lide_c_<actor_name>_new([FIFO pointer list],
[parameter list])

boolean lide_c_<actor_name>_enable(
lide_c_<actor_name>_context_type *context)

void lide_c_<actor_name>_invoke(
lide_c_<actor_name>_context_type *context)

void lide_c_<actor_name>_terminate(
lide_c_<actor_name>_context_type *context)

Each function prototype shown in Listing 2 involves an argument that points to a
data structure that is referred to as the actor context (or simply “context”). Each actor
A in a LIDE-C data-flow graph implementation has an associated context, which
encapsulates pointers to the FIFOs that are associated with the edges incident to A;
function pointers to the enable and invoke methods of A; an integer variable
that stores the index of the current CFDF mode or PSM of A; and parameters and
state variables of A.

For purposes of data-flow graph analysis or transformation (e.g., as provided by
DIF), a LIDE actor that employs one or more state variables can be represented by
attaching a self-loop edge to the graph vertex associated with the actor. Here, by a
self-loop edge, we mean an edge e for which src.e/ D snk.e/. In general, one can
also use such a self-loop edge to represent inter-firing dependencies for an actor that
can transition across multiple CFDF modes at run time (here, the mode variable acts
as an implicit state variable). On the other hand, if the mode is uniquely determined
at graph configuration time and does not change dynamically, then this “CFDF-
induced” self-loop edge can be omitted. Such an actor can, for example, be executed
in a data parallel style (multiple firings of the actor executed simultaneously) if there
are no state-induced self-loop edges or other kinds of cyclic paths in the data-flow
graph that contain the actor.

36.4.3.2 Actor Implementation Example
As a concrete example of applying LIDE-C, we introduce in this section a LIDE-
C implementation of a modulation selection actor. Recall that such an actor is
employed as actor T in the RMOD application that was introduced in Sect. 36.3.2.
This actor T is an example of CFDF semantics augmented with the concept of
PSMs. Recall that the data-flow graph and data-flow tables for this actor are shown
in Figs. 36.1 and 36.2.

Listing 3 and Listing 4 illustrate key code segments within the enable and
invoke methods, respectively, for actor T in our LIDE-C implementation of
the actor. These code segments involve carrying out the core computations for
determining fireability and firing the actor, respectively, based on the actor mode
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or PSM that is active when the corresponding method is called. For conciseness,
each of these two listings shows in detail the functionality corresponding to a single
mode, along with the overall structure for selecting an appropriate action based on
the current mode (using a switch statement in each case). Lines marked with
“......” represent code that is omitted from the illustrations for conciseness.
Interface functions whose names start with lide_c_fifo are methods of a basic
FIFO ADT that is available as part of LIDE-C.

Listing 3 Code within the enable method for actor T in the RMOD application

/* context: structure that stores actor information. E.g.,
context->mode stores the actor’s current mode.

*/
switch (context->mode) {

case LIDE_C_RMOD_T_MODE_INIT:
result = (lide_c_fifo_population(context->fifo_ctrl_input)

>= 1);
break;

case LIDE_C_RMOD_T_MODE_BPSK:
result = ......
break;

case LIDE_C_RMOD_T_MODE_QPSK:
result = ......
break;

case LIDE_C_RMOD_T_MODE_QAM16:
result = ......
break;

default:
result = FALSE;
break;

}
return results;

Listing 4 Code within the invoke method for actor T in the RMOD application

switch (context->mode) {
case LIDE_C_RMOD_T_MODE_INIT:

/* scheme: variable indicating BPSK, QPSK or QAM16 */
lide_c_fifo_read(context->fifo_ctrl_input, &scheme);
context->mode = scheme;
/* nbits: number of bits to process for the given scheme

rb: remaining bits before switching scheme */
context->rb = context->nbits;
break;

case LIDE_C_RMOD_T_MODE_BPSK:
lide_c_fifo_read_block(context->fifo_data_input,

&bits, 1);
code.x = context->bpsk_table[bits].x;
code.y = context->bpsk_table[bits].y;
lide_c_fifo_write(context->fifo_data_output, &code);
context->rb --;
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if (context->rb > 0) {
context->mode = LIDE_C_RMOD_T_MODE_BPSK;

} else {
context->mode = LIDE_C_RMOD_T_MODE_INIT;

}
break;

case LIDE_C_RMOD_T_MODE_QPSK:
......
break;

case LIDE_C_RMOD_T_MODE_QAM16:
......
break;

default:
context->mode = LIDE_C_RMOD_T_MODE_INACTIVE;
break;

}

36.5 DSPCAD Integrative Command Line Environment

In this section, we describe the DSPCAD Integrative Command Line Environment
(DICE), which is a Bash-based software package for cross-platform and model-
based design, implementation, and testing of signal processing systems [5]. The
DICE package is developed as part of the DSPCAD Framework to facilitate
exploratory research, design, implementation, and testing of digital hardware and
embedded software for DSP. DICE has also been used extensively in teaching of
cross-platform design and testing methods for embedded systems (e.g., see [4]).
DICE has been employed to develop research prototypes of signal processing
applications involving a wide variety of platforms, including desktop multi-core
processors, Field-Programmable Gate Arrays (FPGAs), GPUs, hybrid CPU-GPU
platforms, low-power microcontrollers, programmable digital signal processors, and
multi-core smartphone platforms. An overview of DICE is given in [5], and an
early case study demonstrating the application of DICE to DSP system design is
presented in [26]. In the remainder of this section, we highlight some of the most
complementary features of DICE in relation to LIDE and DIF.

Because DICE is based on Bash, it has various advantages that complement
the advantages of platform-based or language-specific integrated development
environments (IDEs). For example, DICE can be deployed easily on diverse
operating systems, including Android, Linux, Mac, Solaris, and Windows (with
Cygwin). The primary requirement is that the host environment should have a Bash
command line environment installed. DICE is also agnostic to any particular actor
implementation language or target embedded platform. This feature of DICE helps
to provide a consistent development environment for designers, which is particularly
useful when developers are experimenting with diverse hardware platforms and
actor implementation languages.
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36.5.1 Convenience Utilities

DICE includes a collection of simple utilities that facilitate efficient directory
navigation through directory hierarchies. This capability is useful for working
with complex, cross-platform design projects that involve many layers of design
decomposition, diverse programming languages, or alternative design versions for
different subsystems. These directory navigation operations help designers to move
flexibly and quickly across arbitrary directories without having to traverse through
multiple windows, execute sequences of multiple cd commands, or type long
directory paths. These operations also provide a common interface for accelerating
fundamental operations that is easy to learn and can help to quickly orient new
members in project teams.

DICE also provides a collection of utilities, called the Moving Things Around
(MTA) utilities, for easily moving or copying files and directories across different
directories. Such moving and copying is common when working with design
projects (e.g., to work with code or documentation templates that need to be copied
and then adapted) and benefit from having a simple, streamlined set of utilities.
The MTA utilities in DICE are especially useful when used in conjunction with the
directory navigation utilities, described above.

Some of the key directory navigation utilities and MTA utilities in DICE are
summarized briefly in Table 36.1.

The items in Table 36.1 that are enclosed in angle brackets (<...>) represent
placeholders for command arguments. The abbreviation-based names of the first
three utilities listed in Table 36.1 are derived as follows: dlk stands for (create)
Directory LinK, g stands for Go, and rlk stands for Remove LinK. The other
two utilities listed in Table 36.1 use a naming convention that applies to many core
utilities in DICE where the prefix “dx” is used at the beginning of the utility name.
The name dxco stands for (CO)py (a file or directory), and dxparl stands for
paste and remove the last file or directory transferred.

Table 36.1 Selected navigation utilities and MTA utilities in DICE

Utility Description

dlk <label> Associate the specified label with the Current Working Directory
(CWD)

g <label> Change directory to the directory that is associated with the specified
label

rlk <label> Remove the specified label from the set of available directory navigation
labels

dxco <arg> Copy the specified file or directory to the DICE user clipboard

dxparl Paste (copy) into the CWD the last (most recent) file or directory that
has been transferred to the to the DICE user clipboard, and remove this
file or directory from the clipboard
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36.5.2 Testing Support

One of the most useful sets of features in DICE is provided by its lightweight and
language-agnostic unit testing framework. This framework can be applied flexibly
across arbitrary actor implementation languages (C, CUDA, C++, Java, Verilog,
VHDL, etc.) and requires minimal learning of new syntax or specialized lan-
guages [26]. The language-agnostic orientation of DICE is useful in heterogeneous
development environments, including codesign environments, so that a common
framework can be used to test across all of the relevant platforms.

In a DICE-based test suite, each specific test for an HDL or software imple-
mentation unit is implemented in a separate directory, called an Individual Test
Subdirectory (ITS), which is organized in a certain way according to the DICE-
based conventions for test implementation. To be processed by the DICE facilities
for automated test suite execution, the name of an ITS must begin with test (e.g.,
test01, test02, test-A, test-B, test_square_matrix). To exclude a
test from test suite evaluation, one can simply change its name so that it does not
begin with test.

36.5.2.1 Required Components of an ITS
Here, we describe the required components of an ITS. Except for the set of input
files for the test, each of these components takes the form of a separate file. The
set of input files may be empty (no files) or may contain any number of files with
any names that do not conflict with the names of the required ITS files, as listed
below:

• A file called test-desc.txt that provides a brief explanation of what is being
tested by the ITS, that is, what is distinguishing about this test compared to the
other tests in the test suite.

• An executable file (e.g., some sort of script) called makeme that performs
all necessary compilation steps (e.g., compilation of driver programs) that are
needed for the ITS. Note that the compilation steps performed in the makeme
file for a test typically do not include compilation of the source code that is being
tested; project source code is assumed to be compiled separately before a test
suite associated with the project is exercised.

• An executable file called runme that runs the test and directs all normal output
to standard output, and all error output to standard error.

• Any input files that are needed for the test.
• A file called correct-output.txt that contains the standard output text

that should result from the test. If no output is expected on standard output, then
correct-output.txt should exist in the ITS as an empty file.

• A file called expected-errors.txt that contains the standard error text
that should result from the test. This placeholder provides a mechanism to test
the correct operation of error detection and error reporting functionality. If no
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output is expected on standard error, then expected-errors.txt should
exist in the ITS as an empty file.

The organization of an ITS is structured in this same, language-independent,
form – based on the required items listed above – regardless of how many and what
kinds of design languages are involved in a specific test. This provides many benefits
in DSP codesign, where several different languages and back-end (platform-based)
tools may be employed or experimented with in a given system design. For example,
the DICE test suite organization allows a designer or testing specialist to switch
between languages or project subsystems without being distracted by language-
specific peculiarities of the basic structure of tests and their operation.

As one might expect from this description of required files in an ITS, a DICE-
based test is evaluated by automatically comparing the standard output and standard
error text that is generated by runme to the corresponding correct-output.
txt and expected-errors.txt files.

Note that because of the configurable runme interface, it is not necessary for all
of the output produced by the project code under test to be treated directly as test
output. Instead, the runme script can serve as a wrapper to filter or reorganize the
output generated by a test in a form that the user finds most efficient or convenient
for test management. This provides great flexibility in how test output is defined and
managed.

36.5.2.2 Relationship to Other Testing Frameworks and Methodologies
The DICE features for unit testing are largely complementary to the wide variety
of language-specific testing environments (e.g., see [18, 24, 50]). More than just
syntactic customizations, such frameworks are often tied to fundamental constructs
of the language. DICE can be used to structure, organize, and execute in a uniform
manner unit tests that employ language-specific and other forms of specialized test-
ing frameworks. For example, specialized testing libraries for Java in a simulation
model of a design can be employed by linking the libraries as part of the makeme
scripts in the ITSs of that simulation model. When a designer who works primarily
on hardware implementation for the same project examines such a “simulation ITS,”
he or she can immediately understand the overall organization of the associated unit
test and execute the ITS without needing to understand the specialized, simulation-
specific testing features that are employed.

DICE is also not specific to any specific methodology for creating or auto-
matically generating unit tests. A wide variety of concepts and methods have
been developed for test construction and generation (e.g., see [20]). By providing
a simple and flexible environment for implementing, executing, and managing
tests, the DICE unit testing framework can be used to prototype different kinds
of test development methodologies and apply them in arbitrary implementation
contexts.

For further details on the process of test implementation in DICE, and the
relationship of DICE to other testing frameworks, we refer the reader to [4, 5, 26].
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36.6 DSPCAD Framework Example: DIF-GPU

In this section, we demonstrate the DSPCAD Framework by describing its use to
develop DIF-GPU, a software synthesis tool for mapping SDF graphs onto hybrid
CPU-GPU platforms. Using DIF-GPU, a DSP designer can specify a signal-flow
graph as an SDF graph in the DIF language; implement the individual actors of
the graph in LIDE-CUDA; automatically schedule and generate interacting CPU
and GPU code for the graph; and validate the generated implementation using the
cross-platform testing capabilities of DICE.

We note that the case study presented in this section is not intended to emphasize
details of a specific data-flow tool for GPU implementation but rather to demonstrate
how the complementary resources and capabilities in the DSPCAD Framework can
be applied to efficiently prototype such a tool. For a detailed presentation of the
DIF-GPU tool, we refer the reader to [32].

36.6.1 DIF-GPU Overview

DIF-GPU targets heterogeneous CPU-GPU platforms in which multi-core CPUs
and GPUs operate concurrently to provide high-performance signal processing
capability. Modern GPUs can contain hundreds or thousands of single instruction
multiple data (SIMD) multi-processor cores to process large amounts of data in
parallel. Such an architecture enables GPUs to obtain significant performance gain
over CPUs on data parallel tasks. Cooperation between a multi-core CPU and GPU
allows various types of parallelism to be exploited for performance enhancement,
including pipeline, data, and task parallelism.

DIF-GPU targets CPU-GPU platforms that are modeled as host-device architec-
tures where the CPU is referred to as the “host” and the GPU as the “device,” and
where the employed CPUs, main memory, and GPUs are connected by a shared bus.
CPUs control the GPUs by dispatching commands and data from main memory,
while GPUs perform their assigned computations in their local memories (device
memory). A GPU’s device memory is private to that GPU and separated from main
memory and the memories of other devices. Data transfers between the host and
individual devices are referred to as Host-to-Device (H2D) or Device-to-Host (D2H)
data transfers, depending on the direction. H2D and D2H data transfers can produce
large overhead and significantly reduce the performance gain provided by GPUs
(e.g., see [15]). To achieve efficient implementations in DIF-GPU, such overhead
is taken carefully into account in the processes of task scheduling and software
synthesis.

DIF-GPU is developed using the integrated toolset of the DSPCAD Framework,
including DIF, LIDE, and DICE. Methods for data-flow analysis, transformation,
scheduling, and code generation are developed by building on capabilities of the
DIF package. Implementation of GPU-accelerated actors and run time, multi-
threaded execution support are developed by applying LIDE-CUDA. Unit testing
and application verification are carried out using DICE.
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36.6.2 Graph Transformations and Scheduling using DIF

Figure 36.4 illustrates the overall workflow of DIF-GPU. This workflow consists of
3 major steps, vectorization, Scheduling and Data Transfer Configuration (SDTC),
and code generation. Data parallelism is exploited by the vectorization step, while
pipeline and task parallelism are exploited by the SDTC step.

36.6.3 Vectorization

Data-flow graph vectorization can be viewed as a graph transformation that groups
together multiple firings of a given actor into a single unit of execution [45]. The
number of firings involved in such a group is referred to as the Vectorization Factor
(VF). Vectorization is a useful method for exploiting data parallelism in data-flow
models.

Suppose that A is an actor in an SDF graph G, and G0 represents the transformed
graph that results from replacing A with a vectorized version Ab of A with VF D b.
The edges in G0 are the same as those in G, except that for all input edges of Ab , the
consumption rates are effectively multiplied by b (relative to their corresponding
rates in G), and similarly, for all output edges of Ab , the production rates are
multiplied by b.

Vectorization exposes potential for exploiting parallelism across multiple firings
of the same actor. For example, when executing Ab on a GPU, blocks of b firings of
A can be executed together concurrently on stream processors in the GPU.

Fig. 36.4 The DIF-GPU workflow
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DIF-GPU applies vectorization in a form called Graph-Level Vectorization
(GLV) [52] for SDF graphs. GLV involves a positive integer parameter J that is
called the GLV degree for the input SDF graph G. In GLV, J iterations of a minimal
periodic schedule for G are scheduled together, and the GLV degree is used in
conjunction with the repetitions vector q for G to derive the VF for each actor.
For background on periodic schedules and repetitions vectors for SDF graphs, we
refer the reader to [30].

More specifically, in GLV, the VF for each actor A is derived as J � q.A/,
where q.A/ represents the repetitions vector component that is indexed by A.
After transforming each actor by its VF associated with a given GLV degree J ,
the resulting vectorized graph Gvect, is a single-rate SDF graph that represents the
execution of J successive iterations of a minimal periodic schedule for G. Here,
by a single-rate SDF graph, we mean that the repetitions vector components are
uniformly equal to unity – that is, if r represents the repetitions vector for Gvect,
then for every actor A in Gvect, r.A/ D 1.

In DIF-GPU the input SDF graph is assumed to be acyclic (apart from the
possibility of self-loop edges induced by actor state) so that there are no cyclic paths
in the application graph that impose limitations on the GLV degree. A wide variety
of practical signal processing systems can be represented in the form of acyclic SDF
graphs (e.g., see [3]). The techniques employed in DIF-GPU can readily be extended
to more general graph topologies, e.g., by applying them outside of the strongly
connected components of the graphs. Such an extension is a useful direction for
further development in DIF-GPU.

Actors in DIF-GPU are programmed using a VF parameter, which becomes part
of the actor context in LIDE-CUDA. The actor developer implements vectorized
code for each actor in a manner that is parameterized by the associated VF parameter
and that takes into account any limitations in data parallel operation or memory
management constraints imposed by actor state. For example, to implement a
vectorized Finite Impulse Response (FIR) filter in DIF-GPU, a VF parameter is
included in the associated LIDE-C actor context such that the actor consumes and
produces VF tokens in each firing. Along with this VF parameter, the actor context
contains pointers to (1) an array of filter coefficients and (2) an array of past samples
for the filter. The past samples array, which contains .N � 1/ elements, stores the
most recently consumed .N � 1/ tokens by the actor. Here, N is the order of the
filter. Firing the vectorized GLV filter involves consuming b input tokens, generating
b output tokens, and updating the actor state that is maintained in the past samples
array, where b is the value of the VF parameter. Using careful buffer management
within the LIDE-CUDA actor implementation, the b output samples for the actor are
computed in parallel on the target GPU assuming that there are sufficient resources
available in the GPU in relation to N and b.

The GLV approach employed in DIF-GPU is useful because it provides a single
parameter (the GLV degree) that can be employed to control system-level trade-offs
associated with vectorization and thereby facilitates design space exploration across
a wide range of these trade-offs. For example, vectorization involves trade-offs
involving the potential for improved throughput and exploitation of data parallelism
at the expense of increased buffer memory requirements [45, 52].
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36.6.4 Graph Scheduling and Mapping

After the GLV transformation is applied to the intermediate SDF graph repre-
sentation in DIF, DIF-GPU generates a schedule for the vectorized, single-rate
SDF graph Gvect. The schedule can either be generated from a user-specified
mapping configuration (assignment of actors to specific GPU and CPU resources)
or computed using a selected scheduling algorithm that is implemented in the DIF
package. When the user specifies the mapping configurations, DIF-GPU generates a
schedule by firing the actors on each processor according to their topological order
in Gvect.

When the user does not specify the mapping configuration, the user can select
a scheduling algorithm to automatically generate the mapping and schedule. DIF-
GPU integrates multiple scheduling algorithms, including a First-Come First-Serve
(FCFS) scheduler and Mixed Integer Linear Programming (MILP) [52] scheduler.
Providing multiple schedulers, automated code synthesis capability, and the ability
to easily extend the tool with new schedulers allows the user to experiment with
trade-offs associated with different scheduling techniques and select the strategy
that is most appropriate in relation to the complexity of the input graph and the
given design constraints.

DIF-GPU avoids redundant data transfer between CPUs and GPUs by comple-
mentary design of alternative FIFO implementations in LIDE-CUDA and usage
of specialized actors for managing data transfer. In particular, DIF-GPU incor-
porates special data-transfer actors that are designed for optimized, model-based
interprocessor communication between actors across separate memory subsystems.
These data-transfer actors are called the H2D and D2H actors (recall that these
abbreviations stand for host-to-device and device-to-host). H2D copies data from a
buffer allocated on the CPU (i.e., the host) memory to the GPU (i.e., the device)
memory; and conversely, D2H copies data from a GPU buffer to the host memory.
After the scheduling process in DIF-GPU is complete, H2D or D2H actors are
automatically inserted in the DIF representation for application data-flow graph
edges that involve communication between host and device memory. This insertion
of data-transfer actors is performed as an automated post-processing step both for
user-specified and automatically generated mappings.

For example, in Fig. 36.5d, F2 is mapped onto a GPU, so H2D is inserted between
src and F2, and D2H is inserted between F2 and snk. This method employed by
DIF-GPU to handle data transfer between processors aims to free the LIDE-CUDA
actor designer from having to implement details of interprocessor communication
and synchronization and to reduce data transfer overhead.

As a simple example to concretely demonstrate the DIF-GPU workflow,
Fig. 36.5a and b show an SDF graph with execution time estimates that are
proportional to the VF b. Such execution time profiles can be provided through
actor-level benchmarking and then used as input to the scheduling phase in DIF-
GPU. The target platform in this example is assumed to consist of a single CPU and
single GPU. Brackets above the actors indicate the repetitions vector components
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a c

db

Fig. 36.5 An illustration of the DIF-GPU workflow using a simple SDF graph example. (a)
Original SDF graph. (b) VF-dependent execution times on CPU and GPU. (c) Vectorized graph
with VF D b. (d) Vectorized graph for b D 2 with data-transfer actors inserted, and the
corresponding schedule for CPU-GPU implementation

associated with the actors. Figure 36.5c shows the vectorized graph Gvect when
VF D b. Figure 36.5d shows the DIF representation that results from further
transformation through the insertion of H2D and D2H actors when b D 2 and when
F2 is mapped onto the GPU and other actors are mapped onto the CPU.

36.6.5 Code Generation

DIF-GPU generates well-structured, human-readable CUDA source code that can
be linked with LIDE-CUDA libraries and compiled with standard CUDA develop-
ment tools for implementation on CPU-GPU platforms.

Figures 36.6 and 36.7 show the generated LIDE-CUDA header and implemen-
tation file code for the sample graph in Fig. 36.5d. The generated code consists
mainly of the constructor, execute function, and destructor for the synthesized SDF
graph implementation. The constructor instantiates all of the actors and edges in the
data-flow graph and connects the actors and edges according to the graph topology.
The edges are assigned capacities, token sizes, and memory spaces automatically
based on information in the DIF language graph specification, and on graph analysis
techniques in the DIF package. The actors are assigned to processors based on the
user-specified or auto-generated mapping information.

The generated code also initializes data structures for the LIDE-CUDA
multi-thread scheduler. The execute function for the synthesized SDF graph
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Fig. 36.6 Generated header file for the example SDF graph of Fig. 36.5d

implementation starts the multi-thread scheduler and creates the threads. The
threads then proceed to execute actor firings based on the mapping decisions
embodied in the generated code. The destructor terminates the threads and actor
structures and releases allocated memory.

36.6.6 Testing in DIF-GPU Using DICE

DIF-GPU employs DICE for unit testing in all parts of the workflow. The DIF-GPU
framework is developed using a combination of Java, C, and CUDA; therefore,
the multi-language support in DICE is useful for testing of the all components
within the DIF-GPU framework. Components in DIF-GPU that require unit testing
include (1) relevant data-flow transformation and scheduling techniques that apply
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Fig. 36.7 Generated source code file for the example SDF graph of Fig. 36.5d
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Table 36.2 Summary of standard files employed in ITSs for DICE-based testing in DIF-GPU

File name DIF LIDE-CUDA

dlcconfig N/A Specifies header and li-
brary paths

dljconfig Specifies class paths N/A

makeme Invoke javac with settings speci-
fied in dljconfig

Invoke nvcc compiler
with settings specified in
dlcconfig

runme Run test on Java VM Run compiled test exe-
cutable

correct-output.txt Standard output if test executes as expected

expected-errors.txt Standard error output if test executes as expected

the (Java-based) DIF package; (2) FIFO and actor implementations for applica-
tion graph components; and (3) synthesized software for the targeted CPU-GPU
implementation.

By applying the language-agnostic testing features of DICE described
in Sect. 36.5, DIF-GPU provides a unified approach to implementing and managing
tests for different components in DIF-GPU, as well as DSP applications and
subsystems that are developed using DIF-GPU. A summary of standard files that
are employed in the implementation of DICE-based tests in DIF-GPU is listed
in Table 36.2.

To automatically test components in the DIF-GPU framework, we use the
DICE dxtest utility. This utility recursively traverses all ITSs (individual
test subdirectories) in the given test suite. For each ITS, dxtest first
executes makeme to perform any compilation needed for the test, followed
by runme to exercise the test. The dlcconfig and dljconfig scripts
listed in Table 36.2 specify compiler configurations that are employed by
the corresponding makeme scripts. For each ITS, dxtest compares the
standard output generated by runme with correct-output.txt and
the actual standard error output with expected-errors.txt. Finally,
dxtest produces a summary of successful and failed tests, including the
specific directory paths of any failed tests. In this way, the test-execution
process is largely automated and simplified while operating within an integrated
environment across the different Java, C, and CUDA components that need to be
tested.

36.7 Summary

This chapter has covered the DSPCAD Framework, which provides an integrated set
of tools for model-based design, implementation, and testing of signal processing
systems. The DSPCAD Framework addresses challenges in Hardware/Software
Codesign (HSCD) for signal processing involving the increasing diversity in
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relevant data-flow modeling techniques, actor implementation languages, and target
platforms. Our discussion of the DSPCAD Framework has focused on its three
main component tools – the Data-flow Interchange Format (DIF), Lightweight Data-
flow Environment (LIDE), and DSPCAD Integrative Command Line Environment
(DICE) – which support flexible design experimentation and orthogonalization
across abstract data-flow models, actor implementation languages, and integration
with platform-specific design tools, respectively. Active areas of ongoing develop-
ment in the DSPCAD Framework include data-flow techniques and libraries for
networked mobile platforms, multi-core processors, and graphics processing units,
as well as efficient integration with multimodal sensing platforms.
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