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Abstract

This chapter presents an optimization framework to manage green datacenters
using multilevel energy reduction techniques in a joint approach. A green
datacenter exploits renewable energy sources and active Uninterruptible Power
Supply (UPS) units to reduce the energy intake from the grid while improving its
Quality of Service (QoS). At server level, the state-of-the-art correlation-aware
Virtual Machines (VMs) consolidation technique allows to maximize server’s
energy efficiency. At system level, heterogeneous Energy Storage Systems
(ESS) replace standard UPSs, while a dedicated optimization strategy aims at
maximizing the lifetime of the battery banks and to reduce the energy bill,
considering the load of the servers. Results demonstrate, under different number
of VMs in the system, up to 11.6% energy savings, 10.4% improvement of QoS
compared to existing correlation-aware VM allocation schemes for datacenters
and up to 96% electricity bill savings.
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DP Dynamic Programming
DSO Distribution System Operator
DVFS Dynamic Voltage and Frequency Scaling
ESS Energy Storage Systems
HES Hybrid Electric Systems
IT Information Technology
MAPE Mean Average Percentage Error
NOCT Nominal Operating Cell Temperature
PCP Peak Clustering-based Placement
PDU Power Distribution Unit
PV Photovoltaic
QoS Quality of Service
SoC State of Charge
SoH State of Health
STC Standard Test Conditions
UPS Uninterruptible Power Supply
V/f Voltage/Frequency
VM Virtual Machine
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35.1 Introduction

Ever-increasing demands for computing and growing number of clusters and servers
in datacenters have ramped up the power consumption costs as an undesirable
effect [20]. On the other hand, traditional fossil fuel concerns, carbon emissions,
and global warming impose the introduction of more sustainable energy sources
and behavioral change of people [41], since 10% of the global consumption of
electrical energy has been estimated to be consumed by Information Technology
(IT) infrastructures [14].
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To optimize the operation of a datacenter, it is crucial to minimize both IT and
cooling energy consumptions. Server consolidation [26] is one of the widely used
techniques to reduce the energy overheads, which minimizes the number of active
servers by packing workloads or virtual machines (VMs) into the minimal number
of active servers exploiting a virtualized environment. Large virtualized datacenters
use renewable energy to reduce their dependence on costly and brown energy from
the grid [33].

In the recent years, all the big energy consumers in the IT market (Amazon,
Google, Rackspace, etc.) have already introduced renewable energy sources in their
supply chain, locating their infrastructures in suitable geographical locations around
the world. The penetration of renewable and green energy sources is almost none
for company-owned datacenters, IT infrastructures located in the same corporate
building where the business is run, mostly in urban environments.

Solar energy is the most effective renewable source employed in green datacen-
ters since Photovoltaic (PV) modules can be easily located close by the datacenter
and the converted energy can be immediately used without distribution. Moreover
it is the most suitable for small to medium datacenters (up to few hundreds kWs
of IT power) located in urban environments where wind turbines and water storage
infrastructures may not be built, given the space required for such infrastructures.

Renewable energy sources are not constant over the time; their intensity depends
on weather, geographical position of the plant, and seasons; moreover a maximum
in the energy intake rarely corresponds with a maximum in the demand. However,
estimating their short-term trend (one day ahead) with small error (Mean Average
Percentage Error (MAPE) close to 10%) is possible, as it has been demonstrated
in [11]. Similar results can be expected when dealing with electricity demand
prediction at building scale (few tens of kWs) [31]. To tackle the imbalance between
energy intake and demand, a widespread monitoring system of the produced
and consumed power over time is necessary, as well as efficient forecasting
algorithms of datacenters load consumption are required to optimize the usage of
energy storage systems (ESS) that collects the surplus of green energy for future
needs.

Variability and fast-changing characteristics of applications, for instance, scale-
out applications [17] (e.g., web search, MapReduce, etc.), affect the energy con-
sumption of servers due to the dependency on external factors, e.g., number of
clients/queries in the system. To this end, the impact of servers’ energy consump-
tion on the usage of green energy becomes more substantial, and management
of consumed energy will play a major role in lifetime and operation of ESS.
Consequently, without consideration of minimizing datacenter energy consumption,
many existing approaches to management of green energy and batteries are subop-
timal.

In this chapter, we introduce and propose a multilevel and multi-objective
framework for the optimization of green virtualized datacenters, to jointly minimize
the energy consumption and the carbon footprint, exploiting renewable energy
sources, state-of-the-art VMs allocation schemes and Hybrid Electric Systems
(HES). With HES, we refer to electrical ESS where different battery technologies
are employed together, allowing to compensate for the inherent drawbacks of
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each technology. We incorporated dynamic VM allocation into servers’ powers by
novel HES, and optimization methods to maximize the battery bank lifetime are
used. The framework consists of two modules running concurrently: the datacenter
energy controller which minimizes the energy consumption of datacenter without
any significant quality-of-service (QoS) degradation and shares the real energy
consumption data with the green energy controller and the green energy controller
that manages renewable sources and HES, providing feedback to the datacenter
energy controller.

The datacenter energy controller is based on a state-of-the-art correlation-aware
VM allocation scheme [21] due to a high correlation within a cluster of applications
in virtualized datacenters. Regarding load correlation, the authors demonstrate that
having detailed information about the applications characteristics, as opposed to
using stationary load values for the VMs (e.g., peak or average values), gives
the opportunity to further reduce the energy consumption of a datacenter. On the
other side, the QoS degradation occurs when the aggregated utilization among
colocated VMs is beyond the CPU capacity of a server. It means that there will be
some workloads which cannot be executed at the right time. Therefore, datacenter
providers take into account the service-level agreements requirements to satisfy the
customers. The green energy controller, based on [32], is a two-phase controller
that takes into account the cost policies of the grid energy and exploits forecasts
of both the datacenter’s load and of the incoming energy from renewables. The
framework uses PV modules as green energy source and two battery technologies
(lead-acid and lithium-ion) for the HES that are used with different priorities and
roles.

In current datacenters, not enough efforts have been dedicated to implement
adaptive energy reduction techniques and real-time resource scheduling to manage
efficiently IT equipment and renewable energy sources. The novelty of our work
consists in the introduction of a HES architecture to replace standard uninterruptible
power supply (UPS) systems, which allows an active management and the full
exploitation of the energy buffers for the locally generated renewable energy. We
also designed a dedicated control loop which connects the VMs allocation scheme
to the HES manager and optimizes the resources in real time. At the same time, the
modular structure allows to use both general-purpose models and high-end ones for
performance evaluation, model verification, and feasibility analysis.

35.2 Related Work

Renewable energy sources integration in the electricity grid and in particular green
datacenters are currently a hot topic. Different research ideas have been presented
in the last few years that address the problem of exploiting local energy generation
to mitigate grid energy demand of datacenters [18] and in general of any human
activity [12]. At the same time, HES have been addressed in several works available
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in the literature. The fundamental idea behind HES management is to use batteries
as energy buffers to store the amount of green energy that cannot be used directly
by the connected loads. Different management approaches have been proposed
to automatically control the energy flows from renewables to loads and storage
units [16], and also hybrid solutions for battery banks have been demonstrated [39].
This is particularly of interest nowadays because of the large availability of second-
life batteries from electric vehicles that can have up to 75% remaining capacity
available for storage applications [25, 40]. Despite the market availability of hybrid
storage systems is still far, the literature review demonstrates that these technologies
are worth the efforts for being implemented. In this work, we followed the approach
proposed in [32] to shape the active UPS (or HES) system presented in the
following. The authors in [32] propose a two-phase control scheme that exploits
intrinsic advantages of different battery technologies mitigating, at the same time,
their drawbacks.

A number of research works present methods for server consolidation based on
per-VM workload characteristics, i.e., the peak, off-peak, and average utilization
of workload [26, 35], which aims to reduce heat dissipation of hot spot zones and
improve overall power utilization in datacenters [9,22]. In [34], authors propose ab-
stract models to balance computing power in a datacenter by minimizing peak inlet
temperatures. A holistic approach that manages IT, power, and cooling equipment
by dynamically migrating servers’ workloads and adjusting cooling is presented
in [13]. Experimental results for a virtual datacenter demonstrate a reduction by
35% in power consumption and 15% in cooling. Authors in [27] present a control-
oriented model that considers cyber and physical dynamics in datacenters to study
the potential impact of coordinating the IT and cooling controls. To achieve further
power savings while maintaining the QoS level, joint relationships among VMs,
like load correlations, have been exploited in recent works [19,24,36]. For instance,
in [24], Meng et al. proposed a VM sizing technique that pairs two uncorrelated
VMs into a super-VM by predicting the workloads. However, once the super-VMs
are formed, this solution does not consider dynamic changes of the VMs’ load,
which limits further energy savings. Therefore, these approaches do not work well
with non-stationary and fast-changing VM behaviors in particular for scale-out
applications. In [21], a power-efficient solution is proposed based on the first-
fit-decreasing heuristic to separate load-correlated VMs especially targeting the
characteristics of the scale-out applications. They also exploit server’s dynamic
voltage and frequency scaling Dynamic Voltage and Frequency Scaling (DVFS)
techniques to achieve further energy savings. Note that these schemes do not take
into account the renewable energy sources and datacenter system model in modern
green datacenters.

There is no evidence in the literature of the joint application of HES optimization
and correlation-aware techniques to the optimization of datacenter energy consump-
tion, and the potential savings (both from environmental and money perspectives)
are clearly worth the effort for further investigation.



1168 A. Pahlevan et al.

35.3 The System Modeling Framework

We introduce a novel green datacenter system model where datacenter equipment,
PV modules, smart grid, and UPS are connected as shown in Fig. 35.1. The IT
equipment and cooling system inside this datacenter are the major contributors to
power consumption than the other facilities. These components are combined using
Power Distribution Units (PDUs) that eventually connect to the Charge Transfer
Interconnect (CTI) bus that serve the whole facility [15]. In this framework, the
UPS is designed as a HES to provide both supply in case of grid outages and a
buffer for green energy.

The system models two battery banks, a PV module and the bidirectional CTI
bus, managed by a dedicated controller, not shown, as presented in [37]. Each unit
is connected to the CTI by means of a bidirectional DC-DC converter for level
shifting and charge routing, while the PV’s one is unidirectional. Grid and PDUs
are modeled in terms of power source and load, connected with the CTI by means
of AC-DC and DC-AC converters, respectively.

We defined two constraints to the simulated system: (i) the exceeding renewable
energy cannot be injected into the main grid (if it cannot be stored) and (ii) a

Fig. 35.1 The complete system modeling framework
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peak/off-peak price scenario from a regulated electricity market for the energy taken
from the grid (we considered the Zurich’s tariff 7.5/14.9 CHFcent/kWh [1]).

Thus, renewable energy and batteries should completely sustain the load of
the datacenter or, at least, provide supply during outages and periods with the
highest price. These choices are justified by the fact that selling energy back to the
grid, namely, providing net-metering ancillary service to the Distribution System
Operators (DSOs), follows rules that are country-specific and strongly depend on
the interface between datacenter and energy network; moreover, datacenters are
usually big energy consumers, and it is unlikely to have enough excess green energy
to justify the effort (economically and technologically) of improving the electric
system to handle this task. The peak/off-peak price scenario in a regulated energy
market instead can be easily implemented also in a free energy market scenario
where the energy price is continuously evolving; in this case, our assumption can be
seen as a threshold on the freely variable price: while the free market price is below
the threshold, it is more convenient to buy from the grid, and the opposite when the
price rises.

We developed a discrete-time framework (cf. see �Chap. 6, “Optimization
Strategies in Design Space Exploration” for more details on different design space
exploration options) that simulates the target green datacenter, with hourly time
steps. The green energy controller manages the PV modules, the heterogeneous
batteries and the CTI, the HES considered in this framework, and has been
implemented using MATLAB. The datacenter energy controller, implemented
in C++, manages the datacenter and VMs allocation scheme. Both components
communicate using sockets for interprocess communication, while the time-step
length of one hour guarantees that the time for VMs relocation (several GBs) does
not overtake the actual execution time.

35.3.1 Energy Management Models

According to Fig. 35.1, the power management problem is solved at the CTI bus
level which is a DC path. Conversely, the system comprises both AC and DC
sources/loads; thus, for the former ones, it is required to consider the power
factor component in the conversion. For example, considering the power intake
from the grid, if we measure the total apparent power that enters the rectifier,
for example, on the grid side PGridŒVA� D VRMS � IRMS, this can be converted
into active power (the useful power available on the DC side) according to the
PGridŒW � D PGridŒVA� � cos.�/ where � is the angle between voltage and current
waveforms and cos.�/ is called power factor. In addition, the converter’s efficiency
�X .:/ must be added to any transformation, since it depends on the actual power
flowing with respect to the nominal one.

P CTI
Datacenter.t/ D P CTI

Grid.t/ C P CTI
P V .t/ C

nEESX

nD1

˛ � P CTI
EES;n.t/ (35.1)

http://dx.doi.org/10.1007/978-94-017-7267-9_7
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P CTI
Grid.t/ D PGrid.t/ � cos.�/ � �ACDC .�.t// (35.2)

P CTI
P V .t/ D PP V .t/ � �DCDC .�.t// (35.3)

P CTI
EES;n.t/ D PEES;n.t/ � �DCDC .�.t// (35.4)

P CTI
Datacenter.t/ � �DCAC .�.t// D PDatacenter.t/ (35.5)

�.t/ D
Pout

Pnom
� 100 (35.6)

Equation (35.1) represents the power balance of the system, it states that the
sum of the input from the grid, PV and battery arrays must be equal to the
datacenter requirements, additionally the ˛ is a directional parameter which can
be �/+1 depending on the charging/discharging status (source or load of the
system), and nEES is the number of separated battery banks that compose the
HES. Equations (35.2), (35.3), (35.4) and (35.5) describe the AC-to-DC and DC-
to-DC conversion functions used for each system component, where the conversion
efficiency term �X .:/ depends on �.t/, the ratio of power requested by the system
with respect to the nominal power delivered by the converter, which is expressed in
percentage as defined by Eq. (35.6).

In order to reduce the computational complexity and generalize the system’s
models, we considered fixed power factor equal to one; fixed CTI voltage level
and energy converters have been modeled considering a fixed 90% efficiency since
detailed efficiency curves for high-power equipment are not publicly provided by
manufacturers [2] but still are claimed to work in the range of 80–95% (with loads
down to �.t/ D20%).

35.3.2 Electrical Energy Storage System

The HES can exploit two heterogeneous battery banks managed in hierarchical
fashion: a lead-acid array (the battery bank n. 1) and a lithium-ion array (the battery
bank n. 2). The battery model is based on the Peukert’s law [29]. The goal is to
model HES that combine the advantages of the different battery technologies (lead-
acid and lithium-ion). The module, as all the modules in the framework, has been
conceived as a plug-and-play component; therefore, it can be easily replaced and
adapted.

Equation (35.7) defines the State of Health (SoH) of the battery as a ratio between
currently available charge capacity (Cref) and the nominal one. Equation (35.8)
defines the charge capacity as a linear combination of the previous charge and
a term that depends on the charge which is drained, where Cnom is the nominal
charge declared by manufacturer while Zb , linear aging coefficient, is a parameter
depending on the battery technology [30]. The following two equations (Eqs. 35.9
and 35.10) allow to determine the State of Charge (SoC) and the equivalent battery
current (Ieq), function of the current flowing from batteries (I ), with respect to the
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nominal battery parameters: Iref the reference discharge current (provided by the
manufacturer and used to compute the reference charge), the Peukert’s coefficient
kb and the charge actually used by the system, computed as current Ieq times time
slot (tslot) length in seconds. The SoH of the battery decreases only during discharge,
so it is calculated only during discharge, whereas the SoC is updated during both
charge and discharge cycles. More details about the model and its utilization can be
found in [29, 30].

SoH.t C 1/ D
Cref.t C 1/

Cnom
(35.7)

Cref.t C 1/ D Cref.t/ � Cnom � Zb � .SoC.t/ � SoC.t C 1// (35.8)

SoC.t C 1/ D
Cref.t/ � SoC.t/ � .Ieq.t/ � tslot/

Cref.t/
(35.9)

Ieq.t/ D

�
jI .t/j

Iref

�.kb�1/

� I .t/ (35.10)

We tuned the parameters of the general-purpose model (maximum and reference
charge/discharge currents) according to commercial devices, a VARTA Professional
Dual Power (230 Ah @ 12 V) [3] as the lead-acid, and a StarkPower “UltraEnergy”
(100 Ah @ 12 V) [4] as the lithium-ion.

We preferred to double the size of the battery bank n. 1, with respect the
lithium-ion one, because lead-acid technology is cheaper, easier to recycle, and
has a wider working temperature range. However, lead-acid batteries suffer from
a limited number of sustainable cycles (i.e., lifetime). The lithium-ion technology
instead offers at least one order of magnitude higher number of cycles, but it is also
more expensive. To maximize the lifetime of the storage (in particular of the lead-
acid bank), we put some constraints on the allowed Depth-of-Discharge (DoD) for
both banks. To force both banks to work in the optimal range of SoC, we set the
minimum SoC to 65% for the bank n. 1 and 70% for the bank n. 2. The remaining
capacity is however available in the event of outage, thus providing standard UPS
support.

Moreover, in the simulations, we considered two configurations, the HES-1
where we have 48 kWh as lead-acid capacity (16.8 kWh available) and 24 kWh as
lithium-ion capacity (7.2 kWh available) and the HES-2 with 96 kWh (33.6 kWh)
and 48 KWh capacity (14.4 kWh), respectively.

35.3.3 Photovoltaic Module

The PV module provides green energy accordingly to the intensity of the solar
irradiance impinging on it, which in turn depends on the weather mostly. In this
framework, we implemented it as a linearly varying voltage source, with integrated
MPPT controller [32] and tuned accordingly to real device’s characteristics [5]. Sun
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irradiance [6] and temperature profiles [7] for the year 2005 in Zurich have been
used for tests.

PP V D

�
PPV;STC �

�
GT

1000

�
�
�
1 � � � .Tj � 25/

��
� NPV;S � NPV;P (35.11)

Tj D Tamb C

�
GT

800

�
� NOCT � 20 (35.12)

Equation (35.11) presents the linear model of the PV array, the parameters
were evaluated in Nominal Operating Cell Temperature (NOCT) and Standard
Test Conditions (STC) which are the nominal output power (PPV;STC D 2:65 W)
in this case, the cell temperature (Tj ), irradiance level (GT D 1000 W=m2 @
25 ıC), and the temperature coefficient (� D 0:0043%=ıC), while NPV;S and NPV;P

are the number of series and parallel cells in the module. The cell temperature
is then obtained using Eq. (35.12), where Tamb is the environmental temperature,
GT D 800 W=m2 @ 20 ıC and NOCT D 45:5 ıC.

We tuned the PV module size considering two different cases of peak power
production (hence the number of cells and panels) that are 10 kWp for the HES-1
simulating scenario and 30 kWp for the HES-2.

35.4 Simulation Framework Description

The overall diagram of our simulating framework that jointly manages the green
energy and datacenter Energy Controllers is shown in Fig. 35.2. At the beginning of
the simulation time horizon (off-line phase), the green energy controller computes
the expected energy budget for the datacenter, processing historical datacenter
power profiles as well as the sun irradiance forecasts. This task is executed only
once and provides a preliminary energy budget for the whole simulation horizon.

The online phase starts when the off-line phase of the green energy controller
sends the available energy budget to the datacenter energy controller for the first
time slot. Next, it waits until the VMs allocation is completed according to the
prediction of upcoming loads of VMs and then receives back the real energy demand
of the datacenter computed based on the real workload. Therefore, the green energy
controller compensates the differences between (i) expected and available green
energy and (ii) real energy consumption and energy budget for the datacenter, using
the lithium-ion battery as additional energy reserve or the grid if both banks in the
HES have been drained. To this end, if the actual energy consumed by datacenter
is higher than the expected, the green energy controller compensates the datacenter
energy requirements. At the end of each time slot, the green controller provides an
updated budget to the datacenter energy controller for the VM allocation of the next
time slot.

On the other side, the datacenter energy controller tries to find the best allocation
for VMs on the servers at each time slot using the VMs specification from the
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Fig. 35.2 The simulating framework that jointly manages the green energy and datacenter energy
controllers. Off-line phase, as a starting point of simulation, is executed once at the beginning of
the simulation time to compute expected energy budget for datacenter. In online phase, at each
time slot, datacenter energy controller first receives forecasted workload and energy budget from
green energy controller to allocate VMs to servers and then sends back the real energy demand to
green energy controller

previous time slot as incoming workload and the energy budget provided by green
energy controller. The goal is to allocate VMs to the minimal number of servers that
yields in optimized total energy consumption of datacenter, as it will be explained in
the following. After the allocation was completed, the datacenter energy controller
communicates the actual energy demand for the current time slot to the green energy
controller. Both of the controllers are invoked periodically, at every time slot, i.e.,
tslot. The overall process of the framework and two controllers’ communication have
been shown in Fig. 35.3. In the following sections, we describe these two controllers
in detail.

35.4.1 Datacenter Energy Controller

In this section, we have considered the state-of-the-art correlation-aware VM
allocation scheme as a datacenter power management solution [21]. Correlation
refers to the VMs’ utilizations when the peaks of two VMs occur at the same
time during a certain time interval. Therefore, for using the server’s resources
efficiently during a time slot, highly correlated VMs should be placed apart, in
different servers. Thereby, based on the VMs’ utilization patterns, the aggregated
utilization of colocated VMs nearly reaches their server’s capacity during a time
slot. This favors consolidation and leads to power savings by lowering the number
of active servers. In this context, due to the distributed operations of multiple VMs
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tslot

1. Workload Forecast
2. VM Allocation
3. Simulation of Real Workload 

Execution During a Time Slot
ith Time Slot

Off-line Phase

On-line Phase

1. Forecast Acquisition
2. Dynamic Programming (DP)

1st Time Slot

Datacenter Energy
Controller

Green Energy
Controller

Providing Energy Budget For All Time Slots 
Based on Irradiance and Load Forecast Profiles 

Energy budget optimization

Energy budget optimization

Fig. 35.3 Overall process of the proposed framework – joint datacenter and Green Energy
Controllers

in a cluster, a high correlation within a cluster of VMs is observed, called intra-
cluster correlation, rather than the correlation among different clusters targeted
in other correlation-aware schemes [19, 36]. The correlation-aware VM allocation
method has been proposed, in [21], while sharing cores among colocated VMs
based on defining a cost function depending on QoS requirement to efficiently
quantify the correlation between the VMs across a certain time horizon. Finally,
a way to scale the Voltage/Frequency (V/f) level is provided to achieve more power
savings without any QoS degradation. In this algorithm, the VMs are allocated
such that the correlation among the allocated VMs in the server is minimized,
while the server does not exceed its total CPU capability, as well as the number of
the active servers is minimized while satisfying performance requirements. Once
all the VMs are allocated into servers, an optimal V/f level for each server is
determined. This correlation-aware VM allocation algorithm is periodically invoked
at every tslot.

35.4.2 Green Energy Controller

The green energy controller is a two-phase scheduler – off-line and online phases –
that manages the CTI bus and provides guidelines to the datacenter energy con-
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troller, by recursively solving the set of equations presented in Sect. 35.3. Moreover,
see �Chap. 10, “Design Space Exploration and Run-Time Adaptation for Multicore
Resource Management Under Performance and Power Constraints” for more details
about combined design- and run-time exploration and adaptation approaches for
computing systems.

The off-line phase’s goal is to find the best resource allocation strategy to
minimize the energy intake from the grid (i) and to maximize the lifetime of the
lead-acid battery bank (ii) by minimizing the number of charge-discharge cycles
and using as much as possible uninterrupted cycles. This is based on Dynamic
Programming (DP) that is a strategy to solve complex problems by splitting
them into lower complexity ones, solving and storing each solution; thus, when
a previously solved problem occurs, the system looks up the previous solution
saving computational time. It takes as input the expected workload of the datacenter,
the price profile of the energy from the grid, and the irradiance forecasts for the
whole time horizon [32, 38]; in this phase, the scheduler manages the battery bank
n. 1 only. The algorithm ranks all the possible system states (charge to discharge,
charge to charge, discharge to charge, and discharge to discharge) for each time
slot in the simulation horizon that fulfills the above constraints. For each state
transition, it assigns a weight based on the battery usage; the higher the weight
the lower the ranking. At the end, it provides an optimal energy budget for each
time slot and the best utilization strategy for the lead-acid bank for the whole time
horizon. Only the budget for the first time slot is then sent to the datacenter energy
controller and this message triggers the online phase. All the other energy budgets
computed are kept in memory for the online phase to use them when the off-line
concludes.

The on-line phase, for each time slot, optimizes the initial energy budget,
computed by the off-line phase, trying to compensate the difference between
expected workload and irradiance forecast with respect to the real data measured
by the system. In the online phase, the scheduler manages also the battery bank
n. 2 mainly to compensate error in the forecasts and to maximize the lifetime of
the lead-acid bank. This is a constrained multivariate optimization problem that has
been solved numerically using the Matlab’s fmincon [8] solver. For each time slot,
the green scheduler must find the optimal current balance in the CTI to minimize
the energy taken from the grid (optimization goal), to fulfill the off-line lead-acid
battery scheduling and to supply the load. For each component of the system (grid,
PV, batteries and load), we set constrained boundaries for the currents and the
input power from the grid, linear constraints for the CTI based on the Kirchhoff
currents law, and nonlinear constraints to compute the effect of energy converters
and batteries’ SoC. Problem’s constraints (current flow direction for batteries and
use of the grid) change in accordance with the system state, in this way it is possible,
for example, to force the lithium-ion battery to be discharged when the lead-acid
battery is recharged and the green energy is unavailable or lower than the load. At
the end of the time slot, the actual energy balance is updated to the datacenter, and
this triggers also a new cycle of the simulator with the following tslot .

http://dx.doi.org/10.1007/978-94-017-7267-9_11
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35.5 Experimental Results

We validated the effectiveness and applicability of the proposed framework to
larger-scale problems using 2-week simulation horizon, workload traces obtained
from a real datacenter setup, and real irradiance and temperature profiles. We
arranged the simulations in two separate sets: firstly we evaluated the best VM
allocation algorithm in terms of energy and QoS; secondly we placed this best
scheme into the datacenter energy controller, and we executed the joint optimization
framework.

35.5.1 Setup

We modeled a green urban datacenter consisting of medium-sized facilities with
two components: computing power consumption (IT equipment) (i) and Computer
Room Air Conditioning (CRAC) power consumption as the cooling unit (ii). We
evaluated the effectiveness of the proposed solution with a virtual testbed consisting
of 250 servers where the servers are homogeneous. We targeted an Intel Xeon
E5410 server configuration which consists of eight cores and two frequency levels
(2.0 and 2.3 GHz) and used the power model proposed in [28].

To simulate the datacenter workload and energy demand, we sampled the CPU
utilization of a real datacenter setup every 5 min for 1 day; then we duplicated the
samples up to 14 days. Such assumption has been proved by real-trace studies,
since the real datacenter’s workload shows significant variability and a daily
pattern during 1 week [23]. Finally, to generate different samples for each day,
we synthesized fine-grained samples per 5 sec with a lognormal random number
generator [10], whose mean is the same as the collected value for the corresponding
5 min sample rate.

We computed the irradiance forecasts implementing the algorithm presented
in [11]; an example of the two resulting sequences is depicted in Fig. 35.4. At the

Fig. 35.4 Solar power profile, forecasted vs. real
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same time, we used hourly averaged energy consumption profile from the real
datacenter as forecast, which results in a smoothed profile compared to the original
one.

35.5.2 Results

As previously introduced, we split the performance evaluation in two separate sets
of experiments. To select the best VM allocation scheme for power management
to use with the datacenter energy controller, we compared the following three
approaches:

• Best-Fit-Decreasing (BFD): a conventional best-fit-decreasing heuristic
approach. In detail, after sorting VMs in decreasing order of their utilization,
the algorithm allocates each VM to a server that provides the closest resource
requirements with respect to this VM utilization (i.e., the server with the smallest
remaining capacity is sufficient to contain the VM).

• Peak Clustering-based Placement (PCP) [36]: a correlation-aware VM allocation
which clusters VMs using its envelope-based correlation classification. The
authors presented a static clustering-based VM allocation method by defining
VM utilization in a time series as a binary sequence where the value becomes “1”
when utilization is higher than a threshold value, otherwise “0”. This algorithm
first clusters VMs such that the envelopes of VM utilization included in different
clusters do not overlap. Then, it allocates VMs to servers in order to colocate
VMs in different clusters.

• Correlation-aware VM Placement (CVMP) [21] the correlation-aware VM allo-
cation considered as the state-of-the-art approach and explained in Sect. 35.4.1.

Figure 35.5 compares the total energy consumption of the three approaches
under different number of VMs (obtained by duplicating the trace for 250 VMs)
in the system for a horizon of 14 days when we set the V/f level at the time of
VM placement tslot. The CVMP algorithm provides up to 11.6 and 7.3% energy
savings compared to BFD and PCP, respectively, due to using the lower frequency
levels more frequently. It is noteworthy that PCP provides almost similar results
with BFD because, due to high and fast-changing correlations among VMs in our
utilization traces, PCP classifies VMs into only one cluster during most of the time
periods. When the number of clusters is one, PCP behaves exactly the same as BFD.
Note that the semi-linear trend of the energy consumption depends on the analogous
behavior of the workload among different days, in a typical datacenter.

Table 35.1 shows the maximum violation defined as maximum per-period ratio
of the number of over-utilized time instances (i.e., when the aggregated utilization
among colocated VMs is beyond the CPU capacity of a corresponding server)
to tslot, during the two weeks under different number of VMs in the system.
A graphical representation of these data is provided in Fig. 35.6. As a result, the
CVMP scheme provides a drastic reduction of the violations, up to 10.4 and 9.6%
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Fig. 35.5 Total energy consumption of datacenter under different number of VMs for a horizon
of 14 days

Table 35.1 Maximum violations (%) of ratio of over-utilized time instances to tslot, during the
entire periods, i.e., 336 h (14 days) under different number of VMs scenario

Approach
Number of VMs

250 500 750 1000

BFD 2.1 4.9 9.6 18.4

PCP 1.1 2.8 3.4 17.6

CVMP 0.85 2 3.1 8

Fig. 35.6 Trend of maximum violations (%) under different number of VMs for a horizon of
14 days
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Table 35.2 Overall framework results in terms of economic benefit of renewable-enabled data-
center with respect to a grid-connected one. Two HES configurations are evaluated, HES-1 with
48 kWh as lead-acid and 24 kWh as lithium-ion capacity and HES-2 with 96 kWh and 48 kWh
capacity, respectively

Configuration Winter savings (PV only) Summer savings (PV only)

250 VMs
HES-1 29.30% (25.54%) 76.46% (57.86%)

HES-2 62.22% (38.72%) 96.13% (66.45%)

500 VMs
HES-1 14.30% (13.16%) 55.92% (48.00%)

HES-2 38.43% (31.30%) 85.28% (61.59%)

750 VMs
HES-1 9.53% (8.76%) 43.49% (40.16%)

HES-2 27.69% (24.86%) 73.39% (57.35%)

1000 VMs
HES-1 7.05% (6.57%) 33.34% (32.51%)

HES-2 20.64% (19.16%) 65.28% (53.96%)

compared to BFD and PCP, respectively. In CVMP method, VMs are allocated
based on their peak utilizations, which were predicted from their history. Despite
the provision based on the peak utilization, we observed quality degradation over
the three approaches due to the mis-predictions of the peak utilization, especially
during abrupt workload changes under increasing the number of VMs in the
system. However, the CVMP method can statistically reduce the probability of the
violation by colocating uncorrelated VMs. Thus, the probability of joint under-
predictions among the colocated VMs is drastically decreased. Using the CVMP
algorithm, we performed the complete framework simulation (VM allocation,
green energy scheduling, and communication between the two controllers) with
tslot = 1 h, with predictions of upcoming workloads of datacenter using a last-value
predictor.

Table 35.2 summarizes the results in terms of cost savings depending on the
number of VMs, the HES size, and the season. The cost savings are computed as
the difference between electricity cost to sustain the datacenter workload with or
without the renewable energy sources. As expected with larger battery capacities
(HES-2 configuration), we get higher savings. We compared also with the cost
saving of using the PV panels without any storage (between brackets) to demonstrate
the advantage of the proposed approach. Although in winter scenario the low
irradiance and the cold weather strongly impact the renewable energy generation,
causing the batteries to rarely reach the full charge, they still provide advantages in
terms of savings. During summer instead the batteries are fully exploited resulting
in higher savings with respect to the previous scenario. According to the model,
during summer, when the HES system’s usage is more intensive, we experienced a
maximum SoH decrease of 0.07% (ratio between nominal and remaining capacity),
which means a lifetime longer than 15 years to reach the 70% of nominal capacity
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Fig. 35.7 Two-day framework evolution with 500 VMs, HES-2 (96 kWh lead-acid and 48 kWh
lithium-ion capacity) configuration, and summer irradiance (48 time slots). Power profile of the
datacenter components (top); percentage SoC of the battery bank n. 1 (SoC1) and n. 2 (SoC2)
(middle); cost per time slot (bottom)

(lead-acid battery near the end of life). Finally, Fig. 35.7 shows a 2-day view (48
time slots) of the framework evolution with 500 VMs, summer irradiance, and HES-
2 configuration. We can observe the role of the energy buffer that allows to use green
energy when there is no input from the PV panels (Fig. 35.7-top) and the resulting
money saving (Fig. 35.7-bottom). In the specific time horizon depicted (Fig. 35.7-
middle), we experienced a low level of irradiance compared to other days in the
overall horizon (cfr. Fig. 35.4); it results in a lower amount of energy available
to recharge the batteries, in particular the battery bank n. 1 which has a bigger
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capacity and a smaller recharge current with respect to the lithium-ion one. Similar
considerations can be made for the other three cases that are not reported for the
sake of summary.

35.6 Conclusion

In this chapter, we have presented a novel dynamic and multi-objective framework
to manage the energy consumption of datacenter, battery banks lifetime, and energy
bill cost. The datacenter energy controller minimizes the total energy consumption
using the state-of-the-art correlation-aware VM allocation scheme for the given
VMs’ specifications and energy budget provided by the green energy controller
while improving QoS requirements. In the green energy controller, we use a real-
time optimization technique to maximize the lifetime of battery banks and to
reduce the energy bill by managing the PV source, in price-varying scenarios,
and considering the energy consumed by the datacenter. Finally, we validated
the effectiveness and applicability of our proposed system with the utilization
traces obtained from a real datacenter setups. Our experimental results show that
the proposed framework provides up to 11.6% energy savings and up to 10.4%
improvement of QoS level compared to existing conventional solutions under
different number of VMs in the system and up to 96% money saving in the electricity
bill.
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