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Abstract

This chapter summarizes more than 20 years of experience by the virtual proto-
typing group of Synopsys in the commercial deployment of Hardware/Software
Codesign (HSCD). The goal of HSCD has always been to reduce time to
market, increase design productivity, and improve the quality of results. From
all the different facets of HSCD, virtual prototyping – complemented by links to
emulation and FPGA prototyping – has so far proven to achieve the best return of
investment with respect to these goals. This chapter first gives an overview of the
main virtual prototyping use cases in the context of an end-to-end prototyping
flow, which also includes physical prototyping and hybrid prototyping. The
second part introduces the SystemC Transaction-Level Model (TLM) standard
and the Unified Power Format (UPF) as the main modeling languages for the
creation of Virtual Prototypes (VPs) and system-level power models. The main
body of this chapter focuses on the commercially deployed virtual prototyping
use cases for architecture exploration and system-level power analysis.
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DMI Direct Memory Interface
DRAM Dynamic Random-Access Memory
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECU Electronic Control Unit
FPGA Field-Programmable Gate Array
FT Fast Timed
GFRBM Generic File Reader Bus Master
GPU Graphics Processing Unit
HAPS High-performance ASIC Prototyping System
HDL Hardware Description Language
HSCD Hardware/Software Codesign
HW Hardware
IP Intellectual Property
ISS Instruction-Set Simulator
LT Loosely Timed
MCO Multi-Core Optimization
MPSoC Multi-Processor System-on-Chip
OS Operating System
PMU Power Management Unit
QoS Quality of Service
RFTS Run Fast Then Stop
RTL Register Transfer Level
SCML SystemC Modeling Library
SLP System-Level Power
SMP Symmetric Multi-Processing
SoC System-on-Chip
SW Software
TCL Tool Command Language
TLM Transaction-Level Model
UPF Unified Power Format
VPU Virtual Processing Unit
VP Virtual Prototype
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34.1 Introduction

In a traditional development process, the hardware/software integration and valida-
tion can only start after the hardware development is finished and the first silicon
samples are available. This forces a sequential dependency between the Hardware
(HW) and Software (SW) development phases and puts a lot of stress on the overall
schedule. Prototyping offers a set of methodologies to overcome this dependency
by “shifting left” the architecture design and software development flows.

Today, the following variants of prototypes are in deployment by semiconductor
and electronic system companies:

• Virtual prototypes are fast, executable models of the System-on-Chip (SoC).
They are typically created from SystemC Transaction-Level Models (TLMs) that
are delivered by semiconductor Intellectual Property (IP) companies and are
extended with models that are specifically created for the SoC in development
(see Sect. 34.2.1). Different types of Virtual Prototypes (VPs) are created based
on the requirements for simulation speed and timing accuracy: Synopsys offers
Platform Architect for Multi-Core Optimization (MCO) for the creation and
usage of VPs for architecture design as well as VirtualizerTM for software
development related use cases.

• Physical prototypes provide specialized FPGA-based systems and tools to
execute Register Transfer Level (RTL) implementations at high speeds. This
way, Field-Programmable Gate Array (FPGA) prototypes are useful for system
validation and software development purposes. Synopsys provides the HAPS R�

high-performance Application-Specific Integrated Circuit (ASIC) prototyping
system.

• Hybrid prototypes combine a VP with a physical prototype; see also Sect. 3 in
the �Chap. 37, “Control/Architecture Codesign for Cyber-Physical Systems”.
For target use cases like IP driver development, hybrid prototypes offer users a
way to optimize the prototyping setup based on the availability of TLMs and RTL
implementations. Taken together, Synopsys VirtualizerTM and HAPS R� provide
a hybrid prototyping environment.

All three types of prototypes typically require a dedicated team inside a semicon-
ductor organization that specializes in providing these prototypes to the actual end
users.

http://dx.doi.org/10.1007/978-94-017-7267-9_37


1130 T. Kogel

Fig. 34.1 Design tasks and solutions in end-to-end prototyping

As depicted in Fig. 34.1, these prototyping methods can be applied for multiple
tasks in a software-driven SoC design flow: architecture design, software develop-
ment and testing, HW/SW integration, and system validation. The biggest value is
achieved when they are applied across all the stages of SoC design.

The following paragraphs review these tasks individually.

34.1.1 Architecture Design

Architect teams are typically working in several stages and have projects that deal
with generation N+2, where N refers to the current SoC generation in production.
Traditionally, architects rely on past experience and static spreadsheet analysis for
estimating power and performance of the next- or second-next-generation product.
This manual and static analysis is becoming increasingly difficult due to the
increasing complexity of electronic products. Virtual prototyping enables architects
to simulate the impact of critical application use cases and of specific design deci-
sions on the overall performance and power consumption; see also the paragraph
on architectural virtual platforms in Sect. 2 of �Chap. 33, “Hardware/Software
Codesign Across Many Cadence Technologies”.

To benefit from early architecture exploration using a VP, an architect needs
three fundamental ingredients: (1) performance models, (2) power models, and (3)
application scenarios.

Performance models describe relevant components of the SoC, such as the
interconnect and memory subsystems, with sufficient accuracy to enable critical
design decisions based on the latency and throughput data provided by simulating
these performance models.

Power models are needed to also analyze the expected power and energy
consumption for the main components that consume power on the SoC. These power

http://dx.doi.org/10.1007/978-94-017-7267-9_33
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models rely on power modeling standards [11] augmented with power consumption
data from IP data sheets and with measurements during the implementation steps
from previous projects.

Finally, the processing and communication requirements of the software that will
actually run on the chip needs to be described at an abstract level in terms of an
application workload model. Virtual prototyping offers ways to either manually cap-
ture these task-based workload models or to extract them from software execution
traces.

The result is that the performance and power of the architecture can be explored
more accurately compared to relying on static spreadsheet-based exploration.
Thanks to their flexibility and high simulation speed, VPs enable the simulation of
orders of magnitude more architecture variations compared to doing the same at the
RTL. This typically leads to double-digit gains in terms of power and performance
trade-offs, reducing the cost and excessive power consumption of over-designed
products. Section 34.3 elaborates more on the different aspects of virtual prototyping
for architecture analysis and optimization.

34.1.2 Software Development and Testing

The software development schedule can achieve the biggest time to market gains by
applying prototyping. Starting software development earlier and, thus, shortening
the overall schedule as well as enabling earlier feedback between hardware and
software teams is a real game changer.

For many years, semiconductor companies have been using only physical
prototyping to do software development, typically for IP- and subsystem-related
software. Most of them have adopted commercial FPGA-based prototyping so-
lutions to benefit from existing design and debug automation tools to be able to
achieve the fastest time to first prototype and optimize for highest performance (see
also Sect. 4 in �Chap. 33, “Hardware/Software Codesign Across Many Cadence
Technologies”). The market is now shifting rapidly to using integrated commercial
solutions, comprised of hardware and software tools to achieve a high-performance
prototype in weeks rather than months, hence, significantly increasing the useful
time of prototyping before silicon arrival.

With the advent of larger FPGAs, these physical prototyping systems are usable
to prototype much larger portions of the SoC, including Graphics Processing
Units (GPUs), enabling more software development early in the design cycle.
While FPGA-based prototyping has proven to provide high value by enabling early
software development, virtual prototyping has been adopted by many semiconductor
vendors as a complimentary prototyping solution. By creating and deploying VPs,
semiconductor vendors are able to further shift left their software development and
start more than 12 months before silicon availability.

Where FPGA-based prototyping offers key benefits enabling HW/SW integration
and especially system validation, virtual prototyping provides key capabilities to
accelerate software development and scale software testing. Since VPs are based
on models, they are not dependent on RTL implementation availability, and, hence,

http://dx.doi.org/10.1007/978-94-017-7267-9_33
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they enable software development much earlier in the design cycle. Another benefit
of using models rather than RTL execution on a physical prototype is the improved
control and debug visibility provided by VPs. They also allow for fault injection to
test how the system will react [21], and they scale more easily to massive parallel
testing and, thus, help increase software quality.

As shown in Fig. 34.2, virtual and physical prototyping environments can be
merged into a hybrid prototyping environment, which offers a great solution for
IP-specific software bring up. Early availability of models and thus VPs for new
processors combined with IP mapped on an FPGA offer an early and functionally
complete solution for IP-specific software development, testing, and HW/SW
integration.

34.1.3 Hardware/Software Integration and System Validation

Hardware/software integration typically starts at the subsystem level on an FPGA-
based prototype, when RTL IP blocks or subsystems that are considered to be
relatively stable are integrated with firmware or drivers. The bring-up time can
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be significantly reduced when VPs or hybrid prototypes are used for the software
development so that the software is more or less functionally complete by the time
of the HW/SW integration step.

System validation deals with removing the uncertainty of how the SoC with the
software stack will perform in the target environment. The physical prototype is
plugged into the real-world environment and performs realistic scenarios. Examples
of this can be system validation of a networking SoC inside an actual networking
device for which execution speeds of multiple 10s of MHz are required. Or
validation of application processor SoCs that have to support many different
interface protocols such as USB, eMMC, and others.

34.1.4 System-Level Power Analysis

Energy proportional computing is a key concern for many electronic products, most
notably for any battery-driven mobile consumer device [6]. Any device should
consume only as much power as absolutely required to perform a certain task. The
increasing number of Central Processing Units (CPUs) with their high frequencies,
the increasing size of LCD screens and cameras, and the multitude of radios and
sensors are driving the total power consumption beyond what is acceptable by the
consumer. Only proper management of the power states within these devices allows
minimizing the total power consumption.

Both architecture and software have a significant impact on power consump-
tion:

• The key decisions impacting power consumption are taken during the archi-
tecture definition phase. For example, a relevant use case for a smartphone
could be the streaming of a video via the cellular network and displaying it
in HD resolution on a connected LCD screen. Each of the use cases requires
the services of a certain set of components. This use case analysis drives the
partitioning of the device into power domains and their respective operating
points. Typically, the supply voltage and frequency of the power domains can
be controlled individually to provide the flexibility to later optimize the power
dissipation and energy consumption of the different use cases. The optimal
definition of power domains and operating points is key to achieve the goal of
an energy proportional system.

• Software plays a significant role in the device power management at run time.
The software controls and drives hardware components which actually consume
power. Software stacks such as Android/Linux with millions of lines of code
implement various power saving strategies on almost each software layer starting
at the driver and ending up in the application layer [7]. A software power
inefficiency or malfunction can quickly cause a 5� drop in standby time.

Power consumption is an orthogonal aspect, which caters to all prototyping use
cases. Therefore the modeling of the power consumption should be as much as
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possible independent of the actual prototyping itself. Section 34.2.3 shows how to
add component-level power models as an overlay to a VP based on the IEEE 1801-
2015 UPF-3.0 standard [11]. Using such power models enables architects as well
as software developers to take the impact of their design decisions and software
implementation on the power consumption into account.

34.1.5 Summary

By leveraging the different technologies in the context of an end-to-end prototyping
solution, the typical design time line is significantly reduced.

The shift left impact of end-to-end prototyping not only reduces the overall
design time line and hence the time-to-market but also helps companies that are
deploying this methodology validate that their products better match the original
design requirements. By optimizing the architecture early on in context of the
software scenarios and designing the hardware and software side by side, the
resulting product is better balanced.

By now, virtual prototyping for early software development is already a widely
deployed methodology [4,23]. Refer also to Sect. 2 in �Chap. 33, “Hardware/Soft-
ware Codesign Across Many Cadence Technologies”. Therefore the main body of
this chapter focuses more on the virtual prototyping use cases for architecture ex-
ploration and system-level power analysis. Before going there, the next section first
introduces the modeling methodologies, which are the foundation for creating VPs.

34.2 Modeling for Virtual Prototyping

Modeling is the key initial task for creating a VP. This task requires the specification
of the system or SoC to be modeled, the modeling tools, and knowledge of modeling
languages. This section first focuses on SystemC TLMs, which are the established
lingua franca for the creation of VPs. The second part gives an introduction to UPF-
3.0, the new modeling standard for system-level power analysis.

34.2.1 The SystemC Transaction-Level Modeling Standard

The IEEE 1666 standard for SystemC and TLM defines the widely accepted
modeling language for the creation of VPs [12]. SystemC is a C++ library providing
a set of classes to model system components and their communication interfaces,
plus a cooperative multitasking environment to model concurrent activity in a
system. On top of SystemC, the TLM library supports a modeling style where the
communication interfaces between system components is not based on individual
signals, but on a set of function calls and a payload representing the full semantics
of the communication interface. This reduces the number of synchronization points

http://dx.doi.org/10.1007/978-94-017-7267-9_33
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between communicating component models, which in turn greatly improves the
overall speed of the event-driven SystemC simulation kernel. Since 2008, the TLM-
2.0 standard provides a well-defined set of Application Programming Interfaces
(APIs) and payload constructs to create interoperable TLMs for memory-map-based
communication protocols.

The IEEE Std 1666 TLM-2.0 Language Reference Manual [12] identifies the
following coding styles:

• The Loosely Timed (LT) modeling style aims to maximize the simulation
speed of a model by abstracting the communication to the highest level and by
minimizing the synchronization overhead.

• The Approximately Timed (AT) modeling style focuses on the timing of the
transactions between different components in a system by providing multiple
timing points for each transaction.

As illustrated in Fig. 34.3, both LT and AT modeling styles use the same concept
of sockets, generic payload, and an extension mechanism for modeling memory-
mapped communication protocols. The extension mechanism allows adding of
custom attributes to the generic payload, which is important to model protocol-
specific attributes, like the transaction id in the Advanced eXtensible Interface (AXI)
protocol [1]. This common infrastructure enables the smooth integration of models
using different modeling styles. On the other hand, LT and AT leverage specific
mechanisms to cater to the specific requirements of different virtual prototyping use
cases for software development and architecture analysis.

Fig. 34.3 TLM-2.0 modeling styles and mechanisms
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34.2.1.1 Loosely Timed Modeling Style
VPs for software development are created in order to provide an abstract model of
the target hardware platform, which can execute the unmodified software. The key
requirements are:

• Simulation speed: It is important that the VP can execute software at a speed that
is as close as possible to real time of the actual target device.

• Register accuracy: In order to run embedded software correctly, the memory and
memory-mapped register layout and content should be modeled.

• Functional fidelity: All relevant responses of the target hardware should be
modeled.

The LT modeling style is intended to maximize the execution speed while providing
the minimal level of timing fidelity. The key concepts in the TLM-2.0 standard
to achieve high simulation speed on top of the event-driven SystemC simulation
kernel are temporal decoupling, the Direct Memory Interface (DMI), and blocking
communication:

• Temporal decoupling allows initiator components, like processor models, to run
ahead of the global time for a maximum quantum of time before synchronizing
with the SystemC kernel; see also Sect. 1.3 in �Chap. 19, “Host-Compiled
Simulation”.

• DMI allows initiator components to bypass the regular TLM interface and
directly access instruction and data memory via the simulation host address.

• For non-DMI access to memories and peripheral registers, the simple blocking
TLM transport interface is used. As depicted on the left side of Fig. 34.4, LT
communication is modeled using a single function call.

Fig. 34.4 TLM-2.0 Loosely Timed (left) and Approximately Timed (right) protocols

http://dx.doi.org/10.1007/978-94-017-7267-9_18
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The LT modeling style reflects the hardware interactions with software and how
register content is updated. For example, timer interrupts happen roughly at the
intended time to simulate the timing calibration loop in a Linux boot or to execute
real-time software in automotive Electronic Control Units (ECUs).

34.2.1.2 Extended Loosely Timed Modeling Style
The TLM-2.0 generic payload only covers the common subset of transaction
attributes like address, data, and burst length. The extension mechanism allows to
include additional protocol-specific attributes to the generic payload, e.g., security
extensions, atomic transactions, coherency flags, etc. Based on this extension
mechanism, owners of on-chip bus protocols have defined a layer on top of TLM-2.0
for creating protocol-specific models in a interoperable way [2].

The loosely timed modeling style has been very successful in fostering the
availability of interoperable models from all major IP providers [3, 25]. The
availability of LT TLMs for off-the-shelf IP blocks has significantly reduced the
investment for creating VPs for software development.

34.2.1.3 Approximately Timed Modeling Style
VPs for early architecture analysis and exploration are created in order to provide an
abstract model of the target hardware, which reflects relevant performance metrics,
e.g., bandwidth, throughput, utilization, and contention. The key requirements
are:

• Scalable timing accuracy: The accuracy requirements depend on the goal of the
project. For example, an abstract model of a DRAM is good enough for exploring
HW/SW partitioning, but a highly accurate model is needed for optimizing the
configuration of the DRAM memory controller.

• Compositional timing: The end-to-end performance of a system can be obtained
from assembling a set of components which only model their individual timing.

Compared to the LT modeling style described previously, the AT modeling style
is intended to model the communication with more detailed timing. As shown on
the right side of Fig. 34.4, a single transaction is broken into multiple phases to
reflect the timing of a bus protocol in more detail. The non-blocking TLM transport
interface is used to mark start and end of each phase.

The TLM-2.0 initiator and target sockets bundle a forward and backward
path in one interface to enable bi-directional communication. The initiators calls
nb_transport to mark the begin of a request phase and sometime later the target
calls nb_transport to mark the end of a request phase. As depicted in Fig. 34.4, the
TLM-2.0 standard defines an Approximately Timed Base Protocol (AT-BP) with a
request and response phase marked by four distinct timing points. This enables the
modeling of basic communication aspects like throughput, latency, and transaction
pipelining.
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34.2.1.4 Extended Approximately Timed
The TLM-2.0 AT-BP has limited expressiveness when it comes to accurately
representing any real-life on-chip bus protocols:

• It does not provide with timing points for the individual data beats of a
burst transfer. This becomes particularly problematic when interfacing TLM-2.0
AT-BP with Cycle Accurate (CA) or RTL models.

• It requires all address and data information to be available for writes at the start
of the transaction.

• It is not possible to have concurrent read and write requests, as required by, e.g.,
the AMBA AXI protocol [1].

To overcome these deficiencies of the AT-BP, the TLM-2.0 standard provides
an extension mechanism for the AT modeling style, which enables the definition
of additional protocol phases and timing points. Together with the extension
mechanism for the generic payload, which is also used for loosely timed modeling,
this enables the more accurate modeling of on-chip bus protocols. In fact, the AT
extension mechanism allows the definition of fully CA modeling of real-life bus
protocols.

The issue is that protocol-specific extensions break the interoperability between
AT-BP and extended AT models. Synopsys has defined a Fast Timed (FT) modeling
infrastructure. FT is based on the TLM-2.0 AT mechanism and enables the definition
of more accurate protocols while preserving interoperability with the AT-BP:

• Each protocol extends the generic payload with an attribute indicating the current
state in the protocol state machine.

• For each protocol, protocol-specific attributes are added as needed, e.g., for
cacheability, out-of-order transactions, etc. This should be limited to those
attributes that are not already covered by the TLM-2.0 AT-BP. These extensions
are ignorable in the sense that a model should assume they have a default value
in case they are not present in the payload.

The idea is that FT protocols remain compatible with the TLM-2.0 AT-BP and rely
on extended sockets and payload to provide the necessary protocol conversion logic
so that conversions are only done when required and can be inserted automatically.

34.2.1.5 Summary
The goal of the IEEE 1666 TLM-2.0 standard is to enable model interoperability at
the level of SoC building blocks, e.g., processors, buses, memories, peripherals. For
this purpose, TLM-2.0 standardizes the modeling interface for memory-mapped bus
communication, which is the prevalent SoC interconnect mechanism. The LT and
AT modeling styles cater to the different requirements of different use cases like
software development and architecture analysis. Although AT allows more detailed
timing modeling than LT, the modeling style of the communication interface should
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not be confused with the abstraction level or timing accuracy of a model itself. LT
and AT only refer to the communication aspect, whereas abstraction and timing
accuracy also depend on the timing and granularity of the structure and behavior
inside the component.

34.2.2 Modeling Objects and Patterns

Thanks to the TLM-2.0 interoperability standard, today many TLM-2.0 compliant
models of standard SoC components like processors, buses, and memories are
available from the respective IP provider. However, there are still a significant
number of custom building blocks, e.g., timers, interrupt controllers, Direct Memory
Access (DMA) controllers, or HW accelerators, for which specific models need to
be created. TLM-2.0 defines the interoperability standard, but it does not prescribe
how to model the internal behavior. In order to reduce the actual modeling effort,
a well-defined modeling methodology and a library of reusable modeling objects
is required. In larger companies, this is especially important to unify the modeling
style across distributed modeling teams.

This section explains the concept of modeling objects and patterns based on the
publicly available SystemC Modeling Library (SCML) from Synopsys [27].

34.2.2.1 The SystemC Modeling Library (SCML)
SCML is a layer on top of SystemC and TLM-2.0. It hides a lot of the complexity
and common code that is required to correctly manage TLM-2.0 transactions, and it
provides with modeling objects that handle common aspects of VP modeling. The
modeling objects in the SCML promote the separating communication, behavior,
and timing [14]. This way, the models created based on this methodology support
different modeling styles like LT, AT, and FT.

Figure 34.5 illustrates the coding style, which is enabled by the SCML modeling
objects:

• The interface to the interconnect model is separated from the actual behavior of
the component. For the behavior of the component, a generic TLM-2.0 compliant
LT, AT, or FT bus interface can be used.

• The interface between the extended protocol and the generic TLM-2.0 protocol
used by the SCML storage objects is implemented by a protocol adaptation
layer.

• The actual behavior of the component can be separated into a storage and
synchronization layer and the pure functional behavior of the model.
– The storage and synchronization layer stores the data of write transactions and

returns the data in case of read transactions.
– The behavior models the algorithm or state machine of the component. The

behavior is triggered when certain memories or registers in the storage layer
are accessed.
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Fig. 34.5 SCML-based modeling pattern for target peripherals

• Finally, the different needs in timing accuracy can be addressed by separating the
code that models the timing of the component from the pure functional behavior.
SCML supports this separation by providing modeling objects for each of these
layers.
– The adaptation layer handles communication-related and data-independent

timing aspects, e.g., the duration of a protocol phase or the number of
outstanding transactions.

– The behavior layer handles processing-related and data-dependent timing
aspects.

The SCML modeling library greatly helps to reduce the modeling effort. In
the context of commercial virtual prototyping projects, the effort for creating
models can be further reduced by using model generation tools. For example, an
SCML-based peripheral model can be automatically generated from an IP-XACT
description of the register interface. Note that for the purpose of generating the
register interface of a peripheral model, the IP-XACT importer only takes a subset
of the IP-XACT standard into account, which is related to meta-data, register, and
parameter information and which are supported by the SCML modeling objects.

34.2.3 System-Level Power Analysis

So far, the focus of this section has been on modeling functionality and timing,
where the requirements are quite different depending on whether the VP is used for
early architecture analysis or for software development. This section shows how to
enable early power analysis irrespective of virtual prototyping use case.
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The annotation of power information is performed through the use of system-
level IP power models, which are power models of IP components specifically for
use in system-level design. The format of system-level IP power models is defined
by the IEEE 1801-2015 standard [11]. Originally the IEEE 1801 Unified Power
Format (UPF) was defined to capture power intent for hardware implementation and
verification. UPF is a format based on the Tool Command Language (TCL) [28] and
defines the power supply and low power details as an overlay to the actual Hardware
Description Language (HDL) implementation [10]. The new System-Level Power
(SLP) features of the 1801-2015 “UPF-3.0” release extend the UPF TCL syntax to
model power consumption as an overlay to a “host.” Figure 34.6 shows an example
of a VP with a UPF-3.0 system-level power overlay model. In this context, the UPF-
3.0 power model calculates power consumption by observing the dynamic activity
in the VP.

34.2.3.1 UPF-3.0 System-Level IP Power Models
A context-independent UPF-3.0 system-level power model comprises the following
aspects:
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• A set of buildtime and run-time parameters, which influence the power consump-
tion of the respective IP. Examples of buildtime parameters are technology, size
of a memory, or number of CPU cores. Examples of run-time parameters are
voltage, frequency, or temperature.

• The set of relevant power states of the IP. These are not necessarily identical
with the power supply states (e.g., off, sleep, active) but can also refer to
operating modes with distinct power consumption signatures, e.g., a CPU in WFI
(Wait For Interrupt) state or a video IP in encode or decode state.

• A set of functions to calculate the power consumption of the IP in the respective
state and based on the set of parameters. The power functions need to separately
return static and dynamic power consumption.

• The set of legal and illegal state transitions.

Now that the IEEE standard is ratified, it is expected that system-level IP power
models are developed and distributed by IP teams (whether they be IP vendors or IP
implementation teams within larger platform development groups).

34.2.3.2 UPF-3.0 System-Level Power Example
The example of a simple CPU power model in Fig. 34.7 illustrates the basic concepts
of a UPF-3.0 power model:

• The power model is defined inside the begin_power_model and
end_power_model commands.

• The create_power_domain command allows to represent hierarchy inside
the power model, e.g., to represent different power states for the core and the
cache inside one power model.

Fig. 34.7 Example of context-independent UPF-3.0 system-level power model
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• The add_parameter command in the CPU power model defines three static
buildtime parameters and three dynamic run-time parameters.

• The add_power_state command in the CPU power model defines three
power states. The power consumption for the state OFF state is zero. For the other
two states, the power consumption is calculated by the respective wfi_power
and active_power functions. Both functions are sensitive to all of the three
run-time parameters. This implies that the power functions need to be reevaluated
whenever any of the run-time parameters in the sensitivity list changes.

• The add_state_transition command defines the set of legal and illegal
state transitions.

The actual power functions are implemented outside of the scope of the actual power
model and therefore not shown in this example.

In a second step, this context-independent power model can be instantiated in the
context of a VP, which contains a TLM of a CPU. The corresponding integration
layer of the CPU power model is depicted in Fig. 34.8

• The apply_power_model UPF command maps the run-time parameters in
the CPU power model to corresponding signals of the CPU TLM.

• The same command is used to initialize the buildtime parameters in the CPU
power model with static configuration parameters of the CPU TLM.

• The add_edge_expression command defines the conditions that cause a
state transition in the power model.

In this simplistic example, the power model is triggered from a signal port of the
TLM. This illustrates that the concept of UPF-3.0 IP power model is not limited
to a system model but can be also applied to a RTL or gate-level representation
of a component running in an HDL simulation, emulation, or FPGA prototyping
environment. On the other hand, in a virtual prototyping environment, the transition
of a power state can be triggered from all kinds of observable events in the TLM,
e.g., the start or end of a transaction, a register access, an event on an analysis

Fig. 34.8 Example of context-dependent UPF-3.0 integration layer
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instrumentation point, a specific software symbol executed on an Instruction-Set
Simulator (ISS), etc. Due to the tool-specific nature of the edge expression, this
command is so far not part of the official UPF standard and therefore implemented
with a Synopsys-specific command.

Taken together, the context-independent power model and the context-dependent
integration layer create a power analysis overlay model of a VP as depicted in
Fig. 34.6.

34.2.3.3 Accuracy Considerations
The goal of system-level power analysis is not to provide 100% accurate power
measurements but to replace high-level power estimation currently done with static
spreadsheets. The actual accuracy of system-level power analysis depends mainly
on the granularity of the power model and on the characterization of the power
functions:

• The granularity of a SLP model is determined by the level of detail in the power
model. For example, a CPU power model can be modeled as
– a simple monolithic state machine as shown in the example above.
– multiple domains for cores, cache, coprocessor, etc., each with their own state

machine.
– a detailed instruction-level power model, which calculates power based on the

specific energy of each executed instruction.
• The characterization determines how the power expressions calculate the power

consumption based on power estimates and/or measurements.
– An early power characterization can be defined using high-level estimates,

e.g., based on the extrapolation of power measurements from previous
projects.

– Once RTL and technology libraries are available, RTL or gate-level power
estimation tools can be used to generate look-up tables, which determine
power consumption based on design parameter configuration and operating
mode.

– Post-silicon power measurements can still be valuable to characterize the
power consumption of a reusable IP block for usage in subsequent projects.

Despite the high level of abstraction, it turns out that VPs with system-level
power analysis models provide power estimates in the order of 85–90% accuracy,
which are good enough to steer architecture design decision and to guide software
development in the right direction [8, 22].

34.2.4 Summary

This section provided an overview of the modeling methodologies enabling virtual
prototyping. The first part surveyed the IEEE 1666 SystemC Transaction-Level
Model (TLM) standard, emphasizing the Loosely Timed (LT) and Approximately
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Timed (AT) modeling styles and their respective extensions. The second part gave
an introduction to the new IEEE 1801-2015 UPF-3.0 modeling standard for system-
level power analysis. The subsequent section elaborates on how these modeling
techniques are applied to the creation and usage of VPs for early architecture
analysis.

34.3 Virtual Prototyping for Architecture Design

Incorporating more and more functions and features into electronic products directly
translates into increasing SoC design complexity. Devices integrate a multitude
of heterogeneous programmable cores to achieve the necessary flexibility and
power efficiency. The diverse communication requirements of all these cores lead
to a complex interconnect and memory infrastructure to provide the required
storage and communication bandwidth. For this purpose, the SoC interconnect and
memory subsystem feature complex mechanisms like distributed memory, cascaded
arbitration, and Quality of Service (QoS). As a result, dimensioning the SoC
architecture, and in particular the interconnect and memory infrastructure, poses
a variety of formidable design challenges:

Large Design Space
Due to the complexity and configurability of the SoC infrastructure IP (inter-
connect, memory), tailoring the SoC infrastructure to the specific needs of the
product requirements is a nontrivial task.

Dynamic Workload
Multiple applications running at different points in time are sharing a limited set
of available resources. Hence, the workload on the SoC architecture is difficult
to estimate due to the multitude of product use cases.

High Price of Failure
A weakly dimensioned SoC architecture leads to insufficient product perfor-
mance (under-design) or excessive cost and power consumption (over-design).
Both cases hamper the market opportunity of the final product.

High Potential for Optimization
All the design decisions, which impact power, performance, and cost in a big
way, need to be taken at the beginning of the development process.

This section first provides an introduction to virtual prototyping for architecture
design and then dives into more detail about specific methods for architecture
exploration, optimization, and validation.

34.3.1 Introduction

The introduction first discusses traditional methods for architecture design and then
introduces a state of the art flow and modeling methodology based on a commercial
virtual prototyping solution.
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34.3.1.1 Traditional Methods
Architecture definition has always been a necessary step in any SoC design project.
Traditionally, the performance has been analyzed using spreadsheets or detailed
hardware simulation. However, the design complexity has reached a level where
these methods are not appropriate anymore. On the one hand, static spreadsheet
analysis does not take the dynamic behavior of multiple software applications and
multiple levels of scheduling and arbitration in the executing hardware platform into
account. This bears a great risk of mis-predicting the actual performance, which
can lead to under- or over- design of the system architecture. On the other hand,
hardware simulations are available late in the cycle, run very slow, and do not
provide system-level performance analysis results. Hence, this is also not a suitable
approach for early architecture analysis and optimization.

34.3.1.2 Virtual Prototyping Flow for Early Architecture Analysis
Synopsys Platform Architect for Multi-Core Optimization (MCO) is a virtual
prototyping environment for early and accurate system-level performance analysis.
This comprises libraries of simulation models for all relevant SoC components as
well as tools for the assembly, simulation, and analysis of complete SoC platforms.
A typical setup for memory subsystem performance analysis and optimization
is shown in Fig. 34.9 below. The following paragraphs briefly describe the key
elements in the model library and the architecture analysis flow. Please refer to [15]
for a more complete introduction.

The flow to systematically analyze and optimize the architecture in Platform
Architect is depicted in Fig. 34.9:

Fig. 34.9 Architecture analysis and optimization flow
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1. Platform Assembly and Workload Modeling
In the first step, the SoC performance model is assembled, connected, and
configured in the Platform Architect authoring environment. This is quickly
done based on the available libraries for workload, interconnect, and memory
subsystem models.

2. Simulation Sweep
Platform Architect generates a SystemC-based simulation of the SoC perfor-
mance model. The simulation records a large variety of power and performance
metrics into an analysis data base.

3. Performance Analysis
The recorded data can be visualized and post-processed in the Platform Architect
analysis tool. Various charts for throughput, latency, utilization, and contention
allow the identification of performance issues. We can zoom on the time axis
and further slice the results into the contribution from individual components for
detailed root cause analysis.

4. Sensitivity Analysis
Apart from single simulation runs, Platform Architect can also generate parame-
ter sweeps, where a set of simulations is executed with user-defined configuration
scenarios. This allows to systematically analyze the impact of the selected design
parameters on high-level performance metrics. Each simulation result can be
analyzed individually, but the results from all simulations are also aggregated into
pivot chart tables for further post-processing in spreadsheet tools, e.g., Excel.

5. Are we done yet?
Based on the analysis results, the architect needs to decide if the performance
requirements in terms of throughput and latency cost are met. If this is confirmed,
there might still be potential to improve utilization or to reduce contention in
order to further optimize headroom, cost, or power consumption. In those cases,
the iterative optimization loop continues by further modifying configuration
parameters and setting up simulation sweeps until the design goals are reached.

6. Hand-off
At the end of the optimization process, the final design configuration is handed
off to the implementation team. As soon as the implementation becomes
available, it can replace the system-level performance model with the RTL
model. This allows the validation of the analysis results with the highest possible
accuracy.

This generic iterative exploration and optimization flow can be applied to all kinds of
architecture design problems. The next paragraph elaborates on how the architecture
model should be constructed, depending on the specific objective of the architecture
design project.

34.3.1.3 Modeling Methodologies for Early Architecture Analysis
The dimensioning of the SoC architecture is the first step in a design project. As
depicted in Fig. 34.10, the input comes from the marketing requirements in terms
of required features, supported features, performance numbers, and product cost.
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Fig. 34.10 Modeling methodology for different architecture design use cases

The outcome of the architecture design process is a detailed specification of the
implementation. In between, three differentiated use cases have emerged over the
last two decades of commercial deployment of architecture design methodologies.

All three steps include the modeling of the interconnect and memory architecture,
because in many cases, this is the primary objective of the architecture design
project. This is because individual IP blocks and subsystems can be developed
independently, but when they are integrated into the SoC platform, the interconnect
and memory subsystems need to satisfy the accumulated requirements from all IPs.
Hence, the analysis of the interconnect and memory performance is typically the
“common denominator” of all architecture design use cases.

The fundamental difference between the architecture design use cases is in how
to model the remaining IP blocks and subsystems in the SoC:

• For the purpose of architecture validation, the actual software is executed on a
fully functional and timing accurate VP, which is similar in nature to a VP for
early software development: Instruction-Set Simulators (ISSs) are used for all
programmable components, and functional and bit-accurate peripheral models
are used for the nonprogrammable components. In addition, all models need to
be enhanced with timing, which greatly increases the modeling effort and impacts
the simulation speed.

• For the purpose of early architecture analysis and interconnect/memory opti-
mization, the IP blocks are represented as abstract workload models. These
task-based or trace-based workload models are nonfunctional and only represent
the processing and communication requirements of each IP component, irre-
spective of whether they are programmable or not. The nonfunctional modeling
of workloads is the key concept to achieve the necessary flexibility, modeling
productivity, and simulation speed with sufficient temporal accuracy for early
architecture analysis and exploration.
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The following sections discuss the different architecture design use cases in more
detail.

34.3.2 Software-Based Performance Validation

Historically, performance validation was the first commercially deployed archi-
tecture design use case. The idea is to build a functional and cycle-accurate VP
of the complete SoC. The programmable IP subsystems require cycle-accurate
representation of the CPU, capable of running the actual software. Depending
on availability, this can be a Cycle Accurate (CA) SystemC TLM Instruction-Set
Simulator (ISS) or the RTL of the CPU running in cosimulation or coemulation
mode with the SystemC TLM platform. The nonprogrammable IP blocks need to
be modeled in terms of CA SystemC TLMs. The benefit of such a fully accurate VP
is that it allows the early validation of the final SoC performance. The analysis
visibility into hardware and software enables the identification of performance
issues and tuning of design and configuration parameters to optimize performance.

However, the overall return of investment (RoI) has proven to be challenging,
especially for the growing complexity of complex many-core SoC platforms:

• Creating such a fully functional and cycle-accurate platform model requires a lot
of initial modeling effort. Even if all models are available, it can be cumbersome
to configure the software such that all the relevant traffic scenarios are covered.

• The simulation speed and the turnaround time for any change to the hardware or
software is very slow.

For these reasons, performance validation is typically done using emulation or
hardware prototyping methods. A new trend is hybrid emulation and prototyping,
which allows to combine the best of both worlds:

• Leverage emulation and hardware prototyping for large IP blocks, e.g., CPU,
GPU, and custom IP, to achieve reasonable simulation speed and avoid the effort
to create cycle-accurate models.

• Leverage virtual prototyping for interconnect and memory subsystem to analyze
and optimize performance critical parameters with high analysis visibility and
fast turnaround time.

Architecture analysis with VPs starts very early in the development process. At
this point, neither the software nor the RTL of the major IP blocks is available.
Therefore, initial performance analysis is carried out using workload models instead
of real software. As the platform specification and implementation matures, the
workload models can be incrementally replaced by the cycle-accurate functional
models or the RTL. This gradually converts the architecture exploration model on
the left side of Fig. 34.10 into a cycle-accurate VP as depicted on the right. This way,
the initial assumptions in the workload model can be validated, and the architecture
can be fine tuned.
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The following sections describe in more detail the creation of VPs for architec-
ture analysis using trace-based and task-based workload modeling.

34.3.3 Trace-Based Interconnect and Memory Optimization

In many cases, the interconnect and memory optimization is the key concern of
the architecture definition phase. For this purpose, it is often sufficient to model
the workload of all relevant initiator components in terms of transaction trace files,
which are replayed by Generic File Reader Bus Masters (GFRBMs). Trace-based
workload modeling has proven to be the most productive methodology to quickly
and accurately analyze and optimize this critical part of the SoC architecture. Traces
are available early in the development process, long before the actual software ex-
ists. They can be easily recorded or generated, they execute fast, and they represent
the transaction sequence and timing of the real application with sufficient accuracy.

34.3.3.1 Traffic Generation
A GFRBM is sufficient to model the traffic generated by all kinds of initiator
components like CPU, GPU, DMA, etc. The critical portion is the creation of elastic
traces, which accurately represent the actual traffic of the corresponding initiator
component. Here elasticity refers to the requirement, that the trace generator needs
to respond to a change in the interconnect and memory architecture in the same
way as the corresponding initiator component. An important aspect of elasticity
is the synchronization of different traffic flows: If one traffic flow is triggered by
another flow, then this dependency needs to be explicitly represented in the trace-
based workload model. An example of such an elastic trace is shown in Fig. 34.11.

Fig. 34.11 Elastic trace-based workload model (top) with deadline analysis (bottom)
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The upper part of Fig. 34.11 shows an example of the transaction-level trace
format that is executed by the GFRBM. Each traffic flow is described as a
sequence of reads and writes with the relevant transaction attributes, e.g., burst size,
command, address, byte enables, etc. As opposed to using absolute time stamps,
the idle command defines the relative number of cycles between two subsequent
transactions.

Multiple traffic flows can be synchronized by using the raise and wait for internal
and external interrupt signals. In the example above, flow 0 on the GPU only starts
after flow 0 on the camera raises interrupt 0. In the same way, flow 1 on the GPU
waits for flow 0 to finish.

It is also important to capture performance constraints of traffic flows. For
example, the cam_0 timer in Fig. 34.11 expires after 9000 cycles to indicate that
the transaction sequence should be processed before this deadline. The lower part
of Fig. 34.11 shows the visualization of the deadlines: The end-to-end constraint of
the camera, GPU, and HD-LCD starts at 5 �s and turns red at 205 �s, indicating
that the 200 �s deadline is just missed.

34.3.3.2 Transaction-Level Models for Interconnect and Memory
Subsystem

Obviously the key ingredient for analyzing and optimizing the performance of
the interconnect and memory subsystem are sufficiently accurate models of these
components. Commercially available virtual prototyping environments provide
libraries of SystemC TLMs at different levels of abstraction.

• Highly configurable approximately timed models, which can be used to mimic a
specific IP.

• Highly accurate model of a specific IP, which represent all relevant design and
configuration parameters

An example of a configurable approximately timed model is the generic Multi-Port
Memory Controller provided in the Synopsys Platform Architect model library.
This memory controller model is based on the Fast Timed (FT) TLM protocol to
support multiple bus protocols (see paragraph on Extended AT in Sect. 34.2.1).
It incorporates the features of modern memory controllers, e.g., transaction re-
ordering, address mapping, configurable number of ports, buffer sizes, frequency
ratio, and QoS. This also includes a timing model of all commonly used Double
Data Rate (DDR) standards (DDR2, DDR3, DDR4, mDDR, LPDDR2, LPDDR3,
LPDDR4, DDR3-3DS) with their respective speed bins and device types [16]. An
example of an accurate IP-specific model for architecture analysis is the Architects
View (AV) TLM model of the FlexNoC interconnect from Arteris [19]. The port
interfaces of the AV FlexNoC model use an extended TLM-2.0 AT protocol, which
accurately represents the FlexNoC NTTP protocol with extended attributes and
phases, but which is also compliant with the AT-BP (see Sect. 34.2.1). Internally
the AV FlexNoC model represents all the performance-relevant aspects of the NoC
architecture, like the topology, serialization, clock schemes, buffering, arbitration
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schemes, pipeline stages, and transaction contexts. This also includes advanced
QoS schemes like run-time bandwidth regulation. The FlexNoC model is generated
from the NoC configuration tool, which is later used to generate the actual RTL
implementation. This way, the optimized interconnect configuration is seamlessly
used for implementation. The model library from Synopsys Platform Architect
contains similar models for other popular interconnect IP, e.g., ARM CoreLink
NIC-400.

Based on these kinds of available TLMs for architecture analysis, it is very
little effort to assemble a performance model of any SoC platform, which allows
to analyze and optimize the memory subsystem [17, 20, 24].

34.3.4 Task-Based Architecture Analysis and Exploration

The most recent commercially deployed architecture design methodology is the
early exploration and optimization of complex Multi-Processor System-on-Chip
(MPSoC) platforms using task-based workload models. This allows the quantitative
analysis of performance and power metrics to avoid SoC market failure due
to underperforming or overly power hungry architectures. The key architecture
questions that SoC hardware architects can analyze are:

• How to partition the application into fixed HW accelerators and software
executing on processors?

• What is the optimal number and type of CPUs, GPUs, Digital Signal Processors
(DSPs), and HW accelerators?

• How to dimension the interconnect and memory architecture?
• What is the expected performance/power curve?

34.3.4.1 Modeling Methodology
As depicted in Fig. 34.12, the modeling methodology for task-based architecture
analysis follows the Polis Y-chart approach [5], similar to the framework described
in the �Chap. 9, “Scenario-Based Design Space Exploration”.

• SoC application workloads such as CPU load, imaging, video encoding and de-
coding, modem, and network packet processing are represented as an application
task graph.

• The VP of the SoC platform contains all relevant processing elements as well as
interconnect and memory resources. The key component is the Virtual Processing
Unit (VPU), which represents all kinds processing elements such as CPUs,
GPUs, DSPs, and HW accelerators. VPUs are high-level processor models that
execute the portion of the task graph [13, 18].

• The task-based application workload model is mapped to the architecture model
to construct an executable specification of the application running on the
hardware platform.

http://dx.doi.org/10.1007/978-94-017-7267-9_10
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Fig. 34.12 Early architecture analysis with task-based workload models

The following sections describe the different aspects of application modeling,
platform modeling, and mapping in more detail.

34.3.4.2 Task-Based Workload Models
In general, a task-based workload model captures the processing and communi-
cation requirements of the application. As showcased in Fig. 34.13, the overall
application is broken down into a set of tasks, which exhibits the available
coarse-grained parallelism. The connections in the task graph denote the execution
precedence, e.g., in this example Task C and D execute after B. In addition, each task
is characterized with a set of processing- and communication-related parameters. A
typical set of parameters is depicted in Fig. 34.13:

• A source task like Task A, the wait_cycles parameter specifies the delay
between two consecutive activations

• The processing_cycles specifies minimum number of cycles for which a
task occupies a resource.

• The load_ratio store_ratio specify the additional communication over-
head, e.g., on average Task B generates 50 load and store transactions per
activation.
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Fig. 34.13 Specification, mapping, and execution of an application task graph

• The branch_ratio can be used to model jumps in the address sequence and
additional processing overhead for mis-predicted branches.

• The mem_region defines a logical name for the memory location.

In the mapping step, tasks are assigned to VPUs, which represent the execution
resources, and the logical memory regions assigned to physical memories in the
platform.

From the modeling perspective, tasks and connections are realized on top of
standard SystemC concepts like threads and events. In addition, tasks have explicit
states like Created, Ready, Running, Waiting, Suspended, and the ability to consume
processing time. This enables the modeling of software processes executing in the
context of an Operating System (OS). The task state trace on the right side of
Fig. 34.13 showcases the execution of the given example task graph:

• In the beginning, all task are in state Waiting
• At t1, the wait cycles of source Task A are expired. VPU 1 is available, so Task

A changes immediately into state Running.
• At t2, the processing cycles of Task A are finished. Task A triggers Task B, which

changes into state Running.
• At t3, the wait cycles of Task A are again expired, but this time VPU 1 is still

occupied with Task B, so Task A transitions into state Ready.
• At t4, Task B is done, so Task A becomes Running on VPU 1. Also, Task B

triggers Task C and D. C is blocked by Task A on VPU 1 and remains Ready, but
Task D can immediately transition into state Running on VPU 2.
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In reality, more complex scheduling algorithms with priorities, preemption, time
slices, etc., influence the execution pattern. The actual duration a task remains
in state Running is further impacted by dynamic effects like bus arbitration and
dynamic memory latencies.

Synopsys provides a generic task library with a set of configuration parameters,
so users can rapidly compose a task graph without manual modeling effort. This
library provides a set of generic configurable tasks to create a nonfunctional
performance model of arbitrary application topology.

For data processing applications, such as audio, video, networking, or wireless
communications, it is typically straightforward to define the application task graph
using the elements in the generic task library. For control-oriented applications, e.g.,
in the automotive domain, and for higher-level applications running on top of an OS,
the application task graph can be automatically generated from software execution
traces.

34.3.4.3 Performance Model of the System-on-Chip
Multi-core architectures are composed of SystemC TLMs, such as interconnect,
memory controller, DMAs, and other components which are available in the
Platform Architect model library. The VPU models the processing elements (CPUs,
GPUs, DSPs, and HW accelerators), which can execute a task graph, or a portion
of the task graph. The VPU task scheduler supports preemption and time slicing
of tasks for modeling of interrupts and arbitrary OS scheduling algorithms. The
provided set of default scheduling algorithms can be extended by the user. The VPU
also comes with a library of components for traffic generation, cache modeling,
inter-VPU communication, and interrupt handling to model the realistic execution
of a task graph with sufficient accuracy.

34.3.4.4 Application to Architecture Mapping
The next step is to map the application task graph onto the VPUs. This way
the tasks are assigned to a physical execution resource, and the logical memory
regions in the task graph are mapped to physical memories in the platform. The
number of processing resources per VPU is configurable and determines how many
tasks can run in parallel. For example, a VPU with four resources represents a
Symmetric Multi-Processing (SMP) cluster with four cores. VPUs with different
parameters (scheduling algorithm, clock period, traffic generation, etc.) represent an
asynchronous multiprocessor (AMP) subsystem. A VPU with only one task mapped
to it can represent a dedicated hardware block.

The result is an executable system performance model, which simulates the
execution of a task-based workload model on a resource constraint platform. The
analysis monitors measure a variety of performance metrics like latency, throughput,
utilization, and contention. This way, an SoC architect can identify performance
issues, bottlenecks, or underutilization of resources [8].
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34.3.4.5 Joint Power and Performance Analysis
The availability of the IEEE 1801-2015 UPF-3.0 standard for system-level power
analysis [11] enables the early estimation of the system power consumption by
adding power monitors as an overlay to a VP for performance analysis; see
Sect. 34.2.3 and Fig. 34.6). Compared to static power analysis based on spreadsheet,
this provides much more realistic power estimates, because the dynamic activity
of each component in the platform is taken into account. This way, architects can
analyze the impact of architecture design decision on the power consumption [9].
Many state-of-the-art SoC platforms optimize the power consumption using run-
time power management schemes, e.g., clock gating, power gating, and Dynamic
Voltage and Frequency Scaling (DVFS) [10]. These power management schemes
bear great potential to reduce power consumption, but they also come at additional
cost. Hence power management adds another dimension to the architecture design
space. Unfortunately, power consumption and performance cannot be considered in
isolation. For example, reducing voltage and frequency reduces power but increases
execution time. The resulting impact on the energy consumption is not obvious, so
without quantitative analysis, it is difficult to decide between power management
strategies like Run Fast Then Stop (RFTS) or DVFS.

As depicted in Fig. 34.14, adding a model of the power management to a VP
for architecture analysis enables the quantitative analysis of power management
strategies, including the impact of power management on power and performance:

• How should the SoC be partitioned into DVFS domains to best serve the target
application use cases?

• Based on the activity profile of a component, do the power savings justify the
additional cost for applying clock gating or power gating or both?

Fig. 34.14 DVFS modeling for joint power and performance analysis
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• How many DVFS operating points are needed to effectively reduce power
consumption?

• How aggressive can the frequency be reduced before application violates real-
time requirements?

Figure 34.14 shows how to model the impact of DVFS and power management
in the context of a multi-core platform in Platform Architect for MCO. A functional
model of the Power Management Unit (PMU) is part of the SoC platform model
to take the performance and power aspect into account. The processing elements
(the VPUs) notify the PMU when they become active or idle. In response to this,
the PMU model controls the frequency of the processing elements and the voltage
levels of the power supply regulators. This captures the impact of the DVFS power
management on the performance: The execution time of the tasks running on the
VPU depends on the actual frequency. The same task takes longer when the clock
is running at a lower frequency. The frequency and voltage levels are also used
as run-time parameters in the UPF-3.0 power models to measure actual power
consumption.

The outcome of the early analysis of power and performance is an optimized
power architecture:

• An optimized specification of the system-level power intent, including the power
supply architecture and the grouping of the SoC into power domains.

• The definition of the most promising power management policies.
• A realistic estimation of the system-level power and energy consumption for a

given workload.

The UPF standard can also be used to export the resulting optimized system-
level power intent from the virtual prototyping environment to the subsequent
implementation and verification tools.

34.4 Conclusions

This section provided an overview of virtual prototyping for architecture design. It
introduced software-based performance validation, trace-based interconnect/mem-
ory optimization, and task-based architecture exploration as the three main archi-
tecture design use cases, which are in commercial deployment today. Especially
the joint power and performance analysis based on task-based application workload
models sees growing adoption, because it is the most effective approach to cope
with the “complexity wall” [26] under the given competitive landscape and time-to-
market pressures.

Acknowledgments The author acknowledges Tom De Schutter for contributing the sections on
software development and on system validation to the introduction of this chapter as well as Alan
Gibbons for contributing the section on system level power analysis to the introduction of this
chapter.



1158 T. Kogel

References

1. AMBA AXI and ACE Protocol Specification (2013). http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ihi0022e/index.html

2. AMBA-PV Extensions to TLM Developer Guide (2015). http://infocenter.arm.com/help/topic/
com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf

3. ARM Fast Models. http://www.arm.com/products/tools/models/fast-models
4. Bailey B et al (eds) (2010) TLM-driven design and verification methodology. Cadence Design

Systems, San Jose. https://www.synopsys.com/vpbook
5. Balarin F et al (1997) Hardware-software co-design of embedded systems: the POLIS

approach. Kluwer Academic Publishers, Boston
6. Barroso L, Holzle U (2007) The case for energy-proportional computing. Computer 40(12):

33–37. doi: 10.1109/MC.2007.443
7. Datta S, Bonnet C, Nikaein N (2012) Android power management: current and future trends.

In: 2012 first IEEE workshop on enabling technologies for smartphone and internet of things
(ETSIoT), pp 48–53. doi: 10.1109/ETSIoT.2012.6311253

8. Fadi Aboud IC (2014) Balancing power performance and user experience using virtual
prototyping. In: Proceedings of the synopsys users group conference (SNUG), Israel. https://
www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf

9. Fischer B, Cech C, Muhr H (2014) Power modeling and analysis in early design phases.
In: Proceedings of design, automation and test in Europe conference and exhibition (DATE),
pp 1–6. doi: 10.7873/DATE.2014.210

10. Flynn D, Aitken R, Gibbons A, Shi K (2007) Low power methodology manual for system-on-
chip design. Springer, New York

11. IEEE Standard for Design and Verification of Low-Power Integrated Circuits (2015). http://
standards.ieee.org/getieee/1801/download/1801-2015.pdf

12. IEEE Standard for Standard SystemC Language Reference Manual (2011). http://standards.
ieee.org/getieee/1666/download/1666-2011.pdf

13. Kempf T, Doerper M, Leupers R, Ascheid G, Meyr H, Kogel T, Vanthournout B (2005) A
modular simulation framework for spatial and temporal task mapping onto multi-processor
SoC platforms. In: Proceedings of design, automation and test in Europe, vol 2, pp 876–881.
doi: 10.1109/DATE.2005.21

14. Kogel T (2006) Peripheral modeling for platform driven ESL design. In: Burton M,
Morawiec A (eds) Platform based design at the electronic system level. Springer, Dordrecht,
pp 71–85

15. Kogel T (2013) Designing the right architecture, SoC interconnect and memory optimization
with synopsys platform architect. Synopsys whitepaper. https://www.synopsys.com/cgi-bin/
proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf

16. Kogel T (2016) Optimizing DDR memory subsystem efficiency, Part 1: the unpredictable
memory bottleneck. Synopsys whitepaper. https://www.synopsys.com/cgi-bin/proto/pdfdla/
pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf

17. Kogel T (2016) Optimizing DDR memory subsystem efficiency, Part 2: case study. Synopsys
whitepaper. https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-
efficiency-p2-wp.pdf

18. Kogel T et al (2005) Integrated system-level modeling of network-on-chip enabled multi-
processor platforms. Springer, Dordrecht

19. Lecler J-J, Baillieu G (2011) Application driven network-on-chip architecture exploration
& refinement for a complex SoC. Des Autom Embed Syst 15(2):133–158. doi:
10.1007/s10617-011-9075-5

20. Patel S, Sood B, Semiconductor F (2014) Quick, re-usable and cost effective approach to
create accurate models using synopsys platform architect framework for early system level
performance analysis. In: Proceedings of the synopsys users group conference (SNUG), India.
http://www.synopsys.com/news/pubs/snug/2014/India/paper_sood.pdf

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf
http://www.arm.com/products/tools/models/fast-models
https://www.synopsys.com/vpbook
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/ETSIoT.2012.6311253
https://www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf
https://www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf
http://dx.doi.org/10.7873/DATE.2014.210
http://standards.ieee.org/getieee/1801/download/1801-2015.pdf
http://standards.ieee.org/getieee/1801/download/1801-2015.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://dx.doi.org/10.1109/DATE.2005.21
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p2-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p2-wp.pdf
http://dx.doi.org/10.1007/s10617-011-9075-5
http://www.synopsys.com/news/pubs/snug/2014/India/paper_sood.pdf


34 Synopsys Virtual Prototyping for Software Development and Early: : : 1159

21. Reyes V (2012) Virtualized fault injection methods in the context of the ISO 26262 standard.
SAE Int J Passenger Cars Electron Electr Syst 5(1):9–16

22. Schurmans S, Zhang D, Auras D, Leupers R, Ascheid G, Chen X, Wang L (2013) Cre-
ation of ESL power models for communication architectures using automatic calibration.
In: 2013 50th ACM/EDAC/IEEE design automation conference (DAC), pp 1–6. doi:
10.1145/2463209.2488804

23. Schutter TD (ed) (2014) Better software. Faster! best practices in virtual prototyping. Synopsys
Press. https://www.synopsys.com/vpbook

24. Skrzeszewski TK, Intel Corp. (2015) ATOM mobile SoC performance and power architecture
exploration. In: Synopsys users group conference (SNUG), Santa Clara. http://www.synopsys.
com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf

25. Synopsys DW TLM library. http://www.synopsys.com/Prototyping/VirtualPrototyping/
VPModels/Pages/DW-TLM-Library.aspx

26. Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future.
Proc IEEE 100(Special Centennial Issue):1411–1430. doi: 10.1109/JPROC.2011.2182009

27. The SystemC Modeling Library (SCML). http://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi
28. Tool Command Language (TCL). http://www.tcl.tk

http://dx.doi.org/10.1145/2463209.2488804
https://www.synopsys.com/vpbook
http://www.synopsys.com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf
http://www.synopsys.com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf
http://www.synopsys.com/Prototyping/VirtualPrototyping/VPModels/Pages/DW-TLM-Library.aspx
http://www.synopsys.com/Prototyping/VirtualPrototyping/VPModels/Pages/DW-TLM-Library.aspx
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi
http://www.tcl.tk

	34 Synopsys Virtual Prototyping for Software Development and Early Architecture Analysis
	Contents
	34.1 Introduction
	34.1.1 Architecture Design
	34.1.2 Software Development and Testing
	34.1.3 Hardware/Software Integration and System Validation
	34.1.4 System-Level Power Analysis
	34.1.5 Summary

	34.2 Modeling for Virtual Prototyping
	34.2.1 The SystemC Transaction-Level Modeling Standard
	34.2.1.1 Loosely Timed Modeling Style
	34.2.1.2 Extended Loosely Timed Modeling Style
	34.2.1.3 Approximately Timed Modeling Style
	34.2.1.4 Extended Approximately Timed
	34.2.1.5 Summary

	34.2.2 Modeling Objects and Patterns
	34.2.2.1 The SystemC Modeling Library (SCML)

	34.2.3 System-Level Power Analysis
	34.2.3.1 UPF-3.0 System-Level IP Power Models
	34.2.3.2 UPF-3.0 System-Level Power Example
	34.2.3.3 Accuracy Considerations

	34.2.4 Summary

	34.3 Virtual Prototyping for Architecture Design
	34.3.1 Introduction
	34.3.1.1 Traditional Methods
	34.3.1.2 Virtual Prototyping Flow for Early Architecture Analysis
	34.3.1.3 Modeling Methodologies for Early Architecture Analysis

	34.3.2 Software-Based Performance Validation
	34.3.3 Trace-Based Interconnect and Memory Optimization
	34.3.3.1 Traffic Generation
	34.3.3.2 Transaction-Level Models for Interconnect and Memory Subsystem

	34.3.4 Task-Based Architecture Analysis and Exploration
	34.3.4.1 Modeling Methodology
	34.3.4.2 Task-Based Workload Models
	34.3.4.3 Performance Model of the System-on-Chip
	34.3.4.4 Application to Architecture Mapping
	34.3.4.5 Joint Power and Performance Analysis


	34.4 Conclusions
	References


