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Abstract

Cadence offers many technologies and methodologies for hardware/software
codesign of advanced electronic and software systems. This chapter outlines
many of these technologies and provides a brief overview of their key use
models and methodologies. These include advanced verification, prototyping –
both virtual and real, emulation, high-level synthesis, design of an Applica-
tion-Specific Instruction-set Processor (ASIP), and software-driven verification
approaches.
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TLM Transaction-Level Model
UML Unified Modeling Language
UPF Unified Power Format
USB Universal Serial Bus
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VSP Virtual System Platform

Contents

33.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095
33.2 System Development Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
33.3 Virtual Prototyping and Hybrid Execution with RTL . . . . . . . . . . . . . . . . . . . . . . . . . 1107
33.4 Hardware Accelerated Execution in Emulation and FPGA-Based Prototyping . . . . . 1109
33.5 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
33.6 Application-Specific Instruction-Set Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114

33.6.1 ASIP Concept and Tensilica Xtensa Technology . . . . . . . . . . . . . . . . . . . . . . 1114
33.6.2 DSP Design Using Xtensa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117



33 Hardware/Software Codesign Across Many Cadence Technologies 1095

33.6.3 Processor-Centric Design and Hardware/Software Design Space
Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118

33.7 Software-Driven Verification and Portable Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
33.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

33.1 Overview

Over the last couple of decades, the complexities of chip design have risen
significantly. Where in 1995 reuse of Intellectual Property (IP) blocks was just
starting and led to the foundation of the Virtual Socket Interface Alliance (VSIA)
[5] in 1996, promoting IP integration and reuse, design teams are now facing the
challenge of integrating hundreds of IP blocks. In 1996, most of the effort directly
associated with chip design was focused on hardware itself, but since then the
effort to develop software has become a budgetary item that can, depending on the
application domain, dominate the cost of the actual chip development.

The Electronic Design Automation (EDA) industry responded quite early. Syn-
opsys Behavioral Compiler, an early foray into high-level synthesis, was introduced
in 1994 and Aart De Geus optimistically predicted a significant number of tape-outs
before the year 2000. Gary Smith created the term Electronic System Level (ESL)
in 1996, the same year that the VSIA was founded. In 1997 Cadence announced
the Felix Initiative [17], which promised to make function-architecture codesign
a reality. The SystemC [12] initiative was formed in 1999 to create a new level
of abstraction above Register Transfer Level (RTL), but was initially plagued by
remaining tied to the signal level until 2008, when the standardization of the
TLM-2.0 Application Programming Interfaces (APIs) was completed. This helped
interoperability for virtual platforms (also known as a Virtual Prototype (VP)) and
made SystemC a proper backplane for IP integration at the transaction level. For
another view on virtual prototypes, please consult �Chap. 34, “Synopsys Virtual
Prototyping for Software Development and Early Architecture Analysis”.

When it comes to system and SoC design, at the time of this writing in 2016,
the industry has certainly moved up in abstraction, but in a more fragmented way
than some may have expected 20 years ago. The fundamental shortcoming of the
assumptions of 1996 was the idea that there would be a single executable speci-
fication from which everything could be derived and automated. What happened
instead is that almost all development aspects moved upward in abstraction, but
in a fragmented way, not necessarily leading to one single description from which
they can all be derived. As designers moved up in abstraction, three separate areas
emerged – IP blocks, integration of IP blocks, and software.

For IP blocks, i.e., the new functions to be included into hardware and software,
there is a split between IP reuse and IP development. With full-chip high-level
synthesis never becoming a reality, IP reuse really saved the day, by allowing
design teams to deal with complexities. It has developed into a significant market
today. For IP development, there are six basic ways to implement a great new
idea:

http://dx.doi.org/10.1007/978-94-017-7267-9_34
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1. Manually implement in hardware.
2. Use high-level synthesis to create hardware.
3. Use an extensible or configurable processor core to create a hardware/software

implementation.
4. Use tools to create a design of an Application-Specific Instruction-set Processor

(ASIP).
5. Use software automation to create software from a system model.
6. Manually implement software and run it on a standard processor.

Interestingly enough, the nonmanual cases two to five all use higher-level
descriptions as the entry point, but each one is different. High-level synthesis is
driven by transaction-level descriptions in SystemC or C/C++, ASIPs as both IP and
an associated tool flow are generated using specific language-like descriptions such
as nML, Language for Instruction-Set Architectures (LISA), or the Tensilica In-
struction Extension (TIE) description language [22]. Software can be auto-generated
from Unified Modeling Language (UML) and MatLab/Simulink descriptions. The
closest high-level unifying notations for a complete hardware/software system are
SysML [10] or UML [16], as well as proprietary offerings such as MathWorks
Simulink, from which both hardware blocks and software blocks can be generated
automatically.

When it comes to connecting all the hardware blocks together, regardless of
whether they were reused or built with one of the six options above, the user has
five different options:

1. Connect blocks manually (good luck!).
2. Automatically assemble the blocks using interconnect auto-generated by ARM

AMBA Designer, Sonics, Arteris, or another interconnect IP provider.
3. Synthesize protocols for interconnect from a higher-level protocol description.
4. Create a Network-on-Chip (NoC), such as a mesh NoC.
5. Use a fully programmable NoC that determines connections completely at run

time.

Again, with the exception of the first (manual) and last (at run time) way to
create the interconnect, the other items raise the level of abstraction. The ARM
Socrates [23] and AMBA Designer environments feed information into Cadence
tools such as Interconnect Workbench to set up a scenario for which performance
analysis is needed, and there are specific tools to automatically create configurations
of different interconnect topologies from higher-level descriptions as well.

Figure 33.1 illustrates the different methods of IP creation and integration, and
the following sections of this chapter dive more deeply into two aspects – high-
level synthesis using the Cadence Stratus high-level synthesis environment and the
development of extensible processor cores using the Tensilica Xtensa technology.
A third aspect is the software that can be found in these designs, much of it
actually determining the functionality and the architecture of a chip. Efforts to
achieve continuous integration of hardware and software have created what the
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Fig. 33.1 IP creation and integration in modern chip design

industry refers to as a “shift left” – essentially, early representations or models of
the hardware allowing some level of software execution to occur on the models.
During a project flow today, shifting left has created various options for development
vehicles on which to bring up and execute software:

1. Software Development Kits (SDKs), which do not model hardware in complete
detail.

2. Virtual platforms that are register accurate and represent functionality of the
hardware accurately, but without timing. Architectural virtual platforms may add
cycle accuracy as a modeling style, slowing down execution, thus offering users
a trade-off between speed and accuracy for architectural analysis.

3. RTL simulation is technically a representation of the hardware but is not often
used for software development, unless for low-level drivers.

4. Emulation is the first platform that allows execution in the MHz range. Using
emulation, users can run AnTuTu on mobile devices and bring up Linux on server
chips. The intent is mainly to verify and optimize the hardware.

5. FPGA-based prototyping executes in the tens of MHz range, at times up to
100 MHz, and is a great vehicle for software development on accurate hardware.

6. The actual chip is often used in development boards to develop software.

All options except the last one use abstraction in one way or another to enable
software development as early as possible. The trade-offs are time of availability
during development, speed, and accuracy and the incremental effort needed for
development of the development vehicle.

In many cases, hardware must take the role of executing software in the best
possible way. This is why users deploy emulation and FPGA-based prototyping to
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Fig. 33.2 System Development Suite

actually run mobile benchmarks like AnTuTu, as well as server benchmarks. The
results help designers make changes to the design before finalizing it, to optimize
performance, power, and thermal characteristics. So in a sense hardware/software
codesign has become somewhat of a reality, but needs to be looked at across a family
of platforms – some changes may not make it into the current design as it needs to
be rolled out to meet time to market. They make it instead into the next derivative
design.

Figure 33.2 shows the Cadence System Development Suite (SDS). This offers
a continuous integration of development engines for verification and software
development. The hardware-assisted aspects, to enable the industry demand for a
shift left of software development, will be described in the following sections of
this chapter.

The lessons of the last 20 years are twofold. First, no single human being is
capable of comprehending all aspects of the hardware/software mix in order to
generate a unified description. Complexity has simply grown too much and will
continue to do so for high-end designs. The industry is just at the beginning
of describing scenarios at higher levels of abstraction that can be used to allow
team members with different expertise to efficiently interact. Work in Accellera
on Portable Stimulus (see later details) looks promising, in defining scenarios for
software-driven testing.

Second, for use cases such as performance analysis and power optimization,
abstraction really has only provided a partial answer to the problem. When accuracy
and predictability of the actual implementation is required, implementation really
matters, to drive early design decisions, and execution at the RTL, or the level
of cycle-accurate SystemC, with models abstracted from the implementation flow
are predominant in order to determine power and performance. An example is a
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combination of activity data gathered from RTL simulation and emulation with
power characterizations abstracted from implementation representations such as .lib
files, as in the combination of Cadence Palladium emulation and Cadence Joules
power estimation. In contrast – for tasks such as software development of drivers
in a low-power context – abstraction offers a solution using Transaction-Level
Models (TLMs), sometimes combined in a hybrid fashion with RTL representations,
that allows early functional verification of software, ignoring some of the detailed
accuracy requirements. Examples are TLM virtual platforms annotated with low-
power information and hybrid configuration of virtual platforms with emulation. As
a result design teams are entering an era of both horizontal integration and vertical
integration.

Horizontal integration enables verification on different engines in the flow
using the same tests, sometimes referred to as “portable stimulus” as currently
standardized in the Accellera working group of the same name [2]. Here are found
UML-like descriptions, notations, and languages that describe scenarios. This is the
next level above SystemVerilog for verification and definitely will be a hallmark
of verification in the next decade, when verification shifts to the system level and
designers have to rely on IP being largely bug-free. IP itself also will rise from the
block level to subsystems, so the pieces to be integrated are getting bigger. The
flow between the horizontal engines and hybrid engine combinations will also grow
further in popularity.

Vertical integration keeps us grounded and may be the main obstacle in the way
of a unified high-level design description. While in the days of the Felix Initiative,
the team operated under the assumption that everything can be abstracted to enable
early design decisions, it turns out that is not the case in reality. Performance
analysis for chip interconnect has dropped down back to the RTL, or in the case
of architectural virtual platforms, to the cycle-accurate SystemC level, simply
because the pure transaction level does not offer enough accuracy to make the
right performance decisions. Tools like Cadence Interconnect Workbench [13] are
addressing this space today and vertically integrate higher-level traffic models
with lower-level RTL and SystemC representations. The same is true for power.
Abstracting power states to annotate power information to transaction-level models
in virtual prototypes may give enough relative accuracy to allow development
of the associated software drivers, but to get estimates accurate enough to make
partitioning decisions, one really needs to connect to implementation flows and
consider dynamic power. The integration of Palladium emulation with Joules power
estimation from the RTL is a good example here.

Bottom line, today and for the years to come, design teams will deal with blocks
to be integrated that will grow into subsystems; there will be even smarter inter-
connects to assemble systems on chip; and software development will have shifted
left earlier. However, the separation of reuse (grown to subsystems), automatic
creation (High-Level Synthesis (HLS)), and chip assembly (watch the space of
integration and verification automation), plus the creation of early representations of
the hardware to enable software development, will still be the predominant design
techniques for very complex designs. The following sections will give more details
on some of the areas touched above.
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The rest of this chapter is organized as follows:

• Section 33.2 talks about the System Development Suite.
• Section 33.3 talks about virtual prototyping and hybrid execution
• Section 33.4 talks about hardware accelerated execution in emulation and FPGA-

based prototyping.
• Section 33.5 talks about high-level synthesis technology.
• Section 33.6 talks about Application-Specific Instruction-set Processor technol-

ogy.
• Section 33.7 talks about software-driven verification and portable stimulus.
• Section 33.8 concludes the chapter with an eye to future technology development.

33.2 System Development Suite

As indicated in the overview, a classic design flow for hardware/software projects
is divided into creation, reuse, and integration of IP. Figure 33.3 shows some of the
main development tasks during a project.

The horizontal axis shows the hardware-related development tasks starting with
specification, IP qualification and integration, and implementation tasks prior to
tape-out and chip fabrication. The vertical axis indicates development scope from
hardware IP blocks through subsystems, System on Chips (SoCs), and the SoC in
the actual end product (system) through software from bare-metal tasks to operating
systems and drivers, middleware, and the user-facing applications.

Fig. 33.3 Development tasks during a hardware/software development project
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Development starts with system modeling and trade-off analysis executed by
architects resulting in specifications. For system models, time of availability, speed,
and accuracy are most important. Hardware development and verification is per-
formed by hardware verification engineers for IP, subsystems, and the SoC. Initially,
hardware debug and fast turnaround time are most important; once software enters
the picture for subsystem verification, software debug and execution speed also
become crucial. Software development happens in two main areas: hardware-aware
software development for Operating System (OS) porting and utility development
and application software development, requiring various levels of speed and model
accuracy. The integration of hardware and software needs to be validated by
HW/SW validation engineers prior to tape-out and again on silicon once actual chip
samples are available. This flow can take 18–24 months; one of the major objectives
is to allow agile, continuous integration of hardware and software, so developers use
different execution engines and different combinations of these engines as soon as
they become available.

As one can see, today’s complex hardware/software designs involve many
different types of developers, all with different requirements and concerns that
cannot be satisfied by one engine alone. Here are the five main types of users:

1. Application software developers need a representation of the hardware as early
as possible during a project. The representation needs to execute as fast as
possible and needs to be functionally accurate. This type of software developer
would like to be as independent from the hardware as possible and specifically
does not need full timing detail. For example, detailed memory latency and bus
delays are generally not of concern, except for specific application domains for
which timing is critical.

2. Hardware-aware software developers would also like representations of the
hardware to be available as early as possible. However, they need to see the
details of the register interfaces, and they expect the prototype to look exactly
like the target hardware. Depending on their task, timing information may
be required. In exchange, this type of developer is likely to compromise on
execution speed to gain the appropriate accuracy.

3. System architects care about early availability of the prototype, as they have
to make decisions before all the characteristics of the hardware are defined.
They need to be able to trade off hardware versus software and make decisions
about resource usage. For them, the actual functionality counts less than some
of the details. For example, functionality can be abstracted into representations
of the traffic it creates, but for items like the interconnect fabric and the memory
architecture, very accurate models are desirable. In exchange, this user is willing
to compromise on speed and typically does not require complete functionality as
the decisions are often made at a subsystem level.

4. Hardware verification engineers typically need precise timing accuracy of the
hardware, at least on a clock cycle basis for the digital domain. Depending
on the scope of their verification task, they need to be able to model the
impact of software as it interacts with the hardware. In some cases they need to
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assess mixed-signal effects at greater accuracy than standard cycle accurate RTL
provides. Accuracy is considered as more important than speed, but the faster
the prototype executes, the better the verification efficiency will be. This user
also cares about being able to reuse test benches once they have been developed,
across engines, to allow verification reuse.

5. Hardware/software validation engineers make sure the integration of hardware
and software works as specified, and they need a balance of speed and accuracy
to execute tests of significant length to pinpoint defects if they occur. This type
of user especially needs to be able to connect to the environment of the chip and
system to verify functionality in the system context.

Some characteristics are important to all users, but some of them are especially
sensitive to some users. Cost is one of those characteristics. While all users are
cost sensitive, software developers may find that a development engine may not
be feasible in light of cheaper alternatives, even though the engine may have the
desired accuracy or early availability in the project flow. In addition, the extra
development effort that engines require beyond standard development flows needs
to be considered carefully and weighed against benefits.

Figure 33.4 illustrates some of the dynamic and static development engines with
their advantages and disadvantages.

The types of development engines can be categorized easily by when they
become available during a project. Prior to RTL development, users can choose
from the following engines:

• SDKs typically do not run the actual software binary but require recompilation
of the software. The main target users are application software developers who
do not need to look into hardware details. SDKs offer the best speed but lack
accuracy. The software executing on the processors as in the examples given
earlier runs natively on the host first or executes on abstraction layers like Java.

Fig. 33.4 Hardware/software development engines
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Complex computation as used in graphics and video engines is abstracted using
high-level APIs that map those functions to the capabilities of the development
workstation.

Virtual platforms can be available prior to RTL when models are available and
come in two flavors:

• Architectural virtual platforms are mixed accuracy models that enable archi-
tecture decision-making. The items in question – bus latency and contention,
memory delays, etc. – are described in detail, maybe even as small portions
of RTL. The rest of the system is abstracted as it may not exist yet. The
main target users are system architects. Architectural virtual platforms are
typically not functionally complete, and they abstract environment function-
ality into their traffic. Specifically, the interconnect fabric of the examples
given earlier will be modeled in full detail, but the analysis will be done
per subsystem. Execution speed may vary greatly depending on the amount
of timing accuracy, but normally will be limited to tens to low hundreds of
KHz. Given that cycle-accurate SystemC can be as accurate as RTL, minus
sub-cycle timing annotations, automatic translation from RTL to SystemC is
sometimes used: technologies like Verilator and ARM Cycle Model Studio are
useful here.

• Software virtual platforms run the actual binary without recompilation at
speeds close to real time – fifties to hundreds of MHz. Target users are
software developers, both application developers and “hardware-aware software
developers.” Depending on the needs of the developer, some timing of the
hardware may be more accurately represented. This prototype can be also used
by hardware/software validation engineers who need to see both hardware and
software details. Due to the nature of “just in time binary translation,” the code
stream of a given processor can be executed very fast, natively on the host. This
makes virtual prototypes great for software development, but modeling other
components of the example systems – such as 3D engines – at full accuracy
would result in significant speed degradation.

Once RTL has been developed, RTL-based engines offer more accuracy:

• RTL simulation is the standard vehicle for hardware verification engineers.
Given its execution in software, it executes slowly – in the range of hundreds
of Hz – for all components in the system to be represented. It sometimes is
used as an engine for lower-level software development for which great accuracy
is required and appropriate length of execution can be achieved due to short
simulation runs.

• Simulation acceleration: When RTL simulation becomes too slow, acceleration
allows users to bring performance to the next orders of magnitude – 200 to
500 KHz. Acceleration is a mix of software-based and hardware-based execution.
Interfaces to the real world are added, but selectively.
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• In-circuit emulation: Now everything transitions into the emulator, test benches
are synthesizable or the software executes as it will in the end product and users
get even more speed – 1 to 2 MHz. Debug – especially for hardware – is great
in emulation. More interfaces to the real world are added. For both in-circuit
emulation and acceleration, the speed is much superior to basic RTL simulation
and as such very balanced. However, when it comes to pure software execution on
a processor, transaction-level models of a processor on a Personal Computer (PC)
will execute faster.

• FPGA-based prototyping: When RTL has become mature, users can uti-
lize Field-Programmable Gate Array (FPGA)-based platforms as even faster
hardware-based execution environments. This works especially well for IP that
already exists in RTL form. Real-world interfaces are now getting to even higher
speeds of tens of MHz. Similarly to acceleration and in-circuit emulation, pure
software execution on a processor, or transaction-level models of a processor on
a PC, may still execute faster.

Finally, software development also happens on real silicon and can be split into
two parts:

• Chips from the last project can be used especially for application development.
This is like the SDK in the pre-RTL case. However, the latest features of the
development for the new chip are not available until the appropriate drivers, OS
ports, and middleware become available.

• Once the chip is back from fabrication, actual silicon prototypes can be used.
Now users can run at real speed, with all connections, but debug becomes harder
as execution control is not trivial. Starting, stopping, and pausing execution at
specific breakpoints is not as easy as in software-based execution and prototypes
in FPGA and acceleration and emulation.

To understand the benefits associated with each type of development engine, it is
important to summarize the actual concerns derived from the different users and use
models:

• Time of availability during a project: When can I get it after project start?
Software virtual prototypes win here as the loosely timed transaction-level model
(TLM) modeling effort can be much lower than RTL development and key IP
providers often offer models as part of their IP packages. Hybrid execution with
a hardware-based engine alleviates remodeling concerns for IP that does not yet
exist as TLMs.

• Speed: How fast does the engine execute? Previous generation chips and actual
samples execute at actual target speed. Software virtual prototypes without
timing annotation are next in line, followed by FPGA-based prototypes and
in-circuit emulation and acceleration. Software-based simulation with cycle
accuracy is much slower.
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• Accuracy: How detailed is the hardware that is represented compared to the
actual implementation? Software virtual prototypes based on TLMs with their
register accuracy are sufficient for a fair number of software development
tasks including driver development. However, with significant timing annotation,
speed slows down so much that RTL in hardware-based prototypes often is faster.

• Capacity: How big can the executed design be? Here the different hardware-
based execution engines differ greatly. Emulation is available in standard con-
figurations of up to several billion gates; standard products for FPGA-based
prototyping are in the range of several hundreds of millions of gates, as multiple
boards can be connected for higher capacity. Software-based techniques for RTL
simulation and virtual prototypes are only limited by the capabilities of the
executing host. Hybrid connections to software-based virtual platforms allow
additional capacity extensions.

• Prototyping development cost and bring-up time: How much effort needs
to be spent to build it on top of the traditional development flow? Here virtual
prototypes are still expensive because they are not yet part of the standard flow.
Emulation is well understood and bring-up is very predictable: in the order of
weeks. FPGA-based prototyping from scratch is still a much bigger effort, often
taking 3–6 months. Significant acceleration is possible when the software front
end of emulation can be shared.

• Replication cost: How much does it cost to replicate the prototype? This is
the actual cost of the execution vehicle, not counting the bring-up cost and
time. Pricing for RTL simulation has been under competitive pressure and is
well understood. TLM execution is in a similar price range; the hardware-based
techniques of emulation and FPGA-based prototyping require more significant
capital investment and can be measured in dollars per executed gate.

• Software debug, hardware debug, and execution control: How easily can soft-
ware debuggers be attached for hardware/software analysis and how easily can
the execution be controlled? Debugger attachment to software-based techniques
is straightforward and execution control is excellent. The lack of speed in RTL
simulation makes software debug feasible only for niche applications. For hard-
ware debug the different hardware-based engines are differentiated – hardware
debug in emulation is very powerful and comparable to RTL simulation, but
in FPGA-based prototyping it is very limited. Hardware insight into software-
based techniques are great, but the lack of accuracy in TLMs limits what can
be observed. With respect to execution control, software-based execution allows
one to efficiently start and stop the design, and users can selectively run only a
subset of processors, enabling unique multi-core debug capabilities.

• System connections: How can the environment be included? In hardware,
rate adapters enable speed conversion, and a large number of connections are
available as standard add-ons. RTL simulation is typically too slow to connect
to the actual environment. TLM-based virtual prototypes execute fast enough
and virtual I/O to connect to real-world interfaces such as Universal Serial Bus
(USB), Ethernet, and Peripheral Component Interconnect (PCI) have become a
standard feature of commercial virtual prototyping environments.
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• Power analysis: Can users run power analysis on the prototype? How accurate
is the power analysis? With accurate switching information at the RTL level,
power consumption can be analyzed fairly accurately, especially when vertically
integrated with implementation flows. Emulation adds the appropriate speed to
execute long enough sequences to understand the impact of software. At the
TLM level, annotation of power information allows early power-aware software
development, but the results are by far not as accurate as at the RTL level.

• Environment complexity: How complex are the connections between the
different engines? The more hardware and software engines are connected (as in
acceleration), the complexity can become significant and hard to handle, which
needs to be weighed against the value.

Given the different types of users and their needs, the different engine capabili-
ties, and the different concerns for the various development tasks, it is easy to see
that there is no one “super”-engine that is equally suited for all aspects. Introduced
in 2011, the System Development Suite is a set of connected development engines
and has since then been enhanced to achieve closer integration between the engines
as illustrated in Fig. 33.5.

The System Development Suite is the connection of dynamic and static verifica-
tion platforms and starts with the Stratus HLS platform for IP development which
is also used to raise the level of verification abstraction. The JasperGold formal
verification platform is widely used throughout the flow with its different formal
applications, ranging from block to SoC level. The Incisive platform for advanced
verification extends from IP level to full SoCs and interacts with the Palladium
acceleration and emulation platform quite seamlessly, with technologies such as
hot swap between simulation and emulation.

Fig. 33.5 System Development Suite engine integrations
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The different engines tie together into the vManager verification center to collect
and assess coverage, planning and monitoring how well verification proceeds
throughout a project. Verification IP is usable across the different platforms, and
with debug enabled by the Indago platform, the suite is being worked toward unified
debug across the different verification engines.

Extending further into software development, the Palladium Hybrid technology
connecting virtual platforms with emulation and the Protium FPGA-based pro-
totyping technology enable software development at various levels of speed and
hardware accuracy. The Perspec platform for use-case-driven verification allows the
development of stimulus that is portable across the different dynamic verification
engines.

Finally, there are specific solutions that combine the different engines to optimize
development for ARM-based designs and low-power, mixed-signal, functional
safety, and metric-driven verification. The SoC factory service enables the automa-
tion of integration and verification of IP-based designs with interfaces to IP-XACT
and ARM’s Socrates [23] tools.

Two system-level aspects – behavioral modeling and design space exploration
– have attracted the attention of researchers for the better part of the last two
decades, but so far have not become broadly supported in commercial tools. The
adoption of behavioral modeling itself has been limited due to the absence of a
universally accepted higher-level system language or representation. SystemC –
while well adopted as an entry point for high-level synthesis and as glue for the
assembly of virtual platforms, utilizing back-door interfaces as provided in SystemC
TLM-2.0 APIs – has not been found suitable for higher-level descriptions. For
these, proprietary techniques such as provided by National Instruments and the
MathWorks and standardized entries like SysML or UML are more common. They
cater to system architects and abstract both hardware and software.

In the context of the System Development Suite, SystemC is supported natively
as part of multiengine simulation, while higher-level descriptions serve as references
for verification with connections of MatLab/Simulink models into verification. In
addition, UML style diagrams have become one option to describe system-level test
scenarios to create portable stimulus that can be executed as software in multiple
verification engines.

33.3 Virtual Prototyping and Hybrid Execution with RTL

Virtual prototyping was pioneered by start-ups like VasT, Virtutech, and Virtio,
all of which were acquired in the last decade. It turns out that the modeling
effort often is considered so high that these days “pure virtual prototypes” at
the transaction level have become somewhat unusual, and mixed abstraction-level
virtual prototypes, combining TLM and RTL have become predominant. Figure 33.6
shows the advantages of the different engines across the user concerns introduced in
the previous section, showing clearly how the speed of virtual platforms, combined
with the accuracy of RTL-based execution engines, can be advantageous.
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Fig. 33.6 Advantages of hybrid engine combinations

The combination of RTL simulation and virtual prototyping is especially attrac-
tive for verification engineers who care about speed and accuracy in combination.
Software debug may be prohibitively slow on RTL simulation itself, but when
key blocks including the processor can be moved into virtual prototype mode, the
software development advantages can be utilized and the higher speed also improves
verification efficiency.

The combination of emulation/acceleration and virtual prototyping is attractive
for software developers and hardware/software validation engineers when proces-
sors, which would be limited to the execution speed of emulation or FPGA-based
prototyping when mapped into hardware-based execution, can be executed on a
virtual prototype. Equally, massive parallel hardware execution – as used in video
and graphics engines – is executed faster in hardware-based execution than in a
virtual prototype. For designs with memory-based communication, this combination
can be very advantageous, calling graphics functions in the virtual prototype and
having them execute in emulation or FPGA-based prototyping.

With hybrid techniques, users can achieve a greatly reduced time delay before
arriving at the “point of interest” during execution, by using accelerated OS boot
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(operating system boot-up). Billions of cycles of an operating system (OS) have to
be executed before software-based diagnostics can start; therefore, OS boot itself
becomes the bottleneck. The Palladium Hybrid solution combines Incisive-VSP
virtual prototyping and ARM Fast Models with Palladium emulation to provide this
capability.

Users such as NVIDIA [8], ARM, and CSR [20] have seen overall speedup
of tests by up to ten times, when combining graphical processor unit (GPU)
designs together with ARM Fast Models representing the processor subsystem.
They demonstrated up to two hundred times acceleration of “OS boot,” which
brought them to the point of interest much faster than by using pure emulation.
The actual speedup depends on the number of transactions between the TLM and
RTL domains. The time to the point of interest can be accelerated significantly
because during OS boot, the interaction between the TLM simulation and RTL
execution in emulation (which limits the speed) is fairly limited. When the actual
tests run after the OS is booted, the speedup depends again on how many interactions
and synchronizations are necessary between the two domains. Some specific smart
memory technology in the Palladium Hybrid solution with Virtual System Platform
(VSP) and ARM Fast Models allows synchronization between both domains to be
more effective (the concept can be likened to an advanced form of caching). Still,
tests get accelerated the most when they execute a fair share of functionality in
software.

33.4 Hardware Accelerated Execution in Emulation and
FPGA-Based Prototyping

As pointed out earlier, software-based execution is limited by the number of
events executed and hence has speed limitations. When considering hardware-based
execution techniques, a key measure is the throughput for a queue of specific tasks,
comprised of compile, allocation, execution, and debug.

Given thousands of verification and software development tasks, it is important
to consider how fast the user can compile the design to create an executable of the
job that then can be pushed into the execution queue. In emulation, these tasks are
automated and for processor-based emulation, users compile for the latest Palladium
Z1 emulation platforms at a rate of up to 140 million gates per hour, getting to
results quite quickly. For simulation, the process is similar and fast. For FPGA-
based prototyping, it may take much longer for manual optimization to achieve
the highest speeds, often weeks if not months. Flow automation for the Protium
platform, adjacent to Palladium, allows users to trade-off between bring-up and
execution speed. The benefit of fast bring-up is offset by speeds between 3 and
10 MHz, not quite as fast as with manual optimization that often results in speeds of
50 MHz or more.

Allocation of tasks into the hardware platform determines how efficiently it can
be used as a compute resource. For simulation farms, users are mostly limited by
the number of workstations and the memory footprint. Emulation allows multiple
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users, but the devil lies in the details. For large numbers of tasks of different sizes,
the small granularity and larger number of parallel jobs really tips the balance here
toward processor-based emulation such as the Palladium Z1 platform. In contrast
the number of users per FPGA platform is typically limited to one.

The actual execution speed of the platform matters, but cannot be judged in
isolation. Does the higher speed of FPGA-based prototyping make up for the
slower bring-up time and the fact that only one job can be mapped into the
system? It depends. As a result FPGA-based prototyping is mainly used in software
development, where designs are stable and less in hardware verification. This usage
is later in the cycle, but runs faster. For FPGA-based emulation, often considered
faster than processor-based emulation, users have to look carefully how many
jobs can be executed in parallel. And in simulation farms, the limit is really the
availability of server capacity and memory footprint. The Palladium Z1 platform
introduced in late 2015 is an enterprise emulation platform scalable to 9.2 billion
gates for up to 2304 parallel tasks.

As the last steps of the throughput queue, debug is crucial. It is of the utmost
importance to efficiently trigger and trace the debug data for analysis. FPGA-
based prototyping and FPGA-based emulation slow down drastically when debug is
switched on, often negating the speed advantages for debug-rich cases found when
RTL is less mature. It all depends on how much debug is needed, i.e., when in the
project phase the user is running the verification queue set up above. In addition,
the way data is extracted from the system determines how much debug data is
actually visible. Also, users need to assess carefully how the data generation slows
down simulation. With processor-based emulation, debug works in a simulation-
like manner. For FPGA-based systems, slowdown and accessibility of debug data
need to be considered. Again, FPGA-based prototyping works great for the software
development side, but for hardware debug it is much more limited compared to
simulation and emulation.

As part of the System Development Suite, the Palladium platform for emulation
and Protium platform for FPGA-based prototyping offer a continuum of use models
as indicated in Fig. 33.7. These use models range from hardware-centric devel-
opment with simulation acceleration through detailed hardware/software debug
with the Palladium emulation series and faster throughput regressions as well as
software-centric development with the Protium platform.

33.5 High-Level Synthesis

The history of HLS is long [18]. It was already an active research topic in the EDA
community in the 1970s, and by the early 1990s it was often introduced as the
“next big thing”, following the significant and very successful adoption of logic
synthesis. However, only recently have commercial design projects started using
this technology as the primary vehicle in the hardware design flow. Even then, its
commercial use was limited to design applications that were historically considered
as its sweet spot, dominated by data-processing or datapath functions with little
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control logic. This might suggest that HLS has had limited commercial success. On
the other hand, industry users who have adopted this technology in their commercial
design projects unanimously state that they would never go back to the RTL-based
design flow. For them, HLS is an indispensable technology that enables them to
achieve a quality of designs in tight project schedules that are not possible with RTL.

The IP blocks in today’s complex designs are no longer just single datapath
components, but are subsystems that include local memories for efficient data
access, components that manage data transfers, and controllers for managing
operations in the IPs with the rest of the system, in addition to core engines that
implement algorithms to provide services defined by the IPs. These subsystems are
integrated into a broad range of SoCs, which impose very different requirements in
terms of implementation such as clock frequencies or performance constraints, as
well as functionality on specific features or I/O interface configurations. Further,
these requirements often change during the design projects. This is inevitable
because nobody can foresee precisely what would be required in such complex
systems before starting the projects, and details are often found when the designs
are implemented or integrated into larger systems. It is therefore necessary that the
design teams for those IP subsystems be able to support a broad range of design
requirements imposed by different SoCs that integrate their designs, while at the
same time responding to changes in requirements that arise throughout the design
phases for each of them.

StratusTM HLS, as illustrated in Fig. 33.8, addresses this need by providing three
relevant characteristics that are essential for using HLS as the primary design
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technology in practice. First, it produces high-quality implementations for all
components of IP subsystems that design teams need to deliver. It is no longer a
tool for just datapath components. It takes as input behavioral descriptions of the
target functionality in a highly configurable manner. The descriptions are specified
using the SystemC language, where standard C++ techniques are used to define
features and microarchitectures that can be included in the design through simple
reconfiguration of the same descriptions. It also takes design requirements of the
target implementations and technology library and produces synthesizable RTL for
downstream implementation processes.

The breadth of configurations one can achieve with these descriptions is far
beyond what is possible with RTL or parameterized RTL models, because the
behavioral descriptions for Stratus HLS can result in totally different RTL structures
just by changing the design parameters. The level of abstraction of these behavioral
descriptions allows the designers to specify their design intent by focusing only on
a few key specifics of the architectures while leaving the tool to figure out all the
other details automatically. With this, they can easily evaluate various architectural
choices of not only individual components of the IP but the whole subsystem.

For example, in achieving high-performance hardware implementations of algo-
rithms, it is often important to take into account not only the cost of implementing
the arithmetic computation of the algorithms but also the impact of accessing
the data required for the algorithms. To address this concern, designers evaluate
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the architecture of the memory hierarchy. In RTL design, they typically consider
allocation of data to the memory hierarchy in such a way that data required by the
individual arithmetic operations can be located close to the resources for executing
the operations. This kind of exploration is easy in HLS, where one can change
the memory hierarchy using design parameter configurations and data allocation
to specific type of memories can be decided automatically.

The second aspect with which Stratus HLS provides strong value to IP design
teams is the integration of this technology with the rest of the design and verification
flow. Since HLS produces implementation from abstracted behavioral descriptions,
it inevitably lacks detailed information that becomes available only in subsequent
phases of the implementation flow. This causes a risk in general that design
decisions made by HLS could cause issues that are difficult to close later in the
design process. To mitigate this risk, one could either incorporate downstream tools
within HLS or establish a closed loop from those tools back to an HLS tool. Stratus
HLS does both. It uses the logic synthesis engine during the optimization process, so
that it makes design decisions by accurately taking into account the information of
actual resources implemented by logic synthesis. To cope with the wire congestion
issue, the tool provides a back annotation mechanism to correlate the resources that
cause high congestion during the layout phase to objects in the input behavioral
descriptions, so that the designer can evaluate the root causes of wire congestion
quickly.

The HLS design flow is also required to work with existing RTL designs, so that
if the components designed with HLS are adjacent to components already written in
RTL, the connections between them must be done seamlessly, despite the fact that
they are written in different languages and using different abstraction levels for the
interfaces. Stratus HLS provides features that automatically produce interlanguage
interface adapters between the behavioral and RTL components. The user can decide
on simulation configurations of a design that have mixtures of HLS components
and RTL components, and the tool automatically inserts the adapters to establish
the necessary connections. Such a mixture of behavioral and RTL descriptions also
arises within a component that is fully designed with HLS.

Typically, a behavioral description for the component is written in a hierarchical
manner, so that the design can be implemented gradually. When designers analyze
the quality of implementation, they often focus on a particular subcomponent,
leaving the rest of the design either at the behavioral level or at RTL depending
upon the progress of the design phase. Stratus HLS provides a capability where
the user can define multiple architectural choices in the individual subcomponents
and then specify for each of them whether they want to use the behavioral
description in simulating the subcomponent or the RTL description made for a
particular architectural choice defined for it. The tool then automatically synthesizes
the subcomponents as specified and combines the resulting RTL with behavioral
descriptions of the remaining subcomponents to produce a simulation image. With
this, the user can seamlessly verify the functionality of the component while
focusing on particular subcomponents to explore various architectural choices to
produce a high-quality implementation.
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The third aspect that is extremely important for the adoption of HLS in practice is
the support for Engineering Change Orders (ECOs). In the context of HLS, the main
concern is support for functional ECOs, at a late stage, when design components
have already been implemented to the logic or layout level and verification has been
done, and the need arises to introduce small changes in the design functionality. In
the RTL-based design flow, the designers carefully examine the RTL code and find
a way to introduce the changes with minimal and localized modification of the code.
If the designer tries to do the same with HLS, by introducing small changes in the
behavioral description, when HLS is applied to the new description, the generated
RTL often becomes very different from the original one. The logic implemented in
RTL may change very significantly even if the functionality is very similar to the
original one.

Stratus HLS provides an incremental synthesis feature to address this issue. In
this flow, the tool saves information about the synthesis of the original design, and
when an ECO happens, it takes as input this information together with the newly
revised behavioral description. It then uses design similarity as the main cost metric
during synthesis and produces RTL code with minimal differences from the original
RTL code while meeting the specified functionality change.

High-quality implementations obtained from highly configurable behavioral
descriptions for the whole IP subsystem, the integration with the existing design
and verification flow, and the support for ECOs are the primary concerns that one
needs to address when adopting high-level synthesis technology for designing new
components of IPs. The fact that major semiconductor companies have successfully
adopted Stratus HLS as an indispensable technology in their critical design projects
is attributed to its strong capabilities in these aspects.

More information on HLS capabilities can be found in [6].

33.6 Application-Specific Instruction-Set Processors

This section discusses the concept of an ASIP and relates them specifically
to hardware/software codesign. This concept is used to develop a particular
codesign methodology: “processor-centric design.” For another view on ASIPs,
see �Chap. 12, “Application-Specific Processors”.

33.6.1 ASIP Concept and Tensilica Xtensa Technology

The foundation for processor-centric subsystem design is configurable, extensible
processor technology, which has been developed by a number of academic and
commercial groups since the 1990s [14, 22]. Tensilica technology [15, 27] dates
from the late 1990s and has been applied to a wide variety of ASIP designs.

http://dx.doi.org/10.1007/978-94-017-7267-9_12
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Configurable, extensible processors allow designers to configure structural pa-
rameters and resources in a base Reduced Instruction-Set Processor (RISC) archi-
tecture as shown in Fig. 33.9. Extensibility allows design teams to add specialized
instructions for applications. Automated tool flows create the hardware and software
tools required, using specifications for structural configuration, and instruction
extensions, defined by an architectural description language [21].

Configurable structural architecture parameters include:

• Size of register files
• Endianness
• Adding functional units, e.g., Multiply-Accumulators (MACs) and floating point
• Local data and instruction memory interfaces including configurable load-

store units and Direct Memory Access (DMA) access and memory subsystem
configuration

• Instruction and data cache attributes
• System memory and bus interfaces including standard buses such as Advanced

eXtensible Interface (AXI)
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• Debug, tracing, Joint Test Action Group (JTAG)
• Timers, interrupts and exceptions
• Multi-operation Very Long Instruction Word (VLIW) operation bundling
• Pipeline depth and microarchitecture choice
• Port, queue, and lookup interfaces into the processor’s datapath

Instruction extensions, defined in Tensilica’s TIE language [30], define special-
ized register bank width and depth, special processor state, operations of almost
arbitrary complexity, their specification and optimized hardware implementation,
SIMD-width, encoding, scheduling (single or multi-cycle), usage of operands and
register ports, and bundling into multi-operation VLIW instructions. In addition,
a number of documentation descriptions and software properties that influence
operation scheduling in the compiler can be defined in TIE. Other aspects of the
user programming model using instruction extensions, such as support for new C-
types and operator overloading, and mapping of instruction sequences into a single
atomic operation or group of operations can also be defined in TIE. Aggressive use
of parallelism and other techniques in user-defined TIE extensions can often deliver
10X, 100X, or even greater performance increases compared to conventional fixed
instruction-set processors or Digital Signal Processors (DSPs).

The automated tool flow generates the tooling for compilers, assemblers,
instruction-set simulators, debuggers, profilers, and other software tools, along with
scripts for optimized hardware implementation flows targeting current Application-
Specific Integrated Circuit (ASIC) technologies [3].

Xtensa technology has been developed for over 17 years, from the founding of
Tensilica as a separate company and its acquisition in 2013 [27]. This technology
has been extensively verified [4, 24]. Designers perform their optimization and
create their ideal Xtensa processor by using the Xtensa processor generator. In
addition to producing the processor hardware RTL [11, 31], the Xtensa processor
generator automatically generates a complete, optimized software-development
environment. Two additional deliverables with Xtensa are:

1. Xtensa Xplorer Integrated Development Environment (IDE), based on Eclipse,
which serves as a cockpit for single- and multiple-processor SoC hardware
and software design. Xtensa Xplorer integrates software development, processor
optimization, and multiple-processor SoC architecture tools into one common
design environment. It also integrates SoC simulation and analysis tools.

2. A multiple processor (MP)-capable Instruction-Set Simulator (ISS) and C/C++
callable simulation libraries, along with a SystemC development environment
XTSC.

ASIPs support Hardware/Software Codesign (HSCD) methodologies, albeit not
quite in the classical sense of “all Hardware (HW)” vs. “all Software (SW)”.
ASIPs allow the computation and communications required by particular algorithms
and applications to be mapped into flexible combinations of classical SW and
application-oriented operations which are tuned to the application requirements.



33 Hardware/Software Codesign Across Many Cadence Technologies 1117

Algorithms which are control-dominated can be mapped into an ASIP which is
like a classical RISC machine, with configurability limited to aspects such as the
memory subsystem and debug attributes. Algorithms heavy on computation with
many application-specific operations can be mapped into ASIPs with extensive
instruction extensions that greatly reduce the number of cycles required to execute
and as a corollary, reduce the overall energy consumption of the algorithm by a
large fraction. Algorithms heavy on communications methods or needing ancillary
hardware execution units can utilize the port, queue and lookup interfaces to
both simplify and improve the performance possible in passing data and control
information from one core to another or to adjunct hardware blocks.

In this sense, ASIPs explode the design space exploration possibilities available
to designers. They no longer need to live with just hardware or just selecting one
from a list of predefined processor cores. They can tune one processor or a group of
homogeneous or heterogeneous processors specifically to the particular application
domain and algorithms their design is focused on. A good overview of design space
exploration using Xtensa processors can be found in Chap. 6 of [4]. Design space
exploration is discussed using this concept of processor-centric design.

33.6.2 DSP Design Using Xtensa

Xtensa ASIP technology has been applied by customers to create their own
application-specific processors. It has also been applied internally within the
research and development teams to create DSPs tuned to particular application
domains. The key domains addressed through the years have been audio processing,
communications, and video, imaging, and vision processing applications.

Audio [19] has been for many years a major focus of ASIP technology and audio
DSPs. Several variations of audio DSPs exist, with distinct tradeoffs of power,
speed performance, area, and cycle-time performance. As a result, the family of
audio DSPs allow distinct hardware/software tradeoffs to be made by choosing the
optimal audio DSP for a particular requirement. Software audio codecs and audio
post-processing applications are also an important part of the offering.

A video codec subsystem called 388VDO [7,9] was developed several years ago.
This consisted of two DSPs: a stream processor and a pixel processor, with adjunct
DMA block, and an optional front-end Xtensa control processor. Several video
encoders and decoders were offered as software IP with this subsystem, supporting
major standards (such as MPEG2, MPEG4, JPEG, H264) and resolutions up to D2.
The design of the Instruction-Set Architecture (ISA) for the two DSPs was done in
close collaboration with the software team developing the video codecs and drew
heavily on the concepts of hardware/software codesign, profiling, and performance
analysis.

More recently, advanced vision and image processing processors [26, 29], are
applicable to a wide variety of applications, have been developed. Computer
vision is one of the fastest-growing application areas as of 2016, with particular
attention being paid to Advanced Driver Assistance System (ADAS) in automotive
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and security applications, gesture recognition, face detection, and many more.
For another view on embedded computer vision and its relationship to ASIPs,
see �Chap. 40, “Embedded Computer Vision”.

In the communications domain, a focus on wireless baseband processing was
the impetus for development of specialized configurable DSPs [25]. In fact a
family of DSPs was developed using a common ISA, variable Single Instruction,
Multiple Data (SIMD) widths (16, 32, and 64 MACs) and a scalable programming
model, based on evolving an earlier 16 MAC baseband DSP [28]. The basis is the
combination of a real and complex vector processor, with specialized instructions
for FFT for Orthogonal Frequency Dependent Multiplexing (OFDM).

33.6.3 Processor-Centric Design and Hardware/Software Design
Space Exploration

This section describes the processor-centric design approach enabled by config-
urable, extensible ASIP methodologies, drawing on details to be found in Chap. 6
of [4].

Processor-centric design is a family of design approaches that includes several
alternative methodologies. What is common to all of them is a bias toward
implementing product functionality as software running on embedded processor(s),
as opposed to dedicated hardware blocks. This does not mean that there are no
dedicated hardware blocks in a processor-centric design; rather, these blocks are
present as a matter of necessity rather than choice. In other words, dedicated
hardware blocks will be present in the design where they must be, rather than where
they could be. This could be to achieve the required level of performance, to achieve
the desired product cost target, or to minimize energy consumption.

Traditional fixed ISA processors offer very stark tradeoffs for embedded product
designers. They are generic for a class of processing and have few configurability
options to allow them to be tailored more closely to the end application. The rise
of ASIPs meant that designers could no longer consider the use of fixed embedded
processors for an increasing number of the end-product application. ASIPs can now
offer enough performance and sufficiently low energy consumption, at a reasonable
cost, to take over much of the processing load that would have heretofore relied on
dedicated hardware blocks. Thus ASIPs have been a key development enabling a
much more processor-centric design style.

Traditional fixed ISA processors can be simply divided into control- and data-
plane processors. Control processors, such as ARM and MIPS cores, are often used
for non-data intensive applications or parts of an application, such as user interfaces,
general task processing, high-level user applications, protocol stack processing,
and the like. Data-plane processors are often fixed ISA DSPs that have special
instructions and computational and communications resources that make them more
suitable for data-intensive computation, especially for real-time signal and image
processing.

http://dx.doi.org/10.1007/978-94-017-7267-9_40
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As demonstrated earlier, ASIPs have grown in variety, number, and importance
in recent years. Because an ASIP can be configured and extended to optimize its
performance for a specific application, ASIPs offer much greater performance (say,
10–100X) and much lower energy consumption (perhaps half to one-quarter) than
the same algorithm compiled for a fixed-ISA standard embedded processor – even
a DSP. There are a few simple reasons to account for this advantage:

1. ASIPs allow coarse-grained configuration of their basic structure to better
match the particular applications. If an application is mainly control processing,
an ASIP may offer a fairly basic instruction set, but if an application is mainly
intensive data processing (e.g., from the “data plane”) – for example, audio,
video, or other image processing – it may offer special additional instructions
(zero-overhead loops, MACs) tuned to media or DSP kinds of applications.

2. The size and widths of registers can be tuned to be appropriate for the particular
application domain.

3. Interfaces, such as memory interfaces, and caches can be configured or left out
of the design dependent on data and instruction locality and the nature of the
underlying algorithmic data access patterns. Sometimes caches may be more
effective than local instruction and data (scratchpad) memories; sometimes the
opposite may be the case.

4. Memory or bus interfaces may also be configured as to width and protocol –
e.g., AMBA AHB or AXI.

5. Diagnosis and debug features such as trace ports, JTAG interfaces, and the like
may be added or left out.

6. Interrupts and exception handling may be configured according to design need.
Often the elaborate exception recovery mechanisms used in general purpose
processors may be unnecessary in an ASIP tuned to run a very specific
algorithm deeply embedded in a system.

7. VLIW style multi-operation instructions may be added to processors to support
applications with a large amount of irregular instruction-level parallelism that
can take advantage of such features.

8. SIMD type instructions – e.g., 2-, 4-, 8-, 16-way, or larger – may be added
to processors to support vector-style simultaneous instructions acting on large
chunks of data at a time.

9. Instructions may be tuned to specific algorithmic requirements. For example,
if two 13-bit quantities need to be multiplied in an inner loop that dominates
an algorithm, use of a 32-bit multiplier is both wasteful of area and energy and
possibly performance.

10. Fine-grained instruction extensions including instruction fusions drawn from
very specific algorithmic code can lead to significant increases in performance
and savings in power. For example, a sequence of arithmetic operations in a tight
loop nest that might account for 90% of the cycles in executing the algorithm
on a data sample may be replaced with a single fused instruction that carries out
the sequence in one or a few clock cycles.
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Use of ASIPs instead of general purpose processors can lead, for known
algorithms, to a radical improvement in performance and power consumption. This
is true whether an ASIP is totally designed to support one very specific algorithm
or if it is designed to support a class of applications drawn from a single domain. A
specialized audio processing ASIP could be designed just to support MP3 decoding
or could be slightly generalized so that it will support many different audio codecs
– possibly optimizing one codec such as MP3 that is very widely used, but with
general audio instructions added so that new codecs can still take advantage of the
specific instructions and hardware incorporated in the ASIP.

Sometimes the complexity of a specific application domain may lead to a
heterogeneous multi-processor, multi-ASIP design as being optimal for a certain
target range of process technologies. Video codecs, baseband, vision, and imaging
are examples.

A processor-centric design methodology needs to support design space explo-
ration when deciding whether particular functional requirements for a design can be
mapped to a single fixed ISA processor running at a suitable rate, a multi-processor
implementation (such as a cache-coherent symmetric multi-processing “multi-core”
cluster), a special fixed ISA processor such as a DSP, a single ASIP, a set of
ASIPs configured to work together as a heterogeneous multi-processor subsystem,
a combination of fixed ISA processor(s) and ASIP(s), and finally, mapping any
part of the function into dedicated hardware blocks, almost certainly working in
conjunction with the processors. A wide range of communications architectures,
from shared memory accessed via buses through dedicated local memories, DMA
blocks to permit concurrent data and instruction movement, direct communications
such as First-In First-Out (FIFO) queues between processors and from processors
to hardware, and NoCs may be used. In general, the processor-centric design flow
has the following steps:

1. Start with an algorithm description. This is often reference C/C++ code obtained
from a standards organization. Alternatively, it may be a reference code generated
from an algorithmic description captured in a modeling notation such as the
MathWorks’ MatLab or Simulink, or in UML or one of its profiles, and using
code generation to obtain executable C or C++.

2. Characterize the algorithm by running it on a very generic target processor. This
will give designers some idea of the general computational and communications
requirements of the algorithm (communications being defined as both data access
and control access communicating into and out of the algorithm).

3. Identify “hot spots” in the target application. These will very often be loop
nests in which multiple instructions are executed over large data samples.
Techniques such as instruction fusion (combining multiple instructions into one);
vectorization (SIMD) methods, where the same instruction is applied to many
data items; and multi-operation instructions – where several operations without
dependencies could be executed simultaneously on a VLIW-style architecture –
are commonly identified.
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4. Configure the processor and add instruction extensions to accelerate the exe-
cution of the algorithm. Re-characterize the code running on the new modified
target. It may be necessary to restructure the code or insert pragmas into it in
order that the compiler can take full advantage of vectorization (SIMD) or fused
instructions.

5. If the performance targets for the algorithm are met and the estimates of power
consumption and cost (area in terms of gates) are satisfactory, stop: this processor
is now a reasonable choice for the function. Otherwise, further code restructuring
and further configuration exploration and additional instruction extensions may
be important. In this case, repeat the last few steps until either a satisfactory result
is achieved, or it is necessary to add specialized hardware blocks as coprocessors
in order to achieve the desired results.

6. If hardware blocks are necessary, they may be created using high-level synthesis
tools, based on the algorithmic description for that part of the algorithm which
must migrate to hardware. The design team may explore a variety of mechanisms
for tying such accelerating blocks to the main processor – hardware FIFOs,
coprocessor interfaces, or loosely coupled with systems buses, or DMA.

33.7 Software-Driven Verification and Portable Stimulus

The industry is rapidly approaching a new era in dynamic verification as indicated
in Fig. 33.10.

Fig. 33.10 The eras of verification
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In the early days of verification, the “Stone Age” directed testing dominated
verification. Design and verification engineers, at the time still emerging, were
developing simple ad hoc test benches and creating tests by hand. This approach
was not very scalable, as it required more engineers when more verification was
required. As a result, it was very difficult to achieve good quality, and the confidence
in how to get there and whether everything was verified was very hard to achieve.

In synchronization with the era of heavy IP reuse – sometime in the late 1990s to
the early 2000s – the era of Hardware Verification Languages (HVLs) began. This
is where specific verification languages such as VERA, e, Superlog, and eventually
SystemVerilog fundamentally changed the verification landscape. Methodologies
were developed, including the Verification Methodology Manual (VMM), Open
Verification Methodology (OVM), and later Universal Verification Methodology
(UVM). In this era of verification, constrained-random stimulus automated test
creation and coverage metrics were introduced to measure coverage closure. The
level of automation involved in this era allowed users to scale verification by
automatically generating more tests and made the HVL-based approaches ideal for
exhaustive “bottom-up” IP and subsystem verification.

By 2016 the objects to be verified – modern SoCs – have evolved. They now
contain many IP functions, from standard I/Os to system infrastructure and differ-
entiating IP. They include many processor cores, both symmetric and asymmetric,
both homogeneous and heterogeneous. Software executes on these processors, from
core functionality such as communication stacks and infrastructure components
such as Linux and Android operating systems all the way to user applications.
Experts seem to agree that the UVM, while great for verification of IP blocks, falls
short for SoC verification. The two main reasons are software and verification reuse
between execution engines. It is important to note that UVM will not likely go
away – it is fine for the “bottom-up” IP and some subsystem verification – and will
continue to be used for these applications. However, UVM does not extend to new
approaches for “top-down” SoC-level verification.

When switching from bottom-up verification to top-down verification, the
context changes. In bottom-up verification, the question to verify is how the block or
subsystem behaves in its SoC environment. In top-down verification, the correctness
of the integrated IP blocks itself is assumed, and verification changes to scenarios
describing how the SoC behaves in its system environment. An example scenario
may be “view a video while uploading it.” On top of the sequence of how the
hardware blocks in the system interact, this scenario clearly involves a lot of
software.

This is where traditional HVL-based techniques run up against their limits. They
do not extend well to the software that is key to defining scenarios. Scenarios
need to be represented in a way that they can be understood by a variety of users,
from SoC architects, hardware developers, and software developers to verification
engineers, software test engineers, and post-silicon validation engineers. They need
to be comprehended by a variety of different users to allow efficient sharing.
Also, the resulting test/verification stimulus needs to be portable across different
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verification engines and even the actual silicon once available, enabling horizontal
reuse. Software executing on the processors in the system – called software-driven
verification – is the most likely candidate. Third and finally, the next wave of
verification needs to allow both IP integration as well as IP operation within its
system context to be tested, i.e., vertical reuse.

The Perspec System Verifier platform is one means to achieve portable stimulus
by means of software-driven verification. Consider a use case from above: “view
a video while uploading it.” This six-word statement translates into bare-metal
actions at the SoC level that need to be executed in a form such as “take a video
buffer and convert it to MPEG4 format with medium resolution using any available
graphics processor. Then transmit the result through the modem via any available
communications processor and, in parallel, decode it using any available graphics
processor and display the video stream on any of the SoC displays supporting the
resulting resolution.”

The state space this scenario creates is vast. Various resolutions, different video
algorithms, different resources, different types of memory buffers, etc. need to
be considered. Writing such a test manually, if even feasible, is hard to do and
requires valuable system knowledge. And then the resolution, memory, or resources
change – which makes it harder. This is where UML-like use-case definitions and
constrained-random solving techniques to instantiate data and control flow with
valid combinations of parameters come in as shown in Fig. 33.11.

The abstract use case reads from a memory buffer, converts data into a second
memory buffer, and then in parallel transmits and decodes for display. The UML-
based description is intuitive and can be understood by the various stakeholders.
The automation involved transforms this description into an actual UML activity
diagram with randomized video buffers, specific choices of video conversion

Fig. 33.11 UML use-case definition in Perspec System Verifier
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formats such as MPEG4 to save into specific buffers, randomized video stream
attributes, random selection of a display for the stream playback, and distribution
across available compute resources.

Perspec System Verifier automatically generates the associated tests that execute
on the processors in the design and run them on the various validation engines of
the System Development Suite – from virtual platforms through RTL simulation,
emulation, FPGA-based prototyping, and the actual silicon.

33.8 Conclusion

This chapter has surveyed a number of technologies for hardware/software codesign
and coverification. They are undergoing constant evolution, and new applications
are being found for these various technologies as technology and design practices
evolve and change. This snapshot from 2016 represents state of the art in these areas
as of that time. There are several new technology directions being explored.

Xtensa technology will evolve in two ways. First, it will support a wider range
of microarchitectural choices and features, giving users even more options for
creating ASIPs that meet their application needs. Secondly, it will be used in new
and emerging application domains to offer new types of DSPs to users. Vision
processing is a hot area in 2016 and likely to remain so, especially for emerging
automotive applications. An even hotter subset of vision processing is the use
of “AI” or deep-learning techniques such as Combinational Neural Networks and
variations to support automotive ADAS applications. Both general vision DSPs with
special Convolutional Neural Network (CNN) capabilities and highly application-
specific CNN or other neural network ASIPs are possibilities.

System Development Suite (SDS) continues to move toward closer integration of
different verification engines. The concept of “Continuum of Verification Engines”
(COVE) [1] has been publicly discussed. Further connection of virtual prototyping,
high-level synthesis, formal verification, RTL simulation, emulation, and FPGA-
based prototyping have been recent and ongoing trends:

• Verification acceleration: Connection of the verification computing platform
and RTL simulation to achieve accelerated execution is second only to in-circuit
emulation applications. The Design Under Test (DUT) resides on the emulator
and the test bench on the host; the host execution of the test bench controls the
overall speed and users report 200–300X speedup over pure simulation.

• Simulation/emulation hot swap: This is a unique capability with SDS; users
can run in one environment for a certain time, stop, and switch to the other.

• Virtual platform/emulation hybrid: This allows teams to reduce the time to the
point of interest using, for example, fast models from ARM in virtual platforms
connected to emulation.

• Multi-fabric compilation for hardware engines: In SDS, users have a multi-
fabric compiler that can target both emulation and FPGA-based prototyping for
in-circuit emulation, avoiding lengthy reengineering.
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• Unified Power Format (UPF)/Common Power Format (CPF) Low-Power
Verification: Power verification using either standard can be run in emulation
and RTL simulation, for example, to verify the switching on and off of various
power domains.

• Portable stimulus: Enables reuse of verification across various engines, includ-
ing the chip itself. Vertical reuse from IP to subsystems to full SoCs is possible.
Finally reuse is possible across various engineering disciplines.

• Interconnect performance analysis: Integrates verification IP (VIP) and RTL
simulation to enable performance optimization and verification for interconnect.

A key capability going forward will be the automation of integration in a general
way – for example, Interconnect Workbench (IWB) automatically generates test
benches targeting different platforms.
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