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Abstract

In the HW/SW interface domain, specification of memory architecture and
software-accessible hardware registers are both relevant for the implementation
of hardware and the firmware running on it. Automated code generation of both
HW and SW artifacts from a shared data source is a well-established method
to ensure consistency. Metamodeling is a key technology to ease such code
generation and to formalize the data structures target code is generated from.
While this can be utilized for a wide range of automation and generation tasks, it
is particularly useful for bridging the HW/SW design gap.

Metamodeling is the basis for the construction of large model-driven automa-
tion solutions that go far beyond simple code generation solutions. Based on
the formalization metamodels provide, models can be incrementally transformed
and combined to create more refined models for particular design tasks. IP-
XACT and UML/SysML can be utilized within the scope of metamodeling.
The utilization of these standards and the development of custom metamodels
— targeted to specific design tasks — have proven to be highly successful and
promise large potential for further productivity increase.
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32.1 Introduction

Productivity increases in the design of embedded systems always built on the idea
of predesigning modules from smaller components, providing an abstract model
and other views and packaging all that together for use in a higher-level design
environment.

First, semi-custom design prepacked transistors to logic gates and provided
models with logic functions, propagation delay, and a graphical representation
symbolizing the functionality of the gate. Typical representatives for prepacked
gates are AND gates with two, three, or four inputs and one output or a D flip-flop
with clock, reset, and data (normally called D) input and one output (normally called
Q). This packing also enabled the use of gates in a schematic editor which provides
a graphical view of the model. This stage of development permitted increasingly
complex designs which could no longer be manually handled on the lower levels
of abstraction. The final layouts were therefore done by fully automatic place and
route tools.

Next, gates were prepacked to RT components, associated with register-transfer
functionality and with untimed or clock-related timing. The packing was enriched
with schematic views, with operators or program constructs and their mapping to
the RT components. A good example for this is an adder which supports various
sized inputs and the associated information that a “4-"-operator can be mapped to
it. The essential achievement of this abstraction is that RTL synthesis tools can map
RTL descriptions to gate-level netlists in an automated way.

Further pursuing this approach, IP components were introduced that were pre-
implemented in RTL and associated with more abstract TLM models to enable early
and efficient simulations of multimillion — if not billion — transistor chips. Although
that approach is now about 15 years old, this technique is not fully established.
If established, generation of TLM and RTL top levels — i.e., abstract model and
implementation — from a single source model is not a widely used approach. This
is one of the main reasons for delayed introduction of automated IP-based design
with TLM models: automation as provided by layout and RTL synthesis tools is
not available. Further abstraction — except for some prepacked subsystems — is not
widely used today [21].

Solely relying on the reuse of prepackaged items makes it very hard to implement
innovative products since innovation is limited to novel combination of pre-
implemented items. To address this limitation, RTL synthesis provided an additional
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abstraction: the ability to describe the behavior of a design using sequential
constructs known from programming languages following a specific coding style.
By applying a mapping — called inference in the RTL domain — these sequential
constructs are mapped to RTL netlists and RTL primitive components that are then
further optimized and synthesized as described above. For example, an if-statement
causes the insertion of multiplexers for all signals assigned in the statement
blocks.

The increase of productivity in RTL-synthesis provided for a wide range of
digital designs through behavioral constructs could however not be repeated.
High-Level Synthesis (HLS) tools, state machine synthesizers, or processor gener-
ation tools — to name only some — could improve productivity only in very limited
fields of application. Moreover, reuse and composition of IP components do not
give the productivity increase that is often claimed since they help to design chips
with a lot of transistors, yet the transistors still need plenty of custom firmware and
software on top of them to work properly.

If a single tool cannot provide system-level automation — i.e., automation beyond
implementation level — for a wide range of applications, why not use a tool suite
with tools that follow the same concept, interact, and together provide a wide
range of automation [8]. This approach is exemplified by Office suites which
provide a collection of tools for presentations, text documents, spreadsheets, project
management, and much more.

However, simple scripting as successfully used by many designers (see, e.g.,
[27]) is too expensive to provide a sufficient number of tools at an acceptable
cost and effort. Metamodeling techniques [7] provide a substantial measure to
dramatically shorten the building time of such tools. Therefore metamodeling is
one key technology to enable system-level automation via tool suites and to ease the
interaction between tools which are part of these tool suites.

The goal of this book section is to introduce metamodeling in general and to
show how it helps to increase productivity around the HW/SW interface. In the
first subsection, we introduce the general concept of metamodeling and show early
metamodeling technologies. Afterward, we give a formal definition of a metamodel
illustrating the formalization and giving an idea, on how metamodels can be used in
a formalized design process. Finally, we describe some metamodeling techniques in
use, show the idea of automatic view generation around the HW/SW interface, and
illustrate the basic structure of a metamodeling framework.

32.2 Whatls Metamodeling About

First of all, metamodeling is different from other modeling approaches and also uses
the term model differently than, e.g., in semi-custom or RTL design. This is further
elaborated in Sect.32.2.2. In metamodeling, a model describes an entity, mostly
an intended design by its properties, its sub-entities, and the relationships between
them.
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32.2.1 AFirst Example

32.2.1.1 ASimplified View on the HW/SW Interface

Figure 32.1 shows a very simple metamodel of an IP’s register interface. Compa-
rable register interfaces are a key component of generic HW/SW interfaces. The
HW/SW interface works basically as follows:

* By writing a value to the base address of the IP plus an internal offset, a
value is passed from software to hardware. From the SW point of view, this is
similar to writing to a memory cell. Therefore, SW can treat those addresses as
special variables. Additionally hardware can be attached to the register, e.g., to
trigger actions when the register is accessed or when a specific value is written.
Connection of the registers to the IP-HW is done via wires. IP-HW then processes
the values of those wires.

* Storing a value in the bitfield from the hardware side or giving access to HW
wires via the bitfield provides a way for the software to read a value from
hardware. After having read the register the bitfield resides in, the software can
further process the value. Similar to writing of values, SW handles the values
read from the IP-HW like values from a memory. They can thus be treated like
special variables in the software context.

In the following we focus on this basic mechanism, ignoring that there are
additional possibilities for HW/SW interfaces such as CPU accessible special
function registers, interrupts, or DMA request lines. When taking a closer look at
the conceptual description above and considering the abstraction levels mentioned
in the introduction, it becomes clear that several levels of abstraction with the same
or different Model of Computation are bridged:

¢ The software side follows primarily a sequential, control flow-oriented execution
order. The software is mostly developed in C and C++ — although assembler code

Description
Component Name : string [1]
Name : string [1] Comment : string [0..1]
X
Register Bitfield
Size : int [1] Size : int[1]

Offset : int [1] ‘% Offset : int [1]

’ HWr : bool [1]
HWw : bool [1]

SWr : bool [1]

SWw : bool [1]

Fig. 32.1 Simple metamodel of register interfaces
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is still used. These descriptions do not contain timing information and individual
threads of execution have no degree of parallelism.
* The hardware side follows several concepts. Depending on the level of abstrac-

tion the hardware is observed from, it uses different modeling languages:

— When observed from the gate-level perspective, connected timed primitives
mostly described in Verilog are used.

— On RTL, additional synchronous control flow or data flow is an appropriate
view, typically modeled in VHDL or System Verilog.

— TLM communicating processes are mostly coded in SystemC.

32.2.1.2 A First Metamodel

Instead of trying to make one model composed of sub-models, each following an
own model of computation and being interlinked with a multi-domain formalism
as proposed in [12], metamodels follow another idea: metamodels identify involved
entities and define their attributes and relations. Further, metamodels also define
constraints such as types, valid values, or valid multiplicity.

Figure 32.1 shows the definitions for the key entities involved in a HW/SW
interface: Component, Register, and Bitfield. Component is the root
node. In this model, it has a required string attribute Name and an unlimited number
of registers. The latter is shown by the association arrow and the multiplicity *.
Each Register has the mandatory attribute Offset, specifying the offset of
the register in the address space of the component. Since a register must have this
attribute, its multiplicity is set to 1. In addition, the offset must be a number which
is defined by the type int of the attribute. Similarly, the register has a definition of
its Size.

Finally, a register has one or more bitfields, again shown by the association
arrow pointing at Bitfield and the multiplicity 1. .+. A Bitfield has an
offset Of £ set in the bit space of the register and a Size. Their type is int since
both must be an integer number. Both have multiplicity 1 since they are mandatory
attributes for a bitfield. To specify how a bitfield can be accessed, our register meta-
model has four mandatory Boolean attributes SWreadable, HWreadable, SWwritable,
and HWwritable.

Figure 32.1 also shows two Unified Modeling Language (UML) generaliza-
tion arrows. These arrows point from the entities Register and Bitfield
to Description. They indicate that the entities Register and Bitfield
acquire all attributes and associations from the arrow target Description.
Since Description has the mandatory string attribute Name and the optional
string attribute Comment, Register and Bitfield have these attributes too.
Of course, Register and Bitfield acquire all properties of these attributes as
well. Thus, inheritance does not provide additional measures to describe entities;
however, it simplifies and structures the description of their properties.

If you noticed that Fig.32.1 resembles a UML class diagram, you are right:
Fig.32.1 was captured with DoUML, an open-source UML editor [24]. Although
metamodels and UML class diagrams have many things in common, they are not the
same. As we will see later, metamodels are used in UML to define class diagrams.
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32.2.1.3 A First Model

With a metamodel at hand, a so-called model can be built that meets the constraints
of the metamodel. In other words, legal instances of the metamodel can be built.
The metamodeling technique follows the idea of separation of model and view,
RTL models or SystemC-TLM models are thus called views in metamodeling terms.
Before we discuss views in Sect. 32.2.1.4, we take a closer look at a model.

Figure 32.2 shows an example of a model specified in a graphical way using a
UML object diagram. The model describes one instance of Component, its two
registers R1 and R2 and its four bitfields B1 to B4. All Name attributes are set,
i.e., the multiplicity constraints imposed from the metamodel are satisfied here. No
Comment is set here which is legal since its multiplicity defined in the metamodel
makes the attribute optional. All other mandatory attributes are set. The attributes
Offset and Size are set to integer values, and HWr, HWw, SWr, and SWw are set
to the Boolean values True or False.

There are further constraints originating from the semantics underlying the
domain modeled here. These constraints are also met, which are easily compre-
hensible when looking at the diagrams. For example, every bitfield can either be
read or written from each design domain, i.e., at least readable or the writable from
software, as well as at least readable or writable from hardware. Further, the size of
the bitfields is smaller than the size of the register. Since these additional constraints
cannot be shown in a graphical way, they can be annotated in the tool capturing
the metamodel either using a specific constraint language such as Object Constraint
Language (OCL) (see [33]) or a programming language.

The model describes a component called Simple. This component has two 16-
bit registers RO and R1. RO is at the relative address 0 and R1 at the relative address
1. In contrast to what one might assume, the register does not describe a storage
element in our model. Instead, it only describes an addressable shell. Bitfields are
responsible for holding data and therefore the access rights are specified here. In
our case, if a bitfield cannot be written from the SW side, the value intended to be
written via the register access is simply ignored. If it cannot be read, then the value

B1:Bitfield
RO:Register HWr = False B2:Bitfield
Name = R0 HWw = True HWr = True B3:Bitfield
Offset = 0 ___| Name =B1 HWw = False HWr = False B4:Bitfield
/ Size = 16 Offset =0 Name = B2 HWw = True HWr = False
Simple:Component
SWr = True Offset = 0 Name = B3 HWw = True
Name = Simple SWw = True SWr = False Offset = 1 Name = B4
R1:Register Size = 16 SWw = True SeT Offset = 2
Name = R1 Size =1 SWw = False SWr = True
Offset =1 Size=1 SWw = False
Size = 16 Size =1

Fig. 32.2 Simple model of a register interface
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0 is returned. On the HW side, read and write access flags determine if there is a line
from the register field to the HW core of the IP. The value written to HW is stored in
a temporary register and the read value is directly taken from the IP core. These are
all assumptions underlying our simplistic model. Industrial strength models such as
IP-XACT (see Sect. 32.4.2.1) offer a wider range of possibilities here.

In addition to the UML diagram specification, models can be specified in many
other ways, using, e.g., XML, JSON, or spreadsheets. It is important to assert that
there is only one place where — and only one way how — the model is defined. This is
called single source approach and prevents inconsistencies. It is especially important
on the HW/SW interface since several design domains are bridged here.

32.2.1.4 First Views

Documentation

For this model, several views exist in the design process. One of them is doc-
umentation. A tabular representation of such a documentation view is shown in
Table 32.1. This view is used, e.g., by the verification engineers validating the
interface, the software and hardware engineers making the interface, and by the
customer developing software for the product the IP is integrated in. This table and
all views shown here are simplified to provide a better perspective on the overall
methodology. For an industrial documentation, please take a look, e.g., at [17].

RTL Code
A possible RTL view of our model is shown in Fig.32.3. The bus interface is
assumed to consist only of Addr, DataIn, DataOut, En, and Wr. En is “1” if
the IP is accessed and Wr is “1” if a register should be written. Bus and register are
assumed to have the same clock and reset signal and there is no pipelining or other
delay on the bus. Of course, component metamodels such as the aforementioned
IP-XACT have possibilities to define more sophisticated buses (e.g., AXI, AHB, or
APB) which then lead to more complex bus interfaces. However, they follow the
same basic concept that is introduced here.

The first process SW_WRITE is responsible for write accesses from the SW
side and the second process SW_READ for read accesses. The first process is also
responsible for the inference of the synchronous memory elements needed for

Table 32.1 Simple component register documentation table

Component : Simple

Register Bitfield

Name |Offset |Size |Name ' Offset |Size |HWr HWw SWr SWw

RO 0 16 B1 0 16 False | True True True

RI 1 16 B2 0 1 True | False | False |True
B3 1 1 False |True |True | False
B4 2 1 False | True |True | False
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entity SimpleRegs

end

architecture \acs{RTL} of SimpleRegs is
begin

end architecture RTL;

port(
— Generic Interface
Clk, Rst: in std_ulogic;
— lacs{CPU} Interface
Addr :in std_logic_vector (15 downto 0);
Dataln : in std logic vector (15 downto 0);
En, Wr : in std_logic;
DataOut : out std_logic_vector(15 downto 0);
— lacs {HW} Interface
RO Bl i : in std_logic_vector(l5 downto 0);
RO Bl o : out std logic_vector(l5 downto 0);
R1 B2 o : out std logic;
R1 B3 i : in std logic;
R1_B4 i : in std_logic

).

entity regs;

SW_WRITE: process( Clk, Rst )
if Rst = 1’ then
R1 B2 o <= ’0’; RO Bl o <= (others => ’0’);
elsif rising edge( Clk ) then
if En = 1’ and Wr = 1’ then
case Addr is
when B"0000_0000_0000_0000" => RO_B1 o <= Dataln;
when B"0000_0000_0000 _0001" => R1 B2 o <= Dataln( 1 );
end case;
end if;
endif;
end process;
SW READ: process( En, Addr )
begin
if En = ’1” and Wr = ’0’then
case Addr is
when B"0000_0000_0000_0000" =>
DataOut <= RO_BI1 i;
when B"0000_0000_0000_0001" =>
DataOut <= "0" & R1 B3 i & R1 B4 i & B"0 0000 0000 _0000";
when others => DataOut <= X"0000";
end case;
else
DataOut <= X"0000";
end if;
end process;

Fig. 32.3 VHDL file

storing the bitfield values written by the software. The second process is responsible
for the multiplexers needed to provide the right value to SW via the port DataOut.
The bitfields which cannot be accessed from SW are simply omitted. Similarly,
only those bitfields marked to be SW readable contribute to the value to be passed
to SW. All bits of a register with no bitfield contribution are filled with 0 as shown
in line 40.
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If a bitfield is written and read from the same party — as the case for bitfield B1
of our example — then the IP-HW is responsible to feed either the same value back
or a different one. It is worth noting that it is therefore not guaranteed that the same
value which is written is read back.

For each bitfield that is read by the hardware, a port is created. Port RO_B1 oin
line 12 illustrates the format of the names of these ports: They consist of the name
of the register the bitfield is part of (R0), the bitfield’s name (B1), and a character
indicating the direction (o). These elements are concatenated to the port name with
underscores (_).

Correspondingly, ports are created for bitfields written by the hardware. Finally,
for each bitfield’s port, a type is selected which both matches with its size and can
be merged to a legal value of DataOut.

C-Header File
Figure 32.4 shows a possible firmware view of the HW/SW interface. For each
register, a struct with elements representing the bitfields is created. The size of
a bitfield is defined using the “:” operator followed by the size. The type is
always uint16_t indicating a 16-bit wide unsigned integer. The keyword volatile
indicates that the bitfields may be modified outside the software. The compiler thus
cannot cache the values, e.g., in a CPU register or optimize the number of read
accesses and must access the raw bitfield every time it is used by the software (i.e.,
generally the C-code).

The registers are then combined to an overall register interface reg t us-
ing another struct. Assuming an instance SimpleInstO and a pointer called
SimpleInstOPtr (see Line 17), then bitfield b2 can be accessed by:

SimpleInst0Ptr—>rl.b2

w9

However, different C compilers won’t accept this coding style since “:” is not
generally supported. Further, unit16_t may not result in the intended result.

struct r0_t {

volatile uintl6_t bl : 16;
1.
S

struct rl_t {
volatile uintl6_t b2 : 1;
volatile uintl6_t b3 : 1;
Sl
1

0 L AW —

volatile uintl6_t b4
9 const uint32 t unused :
10| };

3;

12| struct reg_t {

13 volatile r0_t r0;
14 volatile rl_t rl;
15| )5

17| reg_t *SimplelnstOPtr;

Fig. 32.4 C-header file
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struct reg t {
volatile bus_t r0;
volatile bus_t rl;

s

reg_t =SimplelnstOPtr;

inline bool GetRIB3(reg_t *rp) {
return (bool) ( (rp—>rl) >> 1 ) & 0x01 );

© e 9L R W N —

}

Fig. 32.5 Another C-header file

To address this, a style similar to Fig.32.5 might be needed. Here, inline
functions are used to access the bitfields. Line 8 shows how access to the bitfields is
provided using a combination of shift, mask, and type cast.

There may be even more styles and variants of C’s HW/SW interface view since
bus_t and bool may not be supported. For example, macros could be used instead
of inline functions. For an overview of different coding styles, see, e.g., Chap.5
“Hardware/Software Interface” of [6]. The important aspect of the metamodeling
approach is the guaranteed consistency of all these views which is ensured by code
generation from the same specification source.

So far, we have only seen a model as instance of a metamodel and as an additional
view to all the existing views. Before identifying the case for metamodeling in
Sect.32.2.4, let’s discuss the metamodeling terminology and take a look at the
evolution of metamodeling over the last decades.

32.2.2 Terminology

32.2.2.1 Metamodel

So far, we simply accepted the term metamodel as something that constrains a model
but we did not dig deeper into the prefix meta. As opposed to metaphysics, which
is not a specific domain of physics but a branch of philosophy, metamodeling is a
term from computer science.

The relationship between both terms is that meta stands for beyond. While
metaphysics deals with questions about the fundamental nature of being [13],
metamodeling deals with fundamental concept of a model. Therefore, a metamodel
models the domain of a model. In other words, a metamodel is a model of a model.

This definition is in line with the things that were already said about metamodel-
ing. Our simple metamodel example models the domain of the HW/SW interface. It
is a guide — and also a constraint — for each specific model of the HW/SW interface
of a component.

32.2.2.2 Metametamodel
There is however also a metamodeling domain. The models of this domain are
metamodels. These models of the metamodeling domain in turn have their own
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Metametamodel Class SubClass

root

Name : string [1] @——>| Name : string [1]

Name : string [0..1]

3

MinOcecurs : int [1]

Attribute
/v MaxOccurs : int [1]

Name : string [1]

Type : string [1]

Fig. 32.6 Meta-metamodel

metamodels describing them. In other words, each model of the metamodeling
domain (a metamodel) is an instance of its own metamodel; the metamodel thus
has a metamodel. When viewed from the modeling domain, each model m has a
metamodel mm. As this metamodel mm also has a metamodel, the latter is the
meta-metamodel mmm of m.

An example of a meta-metamodel is shown in Fig.32.6. It describes that a
metamodel has a root class which has other classes and attributes, both of them
in any multiplicity. Therefore, a class references a container for a subclass, which
potentially redefines the name and specifies the multiplicity. For simplicity, base
classes are not shown here. This does not reduce the expressiveness of the meta-
metamodel since they do not contribute to the modeling possibilities as such.

Interestingly, this meta-metamodel can be defined using the formalism that is
also used for the metamodel. This concept is not unusual in computer science. For
example, the BNF grammar can be defined using an BNF grammar itself (see [34]).
This is a hint that there might not be a meta-meta-metamodel, although there is some
research to find this even more basic model.

Figure 32.7 shows the component metamodel from Fig.32.1 as an instance of
the meta-metamodel shown in Fig.32.7. The object ComponentMM is the root
node in the meta-metamodel instance named ComponentMM. Its only associated
object Register of type Class is the root node of the metamodel. Its associated
objects Of fset, Size, and Name of type Attribute specify the attributes of
Register. The object Register also has an associated Subclass object defining
that the associated object Bitfield of type Class. The multiplicity 1. .x
of this association is represented by MaxOccurs=1 and MinOccurs=-1. The
Bitfield class has seven attribute objects associated with, three of which are not
completely shown.

32.2.2.3 Metamodeling Layers

The relationships of the introduced artifacts, views, models, metamodels, and meta-
metamodels, are pictured in Fig.32.8. Here, we see that the artifacts are labeled
from MO to M3, a terminology introduced by OMG (see [22]). We also see that
the higher numbered artifacts define the structure of their directly lower numbered
artifact. In turn, the lower labeled artifacts are an instance of — or in other words
comply to — their directly higher numbered artifact. The M0-M1 relation differs as
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M3:
MetaMeta-. " gefines_ModefIirl\llg Elel\rlmlwedntls and
Model : _ onstraints of Meta-Mode
f Defines Structure
Instance-of v
M2: '::?:J..,..E*-]_. Defines Modeling Elements and
Meta- =& Constraints of Model
h}lo?el ff;" | Defines Structure
nstance-o . v
. == = - Defines content of view language
M1: e ‘ J J = independently
Model '
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Fig. 32.8 View, model, metamodel, and meta-metamodel

it is a content wise and not a structural dependency. In some cases, this dependency
may also be structural, as the introduction of model-to-model transformations in
Sect. 32.4.2.3 shows.

Although the depicted designation of layers is widely accepted, there are two
alternative approaches. A small set of publications follow the idea that HW design
deals with models, i.e., what we call a view is in their definition a model. Conse-
quently, what we refer to as models, metamodel, and meta-metamodels becomes
metamodel, meta-metamodel, and meta-meta-metamodel. This definition however
is not that useful in the HW/SW interface domain, since neither documentation nor
the C-code are models.

Another definition of layers is used in the Eclipse Modeling-Framework (EMF)
world (see Sect.32.4.1.4). Here, the running program embedded in the Eclipse
framework is seen as world, i.e., being level MO. Unfortunately the data of the
program is nothing else than our model. Since they are part of the “world,” a
model in the Eclipse terminology defines the structure of the data, which is — in
our terminology — a metamodel. Consequently, the terminology is shifted one level
down and only has view, model, and metamodel.

For the rest of the book chapter, we will follow the widely used OMG definition
as depicted in Fig. 32.8.

32.2.3 History and Known Technologies

Metamodeling is not as new as it sounds. The basic idea was introduced about
40 years ago by Chen. In those days, it was called entity-relationship model (see
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[3]). Most of the metamodeling concepts introduced above were either already
there or introduced some years later by Smith and Smith (see [29]). From there
on, they were continuously improved, especially in the domain of databases. It is
therefore no surprise that there is still a relationship between database schemas and
metamodels. Entity relationship diagrams were also used in the definition phase of
the Jessi Common Framework Initiative (see e.g., [35]), now used to define entities
in the hardware domain. First, mainly structurally oriented entities were modeled.
The definition of the EDIF Information Model by Kahn (see [18]) used the entity-
relationship methodology also named information model here. Due to complexity, it
was expressed in a textual form using the EXPRESS notation (see [26]). The entity-
relationship notation was however not limited to structural things. Soon later Kahn
and Guimale defined an information model for VHDL that covered behavior and
time as well [14]. A summary of all the work around entity-relationship models of
hardware was collected in [2]. Here, the term metamodeling was already used in
conjunction with hardware modeling.

Unfortunately, research activities around metamodeling in the hardware domain
cooled down for a while. The Open Access Database (see [15]), intended to store
hardware design data, was, for example, associated with an API, however not
with an unambiguous metamodel. Fortunately, metamodeling grew further in the
software world under the umbrella of the OMG. The design of XML, UML, and
other technologies was based on metamodels.

32.2.4 The Case for Metamodeling

After having seen that metamodeling is not that new a concept in hardware design,
this section now discusses the benefits of metamodeling in the design process.
We ended Sect.32.2.1.2 with the statement that so far, metamodeling is just an
additional view in the design of the HW/SW interface. The following carves out
the benefits of metamodeling, making it a very useful technology in the TLM area
and HW/SW interface automation area.

The first benefit is that the views illustrated in this chapter’s examples — and many
more — can be generated from a model. Therefore, generators have to be built that
translate the content of the model to the syntax of the target view. So, all but one
view — the model — can be completely derived from the model and no longer need
to be developed manually.

The second benefit is that the content of the model must not necessarily be
entered manually. Often, parts of the model are already defined in a specification.
By providing a specification reader — or a single source for specification and model
— additional time can be saved and consistency between specification and design
views can be improved, if not guaranteed.

The third benefit is that big parts — especially the APIs — of the software needed
to read the specification and to write the views can be automatically generated
from a metamodel. Going hand in hand with that step, a good documentation via
the metamodel diagram and a consistent way of treating models is achieved. This
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Fig. 32.9 Concept of a metamodeling framework

is nothing else than the application of modeling and generation techniques to the
construction of the automation tools.

All this is summarized in Fig. 32.9. Since not stated explicitly yet, a further detail
worth noting, the APIs needed to handle different metamodels can be also generated
from the meta-metamodel.

In order to build such a framework in a safe way, a good formal basis is needed.
Diagrams, as shown so far, give a good overview but are less suited to define all
details. In the next part of this chapter, we therefore introduce the formal definition
of models and metamodels.

32.3 A Formal Model of Metamodeling

This section provides a formalization of metamodels, their models and the relation
between metamodel and model. The representation used in the following is based
on a set-oriented perspective on models. This approach was selected as it permits an
intuitive description of the constraints metamodels impose on their models.

32.3.1 Basic Definitions

Models consist of correlated objects which contain attributes. Both the correlations
and the attributes are named. Moreover, the attributes are multisets that contain some
values. The following definitions provide a formal definition of these names and of
the values that can be stored in model attributes.
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32.3.1.1 Legal Names N of Correlations and Attributes

All legal names in a model are grouped in the set N. In this formal model, we
define this set as a set of words over an alphabet X. The characters selected for
this alphabet can be picked from an arbitrary set. It is convenient to rely on a set
of words that can be easily mapped to potential view languages (i.e., words that are
legal identifiers in common programming and modeling languages). Equation 32.1
defines such a set N of valid names:

Z:alphabet = {a7 oA Z}’ Lumeric =10, ..., 9}

. (32.1)
N = Z(Ealphabet(zalphabet|Enumeric) )
where .Z(e) describes the set of the regular language defined by the regular
expression e.

32.3.1.2 Legal Values for Attributes

Attributes in models are typed. These types define the possible values an attribute
can take and their interpretation. In this formal representation, type Tj is defined by
a set. This set contains all the values this type allows. An attribute of type T, can
only take values v € Tj.

In this formal model, some predefined types are provided. Each element in T =
{I, B, F, S} defines such a type. Each type Ty € T is a set, containing all the values
an attribute of the type T may take.

The predefined sets have the following content:

o S:=X*:={wg...wy|n € N} U {e} is the set defining the language of all valid
strings. € is the empty word and X is the alphabet of all possible characters.

* [ is the set of all words representing valid integers.

e F is the set of all words representing valid floating point numbers.

e B :={True, False} are the truth values of propositional logic.

The string type S occupies a special position here: It is a superset of any other
type. Consequently, it contains any value an attribute — regardless of its type — may
take:

VipeT:Th S (32.2)

Each of sets introduced above has an infinite number of elements. Metamodeling
environments have predefined types such as integers of limited sizes and floating
point numbers of various precision, originating from the runtimes used or the
programming languages they are implemented in. They therefore provide subsets,
constraining the range of integers, the precision of floating point numbers, and the
length of elements in S which makes all type sets finite.

To work with attribute values, the metamodeling environment has to be able
to interpret the elements in the type sets. For example, integers are used in the
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metamodel to define the minimum and maximum multiplicities of elements in the
model. To enforce these definitions and to work with the information they provide,
the metamodeling environment has to understand the integer type: It has to provide
a bijective mapping INT: I — Z U {oo}. Using this and other mappings, a runtime
environment can define operators such as addition and multiplication on integer or
floating point numbers.

32.3.2 A Formal Representation of a Model

32.3.2.1 The Set of All Models
This formal representation of models puts emphasis on the fact that everything is
a model. Section 32.2.2 illustrates that what is a model exclusively depends on the
point of view on the modeled system. Any model A becomes a metamodel not by
definition but because it is instance of a model we perceive as meta-metamodel.
Likewise, a model A can become a metamodel if there is a model C that is an
instance of A.

The set of all models M therefore contains models, metamodels, and the meta-
metamodel. Every model m € M that is part of this set has the same structure which
is defined in the following.

32.3.2.2 Definition of a Model
Each model m € M is a tuple

m = (n,mm, O) (32.3)
where n € N is the name of the model (an element from the set of all identifiers).
mm € M is the metamodel which m is instance of. The main part of the model is

the set of objects O. It contains the actual elements of a model.

32.3.2.3 The Set of All Objects O of a Model
Each object o € O is a tuple:

o= (c,i,A,K,R) (32.4)
where

e cisthe class definition of the object. This definition is an object of the metamodel
the model adheres to:

Vme M, Yoem.O :o0.c e mmm.O (32.5)

* 1 € [ is the name or unique identifier of the object. As the name suggests, there
are never two objects in a model which have the same identifier:

Yoi,0; €m.O :0;.0i =0;.0i & 0; =0; (32.6)
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* A s a set of object specific attributes where each attribute a € A is a tuple of
name and assigned values:

a=MmeN,E), ECS (32.7)

n is the name of the attribute and E is a multiset containing the attribute’s values.
If an attribute contains several identical values, the multiset E contains the value
several times. For each attribute, there is only one tuple in an object’s 0.4 set.
Equation 32.8 shows that if an attribute contains multiple values, these values are
all in the multiset of the same attribute tuple.

Yaj,a; €0.A:a;n=a;n=a; =a; (32.8)

The following will look at the elements K and R of the object tuple 0. Analogous
to the set of attributes A, both K and R are of a set of tuples (n € N, E), where n is
aname and E is a set of values:

e K describes the children of the object 0. Each element k € K is a tuple
k=meN,E), ECI (32.9)

* R is the set of referenced objects. R describes referenced elements, a concept
we did not yet introduce. They are still included here as they are an essential
part of all modern metamodeling frameworks. References allow elements inside
models to refer to other elements at object granularity. They can be compared to
attributes containing a pointer to other objects instead of an attribute value. Each
element 7, € R is a tuple

r=meN,E), ECI (32.10)

Despite their largely similar structure, elements £ which are part of tuples
belonging to K and R have a different interpretation than elements belonging to
tuples in A. The elements in E of an attribute contain actual values. In contrast, the
elements E in a reference tuple r or child tuple k contain unique identifiers of other
objects in the same model.

Example 1. The formal representation can now be used to describe any models as
an element m € M. Figure 32.10 provides an example for such a description. The
model depicted here is the same model we used for our introductory example in
Fig.32.2.

Further Constraints Aside from the straightforward constraints already men-
tioned in the definition of the object tuple o, there are several further constraints:

* For every element e € E, there is an object in the same model which has an
identifier defined by the reference target :

YmeM, 0, em.O, r€o0;,.R,ecr.E:Jo; em.O:0ji=e (32.11)
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m.O = {0Simpie,OR0:0R1;0B1,0B2,083,0B4 }
Osimpte = (0Component, 1,{(MName, {Simple})},
{(MRegister- {2,3})},0)
ORo = (ORegistera 2;{(”Name7 {RO})7 (noffseh {0})7 (”Sizm {16})}7
{(nBit fietas: {4} }) }, 0)
ORI = (ORegister 3,4 (NName, {RO}), (o f fser,{0}), (nsize, {16})},
{(nit fietas, {5,6,7} }) }, )
op1 = (0Bit fietd 4 (MName, {B1}), (Rof fser, {0} ),

(nHW,., {False})7 (nHWW, {True}),
(nswr,{True}), (nsww, {True}),
(nsize,{16})},0,9)

OB = (0Bitfietd, 5:{ (MName, {B2}), (noffser, {0}),
(nawr, {True}), (npww,{False}),
(nswr,{False}), (nsww,{True}),
(nsize. {1})},9,9)

oy = (0Bit fietd 6,4 (MName, {B3}), (noffsers {1}):
(nawr, {False}), (ngww,{True}),
(nswr,{True}), (nsww, {False}),
(nsize,{1})}.9,9)

OB4 = (0Bit fietds T, (NName, {B4}), (Rof fser, {2} ),
(ngwr, {False}), (ngww, {True}),
(nswr,{True}), (nsww,{False}),

(nSizev{l})}v¢a¢)

Fig. 32.10 An example of a model in its formalized representation

Because of Eq.32.6, there is exactly one element for every identifier and the
reference is unique.

* Every object can be child of at most one element. In other words, every object
has at most one parent. If we pick any two different objects 0; and o; of the
same model (therefore part of the same set m.0) and compare the intersection
of their sets of children 0,.K and 0;.K, we will find that it is the empty set.
Equation 32.12 illustrates that this is true if and only if we look at two different
objects 0; and 0.

VO,‘,Oj em.O Vk; € Oi.K,kj [S 0_/.KZk,‘.E ﬂkj.E 75 ¢ & o0 = 0;
(32.12)
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* Every object is child of exactly one other object except for one object which is
said to be the model’s root. Equation 32.13 shows that there is exactly one object
for which no other object exists that contains the object in its set of children
(3! is the uniqueness quantification operator stating that there is one and only one)

dlo; em.Odo; em.O, k€0;.K :0;.i €ek.E (32.13)

* The child relationship defines a hierarchy. For any two objects 0;,0; € O where
0; is direct or indirect child of 0;, 0; must not be direct or indirect child of o;.
For any sequence of objects where each object is child of its predecessing object,
the first object and the last object must not be equal:

Y(00,...,0,) € 0" ' Vie[0,n—1]:3k €0;.K :0;11.i €k.E
(32.14)
= 09 7& Oy

e The constraint from Eq. 32.8 also applies to 0.K and 0.R.

In addition to that, the names n are not only unique within the attributes,
children, and references of one object but also across the whole object. If an
object has an attribute with the name n, there must not be any reference or child
which has the same name. In other words, children, attributes, and references
share the same namespace. The pairwise intersection of all child names, all
attribute names, and all reference names must therefore be empty:

Yoe OVa,beo KUo.AUo.R: an=bn<sa=>b (32.15)

Sets of All Models, Metamodels, and Meta-Metamodels This formal model
defines three layers of models as illustrated in Fig. 32.8 of Sect. 32.2.2. These three
layers are formalized here as three sets M, MM, and MM M . The largest of these
sets is the set of all models M which was already introduced in the beginning of
Sect.32.3.2.

A metamodel mm € MM is a model that describes the structure of a model. A
model m, € M becomes a metamodel through the existence of a model m;, € M
which is an instance of it. Metamodels are therefore also models and the set of
metamodels is given by

mm={meM|Im, e M :mpmm=m} (32.16)

A model becomes a meta-metamodel through the existence of a metamodel which
is instance of it. The set of meta-metamodels is therefore given by

MMM ={me M |3Im, € MM : my.mm = m} (32.17)
Itis obvious that MM C M and MMM C M. As any meta-metamodel necessarily

has an instance, it is also a metamodel and the two equations simplify to MMM C
MM C M:
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VYmmm; € MMM Im € MM : m.mm = mmm; = mmm; € MM
(32.18)

Based on this definition and the assumption that there is only one meta-metamodel,
it is trivial that the meta-metamodel is its own metamodel:

dmmm; € MMM | mmm;. m = mmm;
(32.19)
IMMM|=1= mmm; =mmm,;

The meta-metamodel can therefore be used to describe itself. Equivalent notations
for this are mmm. = mmm or mmm = (n,mmm, O)

VYmm;, mmy; € MM : mm;.mm = mmy.mm = mmm (32.20)

32.3.3 Metamodel Constraints on Models

In a bottom-up approach, the formal definition of models in formal models presented
section 32.3.2.2 already lists some constraints on models that originate from the
meta-metamodel we agreed on.

In the following, we complement this with other constraints a metamodel mm
imposes on its models m. Approaching the problem top-down, we first declare
names for attributes and objects of the meta-metamodel: 71,,4me» Nrefs Neomps Ratir
Nmins Nmax> Niype € N. Next, a formal description of the meta-metamodel mmm as
instance of itself is developed. Finally, a list of constraints is provided.

Meta-Metamodel Any metamodel can then be uniquely represented as instance of
this meta-metamodel mmm:

Oclasss Ocompositions Oreferences Oattribute € mmm.O
Oclass = (oc'laSS! 17 Aname» Kclasss ¢)
Ocomposition = (oc'laSS! 2, Aname U Amultiplicily» ¢7 Rcluss)
Oreference = (OclaSSa 3, Aname U Amultiplicilyv ¢v Rclass)
Oattribute = (Oclass, 4; Aname ) Amultiplicily U AtypeSv ¢v ¢)

Aname = {(nname» N)}

Amultiplicity = {(nmam Iy {OO}), (nminy 1 )} (32.21)
Set of legal integer values / CS
Alypes = {(ntype» N )}

Set of all possible strings. Superset of any possible type-set 7; .

Keiass = {(ncompa {2})’ (nrefa {3})’ (naltr’ {4})}
Reiass = {(ntypen {1})}
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Metamodels instantiate these uniquely named objects and provide values for their
attributes. What we described above is in fact both the description of the meta-
metamodel mmm and a metamodel mm (as it is instance of mmm).

‘We can now use the description of the meta-metamodel and provide formulae for
how metamodel objects constrain their models. These descriptions are simplified by
a set of helper functions.

Helper Functions The functions O4 s Ok.mm, and Og y,, are defined for any
model m. They map any object of the model to the set of metamodel objects
that describe its attributes (O4 ), children (Og ), and references (Og um) oOr
a combination thereof (Oggmm, OkrA.mm)- In programming, such a mapping is
called introspection. Each of them therefore maps from the pre-image set m.O of
any model to the image set & (m.mm.0):

0;:m.0 - Z(m.mm.0O) (32.22)

The function Z(X) :={U | U € X} maps any set X to its powerset.

Osmm:or—>{oi emm.O |3k €o.c.K:0;.i €k.ENkn=ngy}

Ogmm:o—={oiemm.O |3k co.c.K:0;.i €k.ENkin =ncompy

Ormm:0o—=> {0 €emm.O |3k cocK:0;i €k ENkn=nr}
Okramm:0 > Ogmm(0) U O mm(0) U O mm(0)

OKR.mm:0 = OK.mm(o) U OR,mm(O)
(32.23)

Moreover, the function E,, ;. returns the set of all values of an attribute provided the
attribute name. The function 0;,,4 returns an object given by its unique identifiers:

Epome: O XN — 2(S), (o,n)—~>{eeS | dy€0.AU0.RUO0.K,
yn=n:ecykFE}
Opyia:M x I — O (m,i)r»0em.O | oi=i

(32.24)

Constraints The following constraints are valid for any model m of meta-
model mm:

e For each attribute, composition, and reference, the metamodel restricts the
minimum and maximum number of elements that are contained or referenced.
This number is commonly referred to as multiplicity:
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Vy €0.AU0.KUo.R, oy € OKRA,mm(O)s Cmax € Ename(ommv nmax) :
y.ne Ename(ommv nname) = INT(emax) > |yE|
Y e {K, R, A} Vomm € OY,mm(O), min € Ename(omm, nmin) Ely €o0.Y:

Y € Ename(Omms Nname) NINT(€pmin) < |yE|

(32.25)

¢ For each attribute, the metamodel constrains the values that it can take. To do

this, the metamodel object defining the attribute has a type property listing all
possible values:

VYa €0.A, opm € Ogmm(0) : a.n € Epame(Omm: Nname)
(32.26)
= a.E C Eyume(Omm, ntype)

» Compositions and target references are statically typed through the metamodel.
For each composition element and each reference, the metamodel constrains the
metamodel object the that the target is instance of:

VmeM, yemoKUmoR, ijuger €Y.E, 0ym € Ogrmm(0) :

y.n e Enume(omm»nname) = Obyid(ma ilarget)-c-i € Ename(omms ntype)
(32.27)

324 Metamodeling for HW/SW Codesign
32.4.1 Metamodeling Frameworks

The formal models presented in Sect.32.3 lay the foundation for the correct
design and construction of metamodeling frameworks. A first framework has
already been sketched in Sect.32.2.4. This section first discusses Model-Driven
Architecture (MDA) and its impact on metamodeling frameworks. It then describes
the metamodeling frameworks most widely used for automated design creation:
XML, UML, and EMF. Next, standardized metamodels covering the HW/SW
interface are introduced and the use of custom metamodels is motivated. Practical
experience gained from the use of metamodeling in industrial applications finishes
this section.

32.4.1.1 MDA

MDA - acronym for Model-Driven Architecture — is a vision of the Object
Management Group (OMG) (see [23] and [32]) for automation of code development
via metamodeling, model-to-model transformations, and code generation. In the
simple approaches toward metamodeling sketched in Fig.32.9, a specification is
first read into a model via a reader and then translated to the view via a generator. To
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Fig. 32.11 An advanced metamodeling framework

implement the full MDA vision, this simple approach is extended: The target view
is not generated directly from the first model, which is still close to the specification.
Instead, the view is generated from a model that is closer to the target view’s struc-
ture and semantics. Since these two models may still differ too much, one or even
more intermediate models might be introduced to further partition the translation.
Figure 32.11 shows such a process with one additional intermediate model.

To structure this approach and to find criteria for the definition of the models
involved, MDA introduces three levels of models:

PSM: A Platform Specific Model is very close to the target view. Model and view
therefore have similar structure but different syntax. In addition, the Platform
Specific Model has sufficient information about the environment of the final view.
A good example for a PSM is the Abstract Syntax Tree (AST) of the view’s
underlying language which already includes references to libraries that are used
in the programming or modeling environment of the platform. For the example
of the hardware register view, the PSM would be the AST of VHDL with links
to VHDL’s synthesis packages and libraries of reusable components.

If view generation starts from a PSM, the view can also be seen as an instance
of the model and not just the content of the model since the view follows the
structure of the model.

PIM: A Platform Independent Model does not include platform details but already
depends on the targeted implementation’s semantics — or in SW terminology: It
depends on the kind of computation being targeted.
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A good example is a view’s language independent structural model being
able to handle components, their instantiations and connections between them.
However, such a model does not consider language specifics as VHDL’s
component-based instantiation, its port signals types (e.g., std_logic) and out
semantics, or Verilog’s wire-based style.

CIM: A Computation Independent Model focuses on items in the modeled domain,
independent of their implementation. A very good example is the register model
of our simple component, since it is independent of the target semantics (i.e., of
a sequential programming language describing the SW access, of a TLM register
model interfaced by a method, or of an event-driven VHDL model describing
the HW part). This independence is precisely what is important for metamodels
describing interfaces between domains. It is also easier to parse specification data
into that model since a specification focuses on what the design should do and
not on how the design shall be implemented.

In MDA, for each of the CIMs, PIMs, and PSMs, a metamodel is defined. This
metamodel acts as the starting point and interface agreement for automation.

A metamodeling framework following the ideas of MDA is shown in Fig. 32.11.
Here, the models are encapsulated in APIs with separate interfaces for writing
and reading data (setAPI and getAPI). Using these interfaces, the data can
be dumped into an intermediate storage based on the XML format, edited with a
GUI or validated by check functions. These checks are derived from constraints
provided by the metamodel or the meta-metamodel in use. All these components
of metamodeling framework can be automatically generated using the metamodel
description. Additional checks can be generated from OCL constraints associated
with the metamodel or parts of it.

There are even several methods to automate the construction of translators. The
view generator, for example, can either be derived from a metasyntax notation like
EBNF or can be based on a template engine. The reader can, for example, make
use of libraries or parser generators. All together, a metamodeling framework is a
powerful tool that not only automates generation of views but also the construction
of parts of the automation solution.

The metamodeling approach described in [8] and entitled meta-synthesis goes
one step further. It also automates the building of automation tools by support-
ing merge and split of data during model-to-model transformation, dump and
reload utilities for models, checks of model consistency, and execution control.
Providing such a high level of automation makes it comprehensible how the
use of models which are instances of metamodels helps to dramatically improve
design productivity and design quality although the metamodels have to be built
upfront.

In the following, we introduce the three metamodeling frameworks. EMF,
synonym for Eclipse Modeling Framework, as well as XML and UML which
describe both modeling languages and a modeling framework.
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1| <?xml version="1.0" encoding="UTF-8" 7>

2| <Component Name="Simple">

3 <Register Name="R0O" Size="16" Offset="0">

4 <Bitfield Name="BI" Size="16" Offset="0"

5 HWr="false" HWw="true" SWr="true" SWw="true" />
6 </Register>

7 <Register Name="R1" Size="16" Offset="1">

8 <Bitfield Name="B2" Size="1" Offset="0"

9 HWr="true" HWw="false" SWr="false" SWw="true" />
10 <Bitfield Name="B3" Size="1" Offset="1"
11 HWr=""false" HWw="true" SWr="true" SWw=""false" />
12 <Bitfield Name="B4" Size="1" Offset="2"
13 HWr="false" HWw="true" SWr="true" SWw="false" />

14 </Register>
15| </ Component>

Fig. 32.12 The simple component model in XML format

32.4.1.2 XML

XML, acronym for eXtensible Markup Language, is a markup language that is used
to store and annotate data. There are many books on XML and lots of web pages
detailing the usage of the language in different fields of application. Instead of
providing an overview over this vast area, this book focuses on the special features
of XML that can be used in the context of metamodeling.

One of XML'’s initial goals was to separate content and view, an idea that also
underlies the metamodeling concept. The mix of formatting and data — as, e.g., used
in older versions of HTML — should be overcome to ease information retrieval and
to support different publishing styles. The resulting XML standards were therefore
shaped in a way that allowed storing data which could also be used to capture models
of metamodeling environments. Figure 32.12 provides an example of our simple
component model encoded in XML.

Of course, a representation similar to Fig. 32.12 can also be used to store meta-
models. UML, for example, defines the XML Metadata Interchange (XMI) format
as an XML-compatible markup language for storing models and metamodels. This
XML Metadata Interchange (XMI) format is also used in the Eclipse EMF domain.

In addition, XML has a mechanism called XML Schema Definition (XSD) to
define the valid structure of an XML document, effectively defining a metamodel
for XML documents. XSD has a set of powerful features for specification of valid
values. Similar to the formal definition in 32.3, XML and XSD only deal with
strings. All values in the pictured XML file are therefore embedded in double
quotes. An XSD schema specifies the valid strings an attribute may be assigned
with and how those then have to be interpreted, e.g., as a number or a Boolean
value. Figure 32.13 shows the XML schema defining the validity of the XML file in
Fig.32.12. It carries the same information as the metamodel that was introduced
in the introductory example in Fig.32.1. It is, however, not as intuitive as the
graphical view of the metamodel. In addition, the requirements on well-formed
XML documents make the format a bit verbose. XSD documents are formatted
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<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema">
<xsd:element name="component" type="Component" />
<xsd:complexType name="Component">
<xsd:sequence>
<xsd:element name="register" type="Register" />
</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string" use="required" />
9 </xsd:complexType>
10 <xsd:complexType name="Register">
1 <xsd:sequence>

0 9 AW —

12 <xsd:element name="bitfield" type="Bitfield" />

13 </xsd:sequence>

14 <xsd:attribute name="Name" type="xsd:string" use="required" />
15 <xsd:attribute name="Offset" type="xsd:int" use="required" />
16 <xsd:attribute name="Size" type="xsd:int" use="required" />

17 </xsd:complexType>

18 <xsd:complexType name="Bitfield" minOccurs="1" maxOccurs="unbounded">
19 <xsd:attribute name="Name" type="xsd:string" use="required" />
20 <xsd:attribute name="Offset" type="xsd:int" use="required" />
21 <xsd:attribute name="Size" type="xsd:int" use="required" />

22 <xsd:attribute name="HWr" type="xsd:bool" use="required" />

23 <xsd:attribute name="HWw" type="xsd:bool" use="required" />

24 <xsd:attribute name="SWr" type="xsd:bool" use="required" />

25 <xsd:attribute name="SWw" type="xsd:bool" use="required" />

26 </xsd:complexType>
27| </ xsd:schema>

Fig. 32.13 Component metamodel in XSD format

in valid XML themselves. This allows existing XML parsers to read the schemas;
however, it is also responsible for XSD’s verbosity.

Specific to the XML-based MDA process is that the model is stored in a
file and not in an encapsulated data model that is part of a program. This is
shown in Fig.32.14 on the same MDA flow as pictured in Fig.32.11. Here, the
transformations are done by XML processors which read XSLT, a transformation
language for XML.

XSLT can also be used to translate XML to any kind of textual view such as
C-code or VHDL models. The only thing needed to build an XML CIM in the
depicted XML MDA flow is therefore a reader. If the specification is available as an
XML document, this reader might be an XSLT-based translation as well.

32.4.1.3 UML

UML is a widely used standard in the software world incorporating many concepts
and notations that have proven to be successful. UML also defines an aligned
graphical view on all the concepts included. The widespread adoption of UML
brought a significant benefit compared to the situation before where different
methodologies used different graphical notations for the same concepts or even the
same notation for different concepts. UML as a whole however has a disadvantage:
It is quite complex and some definitions are ambiguous.

All the notations — also called diagrams — are defined via a metamodel which in
turn is defined on basis of a meta-metamodel. This UML meta-metamodel is called
MOF (see [22]) — acronym for Meta Object Facility. Inside the MOF and essential
MOF called EMOF and a complete MOF called CMOF is defined. Based on MOF,
UML defines a standard intermediate called XMI which we already mentioned.
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Fig. 32.14 MDA using XML

UML influenced metamodeling in many ways. Since UML diagrams also support
behavioral notations like state or activity diagrams, it proves that metamodels are
not restricted to structural information. Instead, a structure can be defined which
has inherent execution semantics.

UML also supports class diagrams, which — or more precisely an extended subset
of which — can be used to define metamodels in a graphical way. UML’s EMOF
is thus conceptually very close to a class diagram. This is obvious since a class
diagram structures data and a metamodel structures its domain in entities (classes),
their properties (their attributes), and their relation to other entities (different kinds
of associations).

Last but not least, UML has a built-in extension mechanism, which permits the
adaption of UML to different needs and domains. The adaptability to different needs
in particular is a noteworthy benefit of a modeling-based approach over the tool-
based approach in system-level automation.

Stereotypes can be used to create new model elements, represented by «...»-
brackets. These model elements may also have their own graphical representation.
In addition, stereotypes can be used to create completely new diagrams including
their graphical representation.

The second mechanism is tagged values. They used to define additional prop-
erties for existing modeling elements or stereotypes. They include additional
information needed for specific use cases. This information can also influence
further processing of the model. When our simple component metamodel is used
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for HW generation, it can be extended with tagged values describing how many
flip-flop instances should be generated for every bitfield:

* Zero: Only wires would be generated in both directions.

¢ One: Only one flip-flop group written by SW (as depicted in Fig. 32.3)

* One shared: Flip-flops writable by HW and SW

* Two: One flip-flop group being written by SW and read by HW as well as one
flip-flop group being written by HW and read by SW

Other tagged values might specify if SW read and write accesses trigger pulses
and edges at additional signals passed to the HW core.

It is important to note that tagged values modify the metamodel in an upward
compatible way since they only add items. In contrast, UML’s third adoption
mechanism called constraints adds new rules or modifies existing ones. Constraints
can be used to remove an attribute from a modeling element. Code generators that
rely on a removed field would fail.

A set of any of the defined extensions can be packed and provided as a so-called
profile. SysML (see Sect. 32.4.2.2) is one example of such a profile. These profiles
are called lightweight extensions since they don’t change UML’s metamodel. In
contrast, a heavyweight extension would add new items, concepts, and relationships
to UML’s MOF.

32.4.1.4 Eclipse Modeling Framework

EMF, synonym for Eclipse Modeling Framework, is a full-featured metamodeling
framework. EMF uses Java as implementation and glue language and generates a
Java API as well as other things for the specified metamodel (e.g., an editor model).
EMF is fully integrated in the Eclipse framework. EMF is a good starting point for
metamodeling since it is open source and can easily be obtained from the Eclipse
Foundation. EMF’s web page (see [9]) refers to many online tutorials, webcasts,
and video-casts. For those preferring old-style printed books, the key contributors
to EMF collected an overview on EMF in [30]. There are also many forums around
EMF helping with questions.

Diving into EMF is however not straightforward and it takes a while to get started
with the framework. Many consulting companies around EMF offer their help. If
someone prefers closed-source tools that come bundled with professional service,
then he/she might look at the tools from MetaCase [20]. An important contribution
of EMF to the metamodeling world is its meta-metamodel called ECORE. ECORE
was designed to be able to map XML schema, UML metamodels (diagram types
in UML terminology), and database schemas to one model. The ECORE model
shown in Fig. 32.15 is conceptually identical to our first meta-metamodel shown in
Fig.32.6.

Figure 32.15 shows four additional modeling features: First, as already in-
cluded in our formal model, ECORE has a reference mechanism implemented via
EReference. This mechanism has similarities with association in EMOF. Via
containment, references and compositions (the only hierarchical element in our
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Fig. 32.15 EMF ECORE meta-metamodel [10]

simple metamodel) can be distinguished. Second, ECORE supports inheritance via
eSuperTypes and eAllSuperTypes. Third, ECORE supports namespaces via
EPackage. Fourth and last, ECORE supports enumerations via the EEnum and
EEnumLiteral meta-classes.

Further, ECORE makes more use of inheritance. For example, all the
naming is defined in the virtual classes EClassifier, ENamedElement,
and EModelElement. Similarly, bounds and other features are derived from
EStructrualFeature and ETypedElement.

The meta-class EFactory does not describe a modeling feature but methods to
create the instances and to do string conversion. Finally, EAnnotation provides
a measure to add data to the model that can be used, e.g., for view generation or
model transformation.

Less obvious, yet just as important is that the API does not only permit access
to the model. Instead, it also permits access to the metamodel items which are
associated with the model items. In this way, introspection is supported for all model
elements and meta-programming techniques can be applied. This allows different
attributes to be handled by the same piece of code although they are differently
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typed. This facilitates the implementation of translators and view generators that
support on any instance of one kind of meta-metamodel.

32.4.2 Related Standards

Around the XML metamodeling technology, two standards have been defined that
are widely used in the HW/SW area: IP-XACT and SysML. This section gives an
overview over the standards and afterward motivates the benefit of an application
specific metamodeling approach.

32.4.2.1 IP-XACT
IP-XACT (see [19]) is a standard supporting automation of IP Integration and
thereby automation of System-on-Chip (SoC) construction. A PDF version of the
standard is available from the IEEE [16]. IP-XACT has wide professional support.
Several Electronic Design Automation (EDA) tools support IP-XACT and almost all
IPs have an associated IP-XACT view. There are also open-source tools supporting
IP-XACT, e.g., Kactus2 (see [31]).

IP-XACT defines an XML Schema with additional semantic documentation of
the schema items. From the modeling standpoint, IP-XACT primarily supports the
definition of the following items:

* Signals, interfaces, and bus structures as elements for the connection of compo-
nents.

e RTL, TLM, or mixed RTL and TLM connections.

¢ Components describing hardware blocks of the IP. To interface with the HW
world components offer interfaces for complex signal bundles and simple ports.
Further, they can have parameters. Finally, components include the definition of
the register layout and thus define most parts of the IP’s SW interface.

* Definition of connection of IPs in a so-called System Model.

From HW/SW perspective, only a subset of the features IP-XACT provides are
of interest.

The System Model, since it defines the involved components, the number how
often they are instantiated and the instance names. The definition of the base address
for each instance and derived from that the based addresses of the register fields is
an important key for efficient software development.

The way how registers are specified is more advanced than in our simple
model. Components have addressable units specifying their own base address inside
the address space of the component and their own address range. Furthermore,
the addressable units can be connected to interfaces. Like this, registers can be
addressed via two or more CPU buses or over other protocols such as Serial
Peripheral Interface (SPI). Figure 32.16 illustrates that the registers in IP-XACT and
our register model share a similar underlying concept: Components have registers
and registers have bitfields.
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1| <ipxact:register>

2 <ipxact:name>R0</spirit:name>

3 <ipxact:addressOffset> 0x00 </ipxact:addressOffset>
4 <ipxact:size>l6</ipxact:size>

5 <ipxact:field>

6 <ipxact:name>Bl</ipxact:name>

7 <ipxact:bitOffset>0</ipxact:bitOffset>

8 <ipxact:bitWidth>16</ipxact:bitWidth>

9 <ipxact:access>read—write</ipxact:access>
10 <ipxact:volatile>true</ipxact:volatile>
11 </ipxact:field>

12| </ipxact:register>

13| <ipxact:register>

14 <ipxact:name>RI</spirit:name>

15 <ipxact:addressOffset> 0x01 </ipxact:addressOffset>
16 <ipxact:size>l6</ipxact:size>

17 <ipxact:field>

18 <ipxact:name>B2</ipxact:name>

19 <ipxact:bitOffset>0</ipxact:bitOffset>

20 <ipxact:bitWidth>I</ipxact:bitWidth>

21 <ipxact:access>write—only</ipxact:access>
22 <ipxact:volatile>false</ipxact:volatile>
23 </ipxact:field>

24 <ipxact:field>

25 <ipxact:name>B3</ipxact:name>

26 <ipxact:bitOffset>l</ipxact:bitOffset>

27 <ipxact:bitWidth>I</ipxact:bitWidth>

28 <ipxact:access>read—only</ipxact:access>
29 <ipxact:volatile>true</ipxact:volatile>
30 </spirit:field>

31 <ipxact:name>B4</ipxact:name>

32 <ipxact:bitOffset>2</ipxact:bitOffset>

33 <ipxact:bitWidth>I</ipxact:bitWidth>

34 <ipxact:access>read—only</ipxact:access>
35 <ipxact:volatile>true</ipxact:volatile>
36 </spirit:field>

37| </ipxact:register>

Fig. 32.16 IP-XACT code fragment of registers

But IP-XACT also has some nice additional capabilities. For example, read and
write access can be specified for address fields, registers, and bitfields. Further, the
access is not defined via read and write flags but via access-field that can take the
values read-only,write-only, as well as read-write. Also, writeOnce
and read-writeOnce are supported.

In addition, IP-XACT allows to specify legal values for the bitfields. Each of the
value items has a name, a value, and a description. In software, they can be mapped
to enumeration types or macros making the SW access more readable.

Further, accesses can be byte accesses and bridge different types of endianness.
Therefore ipxact :endianness and ipxact :addressUnitBits are asso-
ciated with buses and address fields but not to singe registers.

Another important thing is the possibility to define the display name of registers
and bitfields in addition to name and description. This display name may be used in
the firmware headers since it can be easier to map it to target SW languages.

There is also a possibility to specify dimensions for registers, which allow —
together with address fields — the hierarchical specification of the software-side
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register interface in a more structured way based on struct- and array-
constructs.

However, IP-XACT focuses on IP integration and therefore describes only the
SW side of the component. The hardware side is only covered by the attribute
volatile. This attribute tells if the hardware may change the value written by
the software. The way how and where the value is stored and how the HW access is
done cannot be specified in IP-XACT.

32.4.2.2 UML/SysML
This section focuses on SysML, an extended subset of UML, and describes where
SysML modifies, adds, and skips UML diagrams or their features. Although both
UML and SysML only speak of diagrams, these diagrams implicitly rely on an
underlying metamodel, which all valid diagrams have to adhere to. This metamodel
also provides semantics for the diagrams. There are many commercial and open-
source SysML and UML tools available. In the Eclipse domain, the plugin Papyrus
is widely used (see [11]).

UML and SysML diagrams can be subdivided into structural and behavioral
diagrams. To describe behavior, UML and SysML introduce the notion of actions
as basic items for functionality. SysML’s behavior diagrams are:

* Activity Diagrams: These diagrams are a bit different in SysML and UML. They
consist of activities that specify transformations of inputs to outputs and actions
responsible for the transformation. Activities produce and consume artifacts that
might be passed via flow ports. Based on an underlying semantic of colored
Petri nets, activities may have control and data flow inputs and outputs. Both can
trigger the execution of activities. Activity diagrams support the specification of
hierarchies as well.

Activities may be mapped to HW, SW, or mixed activities. In this case,
artifacts are data being transferred between HW and HW, SW and SW, and HW
and SW. Activity diagrams are therefore a measure to specify HW/SW partition.

o State-Machine Diagrams. They are the classical hierarchical (and parallel)
program state machines and are the same in UML and SysML. State machines are
primarily used for the specification of either HW or SW. Their hierarchy is used
to structure complex descriptions and to enable parallelism. Change of states via
transitions can be triggered by events. These events can be change, time, or signal
events but they cannot be flow driven.

o Sequence- and Use-Case Diagrams: They specify single scenarios outside or
inside a component (which may be, e.g., an activity or a block). These scenarios
show interactions between items and have timing and branch features. Sequence-
and use-case diagrams are also the same in UML and SysML.

The second group of diagrams are structural diagrams whose most important
representatives are block diagrams and package diagrams.
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* Block Diagrams: SysML distinguishes block definition diagrams and internal
block diagrams. Both differ from their UML counterpart.

Blocks are basic structural elements like hardware and software and therefore
also used to define the HW/SW partitioning. Block definition diagrams visualize
the external connection and internal block diagrams — as the name says — internal
connections. Blocks have among others attributes and constraints. The block
and its items can be interlinked with functions implementing the block and
requirements to be fulfilled by the block.

Blocks have standard UML ports which describe the classical provides/requires
semantic. Blocks also have flow ports describing a data flow to and from the
component.

* Package Diagrams: They are the same in UML and SysML. Package diagrams
group model elements to a namespace which can also be used, e.g., for
visualization in the tree browser. Packages also support views and viewpoints
to group model elements from different packages by their relevance for a specific
stakeholder.

In addition, SysML has a third diagram type called Requirement Diagram.
Here, requirements can be interlinked with model items. Aside from a top-down
interlinking of specification and design items to requirements, this helps to analyze
the requirements by mapping to other model items.

Similar to IP-XACT, SysML has a lot of additional features that make the
diagrams more usable. From the HW/SW perspective, it is worth mentioning
that SysML also supports allocation of items to blocks, which are then called
resources. The mapping of SW to specific processing elements but also the overall
implementation of single blocks in hardware and software can be specified in this
way. From UML’s perspective, SysML lacks structural diagrams, object and class
diagrams, as well as behavioral and timing diagrams.

Essential for both UML and SysML is the profile diagram, which does not
provide new modeling features but the possibility to define new diagram types or
to extend and constrain existing diagrams further. This is important since specific
design challenges need additional information or additional capabilities for code
generation — despite the huge number of predefined UML features. This holds true
for IP-XACT as well.

32.4.2.3 Application Specific Metamodels

Sections 32.2 and 32.3 introduced metamodeling as a generic technology for
automation of tool development, which in turn automate the generation of views in
the HW/SW domain. The previous subsection describes standardized metamodels;
it however also mentioned that despite the richness of the existing metamodels,
they are not sufficient to cover wide ranges of the tasks necessary for system-level
automation.

The Need for Design-Task Specific Metamodels
Let’s recap why the existing point tools cannot cover the system-level automation
area: System level is too heterogeneous and too complex to be covered by one
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or a small number of tools. Not mentioned there, but clearly understandable, is
that system automation tools operate in the area of concept engineering, overall
functionality, and architecture design and therefore have to target all ways and
styles an SoC can be designed in. In addition to the domain-specific issues, system-
level automation tools have to support many things specific to companies or even to
individual design groups to be able to widely automate the design process.

Moreover, design challenges steadily increase. Among others, power control and
energy management, reprogrammable architectures, reliability and safety issues of
modules, or access control must be supported. To make things worse, all these things
have different goals and measures in different domains. Due to the More Moore and
More than Moore trends, new automation will have to be supported, both in new
application domains and in new design techniques.

Does this mean that the metamodel standards are entirely useless? Definitely
not, since both UML and SysML provide extension mechanisms. For example, IP-
XACT allows putting additional data at specific places in the model. These places
are called vendor extensions as they are intended for IP Vendors and IP-
XACT tool providers. Since the range of these vendor extensions is a bit limited,
a metamodel designer does not have to exclusively rely on these places and can
simply extend the IP-XACT schema according to his/her needs and make use of the
existing concept in there. A simple filter with XSLT can remove the extensions and a
legal IP-XACT model can be derived whenever required. The availability of XML-
technology as open-source software, in many flavors and for many programming
languages, makes it easy to write custom code generators .

SysML and UML with their built-in profile mechanisms are even more powerful
in terms of extensions. Since the original metamodels do not need to be changed,
there is no need to do backward transformations for all the extensions.

To sum up, predefined metamodels do not render to construction of custom
metamodels — precisely tailored to ones need — unnecessary. Instead, they offer
a good starting point and simplify making metamodels fitting to domain-specific
models.

Utilization of Metamodels

Many very positive results in using metamodeling in SW design were reported.
Metamodeling approaches however also gain momentum in the hardware world and
thus in the SoC world covering hardware and software. The amount of research
work in that field increases and a growing number of companies show interest in
metamodeling.

At Infineon, a metamodeling framework was developed on the basis of Python.
To simplify view generation, the Mako template engine is used. The modeling
capabilities are about as powerful as in EMF, but no introspection layer is needed,
since Python is rich in introspection capabilities from scratch.

The Infineon framework supports the classical levels from meta-metamodeling
to view generation. Meta-metamodeling is also used to generate metamodels,
i.e., to further increase the productivity when using the technology. Furthermore,
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several utilities such as model comparison or GUI generation are based on meta-
metamodels and thus provide automation for all designed metamodels.

More important, there are about 100 metamodels at the moment with even more
generators in use, covering all modeling aspects mentioned above — those supported
by standard metamodels and those not supported.

Benefits are formidable. Up to 60% effort reduction in implementing one chip
or over 95% effort reduction in selected design steps speak for itself. Continuously,
new metamodels are developed to further automate design.

32.4.2.4 A Peekinto the Future of Metamodeling

Will metamodeling arrive in major EDA companies and subsequently as EDA
metamodeling frameworks at their customers? This is not inconceivable as EDA
companies already provide old-school imperative Tcl and other scripting interfaces
to their tools. However, the following three blocking points need to be resolved:

First, metamodeling requires good object-oriented modeling skills, which is not a
basic skill of every HW designer. The foundations for this have however been laid:
Object orientation is a basic concept of widely used languages such as SystemC
or SystemVerilog and related modeling techniques are gradually becoming a more
important part of higher-level education.

Second, metamodeling eases building and adopting tools, and metamodels asso-
ciated with intermediate formats help designers to do a lot of further automation.
Unfortunately, the isolation strategy of the big EDA companies prevents them
from properly supporting metamodeling. There are however small EDA companies
that provide building blocks such as HDLs parsers which are easily linkable with
metamodeling frameworks.

Third and last, metamodeling links design teams, concept engineers, and cus-
tomers much closer together. An integrated and aligned design flow is needed to
closely synchronize their activities. This is a matter of design culture and may take
longest.

It is clear that due to the high availability of the technology and due to
the growing amount of experience in its utilization, metamodeling will play a
dominant role in system-level automation. It is however not clear who will provide
metamodeling solutions to users: the big EDA companies or consulting companies
building their business model around open-source technologies.

32.5 Generation

So far, this book chapter gives an overview on metamodeling techniques around the
HW/SW interface including meta-metamodels, standard and specific metamodels,
and the abstraction inherent in models. It also mentions, yet does not cover in detail,
the aspect of generation, which we address in the concluding part of this chapter.
Early interest in generation was driven by VHDL-based reuse activities and uti-
lizing the generate statement for generation of component alternatives in hardware
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design (see, e.g., [25]). Similar approaches, using generative approaches built in
languages, have been followed in SW domain and have been named generative
programming (see, e.g., [4]). An enhanced preprocessor [5] even supporting iterative
directives showed some improvements in coding productivity but didn’t result in a
breakthrough. Even though several more approaches have been made, generation
has a shadowy existence in hardware design. Main reasons are the insufficient
features of the built-in generation constructs, the verification challenge of the
parameter specs, and the complexity setting the configuration parameters correctly.

Two trends carried generation forward. First, the introduction of generator chains
in IP-XACT. They include treating the generator as a design view and support
component parameter and parameter propagation. The benefit is that any notation,
e.g., script language or advanced programming language, can be used to build the
generator. The limitation of built-in generator constructs is solved in this way. Also,
the generation of test benches have been introduced so that each parameter setting
could be verified automatically on demand.

Second, the introspection capabilities of programming languages increased.
Examples are Python, Scala, or the mentioned Java-based introspection in EMF.
One prominent representative in the hardware domain is the work on Chisel [1].
It proposes to use Scala to define a hardware description language with generation
capabilities based on introspection. This enables the generation of various design
views such as RTL or functional models.

Besides advances in technology, the demand for generation increases since
upfront estimations of the impact of architecture and component alternatives are
hard if even not impossible. Rethinking Digital Design [28] thus proposes the use
of generators as essential technology for future SoC designs.

Where these approaches share with metamodeling the idea of a need for
flexibility in design and generation of design views, interface to specification and
specification of interfaces, e.g., between HW and SW is not that well covered.

In this area, the idea of modeling entities, their attributes and associations, using
metamodels is simply more powerful. Since metamodels provide the possibility for
graphical entry, their usage and documentation is easier than that of their language-
based counterparts.

Also, any kind and strategy for target view generation can be applied in
metamodeling context. Popular strategies include:

e Simple writers as already mentioned in conjunction with IP-XACT generator
chains. These writers may be generated from a concrete or Abstract Syntax Tree.
Conformance to target languages is therefore guaranteed.

* Model-to-model translators as part of a Model-Driven Architecture approach.
Including them helps to partition the complexity of generators in a systematic
way.

* Template engines that allow to enter target code and extend it with generation
pragmas step-by-step. The benefit is that a mix of code typing and generation
can be easily established. Focus on these parts of the code that can take benefit
from generation can be easily achieved.
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To sum up, generation is the missing piece in the jigsaw of metamodeling.
In addition to early structuring and analysis that can be done with metamodeling
alone, generation provides better consistency between specification and design and
between different but related design views — which is particularly important for the
HW/SW interface. Furthermore, generators provide better code quality which helps
reducing the number of bugs. Aside from the automation of typing, code generation
can help avoid debugging efforts which is an additional pillar in productivity
increase.

32.6 Conclusion

“Meta” — analogously translated as “beyond” — describes an abstraction by defini-
tion of the structure of the related view. A metamodel thus defines the structure of
a model and a metametamodel defines the structure of a metamodel. This means,
a metametamodel is the metamodel of a metamodel. Metamodels can be formally
defined giving them a sound theoretical foundation.

Metamodeling techniques are known for over a quarter of a century reflecting
their use in database schemas, XML schemas or the EXPRESS language. The
Eclipse Modeling Framework (EMF) is an open source option to make own
metamodels and build metamodel based applications.

The two major predefined in the HW/SW domain are IP-XACT and UM-
L/SysML. IP-XACT defines, inter alia, registers and their bit-fields, i.e., the physical
layer of the HW/SW interface. UML/SysML has graphical formalisms for the
definition of behavior and structure, e.g., state diagrams or activity diagrams such
as behavior diagrams and class diagrams or component diagrams.

Key for the productivity increase gained by metamodeling techniques is code
generation, either by code generation of views from models with code genera-
tors conforming to the model’s metamodel or by code generation of parts of a
metamodeling framework with code generators conforming to the metamodel’s
metametamodel.

Applying metamodeling to the HW/SW interface allows saving of up to 95% of
the design effort by generating various styles of documentation views, TLM-views
(or other views beyond RTL), RTL-views, firmware views and verification views.
UML/SysML expand the generation scope; however each of them is used only in
either the hardware or the software domain.

Although metamodeling is very successfully used in the HW/SW domain, there
are a lot of further opportunities to use metamodeling techniques in this domain,
e.g., for the generation of low level drivers.
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