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Abstract

The constantly growing complexity of embedded systems is a challenge that
drives the development of novel design automation techniques. System-level
design can address these complexity challenges by raising the level of abstrac-
tion to jointly consider hardware and software as well as by integrating the
design processes for heterogeneous system components. In this chapter, we
present a comprehensive system-level design framework, the System-on-Chip
Environment (SCE), which is based on the influential SpecC language and
methodology. SCE implements a top-down digital system design flow based
on a specify-explore-refine paradigm with support for heterogeneous target
platforms consisting of custom hardware components, embedded software pro-
cessors, and complex communication bus architectures. Starting from an abstract
specification of the desired system, models at various levels of abstraction
are automatically generated through successive stepwise refinement, ultimately
resulting in a final pin- and cycle-accurate system implementation. The seamless
integration of automatic model generation, estimation, and validation tools
enables rapid Design Space Exploration (DSE) and efficient implementation of
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Multi-Processor Systems-on-Chips (MPSoCs). This article provides an overview
and highlights key aspects of the SCE framework from modeling and refinement
to hardware and software synthesis. Using a cellphone-based example, our
experimental results demonstrate the effectiveness of the SCE framework in
terms of system-level exploration, hardware, and software synthesis.

Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
BFM Bus-Functional Model
BLM Block-Level Model
CE Communication Element
DB Database
DCT Discrete Cosine Transform
DSE Design Space Exploration
ESL Electronic System Level
FCFS First-Come First-Serve
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HDS Hardware-Dependent Software
HLS High-Level Synthesis
HW Hardware
IDE Integrated Development Environment
IP Intellectual Property
ISS Instruction-Set Simulator
MAC Media Access Control
MIPS Million Instructions Per Second
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
OOO PDES Out-of-Order Parallel Discrete Event Simulation
OS Operating System
PDES Parallel Discrete Event Simulation
PE Processing Element
PIC Programmable Interrupt Controller
PSM Program State Machine
RTL Register Transfer Level
RTOS Real-Time Operating System
SCE System-on-Chip Environment
SLDL System-Level Description Language
SW Software
TLM Transaction-Level Model



31 SCE: System-on-Chip Environment 1021

Contents

31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
31.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
31.3 Design Flow Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023

31.3.1 SpecC Language and PSM Model of Computation . . . . . . . . . . . . . . . . . . . . 1025
31.3.2 Target Platform Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
31.3.3 Stepwise Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

31.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
31.4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
31.4.2 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
31.4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

31.5 Modeling and Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
31.5.1 Computation Modeling and Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
31.5.2 Communication Modeling and Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 1035

31.6 Software Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
31.6.1 Software Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
31.6.2 Hardware-Dependent Software Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
31.6.3 Software Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040

31.7 Hardware Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
31.7.1 Block-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041
31.7.2 Protocol IP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
31.7.3 RTL Netlisting and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042

31.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
31.8.1 Software Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
31.8.2 Hardware Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

31.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048

31.1 Introduction

Designing modern Multi-Processor Systems-on-Chips (MPSoCs) becomes increas-
ingly difficult. Challenges arise from both an increasing heterogeneity of the exe-
cution platform to meet stringent performance and power requirements, as well as
from the growing application complexity demanding to integrate more, increasingly
interrelated functions. Today’s MPSoCs are highly heterogeneous compositions
of general purpose processors, digital signal processors, graphics processors, and
custom accelerators, all connected through flexible and heterogeneous interconnect
systems. Designing and programming such platforms are a tremendous challenge
due to heterogeneity in programming paradigms, differences in exposed parallelism,
and tool suite compositions. The productivity gap between design capability and the
potential in chip complexity/capacity is increasing [15]. Traditional approaches of
manual implementation are tedious and error-prone as well as too time consuming
to meet the shortened time-to-market demands.

One key aspect to increase productivity is to raise the level of abstraction for sys-
tem design to an algorithmic level, irrespective of a later Hardware (HW)/Software
(SW) split, hiding the complexity of low-level implementation details. Moving to
the system level of abstraction reduces the complexity during development, enabling
designers to focus on important algorithmic properties and design decisions without
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being overwhelmed by the burden of low-level implementation issues. However,
raising the level of design abstraction requires tool suites that are vertically inte-
grated across all levels so as to enable a seamless codesign of software and hardware.

In this chapter, we present the System-on-Chip Environment (SCE), a vertically
integrated digital system design framework based on the SpecC language and
methodology [18]. SCE realizes a top-down refinement-based system design flow
with support of heterogeneous target platforms consisting of custom hardware
components, embedded software processors, dedicated Intellectual Property (IP)
blocks, and complex communication bus architectures.

Starting off with a high-level, abstract, formal, and sound parallel programming
model in SpecC language to capture the desired application behavior, the designer
can define various architecture and mapping alternatives. SCE then generates
Transaction-Level Models (TLMs) that realize the architecture and mapping de-
cisions. The generated TLMs allow for detailed, simulation-based validation and
performance analysis. After identifying suitable architecture and mapping candi-
dates for an application, SCE’s back-end synthesis aids in generating a cycle- and
pin-accurate implementation as an interconnected set of synthesized hardware and
software components down to final RTL descriptions and binary code images.

This chapter first introduces relevant related work in Sect. 31.2. It then provides
a general overview of the SCE design flow in Sect. 31.3, followed by highlighting
key features of the flow in more detail. Section 31.4 covers model validation with
performance estimation and simulation. Section 31.5 then describes the successive
model refinement for system-level architecture and communication aspects. Next,
Sect. 31.6 describes the SCE software synthesis highlighting target optimization po-
tentials, and Sect. 31.7 covers the hardware synthesis capabilities. Finally, Sect. 31.8
demonstrates the benefits of SCE with experimental results and Sect. 31.9 concludes
this chapter.

31.2 Related Work

Supporting the design process has been the aim of significant research efforts with
a wide range of approaches. To name a few, they range from high-level analysis
and synthesis approaches that are based on specialized models of computation.
Examples include POLIS [1] (Codesign Finite State Machine), DESCARTES [32]
(ADF and an extended SDF), and Cortadella et al. [9] (petri nets). Integrated
Development Environments (IDEs), at another end of the spectrum, typically
provide limited automation support but aim to simplify manual development (e.g.,
Eclipse IDE [16] with its wide range of plug-in modules). Several comprehensive
Electronic System Level (ESL) synthesis methodologies and tools [20] have been
developed for the system-level design of heterogeneous MPSoCs. Examples include
Deadalus [30], Koski [27], Metropolis [2], PeaCE/HoPES [25], SystemCoDesigner
[28], and OSSS [24].

Abstract models are an important means for early prototyping and performance
estimation. System-Level Description Languages (SLDLs), such as SystemC [23]
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and SpecC [18], are often used for modeling of systems. At lower levels, virtual
platforms allow for a detailed analysis of the system before availability of real
hardware, often revealing details not available on the target [26]. While these
approaches focus on modeling, simulation, and validation, they do not offer an
integrated solution to generate the final implementation.

31.3 Design Flow Overview

Figure 31.1 outlines the design flow realized by the System-on-Chip Environment
(SCE) [13]. The SCE flow focuses on two major steps: refinement-based system-
level design space exploration in the front-end and software/hardware back-end
synthesis. In the front-end exploration phase, the input specification is refined into
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a TLM realizing the designer’s architecture and mapping decisions for detailed
performance estimation and early validation. The TLM then serves as an input
for back-end synthesis, including both software synthesis, which automatically
generates the final target software implementations for each system processor,
and hardware synthesis, which generates the Register Transfer Level (RTL) for
each custom hardware component. Both software and hardware synthesis generate
matching communication stacks to realize the application distributed across the
heterogeneous processing platform.

The input to the system design flow is a specification model containing the
application captured in SpecC [18]. The specification is an abstract, parallel,
platform-agnostic description of application algorithms. SpecC allows capturing
a wide range of application models with an arbitrary serial-parallel composition
of behaviors that communicate through abstract communication primitives for
synchronous or asynchronous message passing, shared variable access, or event
transfers (see Sect. 31.3.1 for an overview).

A second type of input contains the designer’s architecture decisions including
platform definition and specification mapping. For this, the designer defines the
number and type of processors in the system and the topology of their com-
munication and connectivity. In addition, the designer defines the mapping of
application computation and communication onto the target platform. This includes
decisions on the target software architecture (e.g., how to realize multitasking)
and communication refinement decisions, such as the routing of channels over
busses and the definition of essential communication parameters for each channel.
For example, the user can select the synchronization scheme, such as polling or
interrupt-based synchronization.

Based on the specification model, and the designers’ architecture decisions,
SCE then automatically generates a Transaction-Level Model (TLM) that realizes
these decisions. The generation process is aided by a rich component database
containing Processing Elements (PEs) (e.g., processors, DSPs), Communication
Elements (CEs) (e.g., bridges, routers), memory components, and interconnects.
In the generation process, the selected component models are instantiated and
connected to create the envisioned platform. On top of this, the application (as
defined in the specification) is distributed to the PEs and CEs according to the
mapping decisions. Communication between PEs is refined from the standardized
abstract channels in the specification down to distributed set of channels realizing
the specified communication semantics on the selected platform. In order to deal
with the tremendous complexity in the front-end exploration, the TLM generation
is subdivided into four successive refinement steps. Each step focuses on a particular
architecture aspect and by realizing, i.e., refining, that aspect, uncovers the next set
of architecture decisions to be made (see Sect. 31.3.3).

Overall, the generated TLM captures a model of the application mapped to the
envision platform realizing the architecture decisions. The application together with
generated communication stacks executes behaviorally with timing back annotation
on top of the timed abstract models of PEs, CEs, memories, and interconnects.
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Section 31.5 illustrates the modeling in more detail. The TLM supports rapid
and accurate system simulations, providing the basis for exploration, performance
analysis, and debugging.

Once the designer has identified a suitable platform, the TLM also serves as
input for the back-end synthesis of both software and hardware. Software synthesis
produces a final binary image for each processor in the platform. The binary
includes the application code, all drivers for communication in a heterogeneous
system, as well as an off-the-shelf Real-Time Operating System (RTOS), if selected.
The produced binaries can directly execute on the target processor(s) of the final
hardware. For early binary validation, before availability of the real hardware,
Instruction-Set Simulator (ISS)-based system models (i.e., virtual platforms) can be
used. Section 31.6 discusses more details about SW synthesis. Hardware synthesis
produces RTL for the mapped portion of the application code and the necessary
communication stacks. This RTL can then be synthesized further down to a
gate-level netlist and final physical realization using standard logic and back-end
synthesis flows. More details about HW synthesis are described in Sect. 31.6.

The SCE flow vertically integrates from specification down to implementation
through a set of consistent models, all captured in the SpecC language. This
vertical integration lends itself for development of plugins at varying abstraction
levels. One such example is Algo2Spec [41, 42] which automatically synthesizes a
Simulink algorithm model into a SpecC specification. With this, Algo2Spec creates
an extended codesign flow offering additional opportunities for algorithm designers
to explore the platform suitability of algorithms and to tune algorithms to better
match platform requirements (e.g., in terms of parallelism).

31.3.1 SpecC Language and PSM Model of Computation

The SCE framework is based on and closely integrated with the SpecC language
and methodology [18]. It should be emphasized that this is a unique setting
in which the tools, the methodology, and the language have been specifically
created and designed together to address the needs of designing digital systems
consisting of both hardware and software. In fact, the SpecC language [12] has been
specifically designed to support the essential requirements for describing embedded
system models at different abstraction levels. In particular, SpecC features explicit
constructs and keywords for behavioral and structural hierarchy, concurrency and
pipelining, synchronization and communication, exception handling, timing, and
explicit state transitions. Moreover, SpecC precisely covers these requirements in
an orthogonal and thus minimal manner [19].

The benefit of SpecC’s language approach (in contrast to the library approach
of SystemC) is the ability to parse SpecC models and unambiguously recognize
the captured system modeling features. Notably, SpecC covers multiple abstraction
levels, from the abstract specification model in which only functionality and design
constraints are represented down to the cycle- and pin-accurate implementation



1026 G. Schirner et al.

models at RTL abstraction. In contrast to commercial multi-language tools in both
the hardware and software domains, the single language approach is a benefit since
only one compiler and run-time engine must be built and maintained. In other words,
the SCE framework can rely on a single-core data structure to represent the model
from the beginning to the end of the design flow.

Such a homogeneous methodology does not suffer from language interfacing
problems or cumbersome translations between languages with different semantics.
Instead, all models are consistent, and one set of tools can be used for all models
at all stages. Also, refinement tasks are merely transformations from one model
into a more detailed one specified with the same language. Using a single language
throughout the design process is beneficial for reuse of IP as well. Design models
from the component library can be reused in the system without modification
(“plug-and-play”) and a new design can be inserted immediately as a library
component.

The SpecC language used in the SCE design flow is based on the Program
State Machine (PSM) Model of Computation (MoC). Computation and commu-
nication are separately captured using distinct language constructs. This separation
enables an automatic refinement for mapping of computation to separate process-
ing elements and establishing the communication between PEs. Computation is
captured in the form of so-called behaviors, and communication is expressed in
channels.

Figure 31.1 contains a graphical representation of a simple specification model.
Boxes with rounded corners (B1-B4) symbolize behaviors. Each leaf behavior
basically contains ANSI-C code, which is omitted for brevity. Behaviors can also be
composed hierarchically to allow for complex structures. They can be behaviorally
composed to execute in sequence, parallel, pipelined, or as state machine [19].

Behaviors are statically connected and communicate through direct point-to-
point channels (C1, C2, C3). These channels are selected from a feature-rich set
of standardized channel types, which allow for a wide range of communication
mechanisms similar to what is found in an operating system. Communication
primitives include synchronous and asynchronous message passing, blocking and
non-blocking communication (e.g., FIFO), as well as synchronization only (e.g.,
semaphore, mutex, barrier).

31.3.2 Target Platform Description

The designer’s target architecture decisions, as shown on the left of Fig. 31.1, de-
scribe the digital target platform. These architecture decisions include the allocation
of PEs such as processors and HW components and the mapping of behaviors to
PEs. The example in Fig. 31.1 shows the allocation of an ARM9 processor and
one custom hardware component. The behaviors B1, B2, and B3 are mapped to
the processor. These behaviors are later wrapped into tasks, and the designer can
select important task parameters, such as scheduling policies and priorities.

More generally, SCE supports distributed Multi-Processor System-on-Chip
(MPSoC) target architectures as conceptually illustrated in Fig. 31.2. Target
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Fig. 31.2 Generic MPSoC platform targeted in SCE
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Fig. 31.3 General stepwise refinement approach in SCE

platforms can consist of a set of processors, where each processor is connected
to a processor specific main bus. We assume that each processor has an associated
memory, which stores the execution binaries and local variables. Additionally, we
associate a customizable Programmable Interrupt Controller (PIC) and a timer
with each processor. Each processor communicates with external memory (holding
globally shared variables) and with hardware blocks over the processor main bus. A
processor also can communicate with other processors and external IPs or memories
connected to other busses through one or more Communication Elements (CEs),
such as a bridges or a routers. In extension to what is shown in Fig. 31.2, we assume
that the busses may be arranged as a hierarchy of busses.

31.3.3 Stepwise Refinement

The SCE framework implements a top-down design flow. SCE vertically integrates
from an abstract behavioral specification down to a detailed implementation through
a series of successive refinement steps. The general principle of this stepwise
refinement is outlined in Fig. 31.3.

SCE’s stepwise refinement separates decision-making and model refinement.
Design decisions are primarily made by the user, entered through a GUI, or
automatically determined by an optimization algorithm. Conversely, the realization
of the design decision, i.e., the refinement, is automated. For this, a dedicated
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refinement tool at a given abstraction level reads the input model (Modeln) and
refines it following the given architecture decisions, producing the refined model
(ModelnC1) which then exhibits additional implementation details that realize
and represent these decisions. Each refinement tool utilizes a Database (DB) of
components (such as a processor model, operating system model, etc.) to implement
the decisions (such as behavior mapping or task mapping). With this separation, the
tedious and error-prone part of model refinement is automated.

The SCE-internal refinement tools exchange design models in the form of a
Syntax Independent Representation (SIR) [10, 39], a binary representation of a
SpecC model. The SpecC compiler converts between the SpecC source code and
its binary representation (the SIR). In addition, the SpecC compiler suite provides a
rich Application Programming Interface (API) for convenient model transformation
(such as traversing the model hierarchy, adding behaviors, or manipulating their port
connectivity). Standardizing model manipulation dramatically simplifies building a
refinement tool.

Four refinement levels are distinguished within SCE’s front-end (Fig. 31.1). Each
refinement (i.e., model transformation from Modeln to ModelnC1) realizes one set
of orthogonal architecture/mapping decisions and by that uncovers the set of design
decisions that have to be made to guide the next refinement step (which would then
create ModelnC2).

Starting from the Specification Model, Architecture Refinement realizes the map-
ping of behaviors to PEs and adds the necessary synchronization logic to maintain
the specified execution order. Mapping parallel executing behaviors to the same
PE necessitates dynamic scheduling. This prompts the user to specify scheduling
parameters and priorities. Scheduling refinement then implements these decisions,
integrating the selected RTOS model into the design, converting behaviors into tasks
and setting their scheduling parameters.

The next steps then focus on communication refinement. The user is prompted to
define the overall interconnect topology (bus interfaces, interconnects, communica-
tion elements). Network refinement realizes these decisions by inserting appropriate
models from the database and ensuring proper mapping. Given the interconnect
network, the final decision is mapping of channels to the interconnect structure,
defining addresses and synchronization principles. Link refinement realizes these
decisions generating the final TLM or a more detailed pin- and cycle-accurate Bus-
Functional Model (BFM). Section 31.5 covers the individual refinement steps and
resulting models in more detail.

31.4 Model Validation

As mentioned above, the design models used throughout the SCE flow are all
represented as executable models in the SpecC language [12], regardless of the
abstraction level they are specified at or refined to (The only exception is the final
design model at RTL abstraction which, in addition to SpecC, can also be exported
in VHDL or Verilog HDLs for hardware synthesis and the program code generated
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Fig. 31.4 SCE validation flow at any abstraction level: model compilation and simulation for
validation, analysis, and performance metrics estimation

in ANSI-C for software synthesis.). Therefore, all models are readily executable
for functional validation and evaluation through simulation. In addition, the formal
nature of the models and the availability of a compiler with a comprehensive internal
representation and corresponding API [10] also enables the application of formal
methods for model analysis, verification, and estimation.

At any stage, as shown in Fig. 31.4, the design model together with its testbench
can be fed into the compiler to generate an executable simulation model for dynamic
validation (see Sect. 31.4.1 below). Alternatively, static analysis can be applied to
the model for estimation and formal verification purposes. In contrast to dynamic
simulation, where the model is executed and actual input data and specific dynamic
behavior is observed, static analysis relies solely on the information stored in the
SLDL source code. Here, a compiler front end reads the model code, analyzes it,
and builds an Abstract Syntax Tree (AST) with control flow and typed symbol
information. Based on that, static information can be extracted that is generally valid
(and not just valid for a specific input). For example, where dynamic simulation
shows that a model works fine for a given test set, static model analysis may prove
the existence of potential deadlocks (or their absence) for any data input and thus
show a stronger property.

In general and in practice, both static and dynamic methods are typically used
together for the analysis and estimation of model metrics, in order to guide the
following design decisions so that the application’s requirements and goals are
achieved as needed.

Note that the tasks performed in the SCE validation flow are virtually identical
at any abstraction level and therefore can be performed by the same set of tools
[11]. At the same time, the system designer can rely on the same methods for model
validation and performance estimation, which significantly eases the learning curve
for system design in SCE. Last but not least, any model can be compared against its
predecessor or the golden specification model such that functional correctness and
meeting of critical design goals are maintained.
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31.4.1 Simulation

In system-level design, simulation is the most common form of design validation.
In contrast to static analysis, simulation is dynamic and requires the design model
to be executable.

In SCE, simulation is performed in two steps. First, the design model is compiled
into a corresponding simulation model. More specifically, the SpecC compiler
takes the design model, together with a corresponding testbench, and generates an
executable program that is linked against the simulation library. The simulation
library implements the execution semantics of the simulation. In particular, it
maintains an event queue, advances the simulation time, and also takes care of
concurrent execution and required synchronization. The generated simulation model
can be run on a host computer, simulating the execution of the corresponding
model. Typically, the testbench included in the simulation model supplies test
vectors, checks the computed output values, and reports any problems to the user. If
problems occur, a debugger can be used to set break points, interrupt the simulation,
and inspect intermediate values, so that the system designer can locate and fix the
errors in the model.

It should be noted that there is generally a trade-off between the run time and the
accuracy of the simulation. For example, compared to the initial specification model,
the refined communication model will need longer time for execution, because it
may perform the communication accurately in a clock-cycle manner.

Recently, the SCE compiler and simulator have been extended to support the
parallel execution of design models on multi- and many-core hosts [5, 7]. Parallel
simulation, known as Parallel Discrete Event Simulation (PDES) [17] in the
literature, exploits the parallelism exposed in the design model for parallel execution
and thus can gain up to an order of magnitude increased simulation speed. This
topic is discussed in detail in the �Chap. 17, “Parallel Simulation” in this book.
The advanced PDES technique specifically designed for and implemented in SCE
is called Out-of-Order Parallel Discrete Event Simulation (OOO PDES) [6, 8].

31.4.2 Profiling

SCE also includes profiling tools to obtain feedback about design quality metrics.
Based on a combination of static and dynamic analysis, a retargetable profiler
measures a variety of metrics across various levels of abstraction [4].

Initial dynamic profiling derives design characteristics through simulation of the
input model. The system designer chooses a set of target PEs, CEs, and busses
from the database, and the tool then combines the obtained profiles with the
characteristics of the selected components. Thus, SCE profiling is retargetable for
static estimation of complete system designs in linear time without the need for time
consuming re-simulation or re-profiling.

The profiling results can also be back-annotated into the model through refine-
ment. By simulating the refined model, accurate feedback about implementation

http://dx.doi.org/10.1007/978-94-017-7267-9_19
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effects can then be obtained before entering the next design stage. Since the system
is only simulated once during the exploration process, the approach is fast yet
accurate enough to make high-level decisions, since both static and dynamic effects
are captured. Furthermore, the profiler supports multi-level, multi-metric estimation
by providing relevant design quality metrics for each stage of the design process [3].
Therefore, profiling guides the user in the design process and enables rapid and early
Design Space Exploration (DSE).

31.4.3 Estimation

The task of estimation is to calculate quality metrics from a design model. Although
these metrics should be accurate, the main emphasis of estimation is to deliver these
values quickly.

In SCE, estimated quality metrics are, for example, used for the task of archi-
tecture exploration. For instance, the trade-off between a software or a hardware
solution for each behavior in the design model requires metrics for performance
and cost. More specifically, the execution time and the area of each behavior are
estimated for a potential hardware implementation. Also, the execution time, code
size, and data size will be determined for a potential implementation in software,
for each allocated processor. In addition, metrics, such as bit width and throughput,
need to be determined for all channel and bus models, since these are needed for
the task of communication synthesis. All these estimation results are annotated in
the design model at the particular behaviors and channels. Thus, they are fed back
into the synthesis flow so that this data is immediately available when needed by the
synthesis algorithms.

Estimation is typically performed in form of static analysis of the design model.
However, by use of profiling, estimation data can also be obtained dynamically
during simulation. In SCE, profiling is used, for example, to count the execution
frequency of each behavior. Based on these counter values, branching probabilities
are determined, for example, for the conditional transitions in FSM behaviors. These
branching probabilities are then used to estimate the average execution time for such
behaviors.

Recently, the SCE profiling and estimation tools have been extended to support
energy dissipation and power consumption for processing elements [33, 34]. which
is essential for battery-powered mobile embedded systems. Dedicated power moni-
tors can be inserted into the design model to observe and monitor power dissipation
during the simulation. The system designer can then take these power characteristics
into account when making design decisions.

31.5 Modeling and Refinement

Modeling and refinement are at the core of the SCE framework. The SCE explo-
ration front end follows a successive, stepwise, and layer-based refinement process
that employs a series of consecutive implementation and optimization passes as
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Table 31.1 Summary of SCE system-level refinement steps

Ref. Design decisions Modeling layers

C
om

p. Arch.
� Number and type of PEs and memories
� Behaviors/variable to PE/memory mapping

PEs and memories (App.)
Basic channels and memory i/fs

Sched.
� Static behavior execution order
� Dynamic scheduling policy and parameters

Operating system (OS)
Basic channels and memory i/fs

C
om

m
. Net.

� Number and type of CEs and busses
� Connectivity and channel routing

PE drivers (HAL)
CE/PE transfers (Pres./Net.)

Link
� Bus addressing and bus transfer modes
� Bus arbitration and synchronization

PE hardware (HW)
Bus transactions (Link/MAC)

described in Sect. 31.3.3. Each refinement step (see summary in Table 31.1) gen-
erates a SpecC-based Transaction-Level Model (TLM) with a level of abstraction
appropriate to the refinement step. Each TLM captures an increasing amount of
layered implementation detail and thus covers a different point in the simulation
speed versus accuracy trade-off. These TLMs allow validation of the generated
implementations while simultaneously serving as input to the back-end synthesis
(see Sects. 31.7 and 31.6).

Following the general separation of computation and communication [18, 20],
computation design is performed before communication design in SCE. Compu-
tation design is split into two smaller steps named architecture refinement and
scheduling refinement. Communication design, similarly, is split into network
refinement and link refinement (see Sect. 31.3.3). The output of the computation
design, an intermediate scheduled architecture model, allows validation of the
main computation mapping while exposing all required inter-PE interactions as
input for further communication refinement. The final TLMs as an output of the
communication design combines all computation and communication aspects of
a system design in the form of PEs (modeled as SpecC behaviors) connected via
busses and CEs (modeled as TLM channels and behaviors, respectively). Table 31.1
summarizes the different refinement steps including decisions made and modeling
layers inserted in each step. In the following sections, we describe the computation
and communication modeling and refinement steps in more detail.

31.5.1 Computation Modeling and Refinement

On the computation side, refinement transforms application behaviors in the speci-
fication into tasks and blocks partitioned and scheduled to execute in corresponding
PE implementations, which are generated through a series of layer-based refinement
steps. Functionality is organized into layers according to inherent conceptual depen-
dencies. Generated output models are equally organized into layers of increasing
detail. Each individual refinement step thereby introduces an additional layer of
modeling and implementation detail.
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SCE generally follows a host-compiled layering and modeling flow as de-
scribed in �Chap. 19, “Host-Compiled Simulation”. For software PEs, complex,
SpecC-based Operating System (OS) and processor models are automatically gen-
erated [38]. Within SCE, these models have been extended to support simulation and
code generation for state-of-the-art single- and multi-core OSs and processors [31]
(also discussed in �Chap. 19, “Host-Compiled Simulation”). Other hardware PEs
are generated as simplified variants of complete processor models that do not
include all layers.

Figure 31.5 depicts the final multi-core processor model generated by SCE for the
example of a dual-core ARM PE. The innermost application layer generated during
architecture refinement encapsulates the specification behaviors mapped onto the
processor. During scheduling refinement, these behaviors are converted into user
tasks running on top of scheduling services provided by an OS layer and OS model
(realized as a SpecC OS channel). As described in �Chap. 19, “Host-Compiled
Simulation”, the OS channel provides typical services for OS and task management,
synchronization, inter-process communication and timing via a canonical OS API
that is later translated into real OS calls during back-end software synthesis (see
Sect. 31.6). In the process of converting specification behaviors into OS tasks, the
code is also back-annotated with estimated delays as described in more detail in
�Chap. 19, “Host-Compiled Simulation”.

In addition to basic OS and task services, the OS layer also provides high-level
communication functionality for sending and receiving inter-processor application-
level messages via an underlying Hardware Abstraction Layer (HAL). During
architecture and scheduling refinement, only basic models for channel adapters,
drivers, interrupt tasks, and interrupt handlers are inserted as templates into the
OS layer and HAL. These templates are later filled with actual code during link
refinement, where HALs with pre-written, canonical models for Media Access
Control (MAC) and bus/TLM interfaces are taken out of SCE’s component database.
Together, the OS and HAL ultimately provide and realize timing-accurate models of
communication protocol stacks that transform application-level message channels
all the way down to corresponding transaction-level bus accesses plus interrupt-
driven or polling-based synchronizations, if required. See Sect. 31.5.2 for more
details.

Finally, the HAL is encapsulated into a Hardware (HW) layer that models
external bus communication via a bus channel. The HW layer of the processor model
also emulates monitoring of processor interrupt signals and associated processor
exceptions to model a general, timing-accurate multi-core interrupt handling logic
and chain. From the hardware side, core-specific interrupt requests are generated
by a generic multi-core interrupt controller (GIC) model, which manages the
distribution and dispatch of interrupt signals to processor cores. The HW layer in
turn contains core-specific interrupt detection logic (shown as interrupt interfaces
in Fig. 31.5) that triggers interrupt execution in the HAL. To emulate processor
suspension, hardware-triggered interrupts are modeled as special, high-priority
interrupt handlers associated with each interrupt source. Thus, when an interrupt
is detected by a core’s interrupt interface, the HAL will notify the OS model (via a

http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_18
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special OS interrupt interface) to preempt and switch execution to the corresponding
interrupt handler in the HAL. The interrupt handler, as generated during link
refinement, can then in turn communicate with the GIC and, through associated
OS layer interfaces, trigger corresponding secondary interrupt-specific OS tasks (as
shown for the example of interrupts A, B , and C in Fig. 31.5).

Overall, the application, OS, HAL, and HW layers all combined constitute the
host-compiled SpecC processor model. This processor model is then integrated into
a standard TLM backplane for simulation in the context of an overall multiprocessor
system environment.

31.5.2 Communication Modeling and Refinement

In the model generated after architecture and scheduling refinement, PEs still
communicate via high-level primitives at the message-passing level, where a
PE’s HAL and HW layers are still left out. Network and link refinement then
transform such abstract application-level communication channels all the way down
to transactions over busses or other (shared) communication media. In the process,
HAL and HW layers are added to PEs, and optimized code is generated for drivers,
interrupt handlers, and bus transactors inserted into software and hardware PEs,
respectively. All driver, interrupt handling, and transactor code is back-annotated
with estimated delay information to provide an overall timing-accurate simulation
of communication overheads.

Similar to the computation side, communication modeling and refinement
follow a layer-based organization adapted and derived from the ISO/OSI 7-layer
model [21]. At the output, low-level TLMs that include protocol stacks and inter-
PE communication at varying levels of detail depending on the number of included
layers are automatically generated. These TLMs are synthesized into actual software
or hardware during back-end synthesis.

Figure 31.6 shows the general organization of a final TLM including all layers as
generated by SCE for the example of a system architecture with two PEs, PE0 and
PE1, representing a software processor and a hardware accelerator, respectively. The
two PEs are connected via two busses and an intermediate transducer T. Application
behaviors P1 and P2 within each PE communicate with each other using abstract
send() or receive() primitives. Additional protocol layers are inserted into PEs to
realize all such channel communication over external busses. On the software side,
this protocol functionality is inserted into corresponding processor model layers as
described in Sect. 31.5.1 above.

Network refinement transforms end-to-end messages exchanged over abstract
communication channels into point-to-point packet transfers over individual bus
segments. In the process, additional CEs such as protocol-level bridges or network-
level transducers are inserted as necessary to interconnect, translate, and forward
packets between different bus segments or communication media. Communication
layers inserted during network refinement include a presentation layer for channel-
specific data conversion (c1, c2, and c3) and a network and transport layer (Net) for
packeting, routing, and end-to-end synchronization.
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Subsequent link refinement then transforms all point-to-point transfers with each
bus segment into actual bus transactions. It inserts a link layer (Link) for addressing
and interrupt- or polling-based synchronization, a MAC layer for data slicing, and
a final Protocol layer implementing actual bus state machines. In case of interrupt-
driven synchronization, this further includes hardware-level interrupt detection and
generation logic (Int) as well as software-level interrupt handlers (Hdlr) as described
in previous sections.

TLMs of the system can be generated to model inter-PE communication at any of
these levels. For example, bus channels connecting PEs in a protocol TLM describe
communication at the level of individual bus transactions. By contrast, faster but
less accurate MAC or link TLMs describes communication at the level of larger
unsynchronized or synchronized whole-packet transfers [35]. Finally, a pin- and bus
cycle-accurate BFM can be generated by also including a low-level protocol layer
describing individual events of bus transactions on each wire.

Basic network and link refinement generates unoptimized code for protocol
stacks following a strict layer-based organization as shown in Fig. 31.6. Recent
extensions to SCE allow protocol code to be further optimized specifically for
efficient back-end synthesis [29]. Protocol stack optimizations flatten and merge
basic communication layers above the MAC and apply back-end-specific cross-
layer optimizations for message merging, protocol fusion, and interrupt hoisting.
Depending on the target PE, fused upper layers are later synthesized into optimized
software drivers or hardware transactors. By contrast, MAC and protocol layers
are usually provided as pre-designed software or hardware IP in the back-end
synthesis databases. In case of hardware PEs, higher-level protocol functionality
can be further coupled with and synthesized into low-level bus state machines using
protocol IP generators that support corresponding customizations.

31.6 Software Synthesis

Once the designer has settled on a set of architecture decisions and is satisfied with
the performance of the generated TLM, the back-end synthesis can be invoked as
illustrated on the bottom portion of the flow overview in Fig. 31.1. This includes
both software synthesis and hardware synthesis.

Software synthesis [37] uses the generated TLM (i.e., the output of link
refinement; see Sect. 31.5) as input and produces embedded code. It is invoked
for each programmable PE generating a SW stack matching the overall system.
For this, the synthesis approach implements the application modeled in the TLM,
which is captured in the SpecC SLDL, on a target processor. The TLM includes
SLDL-specific keywords and concepts, such as behaviors, events, channels, and
port mappings. To realize these SLDL concepts in target software, one approach
would be to replicate the SLDL simulation environment directly on the target
platform. This, however, potentially results in overhead for performance and code
size. Instead, our software synthesis directly generates embedded ANSI-C code out
of the SLDL to achieve compact and efficient code.
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Fig. 31.7 Software
generation flow in SCE

SW DB
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We divide software synthesis into code generation and Hardware-Dependent
Software (HDS) generation, shown in Fig. 31.7. Code generation deals with the
code inside each task and generates flat ANSI-C code out of the hierarchi-
cal model captured in the SLDL. Meanwhile, HDS generation creates code for
processor-internal and processor-external communication, adjusts for multitasking,
and eventually generates configuration/build files (e.g., Makefiles) for the cross
compilation process. Software synthesis is supported by a SW database, which
contains static target-specific artifacts, such as an operating system, that will be
linked in when creating the final binary.

31.6.1 Software Code Generation

Code generation [40] produces sequential ANSI-C code for each task within a
programmable PE. It translates the hierarchical composition of behaviors in SpecC
into flat C-code consisting of functions and data structures. For SLDL features
not natively present in the targeted ANSI-C language (e.g., port/interface concept,
hierarchical composition), code generation realizes these SLDL features out of
available ANSI-C constructs.

While ANSI-C was chosen as it is widely used in the embedded context and has a
rich compiler support, some challenges emerge as ANSI-C does not have language
constructs to realize object-oriented programming. As one example, SpecC behav-
iors offer local variables visible within an instance of the behavior. This could be
realized with a class. ANSI-C, however, does not provide an encapsulation/scope
for class-local storage as it lacks the class concept. To overcome this limitation,
all behaviors’ local variables are added to a behavior-representing structure, and all
accesses to behavior-local variables are replaced with accesses to the corresponding
member of the behavior-representing structure.

Similar challenges appear for methods that are exposed as an interface on
the behavior’s port. Here, each port also becomes a member of the behavior-
representing structure. In addition, the structure includes a virtual function table
(VTABLE) pointing to the implementing methods. All calls to these methods are
replaced with function calls through the VTABLE entries. In principle, embedded
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code generation realizes some basic object-oriented concepts on top of ANSI-C. As
such, it solves similar issues as C++ to C compilers that translate a class hierarchy
into flat ANSI-C code.

31.6.2 Hardware-Dependent Software Generation

The second portion, HDS generation [36, 37], generates code for processor-
internal and processor-external communication, including drivers and synchro-
nization (polling or interrupt). It also generates code to execute multiple tasks
on the same processor, realizing the task mapping defined in the computation
refinement (Sect. 31.3.3). To create the complete binary SW image, it finally
generates configuration and build files (e.g., Makefile) which select and configure
database components.

To realize the HDS generation, we distinguish code that is only platform
specific and code that is both platform and application specific. The former, i.e.,
platform-specific code, is instantiated from the SW database. This DB includes a
selection of RTOSs to provide multitasking and a basic HAL for canonical access
to common platform resources. During HDS generation, code for instantiating the
selected RTOS is generated, and the RTOS is configured toward the application
requirements. In order to unify the access to a wide variety of RTOSs, each
RTOS in the DB is accompanied by an RTOS Abstraction Layer (RAL). The RAL
abstracts from the particular RTOS’s function names and parameters. To ensure
a generic API, we investigated different RTOS APIs (uCOS-II, vx-Works, eCos,
ITRON, POSIX) and chose common primitives for task scheduling, communication,
and synchronization. Along similar lines, the HAL provides canonical access to
common platform resources, which we assume to be present in all target platforms
(such as timers and an interrupt controller). The canonical APIs (as realized by
RAL and HAL) limit the interdependency between HDS generation and the selected
target architecture, thus making HDS generation more scalable.

Code that is both application and platform specific is produced by the HDS
generation. This includes code for multitasking, internal communication, and
external communication. For multitasking, application-specific code is generated
to instantiate and control the tasks as defined the TLM (e.g., T1, T2, and T3 in
Fig. 31.5). Internal communication, which occurs within the same PE, is realized
along the same lines. Channels C1 and C2 in Fig. 31.5 are examples of PE-internal
communication. These channels are replaced with an implementation on top of
the RAL of the selected RTOS (e.g., using semaphores and memcpy). External
communication and synchronization occur between PEs. As part of communication
refinement (Sect. 31.5.2), external communication has been refined into a set of
stacked channels as visualized in Fig. 31.6. To realize the specified communication,
HDS generation traverses the TLM from the innermost layer (e.g., PE0’s presen-
tation layer with the stacked channels c1, c2, and c3 in Fig. 31.6) and generates a
matching driver stack. The generated driver stack utilizes the RAL (e.g., for interrupt
registration, handling, and synchronization) as well as the HAL (e.g., for accessing
the processor bus).
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Combining the outputs of code generation and HDS generation yields all code
for a PE. Using a cross-compiler, the final target binary is created. The SW synthesis
process repeats for each software PE in the TLM. The produced binaries can directly
execute on the target processor(s) of the final hardware. For early binary validation,
before availability of the real hardware, virtual platforms can be used. To facilitate
this step, our software synthesis also includes a model refinement step that converts
the input TLM into an ISS-based system model. For this, SW synthesis removes
the processor model for which it has generated the SW earlier (i.e., everything
inside the HAL layer of PE0 in Fig. 31.6) and replaces it with an ISS from the
database. The integrated ISS instance can then run the generated binary including
all platform-specific interactions (e.g., for communication with custom hardware)
for early binary validation and further codevelopment.

31.6.3 Software Optimization

Software synthesis offers several optimization opportunities across code generation
and HDS generation. One example is static dispatch analysis, which, if permissible,
eliminates the overhead of virtual function calls. Virtual function calls are common
in object-oriented code to allow multiple implementations for the same interface.
This is very frequently used in layered implementation of complex systems (such
as in our layer-based realization of communication between PEs). The overhead of
virtual functions appears in many languages, such as C++, SpecC, SystemC, as well
as in our generated code. Generally, the overhead for a virtual function call itself
is low (2 cycles [14]). More importantly, however, this indirection hinders inlining
optimizations. Especially when the callee function has only minimal computation,
the virtual function call overhead becomes quite significant on embedded platforms.

To improve the performance and quality of SLDL synthesized embedded SW,
we have enhanced our embedded ANSI-C code synthesis with a dispatch-type
analysis to reduce/eliminate this overhead [43]. Our approach utilizes the fact that
the complete model (with all connectivity) is known during SW synthesis and no
SW is linked later on top of the generated code. Hence, static dispatch-type analysis
can determine if a direct call is possible (i.e., the call target can be determined
statically) and replace a virtual call with a direct function call.

31.7 Hardware Synthesis

Hardware synthesis refines models of custom hardware processors in the TLM down
to complete RTL implementations following an extended High-Level Synthesis
(HLS) design step [29]. The generated RTL can then be further synthesized down to
a gate-level netlist and final physical realization using standard logic and back-end
synthesis flows. SCE integrates a hardware synthesis flow that combines existing
commercial, off-the-shelf HLS tools for synthesis of computation with the capability
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Fig. 31.8 Hardware synthesis flow in SCE

to synthesize communication interfaces and hardware bus transactors supporting a
wide range of optimized target implementations [29].

Figure 31.8 shows the overall flow of hardware synthesis in SCE. We follow a
three-step methodology to transform the TLM into a SystemC/C++-based Block-
Level Model (BLM), further synthesize computation blocks in the BLM down to
cycle-accurate RTL using a traditional HLS tool, and then perform logic synthesis
to generate a final gate-level netlist.

31.7.1 Block-Level Synthesis

Block-level synthesis refines the TLM generated during front-end computation and
communication refinement (see Sect. 31.5) down to block-level modules, protocol
IPs, and a block-level netlist integrating all of these together. Low-level blocks for
protocol layer IPs are thereby taken directly out of a protocol database in pre-written
RTL form. By contrast, other higher-layer blocks are converted from SpecC into
synthesizable SystemC or C++ code to be further synthesized and as supported by
existing HLS tools.

Most HLS tools can synthesize multiple single-threaded C++/SystemC modules
with the capability to stitch blocks together. However, they cannot automatically
partition preexisting code. In order to provide a general approach that can be
easily adapted to different HLS back ends, we partition the code into separately
synthesized modules that are integrated through our own netlisting engine. In the
process, each computation or communication behavior in the TLM is converted
into a separate, synthesizable hardware block. After block partitioning, TLM
communication stacks are inlined into each accessing computation block. This
enables computation/communication cooptimizations in the following HLS step,
with the scheduling freedom to overlap computation with communication and to
perform general, joint optimizations, such as resource sharing or parallelization.
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Communication layers in the TLM connect to each other and to computation
behaviors via an interface mechanism. Such high-level functional interface and
variable ports are converted into low-level wire, register or First-In First-Out (FIFO)
interfaces between blocks in the BLM as supported by the underlying HLS engine.
At the lowest MAC and protocol levels, thin Media Access Control (MAC) layer
implementations inserted from a hardware database provide the glue logic between
application-specific higher layers and pre-written bus protocol IPs. Synthesizable
MAC database implementations thereby replace canonical MAC layer models and
interfaces in the TLM with code that provides equivalent, canonical MAC-level
bus interfaces to higher layers while internally translating each transaction into
corresponding pin- and wire-level interactions necessary to interface with a target-
specific bus protocol IP component.

31.7.2 Protocol IP Generation

Each bus protocol layer in the TLM is replaced with an actual protocol IP from
the protocol database. Based on parameters, such as the type and number of
ports, a protocol generator thereby creates a custom IP block from pre-written
RTL templates in the protocol database to implement external bus protocols and,
depending on the synchronization mechanism selected and defined in the TLM,
either interrupt generation or polling logic. The internal interface of bus protocol
IPs is designed to match associated protocol wrappers in the MAC database, which,
when synthesized together with other blocks, will realize appropriate pin- and wire-
level interactions with the generated IP.

31.7.3 RTL Netlisting and Synthesis

The connectivity of all blocks, IPs, and external ports is converted into an block-
based RTL netlist to complete the block-level synthesis step. As indicated in
Sect. 31.7.1 above, in the process high-level functional variable and channel inter-
faces between modules are converted into wires, registers, and glue logic connecting
the pin-level FIFO ports of synthesized blocks and protocol IPs. After block-level
synthesis, computation blocks in the generated BLM are further synthesized down to
cycle-accurate RTL descriptions using an external HLS tool. Generated RTL blocks,
RTL bus protocol IPs, and the block netlist are then synthesized into a gate-level
netlist using a traditional logic synthesis tool.

Utilizing tools and databases along with a HLS engine, our flow can be easily
adapted to different HLS back ends and synthesis targets. Our current SCE setup
includes support for Mentor (formerly Calypto) Catapult, and Xilinx Vivado HLS
tools targeting ASICs or FPGAs with Mentor Precision or Xilinx ISE as logic
synthesis back ends.
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31.8 Experimental Results

We demonstrate the benefits of SCE for fast and accurate system-level Design
Space Exploration (DSE) and synthesis as applied to a cellphone baseband example
running concurrent Motion-JPEG (M-JPEG), MP3, and user interface tasks on a
dual-core 650 MHz Cortex-A9 platform. The overall architecture of the system is
shown in Fig. 31.9 [31]. The MP3 decoder and JPEG encoder use optional hardware
accelerators to perform audio decoding or Discrete Cosine Transform (DCT) and
quantization acceleration, respectively. Tasks communicate with external hardware
and the rest of the system via an AHB bus and 12 interrupts. In this experiment,
MP3 decodes 13 frames at a bitrate of 384 kbit/s, and JPEG encodes 10 frames of a
movie with standard 352�288 resolution at a rate of 30 frames/s.

We explored a wide range of architectures by applying different OS and
processor configurations, including mapping of M-JPEG tasks and interrupts to
two different cores (C0 and C1) in a dual-core architecture. We explored both
First-Come First-Serve (FCFS)/FIFO and priority (Prty) scheduling. In dual-core
architectures with task-attached interrupts, application tasks are distributed among
two cores and a task, and its associated interrupts are mapped to the same core.
By contrast, dual-core architectures with a core-attached interrupt always handle all
interrupts on C1. Figure 31.10 summarizes the average frame delays and average
absolute errors in frame delays as well as maximum error bars of MP3 and JPEG
tasks. Frame delays and frame delay errors are reported both for high- and low-
level TLM simulations of the platform at a link and MAC level of communication
abstraction, respectively, as compared to an ISS simulation. Task delays were back-
annotated at the function level from measurements taken on the ISS. Moreover,
average Linux context-switch overhead was measured and back-annotated into the
OS model.

As can be seen, the best MP3 performance is achieved when a higher priority is
assigned to MP3, or MP3 and JPEG are running on separate cores. In other config-
urations, average MP3 frame delay is close to its deadline boundary (i.e., 26.1 ms).
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Fig. 31.10 Cellphone design space exploration

Minimized JPEG delay is obtained from configurations with FIFO scheduling,
when JPEG has higher priority or when it runs on a separate core. All combined,
explorations confirm that shortest-job-first or rate-monotonic scheduling guarantee
that MP3 and JPEG meet their performance requirements. Overall, optimized MP3
and JPEG performance is achieved when tasks run on separate cores. Finally, by
mapping all interrupts to a separate core (C1), we only see slight performance
benefits in MP3 and JPEG delays.

Overall, the SCE system design front end provides an efficient platform for rapid,
early, and accurate DSE. On average, low-level MAC TLMs generated by SCE
simulate with 1,400 Million Instructions Per Second (MIPS) at less than 1% error.
A model at higher level of abstraction that does not account for synchronization
overhead can achieve even higher simulation speeds, but errors can reach as high
as 100% in some configurations where inaccuracies lead to MP3 and JPEG tasks
executing in the wrong order.

With the definition of architecture and mapping in place, the SCE system design
back end is activated to generate both software and hardware for each processing
element.

31.8.1 Software Synthesis

SW synthesis has been used to create the implementation for the cellphone example
described above. To provide more insight into the optimization potential offered
by SW synthesis, we will look into the static dispatch analysis, which can convert



31 SCE: System-on-Chip Environment 1045

virtual function calls to direct calls and by that avoid the VTABLE indirection
overhead. For this, we look more closely into the JPEG compression task of the
cellphone platform.

We anticipate the most optimization potential in the generated drivers as they use
a layered approach and contain very little own computation. To gain more insight
into the influence of communication, we vary the communication granularity. The
input (BMP In to JPEG) can either operate on individual pixels or coarser on a
whole pixel row. The output (JPEG to JPEG Out) is configurable to operate on
individual bytes or more efficiently by using a queue for buffered communication
(queue size 256 bytes). If selected, the queue is mapped to the processor. This
increases efficiency as the processor writes with small operations (mostly bytes)
and the JPEG output retrieves larger blocks. The coarser granularity reduces the
number of transactions by using fewer, yet larger transactions. This results in fewer
calls into the layered drivers. Thus, we anticipate less optimization potential through
static dispatch analysis with fewer, larger transactions. Please note that varying the
communication granularity is only done for analysis purposes. A real product would
use the coarsest granularity to reduce overhead.

Table 31.2 quantifies the static dispatch analysis optimization for the JPEG en-
coder example in its four configurations. In addition to the execution time, it shows
the speedup as well as the number of virtual function calls converted into direct
calls.

Table 31.2 confirms the expectations. With the coarsest communication granu-
larity (row, queue), the JPEG encoder executes the fastest (39.6 ms), while the finest
granularity (pixel, byte) executes the slowest (57 ms). The number of MAC driver
calls gives an indication for the slowdown. With 41 K calls, the finest granularity
needs almost 4 times as many calls for the same amount of data as the coarsest
granularity. All configurations significantly benefit from static dispatch analysis.
The speedup through converting to direct calls ranges from 12.4% for the coarsest
to 16.1% for the finest grained communication. Although fewer port method calls
are converted to direct calls in the fine-grained case (81 instead of 89), the drivers are
called much more frequently (41 K calls instead of 11 K calls) leading to the larger
speed up through our optimization. Irrespective of the communication granularity,
our approach offers tremendous benefits as it eliminates the virtual function calls
for the generated embedded SW while also improving code readability.

Table 31.2 Static dispatch analysis optimization

Input Output Exec. time [ms]
Exec. time
(opt) [ms] Improvement # Direct calls

# MAC drv.
calls

Row
Queue 39:64 34:74 12:4% 89 11469

Byte 42:69 36:89 13:6% 85 16560

Pixel
Queue 54:01 46:31 14:3% 85 36351

Byte 57:06 47:86 16:1% 81 41442



1046 G. Schirner et al.

31.8.2 Hardware Synthesis

To demonstrate the hardware back end of SCE, we have applied the flow to
synthesis of hardware accelerators for the JPEG encoder subsystem of the cellphone
example [29]. Specifically, the DCT and Quantize blocks (DCT-Q) in the JPEG
encoder are mapped into hardware while the rest of the application functionality
executes on the application processor. We used Mentor Catapult as HLS back end,
targeting an ARM+FPGA platform consisting of a Freescale i.MX21 applications
processor and a Xilinx Spartan-3 Field-Programmable Gate Array (FPGA) commu-
nicating over Freescale’s EIM bus.

Using our fully automated hardware synthesis flow, we were able to synthesize
the TLM into RTL ready for further FPGA download within minutes, yielding
substantial productivity gains compared to a manual design process. On the
processor side, software was automatically synthesized, combined with driver code,
and cross-compiled into a Linux executable (see Sect. 31.8.1 above).

We synthesized computation blocks and communication channels using polling-
or interrupt-based synchronization targeting a 50MHz clock frequency. We applied
protocol stack and protocol coupling optimizations as described in Sect. 31.5.2
during synthesis. We compare FPGA resource usage and hardware latency of the
optimized design (POPT) against an unoptimized design (NOPT) and a purely
manual implementation of communication interfaces (MAN). For a fair comparison,
the manual design utilizes the same computation block and the same firmware
code synthesized by a HLS tool and SCE, respectively. We evaluated end-to-end
hardware latency by instrumenting the JPEG encoder software to record the average
turnaround times over 180 DCT-Q invocations, including all communication and
synchronization overhead. Area and latency results of synthesized accelerator PEs
are summarized in Table 31.3.

We can observe that the latency of final, optimized hardware synthesized with
our flow is always significantly less than in a manual design. In contrast to a manual
design in which communication and computation blocks are designed separately
to manage complexities, our approach is able to perform cooptimizations across
computation and communication boundaries [29]. In the DCT-Q case, data is
processed strictly in the order it is received and sent, which allows computation
and communication to be pipelined and scheduled in parallel. This can overlap and
hide communication latencies behind computation delays. Due to its complexity

Table 31.3 JPEG hardware synthesis results

Synch. Opt. LUTs FFs Logic score Mem [bytes] Latency

Intr.
NOPT 5334 3197 8531 1024 59.9 ms

POPT 4091 2046 6137 (�28%) 1024 (0%) 59.7 ms (0%)

MAN 3284 2182 5466 (�36%) 1024 (0%) 89.0 ms (49%)

Poll.
NOPT 5407 3302 8709 1024 9.4 ms

POPT 4133 2341 6474 (�26%) 1024 (0%) 9.8 ms (4%)

MAN 3281 2179 5460 (�37%) 1024 (0%) 28.4 ms (203%)
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and non-modularity, such optimizations are typically not applied in manual designs.
However, a naive, unoptimized realization of such computation/communication
codesign can lead to a large increase in total area. The proposed protocol stack
optimizations prove to be efficient in reducing this area overhead through resource
sharing, which results in up to average 26% logic reduction compared to an
unoptimized design. Overall quality of results is comparable to or better than a
manual design, where on average 2.2 times improvement in latency can be achieved.

31.9 Conclusions

Designing modern embedded systems is increasingly challenging due to hardware
complexity (e.g., increasing heterogeneity), functional complexity (increasingly
complex, integrated features), more stringent nonfunctional requirements, all while
reducing the time to market. Addressing the complexity challenges requires raising
the level of abstraction to jointly consider digital hardware and software while
paving a path to automated implementation.

In this chapter, we have presented our comprehensive system-level design
framework, the System-on-Chip Environment (SCE). SCE realizes a top-down
codesign flow, from an abstract, functional specification captured in the SpecC
language down to synthesized hardware and software. It supports a wide range
of heterogeneous target platforms consisting of custom hardware components,
embedded software processors, and complex communication bus architectures.

This chapter has provided an overview and highlighted key aspects of the SCE
framework: the underlying language and simulation principles as well as the layer-
based modeling and refinement. It also provided an overview of the software and
hardware synthesis processes. We have illustrated the capabilities of our SCE
codesign framework through a cellphone example targeted to a heterogeneous target
architecture.

The focus of SCE is on the modeling, refinement, and implementation synthesis
process. In its current form, all design decisions have to be entered manually
through SCE’s Graphical User Interface (GUI) or via an external scripting interface.
This complements other system-level design tools that have a focus on automated
Design Space Exploration (DSE) as presented in the book Part 3, ”Design Space
Exploration”. In order to leverage different strengths of existing tools [20], we
have combined SCE with other academic DSE engines to provide a comprehensive,
seamless, and fully automated system-level synthesis solution all the way from
high-level, data-flow-based system specifications down to concrete HW and SW
implementations for generic MPSoC platforms [22]. This provides a proof-of-
concept realization of a complete system-level synthesis solution. The authors thank
Dongwook Lee and Parisa Razaghi for their help in preparing this manuscript and
the anonymous reviewers for their valuable suggestions on its improvement. The
authors express gratitude to all members of the SpecC team who have contributed
to SCE over the years, namely Samar Abdi, David Berner, Lukai Cai, Pramod
Chandraiah, Che-Wei Chang, Vincent Chang, Weiwei Chen, Alexan- der Gluhak,
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Yitao Guo, Xu Han, Ran Hao, Eric Johnson, Jon Kleinsmith, Deepak Mishra,
Guantao Liu, Junyu Peng, Gautam Sachdeva, Yasaman Samei, Dongwan Shin,
Sanyuan Tang, Ines Viskic, Qiang Xie, Haobo Yu, Pei Zhang, Jiaxing Zhang,
Shuqing Zhao, Jianwen Zhu. Last but not least, the authors thank Daniel D. Gajski
for his visionary leadership.
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