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Abstract

Since the synchronous model of computation is shared between synchronous
languages and synchronous hardware circuits, synchronous languages lend
themselves well for hardware/software codesign in the sense that from the same
synchronous program both hardware and software can be generated. In this
chapter, we informally describe the syntax and semantics of the imperative
synchronous language Quartz and explain how these programs are first analyzed
and then compiled to hardware and software: To this end, the programs are
translated to synchronous guarded actions whose causality has to be ensured
as a major consistency analysis of the compiler. We then explain the synthesis
of hardware circuits and sequential programs from synchronous guarded actions
and briefly look at extensions of the Quartz language in the conclusions.
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2.1 Introduction

Compared to traditional software development, the design of embedded systems is
even more challenging: In addition to the correct implementation of the functional
behavior, one has to consider also non-functional constraints such as real-time
behavior, reliability, and energy consumption. For this reason, embedded systems
are often built with specialized, often application-specific hardware platforms. To
allow late design changes even on the hardware/software partitioning, languages and
model-based design tools are required that can generate both hardware and software
from the same realization-independent model. Moreover, many embedded systems
are used in safety-critical applications where errors can lead to severe damages up
to the loss of human lives. For this reason, formal verification is applied in many
design flows using different kinds of formal verification methods.

The synchronous Model of Computation (MoC) [2] has shown to be well-suited
to provide realization-independent models for a model-based design of embedded
reactive systems where both hardware and software can be generated. There are at
least the following reasons for this success: (1) It is possible to determine tight
bounds on the reaction time by a simplified worst-case execution time analysis
[28, 29, 31, 32, 50], since by construction of the programs, only a statically bounded
finite number of actions can be executed within each reaction step. (2) The formal
semantics of these languages allows one to prove (a) the correctness of the com-
pilation and (b) the correctness of particular programs with respect to given formal
specifications [40,42,44,47]. (3) It is possible to generate both efficient software and
hardware from the same synchronous programs. Since the synchronous MoC is also
used by synchronous hardware circuits, the translation to synchronous hardware
circuits [3,4,38–40,47] is conceptually clearer and simpler than for classic hardware
description languages such as VHSIC Hardware Description Language (VHDL) or
Verilog (at least if these are not restricted to synchronous synthesizable subsets).
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All these advantages are due to the synchronous MoC that postulates two
essential properties: (1) A run of a synchronous system consists of a linear sequence
of discrete reactions. In each of these reactions, a synchronous program reads the
inputs, updates the internal state, and computes the values of the corresponding
outputs. (2) All the computations within such a reaction are virtually performed
in zero time, i.e., they are supposed to happen at the very same point of time so
that every computation can immediately see the effects of every other computation
within the same reaction step. Of course, this is not possible in a real system, but
executing all computations according to the underlying data dependencies gives the
programmer the impression postulated by the synchronous MoC.

The synchronous MoC simplifies the design of reactive embedded systems, since
developers do not have to care about low-level details like timing, synchronization,
and scheduling. Instead, the synchronous paradigm poses some specific problems
to compilers, in particular, the causality analysis [4, 7, 13, 24, 34, 45, 48, 52] of
synchronous programs. Intuitively, causality cycles occur when the input of a
computation depends on its own output. Causally correct programs therefore have
a causal order of the actions in every macro step, which allows the program
to compute values before they are read. Another important analysis is the clock
consistency that is required for synchronous programs with more than one clock:
Here, we have to ensure that variables are only read at points of time when they are
defined and that they are only assigned values whenever their clocks allow this.
Although these and other problems turned out to be quite challenging, research
over the last three decades has considered these problems in detail, found practical
algorithms, and developed various compilers like [6,11,16,17,19,21,36,37,47] that
are able to generate both hardware and software from one and the same synchronous
program.

This chapter gives an overview of our synchronous language Quartz, which was
derived from the pioneering language Esterel with a special focus on hardware
design and formal verification. We start with a presentation of the language
statements in Sect. 2.2 and explain with a few illustrative examples how it adheres
with the synchronous MoC. The subsequent sections give more details of our
Quartz compiler as implemented in our Averest system (http://www.averest.org):
Sect. 2.3 shows how the compiler translates the source code into an intermediate
representation which is subsequently used as the starting point for analysis and
synthesis. Section 2.4 explains how causality is analyzed, before Sect. 2.5 describes
how the intermediate representation is finally transformed to executable software or
hardware. Finally, we briefly have a look at planned extensions of the language in
the conclusions in Sect. 2.6.

2.2 The Synchronous Language Quartz

As outlined in the introduction, the synchronous MoC assumes that the execution
consists of a sequence of reactions R D hR0; R1; : : :i. In each reaction (also
called macro step [25]), all the actions (also called micro steps) that take place

http://www.averest.org
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within a reaction are executed according to their data dependencies. This leads
to the programmer’s view that the execution of micro steps does not take time
and that every macro step of a synchronous program requires the same amount of
logical time. As a consequence, concurrent threads run in lockstep and automatically
synchronize at the end of their macro steps, which yields the very important fact that
even concurrent synchronous programs still have deterministic behaviors (indeed,
most concurrent programming models lead to nondeterministic behaviors). As a
result, deterministic single-threaded code can be obtained from multi-threaded
synchronous programs. Thus, software generated from synchronous programs can
be executed on ordinary microcontrollers without having the need of complex
process scheduling of operating systems.

Synchronous hardware circuits are well-known models that are also based on the
synchronous MoC: Here, each reaction is initiated by a clock signal, and all parts
of the circuits are activated simultaneously. Although the signals need time to pass
gates (computation) and wires (communication), propagation delays can be safely
neglected as long as signals stabilize before the next clock tick arrives. Variables
are either mapped to wires or registers, which both have unique values for every
cycle. All these correspondences make the modeling and synthesis of synchronous
circuits from synchronous programs very appealing [3, 4, 38–40, 47]. It is therefore
not surprising that causality analysis of synchronous programs is a descendant of
ternary simulation of asynchronous circuits [13, 33, 34, 52] and can this way be
viewed as the proof of the abstraction from physical time to the abstract logical time
(clocks).

In this section, we introduce our synchronous language Quartz [43], which
provides the synchronous principle described above in the form of an imperative
programming language similar to its forerunner Esterel [5, 6]. In the following, we
give a brief overview of the core of the language that is sufficient to define most
other statements as simple syntactic sugar. For the sake of simplicity, we do not give
a formal definition of the semantics; the interested reader is referred to [43], which
also provides a complete structural operational semantics in full detail. The Quartz
core consists of the statements listed in Fig. 2.1, provided that S , S1, and S2 are also

nothing (empty statement)
� : pause (start/end of macro step)
x= t and next(x) = t (assignments)
if(s ) S1 else S2 (conditional)
S1;S2 (sequence)
do S while(s ) (iteration)
S1 ‖ S2 (synchronous concurrency)
[weak] [immediate] abort S when(s ) (preemption: abortion)
[weak] [immediate] suspend S when(s ) (preemption: suspension)
{a x; S} (local variable x of type a )
inst : name(t1, . . . ,tn) (call of module name)

Fig. 2.1 The Quartz core statements
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core statements, ` is a label, x and � are a variable and an expression of the same
type, � is a Boolean expression, and ˛ is a type.

Values of variables (or often called signals in the context of synchronous lan-
guages) of the synchronous program can be modified by assignments. They imme-
diately evaluate the right-hand side expression � in the current environment/macro
step. Immediate assignments x D � instantaneously transfer the obtained value of
� to the left-hand side x in the current macro step, whereas delayed assignments
next.x/ D � transfer this value only in the following macro step. For this reason,
all micro step actions are evaluated in the same variable environment which is
also determined by these actions. The causality analysis makes sure that this cyclic
dependency can be constructively resolved in a deterministic way.

The synchronous programming paradigm is therefore different to traditional
sequential programs: For example, the incrementation of a loop variable i by an
assignment i D i C 1 does not make sense in synchronous languages, since this
requires to compute a solution to the (unsolvable) equation i D i C1. Using delayed
actions, one can write next.i/ D i C1, which is the true intention of the assignment.
Even more difficult is the interaction of several micro step actions, e.g., in the same
sequence or in different parallel substatements: Their order given in the program
does not matter for the execution, since execution just follows the data dependencies
in a read-after-write schedule: In legal schedules, variables are only read if their
value for the current macro step has already been determined. For example, the
program in Fig. 2.2a has the same behavior as the program in Fig. 2.2b. Thus, every
statement knows and depends on the results of all operations in the current macro
step. In particular, a Quartz statement may influence its own activation condition
(see the program in Fig. 2.2c). Obviously, this generally leads to causal cycles that
have to be analyzed by the compilers, i.e., the compilers have to ensure that for all
inputs, there is an execution order of the micro step actions such that a variable is
never read before it is written in the macro step.

If a variable’s value is not determined by an action in the current macro step,
its value is determined by the so-called reaction to absence, which depends on the
storage type of the variable. The current version of Quartz knows two of them:
memorized variables keep the value of the previous step, while event variables
are reset to a default value if no action determines their values. Future versions
of Quartz will contain further storage types for hybrid systems and multi-clocked
synchronous systems.

a= 1; b= a; a= 1;
b= a; a= 1; if(b= 1) b= a;
pause; pause; pause;
a= b; a= b; if(a �= 2) a= b;

a b c

Fig. 2.2 Three Quartz programs illustrating the synchronous MoC
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{ {
b= true; a= false,b= true,c= false
�1 : pause; �3 : pause;
if(a) b= false; if(¬b) c= true;

a= true; a= true,b= false,c= true
�2 : pause; �4 : pause;

b= true; a= true,b= true,c= true
} }

Fig. 2.3 Synchronous concurrency in Quartz

In addition to the usual control flow statements known from typical imperative
languages (conditionals, sequences, and iterations), Quartz also offers synchronous
concurrency. The parallel statement S1kS2 immediately starts the statements S1 and
S2. Then, both S1 and S2 run in lockstep, i.e., they automatically synchronize when
they reach their next pause statements. The parallel statement runs as long as at
least one of the substatements is active.

Figure 2.3 shows a simple example consisting of two parallel threads with
Boolean memorized variables a, b, and c. The threads are shown on the left-hand
side of Fig. 2.3, and their effects are shown on the right-hand side. Initially, the
default values of the variables are false, but in the first step, these values can be
changed by the program. If the program is started, both threads are started. The
first thread executes the assignment to b and stops at location `1, while the second
thread immediately stops at location `3. In the second macro step, the program
resumes from the labels `1 and `3. Thereby, the first thread cannot yet proceed
since the value of a in this step is not yet known. The second thread cannot
execute its if-statement either, but it can execute the following assignment to a.
Thus, the second thread assigns true to a, then the first thread can assign false
to b, and then the second thread can finally assign true to c. The last step then
resumes from `2 and `4, where the second thread performs the final assignment to
variable b.

Preemption of system behaviors is very important for reactive systems. It is
therefore very convenient that languages like Esterel and Quartz offer abort
and suspend statements to explicitly express preemption. The meaning of these
statements is as follows: A statement S which is enclosed by an abort block is
immediately terminated when the given condition � holds. Similarly, the suspend
statement freezes the control flow in a statement S when � holds. Thereby, two
kinds of preemption must be distinguished: strong (default) and weak (indicated by
keyword weak) preemption. While strong preemption deactivates both the control
and data flow of the current step, weak preemption only deactivates the control flow,
but retains the data flow of the current macro step (this concept is sometimes also
called ‘run-to-completion’). The immediate variants check for preemption already
at starting time, while the default is to check preemption only after starting time.

Modular design is supported by the declaration of modules in the source code
and by calling these modules in statements. Any statement can be encapsulated in a
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module, which further declares a set of input and output signals for interaction with
its context statement. There are no restrictions for module calls, so that modules can
be instantiated in every statement. In contrast to many other languages, a module
instantiation can also be part of sequences or conditionals (and is therefore not
restricted to be called as additional thread). Furthermore, it can be located in any
abortion or suspension context, which possibly preempts its execution.

The pioneer of the class of imperative synchronous languages is Esterel. As
the description above suggests, both Esterel and Quartz share many principles,
but there are also some subtle differences: First, the concept of pure and valued
signals in Esterel has been generalized to event and memorized variables in Quartz
as presented above. In particular, there is no distinction between if and present
statements, and the reaction to absence considers arbitrary variables and not just
signals. Another important difference is causality: while Esterel usually sees the
statements S1I S2 as a real sequence, where the backward flow of information from
S2 to S1 is forbidden, Quartz has a more relaxed definition of that. As long as
S1 and S2 are executed in the same macro step, information can be arbitrarily
exchanged, as the example in Fig. 2.3 illustrates. In consequence, more programs
are considered to be causally correct. In contrast to Esterel, Quartz offers also
the delayed assignments next.x/ D � that are convenient to describe hardware
designs (while Esterel makes use of a pre operator to refer to the previous value
of a signal).

2.3 Compilation

2.3.1 Intermediate Representation by Guarded Actions

Having presented the syntax and semantics of the synchronous language Quartz in
the previous section, we now describe how it is compiled to hardware and software
systems. As usual for compilers, we thereby make use of an internal representation
of the program that can be used for analysis and the later synthesis. Especially in
the design of embedded systems, where hardware-software partitioning and target
platforms are design decisions that are frequently changed, persistent intermediate
results stored in an internal representation are very important. It is thereby natural
to distinguish between compilation and synthesis: Compilation is the translation of
the Quartz program into the internal representation, and synthesis is the translation
from the internal representation to traditional hardware or software descriptions.

In our Averest system, which is a framework for the synthesis and verification
of Quartz programs, we have chosen synchronous guarded actions as internal
representation that we called Averest Intermediate Format (AIF). Synchronous
guarded actions are in the spirit of traditional guarded commands [15, 18, 27, 30]
but follow the synchronous MoC. The Boolean condition � of a guarded action
h� ) C i is called the guard and the atomic statement C is called the action
of the guarded action. According to the previous section, atomic statements are
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essentially the assignments of Quartz, i.e., the guarded actions have either the form
� ) x D � (for an immediate assignment) or � ) next.x/ D � (for a delayed
assignment).

The intuition behind such a guarded action � ) C is that the action C
is executed in every macro step where the condition � is satisfied. Guarded
actions may be viewed as a simple programming language like Unity [15] in that
every guarded action runs as a separate process in parallel to the other guarded
actions. This process observes its guard � in each step and executes C if the
guard holds. The semantics of synchronous guarded actions is simply defined as
follows: In every macro step, all guards are simultaneously checked. If a guard is
true, its action is immediately executed: immediate assignments instantaneously
transfer the computed value to the left-hand side of the assignment, while the
delayed assignments defer the transfer to the next macro step. As there may be
interdependencies between actions and trigger conditions, the actions must be
executed according to their data dependencies. Similar to the Quartz program,
the AIF description handles the reaction to absence implicitly: If no action has
determined the value of the variable in the current macro step (obviously, this is the
case iff the guards of all immediate assignments in the current step and the guards of
all delayed assignments in the preceding step of a variable are false), then its value is
determined by the reaction to absence according to its storage mode: Event variables
are reset to their default values (like wires in hardware circuits), while memorized
variables store their previous values (like registers in hardware circuits). Future
versions of Quartz will contain clocked variables that are absent if not explicitly
assigned in a step, i.e., the reaction to absence will not provide any value for them.

We are convinced that this representation of the behavior is exactly at the right
level of abstraction for an intermediate code format, since guarded actions provide a
good balance between (1) removal of complexity from the source code level and (2)
the independence of a specific synthesis target. The semantics of complex control
flow statements can be completely encoded by the guarded actions, so that the
subsequent analysis, optimization, and synthesis steps become much simpler: Due
to their very simple structure, efficient translation to both software and hardware is
efficiently possible from guarded actions.

In general, programs written in all synchronous languages can be translated to
synchronous guarded actions [8–10]. While this translation is straightforward for
data flow languages such as Lustre, more effort is needed for imperative languages
such as Quartz and Esterel. There, the translation has to extract all actions of
the program and to compute for each of them a trigger condition according to the
program. In the rest of this section, we describe the basics of the translation from
Quartz programs to guarded actions. For a better understanding, we neglect local
variables and module calls and rather describe a simple, but incomplete translation
in this section. More details of the translation are given in [11].

In the following, we first discuss the distinction of surface and depth of a program
in Sect. 2.3.2. Based on this distinction, we present the compilation of the control
flow in Sect. 2.3.3, before we focus on the data flow in Sect. 2.3.4. Finally, we
consider the additional problems due to local variables in Sect. 2.3.5.
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2.3.2 Surface and Depth

A key to the compilation of synchronous programs is the distinction between the
surface and depth of a program: Intuitively, the surface consists of the micro steps
that are executed when the program is started, i.e., all the parts that are executed
before reaching the first pause statements. The depth contains the statements that
are executed when the program resumes execution after the first macro step, i.e.,
when the control is already inside the program and proceeds with its execution. It
is important to note that surface and depth may overlap, since pause statements
may be conditionally executed. Consider the example shown in Fig. 2.4a: while the
action x D 1 is only in the surface and the action z D 1 is only in the depth,
the action y D 1 is both in the depth (Fig. 2.4b) and the surface (Fig. 2.4c) of the
sequence.

The example shown in Fig. 2.5 illustrates the necessity of distinguishing between
the surface and the depth for the compilation. The compilation should compute for
the data flow of a statement S guarded actions of the form h� ) C i, where C
is a Quartz assignment, which is executed if and only if the condition � holds.
One may think that the set of guarded actions for the data flow can be computed
by a simple recursive traversal over the program structure, which keeps track of
the precondition leading to the current position. However, this is not the case, as
the example in Fig. 2.5 illustrates. Since the abortion is not an immediate one, the
assignment a D true will never be aborted, while the assignment b D true will
be aborted if i holds. Now, assume we would first compute guarded actions for the
body of the abortion statement and would then replace each guard ' by ' ^ :i to
implement the abortion. For the variable a, this incorrect approach would derive two

x= 1;
if(a)

pause;
y= 1;
pause;
z= 1;

x= 1;
if(true)

pause;

y= 1;
pause;
z= 1;

x= 1;
if(false)

pause;
y= 1;
pause;

z= 1;

Fig. 2.4 Overlapping surface and depth: (a) Source code. (b) Case a D true. (c) Case a D false

�0 : pause;do
abort {

a= true;
�1 : pause;
b= true;

} when(i);
while(true) ;

�0 ∨ �1 ⇒ a= true
�1 ∧¬i ⇒ b= true

Fig. 2.5 Using surface and depth for the compilation



38 K. Schneider and J. Brandt

guarded actions `0 ^ :i ) a D true and `1 ^ :i ) a D true. However, this is
obviously wrong since now both assignments a D true and b D true are aborted
which is not the semantics of the program.

The example shows that we have to distinguish between the guarded actions of
the surface and the depth of a statement since these must be treated differently by
the preemption statements. If we store these actions in two different sets, then we
can simply add the conjunct :� to the guards of the actions of the depth, while
leaving the guards of the actions of the surface unchanged. For this reason, we have
to compute guarded actions for the surface and the depth in two different sets.

2.3.3 Compilation of the Control Flow

The control flow of a synchronous program may only rest at its control flow
locations. Hence, it is sufficient to describe all situations where the control flow can
move from the set of currently active locations to the set of locations that are active
at the next point of time. The control flow can therefore be described by actions of
the form h� ) next.`/ D truei, where ` is a Boolean event variable modeling the
control flow location and � is a condition that is responsible for moving the control
flow at the next point of time to location `. Since a location is represented by an
event variable, its reaction to absence resets it to false whenever no guarded action
explicitly sets it.

Thus, the compiler has to extract from the synchronous program for every label
` a set of trigger conditions �`

1; : : : ; �`
n to determine whether this label ` has to be

set in the following step. Then, these conditions can be encoded as guarded actions
h�`

1 ) next.`/ D truei; : : : ; h�`
n ) next.`/ D truei. The whole control flow is

then just the union of all sets for all labels. Hence, in the following, we describe how
to determine the activation conditions �`

i for each label ` of the program.
The compilation is implemented as a bottom-up procedure that extracts the

control flow by a recursive traversal over the program structure: For example, for
a loop, we first compile the loop body and then add the loop behavior. While
descending in the recursion, we determine the following conditions and forward
them to the compilation of the substatements of a given statement S :

• strt .S/ is the current activation condition. It holds iff S is started in the current
macro step.

• abrt .S/ is the disjunction of the guards of all abort blocks which contain S .
Hence, the condition holds iff S should be currently aborted.

• susp .S/ similarly describes the suspension context: if the predicate holds, S

will be suspended. Thereby, abrt .S/ has a higher priority, i.e., if both abrt .S/

and susp .S/ hold, then the abortion takes place.

The compilation of S returns the following control flow predicates [41], which are
used for the compilation of the surrounding compound statement.
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• inst .S/ holds iff the execution of S is currently instantaneous. This condition
depends on inputs so that we compute an expression inst .S/ depending on the
current values of input, local, and output variables. In general, inst .S/ cannot
depend on the locations of S since it is checked whether the control flows
through S without being caught in S . Hence, it is assumed that S is currently not
active.

• insd .S/ is the disjunction of the labels in statement S . Therefore, insd .S/ holds
at some point of time iff the control flow is currently at some location inside
S , i.e., if S is active. Thus, instantaneous statements are never active, since the
control flow cannot rest anywhere inside.

• term .S/ describes all conditions where the control flow is currently somewhere
inside S and wants to leave S voluntarily. Note, however, that the control flow
might still be in S at the next point of time, since S may be (re)entered at
the same time, e.g., by a surrounding loop statement. The expression term .S/

therefore depends on input, local, output, and location variables. term .S/ is false
whenever the control flow is currently not inside S . In particular, term .S/ is false
for the instantaneous atomic statements.

The control flow predicates refer either to the surface or to the depth of a statement.
As it will be obvious in the following, the surface uses strt .S/ and inst .S/, while
the depth depends on abrt .S/, susp .S/, insd .S/ and term .S/. Hence, we can
divide the compilation of each statement into two functions: one compiles its surface
and the other one compiles its depth.

After these introductory explanations, we can now present the general structure
of the compilation algorithm (see Fig. 2.6). The compilation of a system consisting
of a statement S is initially started by the function ControlFlow.st; S/, which splits
the task into surface and depth parts. Abort and suspend conditions for the depth are
initially set to false, since there is no preemption context at this stage.

It remains to show how the surface and the depth of each statement are compiled.
Thereby, we forward the previously determined control flow context for a statement
S by the Boolean values st D strt .S/, ab D abrt .S/, and sp D susp .S/, while
the result contains the values of the predicates I D inst .S/, A D insd .S/, and
T D term .S/.

Let us start with the assignments of the program. Since they do not contribute
to the control flow, no guarded actions are derived from them. The computation of
the control flow predicates is also very simple: An action C is always instantaneous
inst .C / D true, never active ( insd .C / D false), and never terminates (since the
control flow cannot rest inside C ; see definitions above).

The pause statement is interesting, since it is the only one that creates actions
for the control flow. The surface part of the compilation detects when a label
is activated: each time we hit a ` W pause statement, we take the activation
condition computed so far and take this for the creation of a new guarded action
setting `. The label ` can be also activated later in the depth. This is the case if the
control is currently at this label and the outer context requests the suspension. The
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fun ControlFlow(st,S)
(I,C s) = CtrlSurface(st,S);
(A,T,C d) = CtrlDepth(false, false,S);
return(C s ∪C d)

fun CtrlSurface(st,S)
switch(S)
case [� : pause]

return(false,{st ⇒ next(�) = true})
case [if(s ) S1else S2]

(I1,C s
1 ) = CtrlSurface(st∧s ,S1);

(I2,C s
2 ) = CtrlSurface(st∧¬s ,S2);

return(I1 ∧s ∨ I2 ∧¬s ,C s
1 ∪C s

2 )

case [S1;S2]
(I1,C s

1 ) = CtrlSurface(st,S1);
(I2,C s

2 ) = CtrlSurface(st∧ I1,S2);
return(I1 ∧ I2,C s

1 ∪C s
2 )

case [abort S1 when(s )]
returnCtrlSurface(st,S1)

...

fun CtrlDepth(ab,sp,S)
switch(S)
case [� : pause]

return(�,�,{�∧ sp ⇒ next(�) = true})
case [if(s ) S1else S2]

(A1,T1,C d
1 ) = CtrlDepth(ab,sp,S1);

(A2,T2,C d
2 ) = CtrlDepth(ab,sp,S2);

return(A1 ∨A2,T1 ∨T2,C d
1 ∪C d

2 )

case [S1;S2]
(A1,T1,C d

1 ) = CtrlDepth(ab,sp,S1);
st2 = T1 ∧¬(sp∨ab);
(I2,C s

2 ) = CtrlSurface(st2,S2);
(A2,T2,C d

2 ) = CtrlDepth(ab,sp,S2);
return(A1 ∨A2,T1 ∧ I2 ∨T2,C d

1 ∪C s
2 ∪C d

2 )

case [abort S1 when(s )]
(A1,T1,C d

1 ) = CtrlDepth(ab∨s ,sp,S1);
return(A1,T1 ∨A1 ∧s ,C d

1 )
...

Fig. 2.6 Compiling the control flow (excerpt)

computation of the control flow predicates reveals no surprises: ` W pause always
needs time inst ./ D false, it is active if the control flow is currently at label `

(insd ./ D `) and it terminates whenever it is active (term ./ D `).
Let us now consider a compound statement like a conditional statement. For the

surface, we update the activation condition by adding the guard. Then, the sub-
statements are compiled and the results are merged straightforwardly. The parallel
statement (not shown in the figure) is compiled similarly. A bit more interesting
is the compilation of the sequence. As already mentioned above, it implements
the stepwise traversal of the synchronous program. This is accomplished by the
surface calls in the depth. A similar behavior can also be found in the functions for
the compilation of the loops. Preemption is also rather simple: since the abortion
condition is usually not checked when entering the abort statement, it does not
have any influence and can be neglected for the compilation of the surface. In the
depth, the abort condition is just appended to the previous one. Finally, suspension
is compiled similarly.

The compilation of the control flow works in a linear pass over the syntax tree of
the program and generates a set of guarded actions of a linear size with respect to
the size of the given program.
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2.3.4 Compilation of the Data Flow

Figure 2.7 shows some of the functions which compute the data flow for a given
Quartz statement where we make use of a virtual boot label `0. The surface actions
can be executed in the current step, while the actions of the depth are enabled by
the resumption of the control flow that already rests somewhere in the statement.
For this reason, we do not need a precondition as argument for the depth data flow
compilation since the precondition is the active current control flow location itself.
The compilation of the surface of a basic statement should be clear: we take the so-
far computed precondition st as the guard for the atomic action. The depth variants
do not create any actions since statements without control flow locations do not have
depth actions.

For the conditional statement, we simply add � or its negation to the precondition
to start the corresponding substatement. As the control flow can rest in one of the
branches of an if-statement, it can be resumed from any of these branches. In the
depth, we therefore simply take the “union” of the two computations of the depth
actions.

fun DataFlow(S)
D s = DataSurface(�0,S);
Dd = DataDepth(S);
return(D s ∪Dd)

fun DataSurface(st,S)
switch(S)
case [x= t ]

return{st ⇒ x= t}
case [next(x) = t ]

return{st ⇒ next(x) = t}
case [if(s ) S1else S2]

D s
1 = DataSurface(st∧s ,S1)

D s
2 = DataSurface(st∧¬s ,S2)

return(D s
1 ∪D s

2)

case [S1;S2]
D s

1 = DataSurface(st,S1)
D s

2 = DataSurface(st∧ inst(S1) ,S2)
return(D s

1 ∪D s
2)

case [abort S1 when(s )]
return DataSurface(st,S1)

case [weak abort S1 when(s )]
return DataSurface(st,S1)

...

fun DataDepth(S) =
switch(S)
case [x= t ]

return{}
case [next(x) = t ]

return{}
case [if(s ) S1else S2]

Dd
1 = DataDepth(S1)

Dd
2 = DataDepth(S2)

return(Dd
1 ∪Dd

2 )

case [S1;S2]
Dd

1 = DataDepth(S1)
D s

2 = DataSurface(term(S1) ,S2)
Dd

2 = DataDepth(S2)
return(Dd

1 ∪D s
2 ∪Dd

2 )

case [abort S1 when(s )]
return

{g ∧¬s ⇒ C | (g ⇒ C ) ∈ DataDepth(S1)}
case [weak abort S1 when(s )]

return DataDepth(S1)
...

Fig. 2.7 Compiling the data flow (excerpt)
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According to the semantics of a sequence, we first execute S1. If the execution
of S1 is instantaneous, then we also execute S2 in the same macro step. Hence, the
precondition for the surface actions of S2 is ' ^ inst .S1/. The preconditions of the
substatements of a parallel statement are simply the preconditions of the parallel
statement.

In the depth, the control flow can rest in either one of the substatements S1 or S2

of a sequence S1I S2, and hence, we can resume it from either S1 or S2. If the control
flow is resumed from somewhere inside S1, and S1 terminates, then also the surface
actions of S2 are executed in the depth of the sequence. Note that the computation
of the depth of a sequence S1I S2 leads to the computation of the surface actions of
S2 as in the computation of the control flow in the previous section.

As delayed abortions are ignored at starting time of a delayed abort statement,
we can ignore them for the computation of the surface actions. Weak preemption
statements can be also ignored for the computation of the depth actions, since even
if the abortion takes place, all actions remain enabled due to the weak preemption.
For the depth of strong abortion statements, we add a conjunct :� to the guards of
all actions to disable them in case � holds.

Obviously, the compilation of the control flow (see Fig. 2.6) and the compilation
of the data flow (see Fig. 2.7) can be merged into a single set of functions that
simultaneously compile both parts of the program. Since the guards of the actions
for the data flow refer to the control flow predicates, this approach simplifies the
implementation. The result is an algorithm which runs in time O.jS j2/, since
DataSurface.S; / runs in O.jS j/ and DataDepth.S/ in O.jS j2/. The reason for
the quadratic blow-up is that sequences and loops necessarily have to generate
copies of surfaces of their substatements.

2.3.5 Local Variables and Schizophrenia

The characteristic property of local variables is their limited scope. In the context of
synchrony, which groups a number of micro steps into an instantaneous macro step,
a limited scope which does not match with the macro steps may cause problems. In
particular, this is the case if a local declaration is left and reentered within the same
macro step, e.g., when a local declaration is nested within loop statements. In such
a problematic macro step, the micro steps must then refer to the right incarnation
of the local variable since its incarnations in the old and the new scope may have
different values in one macro step.

Figure 2.8a shows a simple example. The local variable x, which is declared in
the loop body, is referenced at the beginning and at the end of the loop. In the second
step of the program, when it resumes from the label `1, all actions are executed, but
they refer to two different incarnations of x: While the assignment to x is made to
the old variable in the depth, the if-statement checks the value of the new incarnation
which is false.

While software synthesis of sequential programs can solve this problem simply
by shadowing the incarnations of the old scope, this is not possible for the
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do {
bool x;
if(x) y= 1;
�1 : pause;
x= true;

} while(true) ;

a b
do {

bool x;
if(x) y= 1;
if(a) �1 : pause;
x= true;
if(¬a) �2 : pause;

} while(true) ;

Fig. 2.8 Schizophrenic Quartz programs

synchronous MoC, since each variable has exactly one value per macro step.
Therefore, we have to generate a copy of the locally declared variable and map
the actions of the program to the corresponding copy in the intermediate code.
Furthermore, we have to create additional actions in the intermediate code that link
the copies so that the value of the new incarnation at the beginning of the scope is
eventually transported to the old one, which is used in the rest of the scope.

However, the problem can be even worse: first, whereas in the previous example
each statement always referred to the same incarnation (either the old or the
new one), the general case is more complicated as can be seen in Fig. 2.8b. The
statements between the two pause statements are sometimes in the context of the old
and sometimes in the context of the new incarnation. Therefore, these statements are
usually called schizophrenic in the synchronous languages community [4]. Second,
there can be several reincarnations of a local variable, since the scope can be
reentered more than once. In general, the number of loops, which are nested around
a local variable declaration determines an upper bound on the number of possible
reincarnations.

A challenging Quartz program containing local variables is shown on the
left-hand side of Fig. 2.9. The right-hand side of the same figure shows the
corresponding control flow graph. The circle nodes of this graph are control
flow states that are labeled with those location variables that are currently active
(including the start location `0). Besides these control flow states, there are two other
kinds of nodes: boxes contain actions that are executed when an arc toward this node
is traversed, while the diamonds represent branches that influence the following
computations. The outgoing arcs of such a node correspond to the then (solid) and
else (dashed) branch of the condition. For example, if the program is executed from
state `1 and we have :k ^ j ^ :i , then we execute the two action boxes beneath
control state `1 and additionally the one below condition node j .

As can be seen, the condition k ^j ^:i executes all possible action nodes while
traversing from control node `1 to itself. The first action node belongs to the depth
of all local declarations, the second one (re)enters the local declaration of c, but
remains inside the local declarations of b and a. A new incarnation c3 is thereby
created. The node below condition node k (re)enters the local declarations of b and
c, but remains in the one of a. Hence, it creates new incarnations b2 and c2 of b
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�0 : pause;
weak abort {

do {

int a;
a= 0;
I :M(a);
weak abort {

do {

int b;
b= a;
weak abort {

do {

int c;
c= b;
next(c) = f (a,b,c);
�1 : pause;
x= a;
next(a) = g(a,b,c);
next(b) = h(a,b,c);

} while(true) ;
} when(k);

} while(true) ;
} when( j);

} while(true) ;
} when(i);
�2 : pause;

�0 ⇒ c= b
�1 ∧ j ⇒ c1 = b1
�1 ∧ k ⇒ c2 = b2

�1 ⇒ c3 = b
�0 ⇒ next(c) = f (a,b,c)

�1 ∧¬i∧ j ⇒ next(c) = f (a1,b1,c1)
�1 ∧¬(i∨ j)∧ k ⇒ next(c) = f (a,b2,c2)
�1 ∧¬(i∨ j∨ k) ⇒ next(c) = f (a,b,c3)

�0

a = 0;
b = a;
c = b;

next(c) = f (a,b,c);

�1

x = a;
next(a) = g(a,b,c);
next(b) = h(a,b,c);

c3 = b;
next(c) = f (a,b,c3);

k

b2 = a;
c2 = b2;

next(c) = f (a,b2,c2);

j

a1 = 0;
b1 = a1;
c1 = b1;

next(c) = f (a1,b1,c1);

i

�2

(c,0, case(�1 ∧¬i∧ j) : c1
case(�1 ∧¬(i∨ j)∧ k) : c2
case(�1 ∧¬(i∨ j∨ k)) : c3
else : c

)

Fig. 2.9 Local declarations with multiple simultaneous reincarnations

and c, respectively. Finally, the remaining node (re)enters all local declarations and
therefore generates three incarnations a1, b1, and c1. Note that these four action
boxes can be executed at the same point of time, and therefore, the reincarnations
a1, b1, c1, b2, c2, and c3 may all exist in one macro step.
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Several solutions have been proposed for the solution of schizophrenic state-
ments [4, 35, 41, 49, 54]. Our Quartz compiler carefully distinguishes between
the different surfaces of the same schizophrenic local variable and creates fresh
incarnations for each one. Technically, this is handled by adding a counter to the
compilation functions (Figs. 2.6 and 2.7), which counts how often such a surface
has already been entered in the same reaction. Giving all technical details is beyond
the scope of this chapter. The interested reader is referred to [11, 47], where the
complete solution is described.

2.4 Semantic Analysis

The synchronous MoC abstracts from the execution order within a reaction and
postulates that all actions are executed in zero time – at least in the programmer’s
view. In practice, this means that all actions must be executed according to their
data dependencies in order to keep the illusion of zero time execution for the
programmer. However, it could happen that there is no such execution order since
there are cyclic data dependencies. These so-called causality cycles occur if the
input for an action is instantaneously modified by the output of this action or
others that were triggered by its output. From the practical side, cyclic programs
are rather rare, but they can appear and must therefore be handled by compilers. As
a consequence, causality analysis [4, 7, 13, 24, 34, 45, 48, 52] must be performed to
detect critical cyclic programs.

In general, cyclic programs might have no behavior (loss of reactivity), more than
one behavior (loss of determinism), or a unique behavior. However, having a unique
behavior is not sufficient for causality, since there are programs whose unique
behavior can only be found by guessing. For this reason, causality analysis checks
whether a program has a unique behavior that can furthermore be constructively
determined by the operational semantics of the program. To this end, the causality
analysis starts with known input variables and yet unknown local/output variables.
Then, it determines the micro steps of a macro step that can be executed with this
incomplete knowledge of the current variables’ values. The execution of these micro
steps may reveal the values of some further local/output variables of this macro step
so that further micro steps can be executed after this round. If all variables became
finally known by this fixpoint iteration, the program is a constructive one with a
unique behavior.

While causality analysis may appear to be a special problem for synchronous
languages, a closer look at the problem reveals that there are many equivalent
problems: (1) Shiple [51–53] proved the equivalence to Brzozowski and Seger’s
timing analysis in the up-bounded inertial delay model [13]. This means that a
circuit derived from a cyclic equation system will finally stabilize for arbitrary
gate delays iff the equation system is causally correct. (2) Berry pointed out that
causality analysis is equivalent to theorem proving in intuitionistic (constructive)
propositional logic and introduced the notion of constructive circuits [5]. (3) The
problem is also equivalent to type-checking in functional programs due to the
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Curry-Howard isomorphism [26]. (4) Finally, Edwards reformulates the problem as
the existence of dynamic schedules for the execution of mutually dependent threads
of micro steps [20]. Hence, causality analysis is a fundamental analysis that has
already found many applications in computer science.

We will not discuss the details in this chapter. The interested reader is referred
to [45], where all details about the causality analysis performed in the context of
Quartz can be found.

2.5 Synthesis

Before presenting the synthesis procedures, we first recall our overall design flow
that determines the context of the compilation procedure. As we target the design
of embedded systems, where hardware-software partitioning and target platforms
are design decisions that are frequently changed, persistent intermediate results in
a well-defined and robust format are welcome. In our Averest system, we basically
split the design flow into two steps, which are bridged by the AIF. This intermediate
format captures the system behavior in terms of synchronous guarded actions.
Hence, complex control flow statements need no longer be considered. We refer
to compilation as the translation of source code into AIF, while synthesis means
the translation from AIF to the final target code, which may be based on a different
MoC.

Figure 2.10 shows two approaches of generating target code from a set of Quartz
modules. Modular compilation, which is shown on the left-hand side, translates each
Quartz module to a corresponding AIF module. Then, these modules are linked
on the intermediate level before the whole system is synthesized to target code.
Modular synthesis, which is shown on the right-hand side, translates each Quartz
module to a corresponding AIF module, which is subsequently synthesized to a
target code module. Linking is then deferred to the target level. While modular
synthesis simplifies the compilation (since all translation processes have to consider
only a module of the system), it puts the burden on the run-time platform or the
linker which has to organize the interaction of the target modules correctly.

Quartz Quartz Quartz

AIF AIF AIF

Target

Quartz Quartz Quartz

AIF AIF AIF

Target Target Target

Fig. 2.10 Modular compilation and modular synthesis of Quartz programs
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From our intermediate representation of guarded actions, many synthesis targets
can be thought of. In the following, we sketch the translation to different targets;
first to symbolic transition systems, which are suitable for formal verification of
program properties by symbolic model checking, second to digital hardware circuits
for hardware synthesis, third the translation to SystemC code, which can be used for
an integrated simulation of the system, and finally an automaton-based sequential
software synthesis.

2.5.1 Symbolic Model Checking

For symbolic model checking, the system generally needs to be represented by a
transition system. This basically consists of a triple .S ; I ; T / with a set of states
S , initial states I � S , and a transition relation T � S � S . Each state s

is a mapping from variables to values, i.e., s assigns to each variable a value of
its domain. As we aim for a symbolic description, we describe the initial states
and the transition relation by propositional formulas ˚I and ˚T , which are their
characteristic functions.

For the presentation of the translation, assume that our intermediate representa-
tion contains immediate and delayed actions for each variable x of the following
form:

.�1;x D �1/; : : : ; .�p;x D �p/

.�1;next(x) D �1/; : : : ; .�q;next(x) D �q/

Figure 2.11 sketches the translation of the immediate and delayed actions writing
variable x to clauses used for the description of a symbolic transition system.

The construction of a transition system is quite straightforward: The initial value
of a variable x can only be determined by its immediate actions. Hence, if one of the
guards �i of the immediate actions holds, the corresponding immediate assignment
defines the value of x. If none of the guards �i should hold, the initial value of x is
determined by its default value (which is determined by the semantics, e.g., false
for Boolean variables and 0 for numeric ones).

The transition relation determines which states can be connected by a transition,
i.e., which values the variables may have at the next point of time given values
at the current point of time. To this end, the transition relation sets up constraints
for the values at the current and the next point of time: First, also the immediate
assignments have to be respected for the current point of time, i.e., whenever a guard
�i of the immediate actions holds, the corresponding immediate assignment defines
the current value of x. If one of the guards �i of the delayed assignments hold at
the current point of time, the next value of x is determined by the corresponding
delayed assignment. Finally, if the next value of x is not determined by an action,
i.e., none of the guards �i of the immediate assignments hold at the next point of
time and neither holds one of the guards �i at the current point of time, then the next
value of x is determined by the reaction to absence.
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Initx :≡

⎛
⎜⎜⎜⎜⎜⎜⎝

p∧
j=1

(g j → x= t j)∧

(
p∧

j=1

¬g j
)

→ x= Default(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

Transx :≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p∧
j=1

(g j → x= t j)∧

q∧
j=1

(c j → next(x) = p j)∧

next(
p∧

j=1

¬g j)∧
(

q∧
j=1

¬c j

)
→ next(x) = Abs(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Abs(x) :=
{
Default(x) : if x is an event variable
x : if x is a memorized variable

Fig. 2.11 Transition relation for x

The definitions given in Fig. 2.11 can be literally used to define input files for
symbolic model checkers. Causality problems do not bother in this translation, and
also write conflicts will show up as deadend states in the transition diagram and can
be checked this way by symbolic model checking.

2.5.2 Circuit Synthesis

The transition relation shown in Fig. 2.11 of the previous section can be modified so
that both the initial condition and the transition relation become equation systems
provided that there are no write conflicts between the actions of any variable x. To
explain the construction of the equations, we consider again any variable x with the
following guarded actions:

.�1;x D �1/; : : : ; .�p;x D �p/

.�1;next(x) D �1/; : : : ; .�q;next(x) D �q/

The equations for x are shown in Fig. 2.12 where an additional carrier variable
x0 is used. This carrier variable x0 has initially the default value of x, and its value at
any next point of time is determined by the delayed assignments of x. If none of the
delayed assignments is enabled, the reaction to absence is applied, i.e., next.x0/ D

Abs.x/ will hold.
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For the variable x itself, we introduce only an immediate equation where the
current value of x is defined by the immediate assignments to it, and if none of them
is enabled, we use the current value of the carrier variable to define x.

One can prove that x has this way the correct value for any point of time by
induction over time: At the initial point of time, one of the immediate assignments
will determine the initial value of x if one is enabled, which is equivalent to the
initial condition of Fig. 2.11. If none of the �i holds, we have x WD x0 WD Default.x/

which is also the case for the initial condition of Fig. 2.11.
To determine the value of x at any later point of time, note first that again the

immediate assignments can determine its value. If none of them is enabled, we have
again x WD x0. If we consider this equation from the previous point of time, it
means next.x/ D next.x0/ so that we can see that x may be determined by delayed
assignments that were enabled in the previous point of time. Finally, if none of these
were enabled either, then the reaction to absence takes place which had already
determined the value of x0 so that x WD x0 will define the value of x correctly also
in this case.

Note that the equation system as given in Fig. 2.12 has only immediate equations
for the output and local variables, while carrier variables are used to capture the
delayed assignments. Since the carrier variables are not observable outside the
module, they define the internal state together with the local variables of the program
and the control flow labels of the pause statements. Note that these equation systems
have exactly the form we assumed in the causality analysis described in Sect. 2.4.

Finally, we note that the actual synthesis of the equations is much more difficult
due to the reincarnation of local variables. Since the reincarnations do only occur in
the surface statements, and since surface statements can be executed in zero time,
the behavior of the reincarnated variables can be described by simple immediate
equations without carrier variables. However, the reaction to absence is more
complicated for the local variable that remains in the depth of a local declaration
statement: Here we have to determine which of the different surfaces has been the
latest one executed that carries then its value to the depth. Furthermore, the delayed
assignments to local variables in those reincarnated surfaces that are followed by
further reincarnations have to be disabled. The overall procedure is quite difficult
and is described in full detail in [43, 46].

init(x′) = Default(x)

next(x′) =

⎛
⎜⎜⎜⎜⎜⎝

case
c1 : p1;

...
cq : pq;

else Abs(x)

⎞
⎟⎟⎟⎟⎟⎠ x=

⎛
⎜⎜⎜⎜⎜⎝

case
g1 : t1;

...
gp : tp;

else x′

⎞
⎟⎟⎟⎟⎟⎠

Fig. 2.12 Equation system for x
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2.5.3 SystemC Simulation

The simulation semantics of SystemC is based on the discrete-event model of
computation [14], where reactions of the system are triggered by events. All threads
that are sensitive to a specified set of events are activated and produce new events
during their execution. Updates of variables are not immediately visible, but become
visible in the next delta cycle.

We start the translation by the definition of a global clock that ticks in each
instant and drives all the computation. Thus, we require that the processed model
is endochronous [22, 23], i.e., there is a signal which is present in all instants of
the behavior and from which all other signals can be determined. In SystemC, this
clock is implemented by a single sc_clock at the uppermost level, and all other
components are connected to this clock. Hence, the translations of the macro steps
of the synchronous program in SystemC are triggered by this clock, while the micro
steps are triggered by signal changes in the delta cycles. For this reason, input and
output variables of the synchronous program are mapped to input signals (sc_in)
and output signals (sc_out) of SystemC of the corresponding type.

Additionally, we declare signals for all other clocks of the system. They are
inputs since the clock constraints (as given by assume) do not give an operational
description of the clocks, but can be only checked in the system. The clock calculus
for Signal [1, 22, 23] or scheduler creation for CAOS [12] aim at creating exactly
these schedulers which give an operational description of the clocks. Although not
covered in the following, their result can be linked to the system description so that
clocks are driven by the system itself.

The translation of the synchronous guarded actions to SystemC processes is
however not as simple as one might expect. The basic idea is to map guarded actions
to methods which are sensitive to the read variables so that the guarded action is re-
evaluated each time one of the variables it depends on changes. For a constructive
model, it is guaranteed that the simulation does not hang up in delta cycles.

The translation to SystemC must tackle the following two problems: (1) As
SystemC does not allow a signal to have multiple drivers, all immediate and
delayed actions must be grouped by their target variables, or equivalently, we can
produce the equations as shown in the previous section. (2) The SystemC simulation
semantics can lead to spurious updates of variables (in the AIF context), since
threads are always triggered if some variables in the sensitivity list have been
updated – even if they are changed once more in later delta cycles. As actions might
be spuriously activated, it must be ensured that at least one action is activated in each
instant, which sets the final value. Both problems are handled in a similar way as the
translation to the transition system presented in the previous section: we create an
additional variable _carrier_x for each variable x to record values from their de-
layed assignments and group all actions in the same way as for the transition system.

With these considerations, the translation of the immediate guarded actions h� )

x D �i i is straightforward: We translate each group of actions into an asynchronous
thread in SystemC, which is sensitive to all signals read by these actions (variables
appearing in the guards �i or in the right-hand sides �i ). Thereby, all actions are
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Fig. 2.13 SystemC: Translation of immediate and delayed actions

implemented by an if-block except for the last one, which handles the case that
no action fires. Since the immediate actions should become immediately visible,
the new value can be immediately written to the variable with the help of a call
to x.write(: : :). Analogously, the evaluations of the guard �i and the right-hand
side of the assignment �i make use of the read methods of the other signals. The
left-hand side of Fig. 2.13 shows the general structure of such a thread.

Delayed actions h� ) next.x/ D �j i are handled differently: While the right-
hand side is immediately evaluated, the assignment should only be visible in the
following macro step and not yet in the current one. Hence, they do not take part in
the fixpoint iteration. Therefore, we write their result to _carrier_x in a clocked
thread, which is triggered by the master trigger Thereby, signals changed by the
delayed actions do not affect the current fixpoint iteration and vice versa.

Figure 2.14 gives the SystemC code for the part that simulates the variables x.
Similar to the Symbolic Model Verifier (SMV) translation, we abbreviate guards
for reuse in different SystemC processes. Then, the translation of the immediate
actions writing x is straightforward; they correspond to the first two cases in method
OuterQuartz::compute_x(). The last case is responsible for setting x to its
previous value if neither of the two immediate actions fires. As already stated
above, we need to do this explicitly. To this end, the previous value of variable
x is always stored in a separate carrier variable. For variables, which are only set by
delayed actions, we can simplify the general scheme of Fig. 2.13. In this case, we
can combine the two threads as Fig. 2.14 illustrates: we only need a single variable,
which is set by this thread.

2.5.4 Automaton-Based Sequential Software Synthesis

In order to generate fast sequential code from synchronous programs, the Extended
Finite-State Machine (EFSM) representation of the program is an ideal starting
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Fig. 2.14 SystemC code

point. EFSMs explicitly represent the state transition system of the control flow:
each state s represents a subset Labels.s/ � L of the control flow labels, and
edges between states are labeled with conditions that must be fulfilled to reach the
target state from the source state. EFSMs are therefore a representation where the
control flow of a program state is explicitly represented, while the data flow is still
represented symbolically (while synchronous guarded actions represent control flow
and data flow symbolically).

The guards of the guarded actions of the control flow are therefore translated
to transition conditions of the EFSM’s state transitions. The guarded actions of the
data flow are first copied to each state of the EFSM and are then partially evaluated
according to the values of the control flow labels in that EFSM state. Hence, in each
macro step, the generated code will only consider a subset D.s/ of the guarded
actions, which generally speeds up the execution (since many of them are only active
in a small number of states).

Definition 1 (Extended Finite State Machine). An Extended Finite-State Ma-
chine (EFSM) is a tuple .S; s0; T; D/, where S is a set of states, s0 2 S is the
initial state, and T � .S � C � S/ is a finite transition relation where C is the set of
transition conditions. D is a mapping S ! D , which assigns each state s 2 S a set
of data flow guarded actions D.s/ � D which are executed in state s.

To see an example of an EFSM, consider first the Quartz program shown
in Fig. 2.15. It computes the integer approximation of the euclidean length of
a N-dimensional vector v and does only make use of addition, subtraction, and
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comparison. The correctness is not difficult to see by the given invariants in the
comments:

next(x[i]) � next(y[i]) + next(p[i])
= x[i] � (y[i] � 1) + (p[i] + x[i])
= x[i] � y[i] + p[i]

next(y[0])
= y[0] + x[0] + x[0] + 3
= (x[0]+1) ^2 + 2�x[0] + 3
= x[0]^2 + 2�x[0] + 1 + 2�x[0] + 3
= x[0]^2 + 4�x[0] + 4
= (x[0]+2) ^2
= (next(x[0]) +1)^2

The corresponding EFSM of the program shown in Fig. 2.15 is shown in Fig. 2.16
with seven states. Each state is given an index and lists the guarded actions that can

Fig. 2.15 The VectorLength Quartz program
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be enabled in that control flow state. State 0 contains thereby the surface of the
program where the initialization of variables x,y,p of the for-loop and possibly
the assignments in its while-loop are executed. In state 5, both while-loops for
computing the squares of v[0] and v[1] are active, while in state 3 and state 4, only
the one for computing the squares of v[1] and v[0] continues with the execution.
Note that these states may also execute the summation next(p[0])= p[0]+p[1]
in case the loop terminates. State 1 corresponds with label w1 and executes the
code between w1 and w2, and finally state 2 executes the code from w2 back to w2
or leaving the loop. State 6 is a final sink state that is always added for technical
reasons.

A naive way to generate the EFSM states is to take all possible 2n states and
compute the transitions from each one. However, as many states are generally not
reachable, that algorithm would always need exponential time, even for programs
that lead to compact EFSMs. Therefore, a better way to compute the EFSM is an
abstract simulation of the program according to the operational semantics of the
Quartz language.

As the control flow is explicitly enumerated, EFSMs may suffer from state-space
explosion since n control flow locations may result in 2n EFSM states. It is not only
the amount of (control flow) states that poses problems, but the guarded actions for
the data flow must be also replicated. However, for many practical examples, the
EFSM size is still manageable, and due to the performed pre-computation, it can
be optimized in many ways and can produce the fastest target code at the end. It
is straightforward to generate a sequential program from an EFSM: For example,
we can first define for every state a sequential code starting with a unique label and
ending with a goto statement to the next code fragment of the corresponding target
state.

It is important to see the difference between an EFSM and control flow
graphs used in classic compiler design. While “states” of classic control/data flow
graphs consist of assignments that are sequentially executed, states of the EFSM
contain still guarded actions that are concurrently executed within one macro step.
Moreover, transitions in the EFSM terminate a macro step of the synchronous
model, so that new values of the input variables are read on the transition. Due to
these differences, many transformations made in classic code optimization cannot
directly be applied on EFSMs for code generation of synchronous programs.

2.6 Conclusions and Future Extensions

The synchronous model of computation can perfectly model reactive systems since
its programming paradigm directly reflects the execution steps of these systems:
Within a reaction step, inputs are read, and outputs are immediately computed
as the reaction to these inputs. We derived the language Quartz from the classic
Esterel language and modified its syntax and semantics to allow a more convenient
description of hardware circuits. We also developed a formally verified compilation
to synchronous guarded actions that are used as internal representation in our design
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framework Averest. Using the guarded actions, various analyses are performed, in
particular, the causality analysis, so that robust and deterministic system models
are guaranteed. For causally correct systems, we can then generate both hardware
circuits and programs, where the latter can now also be done with multiple threads.
Future extensions of the language cover clocked signals that can be absent at some
points of time which removes the need to synchronize generated software threads
between the macro steps by completely desynchronizing the threads. Moreover, the
current version of Quartz already supports hybrid systems so that one can also
model a discrete system in its physical environment, e.g., for simulation or formally
proving important safety properties.

References

1. Benveniste A, Bournai P, Gautier T, Le Guernic P (1985) SIGNAL: a data flow oriented
language for signal processing. Research report 378, Institut National de Recherche en
Informatique et en Automatique (INRIA), Rennes

2. Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R (2003) The
synchronous languages twelve years later. Proc IEEE 91(1):64–83

3. Berry G (1992) A hardware implementation of pure Esterel. Sadhana 17(1):95–130
4. Berry G (1999) The constructive semantics of pure Esterel. http://www-sop.inria.fr/members/

Gerard.Berry/Papers/EsterelConstructiveBook.pdf
5. Berry G (2000) The Esterel v5 language primer. ftp://ftp.inrialpes.fr/pub/synalp/reports/

esterel-primer.pdf.gz
6. Berry G, Gonthier G (1992) The Esterel synchronous programming language: design, seman-

tics, implementation. Sci Comput Program 19(2):87–152
7. Boussinot F (1998) SugarCubes implementation of causality. Research report 3487, Institut

National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis
8. Brandt J (2013) Synchronous models for embedded software. Master’s thesis, Department of

Computer Science, University of Kaiserslautern. Habilitation
9. Brandt J, Gemünde M, Schneider K, Shukla S, Talpin JP (2012) Representation of syn-

chronous, asynchronous, and polychronous components by clocked guarded actions. Des
Autom Embed Syst (DAEM). doi:10.1007/s10617-012-9087-9

10. Brandt J, Gemünde M, Schneider K, Shukla S, Talpin JP (2013) Embedding polychrony into
synchrony. IEEE Trans Softw Eng (TSE) 39(7):917–929

11. Brandt J, Schneider K (2011) Separate translation of synchronous programs to guarded
actions. Internal report 382/11, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern

12. Brandt J, Schneider K, Shukla S (2010) Translating concurrent action oriented specifications
to synchronous guarded actions. In: Lee J, Childers B (eds) Languages, compilers, and tools
for embedded systems (LCTES). ACM, Stockholm, pp 47–56

13. Brzozowski J, Seger CJ (1995) Asynchronous circuits. Springer, New York/Berlin
14. Cassandras C, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer,

New York
15. Chandy K, Misra J (1989) Parallel program design. Addison-Wesley, Austin
16. Closse E, Poize M, Pulou J, Sifakis J, Venter P, Weil D, Yovine S (2001) TAXYS: a tool for the

development and verification of real-time embedded systems. In: Berry G, Comon H, Finkel A
(eds) Computer aided verification (CAV). LNCS, vol 2102. Springer, Paris, pp 391–395

17. Closse E, Poize M, Pulou J, Venier P, Weil D (2002) SAXO-RT: interpreting Esterel semantics
on a sequential execution structure. Electron Notes Theor Comput Sci (ENTCS) 65(5):80–94.
Workshop on synchronous languages, applications, and programming (SLAP)

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
ftp://ftp.inrialpes.fr/pub/synalp/reports/esterel-primer.pdf.gz
ftp://ftp.inrialpes.fr/pub/synalp/reports/esterel-primer.pdf.gz
http://dx.doi.org/10.1007/s10617-012-9087-9


2 Quartz: A Synchronous Language for Model-Based Design . . . 57

18. Dill D (1996) The Murphi verification system. In: Alur R, Henzinger T (eds) Computer aided
verification (CAV). LNCS, vol 1102. Springer, New Brunswick, pp 390–393

19. Edwards S (2002) An Esterel compiler for large control-dominated systems. IEEE Trans
Comput Aided Des Integr Circuits Syst (T-CAD) 21(2):169–183

20. Edwards S (2003) Making cyclic circuits acyclic. In: Design automation conference (DAC).
ACM, Anaheim, pp 159–162

21. Edwards S, Kapadia V, Halas M (2004) Compiling Esterel into static discrete-event code. In:
Synchronous languages, applications, and programming (SLAP), Barcelona

22. Gamatie A (2010) Designing embedded systems with the SIGNAL programming language.
Springer, New York

23. Gamatié A, Gautier T, Le Guernic P, Talpin J (2007) Polychronous design of embedded real-
time applications. ACM Trans Softw Eng Methodol (TOSEM) 16(2), Article 9. http://dl.acm.
org/citation.cfm?id=1217298

24. Halbwachs N, Maraninchi F (1995) On the symbolic analysis of combinational loops in circuits
and synchronous programs. In: Euromicro conference. IEEE Computer Society, Como

25. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw
Eng Methodol (TOSEM) 5(4):293–333

26. Howard W (1980) The formulas-as-types notion of construction. In: Seldin J, Hindley J
(eds) To H.B. Curry: essays on combinatory logic, lambda-calculus and formalism. Academic,
London/New York, pp 479–490

27. Järvinen H, Kurki-Suonio R (1990) The DisCo language and temporal logic of actions.
Technical report 11, Tampere University of Technology, Software Systems Laboratory

28. Ju L, Huynh B, Chakraborty S, Roychoudhury A (2009) Context-sensitive timing analysis
of Esterel programs. In: Design automation conference (DAC). ACM, San Francisco,
pp 870–873

29. Ju L, Khoa Huynh, B., Roychoudhury A, Chakraborty S (2010) Timing analysis of Esterel
programs on general purpose multiprocessors. In: Sapatnekar S (ed) Design automation
conference (DAC). ACM, Anaheim, pp 48–51

30. Lamport L (1991) The temporal logic of actions. Technical report 79, Digital Equipment
Cooperation

31. Li YT, Malik S (1999) Performance analysis of real-time embedded software. Kluwer,
Boston/Dordrecht

32. Logothetis G, Schneider K (2003) Exact high level WCET analysis of synchronous programs
by symbolic state space exploration. In: Design, automation and test in Europe (DATE). IEEE
Computer Society, Munich, pp 10196–10203

33. Malik S (1993) Analysis of cyclic combinational circuits. In: International conference on
computer-aided design (ICCAD). IEEE Computer Society, Santa Clara, pp 618–625.

34. Malik S (1994) Analysis of cycle combinational circuits. IEEE Trans Comput Aided Des Integr
Circuits Syst (T-CAD) 13(7):950–956

35. Poigné A, Holenderski L (1995) Boolean automata for implementing pure Esterel. Arbeitspa-
piere 964, GMD, Sankt Augustin

36. Potop-Butucaru D, de Simone R (2003) Optimizations for faster execution of Esterel programs.
In: Formal methods and models for codesign (MEMOCODE). IEEE Computer Society, Mont
Saint-Michel, pp 227–236

37. Potop-Butucaru D, Edwards S, Berry G (2007) Compiling Esterel. Springer, Boston
38. Rocheteau F, Halbwachs N (1992) Implementing reactive programs on circuits: a hardware

implementation of LUSTRE. In: de Bakker J, Huizing C, de Roever WP, Rozenberg G (eds)
Real-time: theory in practice. LNCS, vol 600. Springer, Mook, pp 195–208

39. Rocheteau F, Halbwachs N (1992) Pollux: a Lustre-based hardware design environment. In:
Quinton P, Robert Y (eds) Algorithms and parallel VLSI architectures II. Elsevier, Gers,
pp 335–346

40. Schneider K (2000) A verified hardware synthesis for Esterel. In: Rammig F
(ed) Distributed and parallel embedded systems (DIPES). Kluwer, Schloß Ehringerfeld,
pp 205–214

http://dl.acm.org/citation.cfm?id=1217298
http://dl.acm.org/citation.cfm?id=1217298


58 K. Schneider and J. Brandt

41. Schneider K (2001) Embedding imperative synchronous languages in interactive theorem
provers. In: Application of concurrency to system design (ACSD). IEEE Computer Society,
Newcastle Upon Tyne, pp 143–154

42. Schneider K (2002) Proving the equivalence of microstep and macrostep semantics. In:
Carreño V, Muñoz C, Tahar S (eds) Theorem proving in higher order logics (TPHOL). LNCS,
vol 2410. Springer, Hampton, pp 314–331

43. Schneider K (2009) The synchronous programming language Quartz. Internal report 375,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern

44. Schneider K, Brandt J (2008) Performing causality analysis by bounded model checking.
In: Application of concurrency to system design (ACSD). IEEE Computer Society, Xi’an,
pp 78–87

45. Schneider K, Brandt J, Schüle T (2004) Causality analysis of synchronous programs with
delayed actions. In: Compilers, architecture, and synthesis for embedded systems (CASES).
ACM, Washington, pp 179–189

46. Schneider K, Brandt J, Schüle T (2004) A verified compiler for synchronous programs
with local declarations (proceedings version). In: Synchronous languages, applications, and
programming (SLAP), Barcelona

47. Schneider K, Brandt J, Schüle T (2006) A verified compiler for synchronous programs with
local declarations. Electron Notes Theor Comput Sci (ENTCS) 153(4):71–97

48. Schneider K, Brandt J, Schüle T, Türk T (2005) maximal causality analysis. In: Desel J,
Watanabe Y (eds) Application of concurrency to system design (ACSD). IEEE Computer
Society, Saint-Malo, pp 106–115

49. Schneider K, Wenz M (2001) A new method for compiling schizophrenic synchronous
programs. In: Compilers, architecture, and synthesis for embedded systems (CASES). ACM,
Atlanta, pp 49–58

50. Schüle T, Schneider K (2004) Abstraction of assembler programs for symbolic worst case
execution time analysis. In: Malik S, Fix L, Kahng A (eds) Design automation conference
(DAC). ACM, San Diego, pp 107–112

51. Shiple T (1996) Formal analysis of synchronous circuits. PhD thesis, University of California,
Berkeley

52. Shiple T, Berry G, Touati H (1996) Constructive analysis of cyclic circuits. In: European design
automation conference (EDAC). IEEE Computer Society, Paris, pp 328–333

53. Shiple T, Singhal V, Brayton R, Sangiovanni-Vincentelli A (1996) Analysis of combinational
cycles in sequential circuits. In: International symposium on circuits and systems (ISCAS),
Atlanta, pp 592–595

54. Tardieu O, de Simone R (2004) Curing schizophrenia by program rewriting in Esterel. In:
Formal methods and models for codesign (MEMOCODE). IEEE Computer Society, San
Diego, pp 39–48


	2 Quartz: A Synchronous Language for Model-Based Design of Reactive Embedded Systems
	Contents
	2.1 Introduction
	2.2 The Synchronous Language Quartz
	2.3 Compilation
	2.3.1 Intermediate Representation by Guarded Actions
	2.3.2 Surface and Depth
	2.3.3 Compilation of the Control Flow
	2.3.4 Compilation of the Data Flow
	2.3.5 Local Variables and Schizophrenia

	2.4 Semantic Analysis
	2.5 Synthesis
	2.5.1 Symbolic Model Checking
	2.5.2 Circuit Synthesis
	2.5.3 SystemC Simulation
	2.5.4 Automaton-Based Sequential Software Synthesis

	2.6 Conclusions and Future Extensions
	References


