
29HOPES: Programming Platform Approach
for Embedded Systems Design

Soonhoi Ha and Hanwoong Jung

Abstract

Hope Of Parallel Embedded Software (HOPES) is a design environment for em-
bedded systems supporting all design steps from behavior specification to code
synthesis, including static performance estimation, design space exploration,
and HW/SW cosimulation. Distinguished from other design environments, it
introduces a novel concept of “programming platform” called Common Inter-
mediate Code (CIC), which can be understood as a generic execution model of
heterogeneous multi-processor architecture. In the CIC model, each application
is specified by a multi-mode Synchronous Data Flow (SDF) graph, called
MTM-SDF. Each mode of operation is specified by an SDF graph and mode
transition is expressed by an Finite-State Machine (FSM) model. It enables
a designer to estimate the performance and resource demand by constructing
static schedules of the application with varying number of allocated processing
elements at each mode. At the top level, a process network model is used to
express concurrent execution of multiple applications. A special process, called
control task, is introduced to specify the system-level dynamism through an FSM
model inside. With a given CIC model and a set of candidate target architectures,
HOPES performs design space exploration to choose the best HW/SW platform,
assuming that a hybrid mapping policy is used to map the applications to the
processing elements. HOPES synthesizes the target code automatically from the
CIC model with the mapping information. The overall design flow is verified by
the design of two real-life examples.

S. Ha (�)
Department of Computer Science and Engineering, Seoul National University, Gwanak-gu,
Seoul, Korea
e-mail: sha@snu.ac.kr

H. Jung
Seoul National University, Gwanak-gu, Seoul, Korea
e-mail: jhw7884@gmail.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_1

951

mailto:sha@snu.ac.kr
mailto:jhw7884@gmail.com

952 S. Ha and H. Jung

Acronyms

API Application Programming Interface
BDF Boolean Data Flow
CIC Common Intermediate Code
FSM Finite-State Machine
GA Genetic Algorithm
GUI Graphical User Interface
KPN Kahn Process Network
MTM Mode Transition Machine
NoC Network-on-Chip
OS Operating System
PIM Platform Independent Model
PSDF Parameterized Synchronous Data Flow
QoS Quality of Service
SADF Scenario-Aware Data Flow
SDF Synchronous Data Flow
SMP Symmetric Multi-Processing
SysteMoC SystemC Models of Computation
WCRT Worst-Case Response Time

Contents

29.1 Introduction . 952
29.2 Common Intermediate Code (CIC) Model . 957

29.2.1 Extended SDF Model for Application Specification . 959
29.2.2 Dynamic Behavior Specification at the Top-Level Specification of

the CIC Model . 964
29.3 Design Space Exploration in HOPES. 966

29.3.1 Static Scheduling Technique of an MTM-SDF Graph 968
29.3.2 Dynamic Mapping . 972

29.4 CIC Translator: Automatic Code Synthesis from the CIC Model 973
29.5 Experimental Results . 975
29.6 Current Status and Conclusion . 978
References . 979

29.1 Introduction

HOPES is under development as a generic design environment to support a wide
range of embedded system architectures from system on a chip (SoC) to networked
embedded systems. Starting from a target-independent behavior specification and a
given set of candidate hardware architectures and available processing elements,
we can explore the design space to find an optimal system configuration and
mapping of applications, and synthesize the software and hardware components in
a unified framework. The abstract target architecture assumed in HOPES consists of
heterogeneous processing elements that are connected through a network. HOPES

29 HOPES: Programming Platform Approach for Embedded Systems Design 953

was originally introduced as a parallel programming environment for nontriv-
ial heterogeneous multiprocessors with various design constraints on hardware
cost, power, and real-time performance [15]. However, HW/SW codesign can
be naturally supported by HOPES, since a hardware IP can be regarded as a
processing element.

As the system complexity incessantly grows with more processing elements
integrated, design reuse of hardware platforms and IPs becomes the de facto
practice to mitigate the difficulty of hardware validation. Then the HW/SW code-
sign methodology is transformed to an embedded SW development methodology
for a given hardware platform. Since the proportion of software components
keeps increasing, HOPES puts more emphasis on the implementation of software
components unlike our previous HW/SW codesign environment, PeaCE (Ptolemy
extension as a Codesign Environment) [7]. While PeaCE focuses on the codesign
of hardware and software modules that includes HW/SW partitioning, HW/SW
cosynthesis, and HW/SW cosimulation, it takes little account of multi-processor
architecture that heavily affects the parallel execution of software.

A systematic design methodology can be understood as a sequence of steps that
refine a higher level of abstraction to a lower level from initial specification to
final implementation, which is summarized as the following phrase: “design is to
represent”. Since refinement keeps the properties of the higher abstraction, how
to specify the behavior is a key factor to distinguish various HW/SW codesign
methods. Actor models that specify an application as a set of concurrent actors
are widely adopted in the HW/SW codesign methodology since they express the
potential parallelism of an application explicitly and parallelizing an application
can be simply realized by mapping actors to the processing elements. Actors are
connected to each other through channels that represent the flow of data samples be-
tween actors. Among many actor models, Synchronous Data Flow (SDF) is chosen
as the baseline actor model of HOPES since it is a formal model that enables us to
evaluate each design decision through static analysis. General introduction to data-
flow models can be found in �Chap. 3, “SysteMoC: A Data-Flow Programming
Language for Codesign”.

In the SDF model [17], an application is specified with a data-flow graph where
a node represents a function module, or a task, and an arc is a FIFO queue that
delivers data samples from an output port of the source node to an input port of the
destination node. An input (or an output) port is associated with an integer number
that indicates how many samples to consume (or to produce) per task execution; the
number is called the sample rate of the port. Figure 29.1a shows a simple SDF graph
representation of an application. A node becomes runnable only when all input arcs
have no fewer samples queued than the specified sample rate. And the sample rates
are fixed at run time in the SDF model. Then we can determine the mapping and
scheduling of the SDF graph, which is to determine where and in what order to
execute the tasks on a given target architecture, at compile time. For each arc, we can
determine the relative execution rates between the source task and the destination
task, comparing the output sample rate of the source port and the input sample rate
of the destination port. For instance, the execution rate of task C should be twice

http://dx.doi.org/10.1007/978-94-017-7267-9_4

954 S. Ha and H. Jung

A B

C

1 1

2
1

2

1
D

1

1
A C

B

PE1

PE2

time

C

D D

AB AC BD CD

Buffer size 1 2 2 2

Latency: 7

A B

C

1 1

2
1

1

1
D

1

1

a b

c d

Fig. 29.1 (a) An example SDF graph with annotated sample rates on the arcs, (b) a mapping and
scheduling result of the SDF graph onto two processing elements, (c) an example SDF graph that
has a buffer overflow error, and (d) the buffer requirement of each arc and the estimated latency
for the static scheduling result of (b)

higher than that of task A in Fig. 29.1a, in order to make the number of samples
produced from the source task the same as the number of samples consumed by
the destination task. An iteration of an SDF graph is defined by the set of task
executions that satisfy the relative execution rates of tasks with minimum number
of executions.

An SDF graph is said to be consistent if the relative execution rates of tasks are
satisfied for all arcs. In case there is any possibility of buffer overflow on any FIFO
arc or deadlock, we cannot find a valid schedule of an SDF graph. Figure 29.1b
shows an example of a static scheduling result on a target architecture with two
processing elements. For a consistent SDF graph, we can repeat the schedule
iteratively without buffer overflow. Figure 29.1c shows an SDF graph example
that has a buffer overflow error on arc AC by giving a wrong sample rate at the
output port of node B. Such static analyzability is a very desirable feature for
embedded system design since it enables us to detect a class of design errors by
static analysis [17]. Moreover, once the mapping and scheduling decision is made,
we can determine the buffer requirements for all arcs and estimate the real-time
performance of the application. We can easily check whether the design constraints
on the hardware requirement and real-time performance can be satisfied or not. For
instance, the buffer requirement and the estimated latency associated with the static
scheduling result of Fig. 29.1b is summarized in Fig. 29.1d.

While the SDF model has the aforementioned benefits from its static analyzabil-
ity, it has severe limitations to be used as a general model for behavior specification.
First, it is not possible to specify the dynamic behavior of an application since the
sample rate of a port may not change dynamically. Second, it does not allow the use
of shared memory for inter-node communication since the access order to the shared
memory may change depending on the execution order of nodes. So the synthesized
code may require much larger memory than a manually written code that usually
uses shared variables for communication between function modules. To overcome
those limitations, we have proposed several extensions to the SDF model in HOPES.

29 HOPES: Programming Platform Approach for Embedded Systems Design 955

We use the Finite-State Machine (FSM) model in combination with the SDF model
to express the dynamic behavior of an application [10]. Furthermore, a special actor,
called library actor [20], is introduced to handle shared resources efficiently without
side effects.

Following the heritage of heterogeneous modeling of Ptolemy [3] and PeaCE [7],
HOPES uses a process network model at the top level to express concurrent
execution of multiple applications. An application is modeled as a single process
at the top level while the internal behavior of an application is specified by the
extended SDF model. The system-level dynamic behavior is specified by a control
task whose behavior is specified by the FSM model in the top-level task graph.
The overall specification model of HOPES is called the Common Intermediate
Code (CIC) model, which will be explained in the next section in detail.

There is a clear distinction between HOPES and the other model-based design
environments. As the name implies, the CIC model is not defined as a front-end
specification model, but an intermediate specification model, meaning that HOPES
design environment can accommodate various front-end specification models as
long as the front-end specification model can be translated into the CIC model.
In fact, the CIC model can be understood as an execution model of tasks at the
Operating System (OS) level. At the OS level, the system behavior is represented as
a set of tasks no matter what the front-end specification model is. Communication
and synchronization between tasks and scheduling of tasks are heavily dependent
upon the underlying software platform and hardware platform. In HOPES, we
propose to define the execution model of tasks at the OS level and enforce the system
to keep the semantics of the execution model. Then, the CIC model will be able to
run on any hardware and software platform since the execution model is defined
as platform-independent. So, we introduce a new notion of programming platform
that hides the underlying software and hardware platform from the application
programmer. As a program based on the von Neumann execution model can be run
on any von Neumann processor, any program based on the CIC execution model can
be run on any target architecture that keeps the CIC execution model, we envision.
Since the CIC model is based on formal models of computation, we can enjoy the
benefits of static analyzability of those models to reduce the design time and cost.

Even though the same SDF model is used for behavior specification in HOPES
and PeaCE, the granularity of a node is quite different. In HOPES, an SDF node is a
unit of mapping and scheduling at the OS level. It implies that the node granularity
should be as large as a thread to make the thread switching overhead insignificant.
On the other hand, PeaCE assumes mixed granularity of SDF nodes in the initial
specification of an application and clusters them to define a thread or a task at
the code synthesis step. In our previous work [15], an SDF graph specification of
PeaCE has been translated to the CIC model by clustering the nodes to increase
the granularity while keeping the potential parallelism as much as possible. It is
possible to specify the system behavior with the CIC model manually, regarding the
CIC model as the front-end specification. In this case, it is the responsibility of the
programmer to define the granularity of the node to trade-off the parallelism and the
scheduling overhead.

956 S. Ha and H. Jung

In the conventional model-driven software development approaches, the system
behavior is specified by a Platform Independent Model (PIM) that is translated
into a platform-specific model (PSM) manually for a given hardware platform.
Then the target code is generated from the translated PSM. Even though the CIC
model is a platform-independent model, there is no need to translate it to a PSM
since the CIC model can be executed in any hardware platform that supports the
proposed execution model. The HOPES framework is distinguished from other
model-based design frameworks that use a specific model of computation for
behavior specification, which include Daedalus [19], DAL [21], CompSOC [6],
and Koski [12]. On the other hand, as mentioned above, HOPES does not assume
any specific model for behavior specification as long as it can be translated into
the CIC model. Even though the CIC model is based on three different models
of computation, its model composition rule is different from that of Ptolemy [3]
which allows hierarchical composition of models without limitation on the depth of
hierarchy and on the kinds of models.

Figure 29.2 shows the overall design flow in HOPES. The input information
consists of the front-end specification of system behavior and the set of candidate
platforms and hardware components. As explained above, the CIC model is gener-
ated manually or by an automatic translator from a different front-end specification
of system behavior. We perform static analysis at the CIC level to detect the buffer
overflow and deadlock errors for SDF specifications and to analyze the timing
requirements that will be expressed in the proposed FSM model. The next step
is to explore the architectural design space by selecting the hardware platform
and processing elements and mapping the applications to the target architecture.
Note that the profiling information of tasks for all kinds of candidate processing
elements is assumed to be given. The DSE step produces a handful of selected target
architectures and associated mapping results of applications. Note that if a target

CIC model
(Behavior specifica�on)

Sta�c analysis

Design space explora�on

(HW pla�orm selec�on &
mapping/scheduling of

applica�on tasks

A set of
applica�ons

A set of
candidate

architectures

Constraints
(performance,
resource, etc)

CIC translator

Mul�-core host:
Func�onal
Simula�on

HSIM: HW/SW
cosimula�on

IBM Cell

CPU/GPU

Task profiling
informa�on

Fig. 29.2 Design flow of HOPES

29 HOPES: Programming Platform Approach for Embedded Systems Design 957

architecture is given as an input, it just determines the mapping of applications to
the target architecture.

For each candidate solution, the CIC translator generates a target C code for each
processor. We need to develop a separate CIC translator for each target architecture
as we need a different compiler for a different von Neumann processor. A multi-core
host processor is a base target platform for functional simulation. The CIC translator
generates a multi-threaded C code for functional simulation. Another target platform
that HOPES supports is the parallel simulator, called HSIM [26], that has been
developed to simulate the target architecture without real hardware platform. A
handful of selected architectures will be evaluated more accurately by HSIM
simulation. Other target platforms that HOPES supports will be explained later.

The rest of this chapter is organized as follows. The CIC model will be explained
in the next section, which will be followed by Sect. 29.3 that explains the mapping
and scheduling techniques of the CIC model. Section 29.4 explains the CIC
translator. Preliminary experimental results will be discussed in Sect. 29.5. The
current status of HOPES development is presented with concluding remarks in
Sect. 29.6.

29.2 Common Intermediate Code (CIC) Model

As explained above, the proposed CIC model adopts a hierarchical composition of
different models of computation to express the system behavior at two different
levels. At the top level, the CIC model expresses the system behavior with a
process network. If an application can be specified by the extended SDF graph,
the application is encapsulated as a super node that contains an extended SDF graph
at the bottom level. Note that the top-level process network and the extended SDF
model themselves can be specified in a hierarchical fashion.

The top-level process network consists of CIC tasks and channels as depicted in
Fig. 29.3. There are two types of CIC tasks depending on the triggering condition of
tasks: time-driven and data-driven. A time-driven task is triggered by a pre-defined
period that is given as a parameter. So it consumes the most recent sample from
the input buffer channel. The input channels of a time-driven task are single-entry
buffers that store the most recent data samples. An I/O task that interfaces with

Input task
(t)

Compute
task (d)

Output task
(t)

Task : �me-driven (t) or
data-driven (d)

Channel: FIFO queue (q) or buffer (b)

(q) (b)

Port: Fixed sample rate (f) or
unspecified (u) for varying sample rates

Fig. 29.3 CIC task graph

958 S. Ha and H. Jung

TASK_INIT{ /* task initialization code */ };

TASK_GO {
/* generic API for data read from an input port */
MQ_RECEIVE(port_name, data, size);
...
/* generic API for system service request */
SYS_REQ(command, argument_list);
...
/* generic API for data write to an output port */
MQ_SEND(port_name, data, size);

}

TASK_WRAPUP { /* task wrapup code */ };

Fig. 29.4 CIC task code template

the outside is usually designated as a time-driven task. On the other hand, a data-
driven task is triggered by the arrival of data samples on the input ports. The input
channels of data-driven tasks are assumed to be FIFO queues. A data-driven task
basically follows the semantics of the Kahn Process Network (KPN) model that
performs blocking read and non-blocking write access to the channels.

As shown in Fig. 29.4, the code template of a CIC task consists of three sections,
enclosed by three keywords, TASK_INIT, TASK_GO, and TASK_WRAPUP. As
the name implies, the TASK_INIT section is executed when the task is initialized
and the TASK_WRAPUP section is executed just before it is terminated. The
TASK_GO function is the main body that will repeat until the task is terminated.
A CIC task accesses a channel with target-independent generic APIs, MQ_SEND
and MQ_RECEIVE. The MQ_RECEIVE API performs blocking read operation to
the associated input port while the MQ_SEND API performs non-blocking write
operation to the associated output port. Since the CIC model is defined at the OS
level, the CIC task assumes that there is a supervisor that schedules the CIC tasks
and provides supervisory services to the CIC tasks. Thus, we define another generic
API, SYS_REQ, that requests a service to the supervisor. The first argument of
the SYS_REQ API defines the service command whose list will be shown later. In
principle, a CIC task does not use platform-specific APIs for portability. The generic
APIs will be translated into target-specific APIs at the code generation step. We may
define a CIC task that uses platform-specific APIs for efficient implementation at the
expense of portability.

The number of data samples consumed or produced per execution of a task can
be specified explicitly for each input or output port. The sample rate is specified, if
it is fixed and not changing at run time. Otherwise, the sample rate is assumed to
be varying at run time. If the input sample rates of all input ports are specified, the
data-driven task becomes an SDF task that follows the execution semantics of the
SDF model. If all tasks in a CIC subgraph are SDF tasks, the CIC subgraph becomes
an SDF subgraph. Since the SDF model has many merits from static analyzability,
it is highly recommended to identify SDF subgraphs as much as possible at the top
level until no more SDF subgraph can be identified. And each subgraph is replaced

29 HOPES: Programming Platform Approach for Embedded Systems Design 959

by a super node at the top level to make it a two-level hierarchical graph. To alleviate
the difficulty of identifying the SDF subgraph automatically, it is recommended to
specify an application with the extended SDF model manually inside a super node.

29.2.1 Extended SDF Model for Application Specification

In this subsection, we explain a couple of extensions that are made to overcome the
limitations of the SDF model while preserving the benefits of static analyzability.
The first extension is to use the FSM model to express the dynamic behavior of the
application. The second is to introduce a special actor, called library actor, to allow
tasks to share HW or SW resources.

29.2.1.1 Dynamic Behavior Specification
There exist several approaches that have been proposed to increase the expression
capability of the SDF model to support intra-application dynamism. One approach
is to extend the SDF model itself. Dynamic Data Flow (DDF) and Boolean Data
Flow (BDF) are two examples of this approach where they introduce special kinds
of nodes that may have varying sample rates [2]. Since BDF was proven to be
Turing equivalent and DDF is a super set of BDF, their expression capability
is maximal in theory. But they compromise some benefits of static analysis and
efficient implementation.

Another approach is to express the dynamism of an application as a set of
modes that the application takes and each mode is specified by an SDF graph.
This approach assumes that the number of possible dynamic behaviors, or modes,
is finite. Then the dynamic behavior can be expressed as dynamic mode change.
There are several ways to specify mode change. In Parameterized Synchronous Data
Flow (PSDF), the dynamic behavior of a task is modeled by parameters, and the
mode change is realized by changing the parameters at run time before starting an
iteration of a schedule [1]. An application is specified by a tuple of graphs, init
graph and body graph, where the body graph specifies the application behavior and
the init graph sets the parameter values to change the mode before a new iteration
starts.

The other way is to combine the SDF model with another computation model,
usually FSM to express the mode change. In the *-chart approach [5], each state
of a finite state machine contains an SDF graph inside to make a hierarchical
composition of SDF and FSM models. The state change in the FSM can be
understood as the mode change of the SDF model. In the SystemC Models of
Computation (SysteMoC) approach [9], a task is associated with an FSM that
determines the execution behavior of the task. FSM-based SADF, shortly FSM-
SADF, is a restricted form of Scenario-Aware Data Flow (SADF) that specifies
each mode of operation, called scenario, with an SDF graph [22, 23]. An SDF task
may have multiple versions of definition depending on the mode of operation while
a special control actor, called detector, that has an FSM inside sends the control
information to normal SDF tasks to change the mode of operation.

960 S. Ha and H. Jung

HOPES uses a similar approach as FSM-SADF; an SDF task may have multiple
behaviors and a tabular specification of an FSM, called Mode Transition Machine
(MTM), describes the mode transition rules for the SDF graph. An MTM is defined
as a tuple {Modes, Variables, Transitions} where Modes and Variables represent
a set of modes and a set of mode variables respectively, and Transitions is a set
of transitions that consists of the current mode, a Boolean function of conditions,
and the next mode. A Boolean function of transition condition is defined by a
simple comparison operation between a mode variable and a value. An MTM-SDF
specification of an H.264 decoder is shown in Fig. 29.5. The H.264 decoder has
two modes of operation: I-frame and P-frame. In the I-frame mode, the sample rate
of each port in red boxes becomes zero while the sample rate of each port in blue
boxes becomes zero in the P-frame mode. The MTM is quite simple since it needs
to distinguish two modes of operation by a single mode variable. Remind that the
granularity of a CIC task is large and the dynamic behavior inside a task is not
visible at the CIC level. Thus, an MTM is not complex in general for stream-based
applications.

Mode transition is enabled by setting the mode variable so as to satisfy the
transition condition. But actual mode transition occurs only at the iteration boundary
of the SDF schedule. Since an SDF graph has a well-defined notion of iteration
and each task knows how many times it should be executed in each iteration, mode
transition can be performed autonomously by individual tasks without global timing
synchronization. A mode variable can be set by the hidden supervisor, which will
be discussed in the next subsection. Or a designated task may set the mode variable.
A stream-based application usually starts with parsing a header information that
determines the mode of operation, followed by processing a stream of data. In this
case, the SDF task that parses the header information is designated as a special task
that may change the mode variable. To satisfy the restriction that the mode transition
occurs at the iteration boundary, the designated task should be the first task in the
SDF schedule. In the H.264 decoder of Fig. 29.5, RealFileH is designated as the
special task that determines the mode of operation.

The internal behavior of an SDF task should be defined manually depending
on the mode of operation. The code skeleton of an MTM-SDF task is shown in
Fig. 29.6; a task first checks the current mode of its MTM before starting the next
iteration. If it is designated as a special task, it may change the mode variable.
Based on the mode of operation, the sample rates of SDF graph can be changed.
For instance, the sample rates for the input and output arcs of IntraPredY/U/V tasks
become all zero for the P-frame mode and the sample rates for the output arcs of
InterPredY/U/V tasks become zero for the I-frame mode of operation. Note that the
feedback input arcs of InterPredY/U/V tasks do not change the sample rates since
they need to store the previous frame fed back from the Deblock task even in the
I-frame mode.

29.2.1.2 Library Task
In addition to dynamic behavior specification, another extension is made to the
SDF graph by introducing a special task, called library task, to allow the use of

29 HOPES: Programming Platform Approach for Embedded Systems Design 961

Fi
g

.
2

9
.5

A
n

M
T

M
-S

D
F

sp
ec

ifi
ca

tio
n

of
H

.2
64

de
co

de
r:

ca
pt

ur
ed

sc
re

en
fr

om
th

e
H

O
PE

S
en

vi
ro

nm
en

t

962 S. Ha and H. Jung

TASK_GO{

Mode = SYS_REQ(GET_CURRENT_MODE_NAME);

if Mode == “S1”:

MQ_RECEIVE(port_in, data, size);

…

MQ_SEND(port_out, data, size);

else if Mode == “S2”:

…

if specific conditions:

SYS_REQ(SET_MTM_PARAM_INT, task_name, var_name, value);

}

// get a current mode

// code for mode S1

// code for mode S2

// set a variable in an MTM

Fig. 29.6 Code skeleton of an MTM-SDF task

T1

T2

T3

L4 L5

L6

M11 M12

M31

M41 M51

T

L

CIC task

CIC Library Task

Data in/out port

Library master port

Library slave port

Fig. 29.7 An extended SDF graph that uses library tasks

shared resources in the SDF model. A library task is a sharable and mappable object
that defines a set of function interfaces inside. Figure 29.7 shows an SDF graph
that consists of three normal SDF tasks (T1–T3) and three library tasks (L4–L6).
Connection with a library task is made between a pair of library ports, library master
port and a library slave port that are represented by a white circle and a dark circle,
respectively. A library task should have a single slave port that can be connected
to multiple masters that share the library task. Since each library port has its own
type that defines a set of function interfaces, connection between a master port and
a slave port can be established only when their types are matched.

Unlike a normal SDF task, a library task is not invoked by input data but by a
function call inside an SDF task; it is a passive object. There are specific rules to
specify and use a library task in an SDF graph. Figure 29.8 illustrates code templates
associated with a library task. A library task has two separate files associated: a
library header file and a library code file. The library header file declares the library
functions, while the library code file defines the function bodies. The prototype

29 HOPES: Programming Platform Approach for Embedded Systems Design 963

T1

L

T2

extern LIBFUNC(void, init, void);
extern LIBFUNC(void, wrapup, void);

extern LIBFUNC(int, getValue, void);
extern LIBFUNC(void, setValue, int value);

static int my_value;

LIBFUNC(void, init, void) { .. }
LIBFUNC(void, wrapup, void) { .. }

LIBFUNC(int, getValue, void) {
return my_value;

}
LIBFUNC(void, setValue, int value) {

my_value = value;
}

CIC Library Header File (.cicl.h)

CIC Library Source File (.cicl)

TASK_GO {
:
val = LIBCALL(M21, getValue);
:
LIBCALL(M21, setValue, newVal);
:

}

Calling Code Example (From T 1)

M21M11

Fig. 29.8 Code templates associated with a library task

of a library function is defined by a directive, LIBFUNC(), that will be translated
into a regular function definition automatically by the CIC translator. A library task
should define init and wrapup functions like a normal SDF task for initialization and
finalization of the library task.

A caller task uses LIBCALL directive to call a library function as shown in
Fig. 29.8. The first parameter of LIBCALL() is the name of the library master port,
the second is the function name, and the others are the arguments. If the function
has a return value, it can be taken from the LIBCALL invocation. Note that pointers
may not be used for arguments and return values to make the SDF graph portable
to a variety of target architectures. For shared address space architectures, however,
the developer may use pointers for efficient implementation, giving up portability.

A library task may have a persistent internal state, simply called a state. Then
the access to the state should be protected by synchronization primitives, Lock()
and Unlock() to avoid data race problems. In case multiple masters access the same
library task that has a state, the return value of a library function may depend on the
execution order of the master actors, which is anathema to any deterministic model.
So, we explicitly specify a property of a library task whether it is deterministic or
not. In case the library task has no state or returns the same value to the master
tasks regardless of the calling order, the library task is classified as “deterministic.”
Otherwise, the developer should be aware that the library task does not guarantee
deterministic behavior. Even though a library actor is nondeterministic in the sense
that the return value to a master task depends on the scheduling order of master
tasks, the same behavior can be repeated if the same scheduling order is followed.

There are several use cases of library task. A library task provides a way to
share global variables or HW resources among multiple SDF tasks explicitly in a

964 S. Ha and H. Jung

systematic way. In a server-client application, the server task can be specified by
a library task that may be shared by multiple clients. Note that we may change
the number of clients arbitrarily since the number of master ports connected to a
slave port can vary at run time. Another use case of a library task is to make a
vertically layered software structure by providing a set of Application Programming
Interfaces (APIs) of the software layer below the application layer.

29.2.2 Dynamic Behavior Specification at the Top-Level
Specification of the CIC Model

In this subsection, we explain how to specify the system-level dynamic behavior
at the top level of CIC model. At the system level, the set of applications
running concurrently may change or applications may change their operation modes
according to user requests. Several approaches have been proposed to specify
the dynamic behavior of data-flow applications. FunState that was proposed as
an internal representation for codesign process [25] uses an FSM to control the
activation of data-flow tasks. In STATEMATE [8], an extended FSM model, called
statechart, specifies the entire system behavior and determines when to execute each
task in the activity chart. Distributed application layer (DAL) [21] uses an FSM to
add dynamism to distributed operation layer (DOL) [24] that is based on the KPN
model. The FSM model of DAL specifies all use cases and how transitions between
use cases occur, where a use case corresponds to a set of applications running
concurrently, assuming that the number of use cases of the system is finite.

HOPES inherits the approach of its predecessor, PeaCE [7], where a control task
is distinguished from application processes at the top level and plays the role of user-
level supervisor that controls the execution status of applications. A control task
uses an FSM model inside to specify the system-level dynamic behavior. Consider a
simple smartphone example of Fig. 29.9. The system consists of two input processes
running in the background, one control task, and six application processes. Each
application is specified by an extended SDF graph inside; Fig. 29.5 is the internal
specification of H.264 decoder application for instance. Suppose that there are four
use cases, modes of operations, for the smartphone system as shown in Fig. 29.9b.
In the Menu mode, there is no active application and the system waits for input
events to be caught by two input processes, UserInput and Interrupt (phone arrival).
Depending on the user input, the system changes the mode of operation and activates
the associated applications. When a phone signal is detected, the system suspends
the current mode of operation and switches its mode to the VideoPhone mode. After
the call is completed, the system goes back to the suspended mode and resumes
suspended applications.

The aforementioned description of the dynamic behavior is specified by an
FSM inside the control task. Figure 29.10 shows the captured screen for the FSM
specification in HOPES and the associated pseudocode automatically generated by
the CIC translator. It has four states that correspond to four use cases. The default
state is the Menu state, denoted by a bold circle. The control task is basically

29 HOPES: Programming Platform Approach for Embedded Systems Design 965

Use case Active applications

Menu -

VideoPhone
G.723 decoder, G.723 encoder,
H.264 decoder (Phone), x.264

encoder

VideoPlay MP3 decoder, H.264 decoder (VP)

MusicPlay MP3 decoder

a b

Fig. 29.9 (a) A simple smartphone example and (b) four use cases of the system

transition_VPhtoVP
a b

transition_VPtoVPh

transition_VPhtoUI

transition_UI
toVPh

transition_UI
toVP transition_VPh

toMP

transition_MPtoVPh
transition_VPtoUI

transition_MPtoUI

transition_UItoMP

Video
Play

Menu
Music
Play

Video
Phone

switch (current_state) {
case MENU:

if(in_UserInput== 1) next state = VideoPlay;
else if(in_UserInput ==2) next state = VideoPhone;
else if(in_UserInput ==3) next state = MusicPlay;

case VideoPlay:
Execute VideoPlay or resume VideoPlay;
if(in_Interrupt == On)
Suspend VideoPlay & next state = VideoPhone;

else if (terminated)
next state = Menu;

case VideoPhone:
Execute VideoPhone;
if (terminated)
if(previous_state == MusicPlay)

next state = MusicPlay;
else if(previous_state == VideoPlay)

next state = VideoPlay;
…
} // end switch

Fig. 29.10 (a) FSM specification of the control task in the smartphone of Fig. 29.9 and (b) the
pseudocode generated by the CIC translator

triggered by an event. There are three kinds of events. The first is an external event
that is received from the input port of the control task, which is explicitly drawn at
the top level of CIC model. The second kind is generated from the hidden supervisor
internally by monitoring the execution status of applications. For instance, the
system detects the termination of an application and generates an internal event.
The last is a timeout event. The CIC control task can initiate a timer at a certain
state. When the specified time is expired, a timeout event is generated by a timer
that is another hidden component assumed in HOPES.

At each state, the programmer may use APIs to define the control action, which
is similar to action scripts of the statechart in STATEMATE. The control APIs
currently defined in HOPES are listed in Table 29.1. The first category is to control
the execution status of an application and the second category is to change or
monitor a specific parameter of an application. The third category is defined to
explicitly specify the timing requirements of the system, and the last category
controls the timer modules that are assumed to exist in the system. Since timing
correctness is as important as value correctness in system functionality, explicit
specification of timing requirement has been recently advocated for real-time

966 S. Ha and H. Jung

Table 29.1 Control APIs currently defined in HOPES

Category APIs Description

Execution
status

SYS_REQ({RUN/STOP/SUSPEND/
RESUME} _TASK, task_name)

Run/stop/suspend/resume a task

status =
SYS_REQ(CHECK_TASK_STATE,
take_name)

Check the execution status

Parameter
control

SYS_REQ(SET_PARAM_{INT/FLOAT},
task_name, param_name, value)

Change the parameter value

p_value =
SYS_REQ(GET_PARAM_{INT
/FLOAT}, task_name, param_name)

Get the parameter value

Timing
requirement

SYS_REQ(SET_THROUGHPUT,
task_name, thr _val)

Set the throughput requirement

SYS_REQ(SET_DEADLINE,
task_name, lat_val , lat_unit)

Set the latency requirement

Timer control time_base =
SYS_REQ(GET_CURRENT_TIME
_BASE)

Get the current system time

timer_id = SYS_REQ(SET_TIMER,
time_base, offset)

Set timer to time_base + offset

ret =
SYS_REQ(GET_TIMER_ALARMED,
timer_id)

Check if the timer is expired

SYS_REQ(RESET_TIMER, timer_id) Reset the timer

embedded system design. While PTIDES [4] uses a discrete event model of
computation for timing specification, HOPES uses timing control APIs as a part
of control task specification. We may initiate a timer and read the timer. In addition,
we may set up the throughput or deadline requirement of an application. Note that
the timing requirement of an application may change depending on the use cases.
Those timing constraints are referred to in the design space exploration step when
constructing the static schedule of an MTM-SDF graph.

29.3 Design Space Exploration in HOPES

As overviewed in Fig. 29.2, HOPES uses a Y-chart approach [13] to explore the
design space by mapping applications to candidate architectures with a given
set of objectives. Since the dynamic behavior of a system is not predictable, it
is challenging to make a mapping decision and evaluate the decision. We have
developed a novel hybrid mapping technique that combines compile-time static
mapping of applications and run-time dynamic mapping of applications to available
resources. Remind that each application is specified by an MTM-SDF graph so that
each mode of operation can be statically scheduled. When we schedule each mode of

29 HOPES: Programming Platform Approach for Embedded Systems Design 967

30

A1

B2

40

A3

A2

A3

A2

B3 B3

B2 B2

A1

B4

B1

B4

B1

60 50

A2 A3

B3

A1

70

25

B1 B4

30

2eludehcS1eludehcS

P1

P2

P1

P2

P1

P2

P3

P1

P2

P3

throughput = 1/90

1/95

1/60

1/70

(Throughput constraint: 1/130)

30 90 140 30 90 140

30 70 100 30 70 100

a

b

running { , }
_P1

_P1

_P2

_P2

is suspended
_P1

_P3

_P2

PE1 PE2

PE3 PE4

A

A

A A B

BB

AB

B B

B

Fig. 29.11 An example of hybrid mapping: (a) Pareto-optimal mapping solutions of two applica-
tions, and (b) dynamic mapping results according to a given scenario of system status change

an application, we find a Pareto-optimal set of mapping decisions for each candidate
architecture. Suppose that we have multiple objectives of mapping, minimizing
the resource usage and maximizing the throughput performance for instance. Then
static scheduling is performed for each application independently to obtain a set
of Pareto-optimal solutions for multiple objectives. We assume that no processor
sharing is allowed, or a processing element is dedicated to an application, in the
current implementation of HOPES.

Figure 29.11 shows a simple example that consists of two applications, each
of which has a single mode of operation. For each application, two Pareto-
optimal mappings are found with varying number of processing elements. At run
time, dynamic mapping is performed by first identifying which applications are
running concurrently and next allocating the processing elements to the applications
based on their Pareto-optimal mapping solutions. In this example, four processing
elements are equally allocated to two applications, two to each. When application
A is suspended, we reallocate the processing elements to the remaining application,
B, to improve the throughput performance, which is also a Pareto-optimal mapping
of B.

Dynamic remapping is triggered at every system status change. Some causes of
the system status change are explicitly specified in the CIC model. For instance,
the change of execution status or QoS requirement of an application is specified by
a state transition defined in a control task. Thus, such a state transition triggers
dynamic mapping. The operation mode change of an application is explicitly

968 S. Ha and H. Jung

specified in the MTM-SDF model. There are other causes, however, that are not
specified in the CIC model. An example is the failure of a processing element.
If a processor failure is detected, remapping of applications is performed [16].
We assume that all system status changes are captured by the hidden supervisor
whatever the causes are.

29.3.1 Static Scheduling Technique of an MTM-SDF Graph

Since an application is specified by an MTM-SDF graph, we devised a novel
static scheduling technique of an MTM-SDF graph. An important objective is to
minimize the mode change overhead that may affect the real-time performance
of an application. Figure 29.12 shows a simple MTM-SDF graph that has two
modes of operation. When we use a naive technique that schedules each SDF
graph independently, we need to migrate three tasks when mode change occurs
as illustrated in Fig. 29.12b. It is better to consider the migration overhead when
finding a static schedule for each mode. Another extreme approach is to avoid task
migration by considering all modes simultaneously; this approach is assumed in the
previous work [22]. As shown in Fig. 29.12c, this approach maps a task to the same
processor at all modes and so requires more processors. The proposed approach is

A
(M1:17,
M2:12)

B
(M1:13,
M2:10)

C
(M1:14,
M2:8)

D
(M1:16,
M2:10)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 3)

(1, 1)

(1, 1)

(1, 3)

P0

P1

A B

C D

A C

Throughput
constraint: 1/35

D

B D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/30

a b

P0

P1

A B

C

D

A B

C

D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/30

P2

P2 D

P0

P1

A B

C D

A B D

C D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/32

dc

Fig. 29.12 (a) An MTM-SDF graph example and scheduling results for three cases: (b)
scheduling each mode independently, (c) scheduling all modes simultaneously disallowing task
migration, and (d) scheduling all modes simultaneously with task migration to minimize the
resource requirement

29 HOPES: Programming Platform Approach for Embedded Systems Design 969

A

B

C

D

E
A

B

C

D

A
C

D

E

∆∆

An MMDF graph example

Static scheduling results of mode m1 and m2

a

b

Fig. 29.13 An MMDF graph example with two modes of operation and their static scheduling
results. (a) An MMDF graph example taken from [11]. (b) Static scheduling results of mode m1

and m2

to consider all modes simultaneously, but allowing task migration to minimize the
resource requirement, which results in the schedule of Fig. 29.12d.

How to consider the task migration overhead is the key challenge in the
static scheduling of an MTM-SDF graph. Figure 29.13a shows a simple MMDF
graph example that consists of two modes of operation. For each mode, a static
schedule which satisfies the given throughput constraint is constructed as shown in
Fig. 29.13b. If the schedule of each mode is repeated forever, the output samples
will be produced periodically. The period is equal to the inverse of the throughput
performance, which is denoted as the initiation interval (II) in the figure. Even
though the static schedule of each mode satisfies the given throughput constraint, the
overall throughput performance of the MMDF graph may not satisfy the throughput
constraint because of the mode transition delay if a mode transition occurs.

The mode transition delay between two modes is defined how the time interval
between the last output production time of the previous mode and the first output
production time of the next mode is larger than the initiation interval of the next
mode. Suppose that the last iteration of the previous mode is started at t D 0. First
we formulate the start offset (�) of the first iteration of the next mode. The start
offset (�) is determined by the following three factors:

(1) Scheduling delay (Dsched): To keep the temporal property of the given static
schedule, we need to shift the start time of the subsequent mode. The time

970 S. Ha and H. Jung

Scheduling delay Task ordering delay Task migration delay

a b c

t = 0

Fig. 29.14 Mode transition delay between static schedules of modes m1 and m2 in Fig. 29.13b.
(a) Scheduling delay. (b) Task ordering delay. (c) Task migration delay, taken from [11]

interval, denoted by (1) in Fig. 29.14a, illustrates the scheduling delay between
modes m1 and m2 of Fig. 29.13.

(2) Task ordering delay (Dorder): Because the proposed technique allows task
migration between modes, a task can be mapped onto different processors in
each mode. So it needs to be guaranteed that two consecutive executions of the
same task are not overlapped or inverted during mode change. In Fig. 29.14a,
two executions of task D are overlapped between modes. Thus, the execution
of the next mode should be delayed by the task ordering delay denoted by (2) in
Fig. 29.14b.

(3) Task migration delay (Dmig): Tasks which are mapped onto different processors
between modes should be migrated during the time interval between the end
time in the previous mode and the start time in the next mode. If the time interval
is not long enough to migrate the task, additional time delay is required. In
Fig. 29.14b, task D should be migrated to another processor after the end of
execution in the previous mode, and additional time delay is needed, which is
the task migration delay denoted by (3) in Fig. 29.14c. In case of task C , no
additional time delay is required.

Summing up all three types of delay mentioned above, we compute the start
offset of the next mode as follows:

Definition 1 (Start offset of mode m in the case of mode transition n ! m).

�nm D Dnm
sched C Dnm

order C Dnm
mig

Since the output production time of each mode equals to the latency of the static
schedule from the start time, the mode transition delay can be formulated as follows:

Definition 2 (Mode transition delay from mode n to mode m).

T ransDelay.n; m/ D Lat.m/ C �nm � Lat.n/ � II .m/

where Lat.m/ represents the latency of mode m and II .m/ represents the initiation
interval of mode m.

29 HOPES: Programming Platform Approach for Embedded Systems Design 971

Note that, if Lat.m/ C �nm � Lat.n/ � II .m/, then T ransDelay.n; m/ will
be smaller than zero. It means that the time interval of the output production times
during a mode transition can be shorter than the output production time interval of
the next mode (II .m/).

The mode transition delay will be used to determine the new throughput
requirement for each mode of operation to satisfy the throughput constraint. When
the number of iterations performed in mode m is N , the average initiation interval
becomes MaxT ransDelay.m/ C N � II .m/=N where MaxT ransDelay.m/

indicates the maximum value of all possible mode transitions to mode m. Therefore,
we need to increase the throughput performance by decreasing II .m/, in order to
satisfy the given throughput requirement. In other words, the new initiation interval
IInew.m/, whose inverse is the new throughput requirement, should satisfy the
following inequality.

MaxT ransDelay.m/ C N � IInew.m/ � N � 1=.throughput requirement/

(29.1)

When we schedule all modes of MTM-SDF graphs, we have to consider the
increase of throughput requirement for each possible pair of mode changes. The
proposed scheduling technique is based on a Genetic Algorithm (GA) [18], of which
the overall procedure is shown in Fig. 29.15. The chromosome for GA represents
which processor a task in each execution mode is mapped. Chromosomes of initial
population are randomly generated and selected from crossover and mutation. The
probabilities of crossover and mutation are given by a user with configuration
parameters. In the local optimization step, we shuffle the processor indexes for some

P0 P1 P2 P1 ... P1 P2 P2 P0

Mapping for mode 0 Mapping for mode N

MTM-SDF
graph

HW platform,
Profile information

Throughput
constraint

GA initialization (initial population generation)

Selection

Crossover and mutation

Local optimization (shuffle processor indexes)

Evaluation and replacement

Get Pareto-optimal solutions

chromosome configuration

Fig. 29.15 GA-based MTM-SDF scheduling framework in HOPES

972 S. Ha and H. Jung

selected modes in the chromosome in case shuffling reduces the migration cost at
mode change. Note that a hardware component is regarded as a special processing
element to which a limited set of tasks can be mapped.

In the evaluation step, we apply a list scheduling heuristic to find a static schedule
based on the mapping information of the chromosome. Once we construct a static
schedule, we evaluate the fitness value of each solution and check whether the
throughput constraint is satisfied or not. Chromosomes in the population are sorted
by their fitness value and poor chromosomes are eliminated.

For each Pareto-optimal solution, we record the mapping and scheduling result of
tasks for a given set of processing elements. And we determine the minimum buffer
size for each channel by finding out the maximum number of samples accumulated
on the channel during an iteration of the schedule. Note that we may expand
the design space by considering the variation of voltage and frequency for power
minimization, which has not been implemented in HOPES yet.

29.3.2 Dynamic Mapping

Actual mapping of tasks to processors is performed at run time based on the
scheduling information of all applications. When a system status change is detected,
the supervisor identifies the set of applications concurrently running and the set
of available processors. And it allocates the processors to applications in order to
maximize the overall Quality of Service (QoS) metric.

Run-time dynamic mapping is performed in two steps: processor allocation and
processor binding. In the processor allocation step, we determine the number of
processors allocated to each application. We first allocate the minimum number
of processors to each application in order to satisfy the throughput constraint. If
the sum of allocated processors is larger than the number of available processors,
all applications are not schedulable and we have to discard some applications
of low criticality. If there are remaining processors, we repeat the following
process until there are no remaining processors or no gain is expected with more
processors allocated to any application: find an application that would have the
maximum benefit with one more processor and allocate a remaining processor
to the application. Suppose that the number of available processors is five in
the example of Fig. 29.11. After allocating two processors to both applications
initially to satisfy the throughput constraints, one processor is left unallocated.
Since the throughput improvement of application A with one more processor
is larger than that of application B, we allocate the remaining processor to
application A.

After processor allocation is finished, we perform the processor binding step
where the physical position of the allocated processors is determined. A popular
objective of the binding step is to minimize the average communication overhead
over all applications and to minimize the task migration overhead. To minimize the
task migration overhead, the same binding is preserved for an application that has
no change in the number of allocated processors.

29 HOPES: Programming Platform Approach for Embedded Systems Design 973

29.4 CIC Translator: Automatic Code Synthesis from the CIC
Model

A key benefit of the proposed model-based design methodology is that the target
code can be synthesized automatically from the CIC model after the mapping and
scheduling decision is made for a given HW/SW platform. The code synthesis
step can be understood as model refinement, enjoying the benefit of “correct-by-
construction” design paradigm to relieve the designer of heavy burden of verifying
the correctness that can be checked by static analysis of the model. To this end,
the code should be synthesized in a way to preserve the interface and execution
semantics of the model. For an SDF task, for instance, it should be guaranteed
that the task starts its execution only after all input ports have as many number of
samples as are defined by the sample rates on the associated channels. It implies
that we may need to synthesize an interface module in front of the HW IP to
synchronize the arrival of input data samples if an SDF task is implemented by a
HW IP. Even though the SDF model assumes infinite size of channel buffers, we
can determine the buffer sizes at compile time from the static analysis. Then an
SDF task should check before starting its execution if there is available space at the
output buffers.

In HOPES, we assume that the internal code of an SDF task is given. It is up
to the designer to guarantee the correctness of the internal code. Then the CIC
translator synthesizes the interface code between tasks and the scheduler code to
determine the execution order of the mapped tasks on each processing element. The
interface code and the scheduler code depend on the mapping and scheduling policy
of the target platform. There are four policies to perform mapping and scheduling
of SDF tasks: fully static, self-timed, static assignment, and fully dynamic. If the
fully static policy is applied, the run-time scheduler keeps not only the mapping
and scheduling decision made at compile time but also the timing information. If a
task finishes earlier than the worst-case execution assumed in static scheduling, the
run-time scheduler delays the completion of the task until the assumed completion
time. By keeping the start and the completion time of tasks, the fully static policy
guarantees to produce the same scheduling result as expected at compile time. It
means that real-time performance is guaranteed to be correct by construction, which
is very desirable for hard real-time systems. The main drawback of this policy is that
we should sacrifice the processor utilization in case the worst-case task execution
scenario is very different from the average-case scenario. The run-time scheduler
simply executes the tasks at the predetermined starting times without checking the
buffer status.

Under the self-timed policy, on the other hand, the run-time scheduler does not
keep the starting times of tasks while preserving the mapping and scheduling result.
Before it starts the next task on the schedule list, it should check the availability of
the input data samples. Since the scheduling order is preserved, we may generate
a single thread that executes a sequence of function calls in the scheduling order
where each SDF task is implemented as a function call. Note that we do not resort
to any OS scheduler of the target platform under this policy.

974 S. Ha and H. Jung

The static assignment policy allows the change of task execution order while the
mapping decision is kept. In a self-timed policy, a processor can be idle waiting for
the arrival of input samples for the next task to execute in the scheduling order even
though there is an executable task. By changing the scheduling order at run time, we
may increase the processor utilization, which is the main reason of adopting a static
assignment policy particularly when the task execution times vary widely. The static
scheduling information can be used to assign the priority of the tasks, giving a higher
priority to the task that appears earlier in the scheduling order. If a static assignment
policy is used, we synthesize each task as a separate thread and may resort to the
thread scheduler that is provided by the SW platform of the target architecture. If
there is no built-in thread scheduler, we synthesize a simple run-time scheduler that
checks the execution status of all tasks when the processor receives a data sample
from the other processors and completes the execution of the current thread. Thus,
there is a trade-off between run-time scheduling overhead and processor utilization
between self-timed and static assignment policy.

The fully dynamic policy ignores the static scheduling information at run time
by allowing the change of mapping and scheduling of tasks. It is the same as
the global scheduling policy for an Symmetric Multi-Processing (SMP) processor,
distinguished from the partitioned scheduling policy where mapping of tasks does
not change at run time. Similarly to a static assignment policy, we may use the static
scheduling information to assign the priority of the tasks. And we synthesize each
task as a separate thread and use the global scheduler that is provided by the SW
platform of the target architecture. In the current implementation, the fully dynamic
policy can be used for an SMP target only.

Figure 29.16a shows the overall flow of automatic code synthesis by the CIC
translator, and Fig. 29.16b shows the structure of the synthesized code. We use
colors to show how the synthesized code is matched with the synthesis flow in
the figure. We first check which mapping and scheduling policy will be used and

Assigned tasks

For each processing element

Mapping &
scheduling policy

Single thread synthesis
to execute the tasks in

the schedule order

Synthesize one
thread per task

Synthesize run-time
scheduler

Thread
scheduler?

Task Channel Portmap Task
mapping

Communication APIs System request APIs

Main scheduler

Task
routine

Single thread
(w/ static schedule)

Target dependent functions
(e.g. thread manage, memory manage, …)

Task
code

Task
code

Task
code

Control
task code

MTM

MTM
functions

Data structure synthesis

Generic API and interface synthesis

fully static/self-timed static-assignment

no

a b

Fig. 29.16 (a) The overall flow of automatic code synthesis by the CIC translator and (b) the
structure of the synthesized code

29 HOPES: Programming Platform Approach for Embedded Systems Design 975

partitions the tasks based on the mapping information unless the fully dynamic
policy is used. Then the target code for each processing element is synthesized one
by one. In case the fully static or the self-timed policy is used for a processor, we
synthesize a single thread that executes the mapped tasks by function calls following
the scheduling order. In case the static assignment policy is used, a separate thread
is created for each task and a run-time scheduler code is synthesized if there is
no built-in thread scheduler in the SW platform. Depending on the policy and
the SW platform, we translate the generic APIs to the target APIs when the task
code is synthesized. Since the interface code with the other processing elements is
dependent on the target platform, we assume that the interface code is given as a part
of input information to the CIC translator. To this end, HOPES has target-specific
library folders that contain target-specific tasks as well.

The CIC translator can be understood as a high-level compiler of the CIC model
to generate the target-specific code automatically. As we need a different C compiler
to generate the target-specific binary from a target-independent C code, we need to
develop a different CIC translator for each target platform. As of now, the following
target platforms are supported in the HOPES environment: Linux-based SMP
processor, CPU-GPU heterogeneous architecture, IBM Cell processor, Network-
on-Chip (NoC)-based many-core virtual prototype, and a multi-robot platform with
Bluetooth communication links.

29.5 Experimental Results

In this section, we show two real-life examples to demonstrate the overall design
flow to verify the viability of the HOPES methodology. The first example is a
smartphone example shown in Fig. 29.9. This example is quite challenging since
it consists of multiple applications running concurrently, having inter-application
and intra-application dynamism. And each application has real-time constraints.
The profiling information of applications is obtained by preparatory experiments in
advance using a cycle-accurate ARM processor simulator. The WCET information
for each task is reported in Table 29.2 for the H.264 decoder application of
Fig. 29.5. Tables 29.3 and 29.4 show the WCET of each task in x264 encoder
and MP3 decoder application. Both applications are specified with an SDF graph
respectively, having only one mode of operation; the tables show how many tasks
each application consists of. For the x264 encoder application, we make a single task
for the most time-consuming algorithm, motion estimation (ME), in this experiment.
G.723 encoder and G.723 decoder applications are specified by a single task each,
and their execution times are profiled to 4 � 103 cycles/iteration and 6 � 103

cycles/iteration, respectively.
With the given profiling information, compile-time analysis is performed to

obtain the set of Pareto-optimal mapping and scheduling solutions for varying
number of processors for each application. The result of compile-time analysis is
summarized in Table 29.5.

To compare the performance of the proposed hybrid mapping technique with a
dynamic mapping technique, we tested the following scenario: (1) play a video clip,

976 S. Ha and H. Jung

Table 29.2 Profiling information of H.264 decoder application (unit: �103 cycles/frame)

Task

Time
(WCET/
average) Task Time(WCET/average) Task

Time
(WCET/
average)

ReadFile
I: 980/760
P: 590/420 IntraPredY I: 980/830 InterPredY

I: 80/60
P: 3940/1560

Decode
I: 7500/5010
P: 2990/920 IntraPredU I: 190/150 InterPredU

I: 20/20
P: 340/270

Deblock
I: 1550/1390
P: 1120/370 IntraPredV I: 180/150 InterPredV

I: 20/20
P: 340/270

WriteFile
I: 2240/2120
P: 2360/2100

Table 29.3 Profiling information of x264 encoder application (unit: �103 cycles/frame)

Task
Time
(WCET/average) Task

Time
(WCET/average) Task

Time
(WCET/average)

Init 250/170 Deblock 3020/2660 Encoder 4840/4470

ME 15170/14720 VLC 2350/1780

Table 29.4 Profiling information of MP3 decoder application (unit: �103 cycles/iteraion)

Task
Time
(WCET/average) Task

Time
(WCET/average) Task

Time
(WCET/average)

VLD 810/150 Antialias 40/10 Stereo 70/30

DeQ 690/300 Hybrid 1230/160 Reorder 50/10

Subband 630/270 WriteFile 150/20

Table 29.5 Summary of compile-time analysis

Application
Processors
(min, max) Throughput (min, max) Throughput constraint

H.264 decoder (1,2) (50.9, 52.8) frames/sec
VideoPlay: 30 frames/sec
VideoPhone: 15 frames/sec

MP3 decoder (1,6) (123.7, 569.1) iterations/sec 150 iterations/sec

x264 encoder (1,2) (27.3, 30.1) frames/sec 15 frames/sec

(2) a phone call preempts the video play, (3) resume the video play after the call is
finished, and (4) return to the Menu state when the video clip is finished. We assume
that the target HW platform has a 3 � 3 NoC architecture in which there are seven
ARM processor tiles (700 Mhz for each) available for executing the applications.
Figure 29.17a shows the total sum of throughput excesses over the throughput
constraints for all applications. The throughput excess can be used to reduce the
power consumption of the system by lowering the voltage and frequency of the
processor. Figure 29.17b illustrates the relative latency achieved from the dynamic
mapping against the proposed hybrid mapping, varying the communication-to-

29 HOPES: Programming Platform Approach for Embedded Systems Design 977

0

1

2

3

4

5

6

1% 2% 3% 4%

Dynamic_Video Proposed_Video
Dynamic_Phone Proposed_Phone

CCR

ATS
a

b

1.05

1.1

1.15

1.2

1.25

1% 2% 3% 4%

Dynamic_Video
Dynamic_Phone

CCR

Latency (avg. per itera�on)

Fig. 29.17 (a) The aggregate throughput gain over the throughput constraints for both hybrid and
dynamic mapping techniques, and (b) the relative latency achieved by dynamic mapping against
the hybrid mapping

Load
Image
Load
Image

YUV to
RGB

YUV to
RGB GaussianGaussian SobelSobel

Non-
Maximum

Suppression

Non-
Maximum

Suppression

Hough
Transform

Hough
Transform

Draw
Lane
Draw
Lane MergeMerge

RGB to
YUV

RGB to
YUV

Store
Image
Store
Image

KNNKNN

NLMNLM

BlendingBlending SharpenSharpen

Image denoising filter chain

Edge detec�on filter chain

Fig. 29.18 A CIC modeling of lane detection algorithm

computation ratio (ccr). These experiments confirm that the hybrid mapping gives
significant gain in throughput and latency by utilizing the static scheduling results.

As another real example, a lane detection algorithm for driver assistance is
implemented by a CPU-GPU heterogeneous architecture. In this experiment, we
used Intel Core i7-930 CPU (2.80 GHz) and two Tesla M2050 GPUs. To run a task
on a GPU, we used a different version of the task that uses CUDA programming
in its internal definition. For CUDA programming, NVIDIA GPU Computing SDK
3.1 and CUDA toolkit v3.2 RC2 were used. The CIC model of the lane detection
application is displayed in Fig. 29.18 and the associated profiling information is
shown in Table 29.6.

The design space explored in this experiment is defined by the number of CPU
and GPU processing elements, task mapping, and communication methods between
CPU and GPU. Asynchronous communication between CPU and GPU is supported
by defining streams in CUDA programming. While operations with the same stream

978 S. Ha and H. Jung

Table 29.6 Profiling information of lane detection application (unit: usec)

Task CPU GPU Task CPU GPU

LoadImage 479 � KNN 2;999;704 7202

YUVtoRGB 53;111 8152 NLM 1;017;401 16,497

Gaussian 78;100 4591 Blending 16;093 5078

Sobel 10;041 5139 Sharpen 110;139 5455

Non-max 164;013 6611 Merge 32;340 5032

Hough 311;966 5653 RGBtoYUV 66;733 4888

Draw lane 1592 � StoreImage 1068 -

Table 29.7 Design space exploration of lane detection application (unit:sec)

Configuration Sync Async (2 streams) Async (3 streams) Async (4 streams)

CPU + 0 GPU 2109:5 � � �

CPU + 1 GPU 15:0 12.0 12.3 12.1

CPU + 2 GPUs 11:3 10.2 9.8 9.8

Table 29.8 Task mapping
onto 1 CPU C 2 GPUs

Processor Tasks

CPU LoadImage, Draw lane, StoreImage

GPU 0 YUVtoRGB, Gaussian, Sobel,
Non-maximum, Hough, Merge

GPU 1 KNN, NLM, Blending, Sharpen,
RGBtoYUV

should be serialized, those between different streams can be executed in parallel.
Thus, asynchronous communication promises potential throughput improvement
paying the overhead of memory space and stream management overhead. For this
experiment, we used a yuv video clip which consists of 300 frames of HD size
(1280 � 720). We explored the design space manually to obtain the result as shown
in Table 29.7. It reveals that using two GPUs gives the best performance in which
task mapping is made as shown in Table 29.8.

29.6 Current Status and Conclusion

The HOPES design environment consists of various tools that realize individual
design steps in the design flow of Fig. 29.2. It has an eclipse-based Graphical User
Interface (GUI) to help a designer to follow the design flow conveniently. Interface
between design tools is made by xml files so that we may change or add a design
tool into the environment by accessing the interface files. We expect that the HOPES
environment can be improved by third-party tools.

Besides the techniques introduced in this chapter, there are other tools involved
in the HOPES design environment such as Worst-Case Response Time (WCRT)
analysis tool (STBA and HPA) [14] and a HW/SW cosimulation tool, HSIM [26].
The WCRT analysis tool is to estimate the latency of an application conservatively

29 HOPES: Programming Platform Approach for Embedded Systems Design 979

when a self-timed or a static assignment policy is adopted. Since the scheduling
anomaly may happen due to unexpected interference from the other processing
elements in the access to the shared resources, the worst-case performance estimated
from the static analysis step is not guaranteed if we change the scheduling times of
tasks or the execution order of tasks. Therefore, we use a separate tool to estimate
the response of an application after mapping decision is made. The HW/SW
cosimulation tool is used to run the target software without the real hardware
platform.

In this chapter, it is confirmed that the HOPES methodology is viable to design
complex real-time embedded systems with two real-life examples. But it is still far
from a general system-level design tool to be used in practice and there is much
room for improvement. First of all, we need to consider more real-life systems
with diverse characteristics in the system behavior and the target architecture,
which is not an easy job for academia. We are testing various types of hardware
platforms, including Intel Xeon-Phi, IBM cell processor, many-core simulator, and
cooperating heterogeneous robot platforms. The most time-consuming is to make a
CIC translator for each target platform. It is similar to building a new C compiler
for a new processor. Since the quality of design depends on the CIC translator,
generating a target code is not sufficient for practical use. We have to synthesize as
good quality code as a manually written code. Since the HOPES framework starts
with CIC specification of an application, it is necessary to translate the legacy code
to the CIC model for the reuse of a legacy code. If the legacy code is small enough
to compose a single CIC task, translation could be made easily by modifying the
interface code with the outside. Otherwise, it is necessary to restructure the legacy
code to partition it to a set of CIC tasks that follow the assumed execution model,
which should be done manually.

Even though the CIC model is independent of the target architecture, we may
need to define target-dependent tasks. For instance, a task that accesses I/O devices
usually needs to use OS-dependent APIs. To run a task on a special processing
element, such as GPU and hardware IP, we need to have multiple versions of the
same task that are dependent on the target architecture. Since the granularity of a
task is large, careful consideration needs to be made to make it target-independent.

References

1. Bhattacharya B, Bhattacharyya SS (2001) Parameterized dataflow modeling for DSP systems.
IEEE Trans Signal Process 49(10):2408–2421. doi:10.1109/78.950795

2. Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. Technical report, Department of EECS, UC Berkeley, Berkeley. Technical report
UCB/ERL 93/69, Ph.D dissertation

3. Buck JT, Ha S, Lee EA, Messerschmitt DG (1994) Ptolemy: a framework for simulating and
prototyping heterogenous systems. Int J Comput Simul 4(2):155–182

4. Eidson J, Lee EA, Matic Slobodan SSA, Zou J (2012) Distributed real-time software for cyber-
physical systems. Proc IEEE 100(1):45-59

http://dx.doi.org/10.1109/78.950795

980 S. Ha and H. Jung

5. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency
models. IEEE Trans Comput Aided Des Integr Circuits Syst 18(6):742–760

6. Goossens S, Akesson B, Koedam M, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference.
ACM, p 7

7. Ha S, Kim S, Lee C, Yi Y, Kwon S, Joo YP (2008) Peace: a hardware-software codesign
environment for multimedia embedded systems. ACM Trans Des Autom Electron Syst
12(3):24:1–24:25. doi:10.1145/1255456.1255461

8. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw Eng
Methodol (TOSEM) 5(4):293–333

9. Haubelt C, Falk J, Keinert J, Schlichter T, Streubühr M, Deyhle A, Hadert A, Teich J (2007) A
SystemC-based design methodology for digital signal processing systems. EURASIP J Embed
Syst 2007(1):1–22. doi:10.1155/2007/47580

10. Jung H, Lee C, Kang SH, Kim S, Oh H, Ha S (2014) Dynamic behavior specification and
dynamic mapping for real-time embedded systems: HOPES approach. ACM Trans Embed
Comput Syst (TECS) 13:135:1–135:26

11. Jung H, Oh H, Ha S (2017) Multiprocessor scheduling of a multi-mode dataflow graph
considering mode transition delay. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22,
2, Article 37

12. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki J,
Kuusilinna K (2006) Uml-based multiprocessor soc design framework. ACM Trans Embed
Comput Syst 5(2):281–320. doi:10.1145/1151074.1151077

13. Kienhuis B, Deprettere E, Vissers K, Wolf PVD (1997) An approach for quantitative
analysis of application-specific dataflow architectures. In: Proceedings of the IEEE interna-
tional conference on application-specific systems, architectures and processors, pp 338–349.
doi:10.1109/ASAP.1997.606839

14. Kim J, Oh H, Choi J, Ha H, Ha S (2013) A novel analytical method for worst case response
time estimation of distributed embedded systems. In: Proceedings of the design automation
conference (DAC), Austin, pp 1–10

15. Kwon S, Kim Y, Jeun WC, Ha S, Paek Y (2008) A retargetable parallel programming
framework for MPSoC. ACM Trans Des Autom Electron Syst (TODAES) 13:39:1–39:18

16. Lee C, Kim H, Park H, Kim S, Oh H, Ha S (2010) A task remapping technique for
reliable multi-core embedded systems. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), Scottsdale, pp 307–316

17. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
18. Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications [in

engineering design]. IEEE Trans Ind Electron 43(5):519–534. doi:10.1109/41.538609
19. Nikolov H, Thompson M, Stefanov T, Pimentel A, Polstra S, Bose R, Zissulescu C, Deprettere

E (2008) Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of the
design automation conference, pp 574–579

20. Park Hw, Jung H, Oh H, Ha S (2011) Library support in an actor-based parallel programming
platform. IEEE Trans Ind Inf 7:340–353

21. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design
flow for mapping streaming applications onto on-chip many-core systems. In: Proceedings
of the international conference on compilers architecture and synthesis for embedded systems
(CASES), pp 71–80

22. Stuijk S, Geilen M, Theelen BD, Basten T (2011) Scenario-Aware dataflow: modeling, analysis
and implementation of dynamic applications. In: Proceedings of the international conference
on embedded computer systems: architectures, modeling, and simulation, ICSAMOS’11. IEEE
Computer Society, pp 404–411. doi:10.1109/SAMOS.2011.6045491

23. Theelen BD, Geilen M, Basten T, Voeten J, Gheorghita SV, Stuijk S (2006) A Scenario-aware
data flow model for combined long-run average and worst-case performance analysis. In:
Proceedings of international conference on formal methods and models for co-design, MEM-
OCODE’06. IEEE Computer Society, pp 185–194. doi:10.1109/MEMCOD.2006.1695924

http://dx.doi.org/10.1145/1255456.1255461
http://dx.doi.org/10.1155/2007/47580
http://dx.doi.org/10.1145/1151074.1151077
http://dx.doi.org/10.1109/ASAP.1997.606839
http://dx.doi.org/10.1109/41.538609
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/10.1109/MEMCOD.2006.1695924

29 HOPES: Programming Platform Approach for Embedded Systems Design 981

24. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

25. Thiele L, Strehl K, Ziegenbein D, Ernst R, Teich J (1999) FunState–an internal design
representation for codesign. In: White JK, Sentovich E (eds) ICCAD. IEEE, pp 558–565

26. Yun D, Kim S, Ha S (2012) A parallel simulation technique for multicore embedded systems
and its performance analysis. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
31:121–131

http://dx.doi.org/10.1109/ACSD.2007.53

	29 HOPES: Programming Platform Approach for Embedded Systems Design
	Contents
	29.1 Introduction
	29.2 Common Intermediate Code (CIC) Model
	29.2.1 Extended SDF Model for Application Specification
	29.2.1.1 Dynamic Behavior Specification
	29.2.1.2 Library Task

	29.2.2 Dynamic Behavior Specification at the Top-Level Specification of the CIC Model

	29.3 Design Space Exploration in HOPES
	29.3.1 Static Scheduling Technique of an MTM-SDF Graph
	29.3.2 Dynamic Mapping

	29.4 CIC Translator: Automatic Code Synthesis from the CIC Model
	29.5 Experimental Results
	29.6 Current Status and Conclusion
	References

