
27Microarchitecture-Level SoC Design

Young-Hwan Park, Amin Khajeh, Jun Yong Shin, Fadi Kurdahi,
Ahmed Eltawil, and Nikil Dutt

Abstract

In this chapter we consider the issues related to integrating microarchitectural
IP blocks into complex SoCs while satisfying performance, power, thermal,
and reliability constraints. We first review different abstraction levels for SoC
design that promote IP reuse, and which enable fast simulation for early
functional validation of the SoC platform. Since SoCs must satisfy a multitude
of interrelated constraints, we then present high-level power, thermal, and
reliability models for predicting these constraints. These constraints are not
unrelated and their interactions must be considered, modeled and evaluated.
Once constraints are modeled, we must explore the design space trading off
performance, power and reliability. Several case studies are presented illustrating
how the design space can be explored across layers, and what modifications could
be applied at design time and/or runtime to deal with reliability issues that may
arise.

Acronyms

AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
BER Bit Error Rate
BLB Bit Lock Block

Y.-H. Park
Digital Media and Communications R&D Center, Samsung Electronics, Seoul, Korea
e-mail: younghwp@uci.edu

A. Khajeh
Broadcom Corp., San Jose, CA, USA
e-mail: amin.khajeh@broadcom.com

J. Yong Shin • F. Kurdahi (�) • A. Eltawil • N. Dutt
Center for Embedded and Cyber-Physical Systems, University of California Irvine, Irvine,
CA, USA
e-mail: junys@uci.edu; kurdahi@uci.edu; aeltawil@uci.edu; dutt@uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_28

867

mailto:younghwp@uci.edu
mailto:amin.khajeh@broadcom.com
mailto:junys@uci.edu
mailto:kurdahi@uci.edu
mailto:aeltawil@uci.edu
mailto:dutt@uci.edu

868 F. Kurdahi et al.

CA Cycle Accurate
CDMA Code Division Multiple Access
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multi-Processor
CPU Central Processing Unit
DFS Dynamic Frequency Scaling
DMA Direct Memory Access
DTA Dynamic Timing Analysis
DTM Dynamic Thermal Management
DVFS Dynamic Voltage and Frequency Scaling
DVS Dynamic Voltage Scaling
ESL Electronic System Level
GPIO General-Purpose Input/Output-pin
IDC Inquisitive Defect Cache
IP Intellectual Property
IPB Intellectual Property Block
ISS Instruction-Set Simulator
ITRS International Technology Roadmap for Semiconductors
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPSoC Multi-Processor System-on-Chip
MTF Mean Time to Failure
NMOS Negative-type Metal-Oxide-Semiconductor
PDF Probability Density Function
PI Principal Investigator
PMOS Positive-type Metal-Oxide-Semiconductor
PSNR Peak SNR
RAM Random-Access Memory
RDF Random Dopant Fluctuations
ROM Read-Only Memory
RTL Register Transfer Level
SNR Signal-to-Noise Ratio
SoC System-on-Chip
SRAM Static Random-Access Memory
SSTA Statistical Static Timing Analysis
T-BCA Transaction-based Bus Cycle Accurate
TLM Transaction-Level Model
VFI Voltage/Frequency Island
VOS Voltage Over Scaling
WCDMA Wideband CDMA

Contents

27.1 Introduction . 869
27.1.1 A Typical System-on-Chip Design Flow . 869

27.2 Power Modeling . 871
27.2.1 Sources of Power Consumption and Defining Energy 873
27.2.2 Overview of Power Saving Techniques . 875

27 Microarchitecture-Level SoC Design 869

27.2.3 Overview of System-Level Power Estimation Methodologies 878
27.2.4 Cache Power Modeling . 881

27.3 Thermal and Reliability Issues and Modeling in the Nano-CMOS Era 883
27.3.1 Reliability . 885
27.3.2 Dynamic Thermal Management . 886
27.3.3 Thermal Sensors . 888
27.3.4 Sensor Allocation: Hotspot Monitoring . 889
27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction . 890

27.4 Reliability Modeling . 892
27.4.1 Memory . 892
27.4.2 Combinational Logic . 894
27.4.3 Microarchitecture and System Level . 896

27.5 Interplay between Power, Temperature, Performance, and Reliability 897
27.6 Power, Performance, and Resiliency Considerations in SoC Design 900

27.6.1 Architecture-Level Error Tolerance . 901
27.6.2 Application-Level Error Resiliency: Multimedia Applications (H.264) 902
27.6.3 Application-Level Error Resiliency: Wireless Modem Application

(WCDMA) . 904
27.6.4 Mobile Phone SoC Example . 905

27.7 Summary and Conclusion . 907
References . 907

27.1 Introduction

A typical System-on-Chip (SoC) is shown in Fig. 27.1. There are four major compli-
cated heterogeneous components in SoCs, such as processors (ARM7 shown in the
figure), custom hardware Intellectual Property Blocks (IPBs) (memory controller,
DMA controller, interrupt/GPIO controller and so forth), on-chip memories (RAM
and ROM) and on-chip communication architectures (AHB and APB bus [8]).

These components have their own role such as processors run embedded software
and usually control overall operation, custom hardware IPBs are dedicated to
execute particular tasks, memories are storage place for data and instructions to be
used, and all of which are connected through a on-chip communication architecture
consisting of multiple shared interconnected buses using a specific arbitration
scheme for fair sharing of the limited bus bandwidth.

27.1.1 A Typical System-on-Chip Design Flow

In recent years, research in this field has focused on the problem of defining a
framework for SoC design that promotes Intellectual Property (IP) reuse, with
particular attention paid toward achieving performance goals. Such a framework
needs to have clearly defined abstraction levels for capturing the SoC design. The
basic idea is to model the system first at a high level of abstraction, and then
gradually refine the model to create models with higher levels of detail, until we
arrive at the gate-level model (netlist). The SystemC [4] or SpecC [25] methodology

870 F. Kurdahi et al.

Fig. 27.1 An example of an SoC

focuses on defining a framework in which the system is initially captured at the
specification level, and then gradually refined to generate models at lower levels of
abstraction. This framework allows reuse of protocol libraries and IPBs at various
levels.

Figure 27.2 outlines the typical flow of SoC design in terms of the levels of
abstraction at which the designer can simulate the performance of an SoC, and
perform communication architecture exploration.

The modeling abstraction levels in Fig. 27.2 are typically used for commu-
nication space exploration, with the application/algorithm usually captured with
high-level languages such as C/C++. In Cycle Accurate (CA) models, the bus
architecture and system components (both masters and slaves) are captured at a
cycle and signal accurate level. While these models are extremely accurate, they
are too time-consuming to model and only provide a moderate increase in speed
over Register Transfer Level (RTL) models. Recent research efforts have focused
on using concepts found in the domain of Transaction-Level Models (TLMs) to
speed up simulation. Transaction-level models are very high-level bit-accurate
models of a system, with specifics of the bus protocol replaced by a generic
bus (or channel), and where communication takes place when components call
read() and write() methods provided by the channel interface. Since detailed timing
and signal accuracy are omitted, these models can be simulated quickly but are
only useful for early embedded software development and high-level functional
validation of the system. Transaction-based Bus Cycle Accurate (T-BCA) models
overcome the slow simulation speed of CA models and the low accuracy of TLMs.
T-BCA models capture timing and protocol details, but model components at a less
detailed behavioral level, which allows rapid system prototyping and considerable

27 Microarchitecture-Level SoC Design 871

algorithm
Specification model

TLM model

T-BCA model

cycle/pin-accurate
model

C / C++ model
“algorithm level”

early eSW development
functional validation

fast commucation
arch. exploration

cosimulation
with RTL, debug

and validate

channel

read()
write()

Fig. 27.2 A typical flow for an SoC design [105]

simulation speed over RTL. The component interface and the bus, however, are still
modeled at a cycle-accurate level, which enables accurate communication space
exploration.

27.2 Power Modeling

Reducing power dissipation is a critical design goal for electrical devices, from
handheld systems with limited battery capacity, to large computer workstations
that dissipate vast amounts of power and require costly cooling mechanisms.
Ever-increasing performance needs, which require large parallel processing at fast
clock frequencies accessing huge amounts of data from on and off-chip memories
through a very complicated bus interconnection architecture, make this power issue
more critical. In reality, their power densities and associated heat generation are
exponentially increasing, as shown in Fig. 27.3 [5].This rapid increase of power

872 F. Kurdahi et al.

1000

100

10

i386
i486

Pentium

Pentium Pro

Pentium II

Pentium IIIHot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

1
1.5 µ 1 µ 0.7 µ 0.5 µ 0.35 µ 0.25 µ

Technology Generation

w
at

ts
/c

m

0.18 µ 0.13 µ 0.1 µ 0.07 µ

Fig. 27.3 The increase of power densities [5]

dissipation is of great concern, not only because of the aforementioned usage time of
handheld devices and cooling costs but also because it can cause many unfortunate
side effects, such as damaging chip reliability and reducing expected life cycles.

To address the ever-widening designer productivity gap, TLMs [20,82] and high-
level simulation platforms are increasingly being used for SoC architecture analysis
and optimization. The increasing importance of power as a design objective in
today’s complex systems is making it imperative to address power consumption
early in the design flow, at the system level, where the benefits of performing
power optimizing design changes are the greatest. Since design changes are easier
and have the greatest impact on application power dissipation at the system level
[58, 109], designers today must evaluate various power optimizations as early as
possible in an Electronic System Level (ESL) design flow. In order to explore
these optimizations, accurate power estimation models are necessary. These models
are especially important for Chip Multi-Processor (CMP) systems with tens to
hundreds of processors integrated on a single chip. Even a slight inaccuracy in power
estimation for a single processor can result in a large absolute error for the chip.
Several system-level power estimation approaches have been proposed in recent
years, focusing on the various components of CMP designs, such as processors
[58], memories [42], interconnection fabrics [84], and custom ASIC blocks [80].
Because of the heterogeneity of these components, power estimation models are
usually customized for each component to achieve desired estimation accuracy. In
addition, each type of component requires several power estimation models that can
be incorporated at the most coarse grain, high levels of abstraction, as well as at the
most detailed, low-level simulation abstractions.

27 Microarchitecture-Level SoC Design 873

27.2.1 Sources of Power Consumption and Defining Energy

In digital Complementary Metal-Oxide-Semiconductor (CMOS) circuits, there are
three key sources of power consumption, shown below [87]

Ptotal D Pdynamic C Pshort�circui t C Pleakage (27.1)

Decomposed equations for each source, respectively, can be described by
the following equations. Firstly, dynamic power consumption can be derived as
below:

Pdynamic D ˛0�>1CLVdd
2fclk (27.2)

where ˛0�>1 is the probability that a power consuming switching occurs, CL is the
load capacitance, Vdd is the supply voltage, and fclk is the clock frequency. Note
that Eq. 27.2 shows an important characteristic of dynamic power, which is that
the power is quadratically proportional to the supply voltage, and can be efficiently
reduced as the supply voltage level is reduced.

Secondly, the short circuit power consumption is formulated as below:

Pshort�circuit D Ishort�circuitVdd (27.3)

where Vdd is the supply voltage, and Ishort�circuit is the short circuit current which
arises when both the NMOS and PMOS transistors are concurrently turned on,
making a direct path from the supply power to ground. However, since this
short circuit power consumption is responsible for only 10–15% of total power
consumption and researchers have not found a good way to reduce this power
without sacrificing performance [87], we will not focus on this component of power
consumption in detail.

Finally, leakage power consumption can be calculated by:

Pleakage D IleakageVdd (27.4)

where Ileakage is the leakage current and Vdd is the supply voltage. Besides the
dynamic and short-circuit power, transistors also consume leakage power (also
referred to as static power), which is quickly becoming the large portion of total
power consumption, based on the recent International Technology Roadmap for
Semiconductors (ITRS) 2008 update [5], as shown in Fig. 27.4. Unlike dynamic
power, the leakage power consumption continues during logic’s idle status, and most
of the techniques for dynamic power saving are not helpful for leakage power saving
[5]. There are two major sources of these leakage currents, which are subthreshold
leakage and gate-oxide leakage.

The first major component of the leakage current is gate-oxide leakage current,
which flows from the gate of a transistor into its substrate. The thickness of the oxide

874 F. Kurdahi et al.

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0
2007 2008 2009

Trend: Memory Static Power Trend: Logic Static Power

Trend: Logic Dynamic PowerTrend: Memory Dynamic Power

Requirement: Dynamic plus StatusPower

P
ow

er
 [m

W
]

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Fig. 27.4 Power consumption trends of portable chips [5]

material that insulates the gate decides this leakage current. The equation [87] for
this type of leakage is given by:

Igate�oxide D K1W

�
Vdd

Tox

�2

e
�˛

Tox
Vdd (27.5)

where W is the gate width, Tox is the thickness of the oxide, Vdd is the supply
voltage, and K1 and ˛ are constants. Based on Eq. 27.5, the gate-oxide leakage,
Igate�oxide will be increased exponentially by decreasing the thickness (Tox) of the
oxide material of the gate. In conjunction with other design parameters, such as
transistor sizes and supply voltage, the thickness of the transistor (including Tox) for
the upcoming chip design will also be decreased, and this will cause the exponential
increase of the gate-oxide leakage current. Insulating the gate with high-k dielectric
material might be the best possible solution for the problem of increasing gate-oxide
leakage for the next few years [5].

The second major component of the leakage current is subthreshold leakage
current, which flows between the drain and source terminal of a transistor. When
the gate-source voltage, Vgs , exceeds the weak inversion point, it is still lower than
the threshold voltage, Vt , and the MOSFET works like a bipolar transistor. The
subthreshold current in this region changes exponentially, depending on the gate-
source voltage, Vgs . The current in this subthreshold region is formulated by [5]:

Isubthreshold D K2W e
�Vt
nT

�
1 � e

�Vdd
T

�
(27.6)

where W is the gate width, Vt is the threshold voltage, Vdd is the supply voltage,
T is the temperature, and K2 and n are constants. According to the Eq. 27.6, when
the threshold voltage, Vt , is reduced, the subthreshold leakage current is increased

27 Microarchitecture-Level SoC Design 875

exponentially. In response to increasing requirements for reducing technology
scale parameters for upcoming chip designs, the threshold voltage should be
reduced in conjunction with the supply voltage, and this causes a worse problem
of subthreshold leakage. The increased subthreshold leakage current can cause
another serious problem, called thermal runaway. A vicious cycle can result, in
which the increased leakage currents cause increased temperature, then the increase
temperature again causes more leakage currents, based on Eq. 27.6.

On the other hand, energy can be defined by the total quantity of the work
a system completes over a period of time and formulated as the following
equation :

E.T / D

Z T

0

P .t/dt (27.7)

where E is energy, P(t) is the instantaneous power at time t , and T is a time interval.
The unit for energy is joules (J), and the unit for power is watts (W). In a computing
system, power is the rate at which the system consumes the supplied electricity
while performing computing activities, and energy is the total amount of consumed
electricity over time for the task [87].

Note that some techniques to decrease power do not always decrease energy
consumption. For instance, the power used by a computing system can be reduced
to half by halving the supplied clock frequency; however, the total energy consumed
will be approximately the same, because computing time will be twice as long to
run the same task.

Different approaches will be necessary for reducing power or for reducing
energy, depending on the context. For a system (e.g., a workstation) in which
temperature is an important concern (because high temperature can cause various
problems such as decreasing the overall speed of chips, increasing cooling costs,
damaging chip reliability, and causing the thermal runaway problem), we must re-
duce instant power, despite the influence on overall energy, to keep the temperature
of the system within tolerable limits. In handheld systems, however, reducing energy
is usually the more important issue, because it is directly related to the battery
lifetime.

27.2.2 Overview of Power Saving Techniques

There are many proposed techniques to reduce the power and energy of digital
systems. The discussion in this section provides an overview for the most widely
used power saving techniques.

Approaches for minimizing power consumption in CMOS digital systems
involve various design abstraction levels, from the software algorithm and archi-
tectures to circuits. Some important power saving techniques are summarized in
Table 27.1. They are classified by enabling time and sources of targeted power
consumption (leakage/dynamic). Some techniques can be employed at the time of

876 F. Kurdahi et al.

Table 27.1 Summary of power saving techniques

Power Design time Idle time Run time

Dynamic Lower Vdd Clock gating Dynamic voltage

Multi-Vdd Operand isolation Scaling (DVS)

Transistor sizing Dynamic frequency

Logic optimizations Scaling (DFS)

Leakage Multi-Vt Sleep transistors Variable Vt

Multi-Vdd

Variable Vt

design, such as modification of transistor size and logic optimization, while other
techniques, including varying supply voltage, clock frequency, and threshold volt-
age, can be either implemented statically at the design time or applied dynamically
during the run time [84].

There are several techniques to decrease dynamic power consumption in particu-
lar. These techniques have different trade-offs, and some of them do not necessarily
reduce the total energy consumption.

Clock gating (CG) is a widely used power optimization technique that saves
dynamic power by stopping clock supply to unused portions in synchronous logic
designs. “Multistage clock gating” refers to the scenario in which a clock gating cell
controls either another one, or an entire row of clock gating cells. The synthesis tool
identifies common enables and groups them with another clock gating cell. This
technique is used for further optimization of existing gating cells by merging more
register banks, so that the clock gating can be moved up closer to the root (i.e., the
power/ground pad(s)), for more power savings [2].

Operand isolation is the technique that keeps the inputs of the data-path operators
stable whenever the output is not used. Special circuitry is required to identify
redundant computations of data-path components and to prevent unnecessary
switching activity. Both CG and OI techniques can be implemented automatically
with standard tools such as Synopsys Power Compiler [2], or manually, by inserting
necessary circuits at the RTL.

Reducing the physical load capacitance is a technique to reduce dynamic
power consumption. Low-level design parameters, such as size and wire length
of transistors, decide this physical capacitance. We can reduce this capacitance by
decreasing transistor sizes or by decreasing wire length and/or width at the cost of
performance degradation.

Dynamic Frequency Scaling (DFS) is a technique which varies the clock
frequency during run time. This technique can reduce dynamic power consumption
linearly (Eq. 27.2). However, this also degrades overall performance and does not
save total energy consumption. Thus, we can use this technique when reducing peak
or average power dissipation, when reducing the temperature of the chip is the major
concern.

Lowering the supply voltage is a very attractive method of power saving,
because it reduces dynamic power quadratically (Eq. 27.2), while reducing leakage

27 Microarchitecture-Level SoC Design 877

power (Eq. 27.4). However, this technique also increases the delay of CMOS
gates inversely. Thus, logical and architectural compensation is necessary for this
degradation of performance. The technique of scaling the supply voltage during
run time is called Dynamic Voltage Scaling (DVS). However, since reducing the
voltage increases gate delays, we also have to reduce the clock frequency for
proper operation of the circuit. DVS is therefore commonly used in conjunction
with DFS.

On the other hand, there are techniques that primarily decrease the subthreshold
leakage power.

Multiple threshold voltages (Vt) provide a trade-off for leakage power and speed.
The high-Vt transistor has a leakage current that is roughly one order of magnitude
lower than that of the low-Vt transistor, at the cost of reduction in performance.
Thus, the low-Vt transistors are preferred for use in timing critical paths, whereas
the high-Vt transistors are used for the rest of the paths. According to Eq. 27.6, this
technique exponentially decreases the subthreshold leakage. However, increasing
the threshold voltage can decrease logic performance as well, as described in the
equation below :

f /
.Vdd � Vt /

˛

Vdd

(27.8)

where f is a frequency, Vdd is the supply voltage, Vt is the threshold voltage, and ˛

is a constant.
Decreasing the size of circuits can reduce leakage power. This is because the total

leakage current is proportional to the leakages that are consumed in all transistors in
a circuit. Minimizing cache size and reducing unnecessary logic in the chip will be
helpful in reducing the actual number of transistors and the corresponding leakage
power. However, this is not always possible, because reduced logic may degrade
performance.

Power gating with sleep transistors is reducing the count of the active transistors
dynamically, by blocking the power supply to the idle portion of circuits. Problems
with this method might include difficulty in predicting the exact time and portion of
the idle part of various components, and minimizing the overhead for this by turning
them off or on.

Cooling the system is also helpful in reducing leakage power. Various cooling
techniques such as blowing cold air, refrigerating the system, or even circulating
costly liquid nitrogen have been proposed and used for several decades. This
technique has several advantages, such as decreasing subthreshold leakage power
significantly and preventing degradation of reliability and lifecycle of a chip. This
technique also increases the overall speed of chips, because electricity has smaller
resistance at lower temperature. In spite of the aforementioned advantages, cost
and cooling system power consumption are major limitations to applying cooling
technology to every chip [87].

Again, only the most popular and widely used power minimization techniques
have been presented in the section.

878 F. Kurdahi et al.

27.2.3 Overview of System-Level Power Estimation Methodologies

There have been several power estimation methodologies for specific components in
an SoC such as processors [19,27,48,64,89,94,98], various communication fabrics
[36, 83–85] and memories [67], and developed power examination tools such as
SimplePower [109] and Wattch [19]. There are relatively few methodologies for
customized ASIC blocks, due to their extreme heterogeneity. Few researchers have
tried to make comprehensive power models for all these components [11, 58, 78].
These models still simplify the power model for a specific component (e.g., the two
state processor power model for PowerViP [58]).

With the conventional approach, designers need power estimation models at
each of the design abstraction levels, in order to guide design decisions that affect
power dissipation. Existing power estimation techniques create power models that
map onto, and are useful only at, a particular level. For instance, a technique that
is readily applicable at the detailed functional level cannot be easily used at the
higher functional level, which is unaware of the detail functionality of the design.
Furthermore, if this technique is used at the lower levels, it fails to exploit the
additional accuracy in the control and data paths and suffers from an abstraction
mismatch. Similarly, cycle-accurate power estimation tools are applicable to the
detailed microarchitectural level of the ESL design flow, but cannot be easily
ported to higher-level architectural models that lack microarchitectural detail such
as the methods described in �Chaps. 25, “Hardware-Aware Compilation” and � 26,
“Memory-Aware Optimization of Embedded Software for Multiple Objectives”.
The mismatch between power model granularity and level of detail captured at an
ESL design level thus limits the applicability of current power estimation techniques
across an ESL flow.

In [81], a comprehensive multi-granularity power model generation methodology
that spans the entire ESL design flow (Fig. 27.5) was reported. Using industry-
standard design flows (Fig. 27.6), this methodology can quickly generate multiple
power models ranging from the simplest two-level, coarse-grained model for
early power estimation, to the most accurate cycle-accurate model (Fig. 27.8) that
allows designers to explore the impact of using power optimizations with minimal
manual interference and effort. Our proposed approach is based on the concept
of hierarchical decomposition. This decomposition is aided by a tripartite hyper-
graph model of processor power that can be iteratively refined to create power
estimation models with better accuracy (Fig. 27.7). The methodology serves a vital
function in supplying a designer with multiple derivative processor power estimation
models that match the increasing accuracy of the design, as it is successively
refined from the functional, to the architectural and then down to the cycle-accurate
microarchitectural stages in an ESL design flow (Figs. 27.7 and 27.8). The feasibility
of this approach was demonstrated on an OpenRISC and MIPS processor case study,
and present results to show how multi-granularity power models generated for the
processors provide designers with the flexibility to trade-off estimation accuracy
and simulation effort during system-level exploration.

http://dx.doi.org/10.1007/978-94-017-7267-9_26
http://dx.doi.org/10.1007/978-94-017-7267-9_27

27 Microarchitecture-Level SoC Design 879

Fig. 27.5 ESL design flow for embedded processors

Power LUT Generation
Process

Power Modeling
Process

Tech Lib

RTL Design

1

2

3

4

1

8

7

6

5

2

3

9

9

Select Parameters

Synthesis

Power Outputs

Check accuracy
goal met ?

Yes

No

No

No

No

Yes

Yes

Yes

 Bias
= Structural ?

Ranked Structural
Decomposition

Candidates

3D Power
LUT

Special Purpose
Tech Bench Gate Level

Simulation

Clustering
(Optional)

Lower
Threshold

Output Power
Model

Instr.
Decomposition

Possible

Structural
Decomposition

Possible ?

Structural
Decomposition

Regression
Compensation

Simulate &
Estimate Accuracy

Power Simulation

Power Contribution
Computation

Simulation
Information

Fig. 27.6 Power model generation methodology

880 F. Kurdahi et al.

Fig. 27.7 Tripartite hyper-graph H(P), (a) simplest two-state power model, (b) power model with
set I decomposed, (c) power model with sets I, S decomposed, (d) power model with sets I, S, U
decomposed

Fig. 27.8 Hierarchical power model for OpenRISC processor

Figure 27.9 shows the average absolute cycle error (EAAC) and relative estima-
tion effort in terms of simulation overhead, for the generated power models for
OpenRISC. The power model at Level 0 has a large error of over 20%, which
subsequently reduces for the more detailed power models. The Level 3_b power

27 Microarchitecture-Level SoC Design 881

Fig. 27.9 Average absolute
cycle error and relative effort
for power models

model has an approximately 5% error, which is extremely good compared to gate
level estimates. The error in such a detailed model occurs because of several factors,
such as the inability to capture the layout and consequently accurately model intra-
processor interconnect length, and wire switching.

Figure 27.10 shows a comparison between system-level and gate-level nor-
malized power for the “mul” testbench executing on OpenRISC, across different
ESL design flow levels. The figure shows how the coarse-grained Level 1_b
instruction-set model at the architectural/ISS level is unable to track the power
variation very accurately due to the absence of a pipeline at that level. When the
pipeline is captured, as in the Level 2_b case, then accuracy improves slightly.
However, it requires a more detailed Level 3_b model which additionally captures
the structural units in a cycle-accurate manner, to accurately track the peaks of the
gate level power waveform. The power estimated at this level can allow designers
to accurately estimate peak power of the processor at simulation speeds that are
100 � 1000� faster than gate-level power simulation. Such a model is extremely
useful for determining the thermal and electrical limits of the design and can
guide the selection of the appropriate packaging to prevent hotspots and thermal
runaway.

27.2.4 Cache Power Modeling

Even though the processor power model described above deeply investigated only
the power of core components, we can take account of the cache power for the more
realistic embedded processor power model with equation below:

Pprocessor D Pcore C Pcache (27.9)

where Pprocessor is the cycle-accurate power for the entire processor, Pcore is cycle-
accurate power of the core (which is available from the our methodology), and
Pcache is the cycle-accurate power for the cache component (which may be obtained
from the available memory tool such CACTI [42]).

882 F. Kurdahi et al.

Fig. 27.10 Relative power waveform comparison for the “mul” testbench on OpenRISC (Unit for
Time: 20 ns). (a) Level 1_b. (b) Level 2_b. (c) Level 3_b

27 Microarchitecture-Level SoC Design 883

If we are interested in simple average power consumption of a processor, the
power model can be formulated as:

Pprocessor_avg D Pcore_avg C
nPcache_hit

N
C

mPcache_miss

N
(27.10)

where Pprocessor_avg is the average power value for the entire processor, Pcore_avg

is the average power value of the core, Pcache_hit is the average power value of
cache hit (access power), Pcache_miss is the average power value of cache miss (idle
power), n is total cache hit time during the execution, m is the total cache miss time
during the execution, and N is the total execution time.

Rodriguez et al. [92] investigated power consumption of cache with varying sizes
(from 16 to 256 K) and associativities (from 1-way to 16-way) for the 65 and 32 nm
technology libraries as shown in Fig. 27.11. In fact, current and future SoC designs
will be dominated by embedded memory as projected by the ITRS reports which
indicate that memories will continue to be a major fraction of any SoC in terms of
both area and power [46].

27.3 Thermal and Reliability Issues and Modeling in the
Nano-CMOS Era

Downscaling of chips or the continued shrinkage in gate length has naturally
increased the power density of chips. Resulting high temperature of chips became
one of the biggest issues in chip design, and those thermal issues are becoming
more problematic with aggressive technology scaling. In extreme cases, some parts
of a chip can be burned out leading to chip failure in the end; thermal runaway,
which is caused by positive feedback between increased leakage current and high
temperature, can be thought of as one example of such a case. In addition, as we
put a lot of heterogeneous components on a chip, the thermal distribution of a chip
tend to become nonuniform, i.e., some parts of a chip are hotter than the others
due to different processing tasks in different parts of a chip. Implementing multiple
cores instead of increasing the clock frequency of a single core became a trend in
processor design as a way of alleviating the burden of high power consumption and
enormous heat generation [38], and this trend also plays a role in making the thermal
distribution nonuniform over a chip to some extent. Especially when thread mapping
among the multiple cores is not well-balanced, nonuniform thermal distribution can
become a lot worse, resulting in multiple localized temperature maxima, which are
usually termed hotspots [38]. According to [14, 15, 103], temperature within a chip
can vary as much as 50 ıC across a die, and examples of this nonuniform thermal
distribution are given in Fig. 27.12.

884 F. Kurdahi et al.

0

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

2-
w

ay
1-

w
ay

4-
w

ay

32
n

m

65
n

m

8-
w

ay
16

-w
ay

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

2-
w

ay
1-

w
ay

4-
w

ay
8-

w
ay

16
-w

ay

0.
51

1.
5

ot
he

rs

da
ta

pr
oc

de
co

de

pi
pe

_o
vr

hd

bi
tli

ne

Power(W)Power(W)

20

0.
51

1.
52

2.
53

3.
54

Fi
g

.
2

7
.1

1
Po

w
er

br
ea

kd
ow

n
fo

r
th

e
65

nm
an

d
32

nm
lib

ra
ri

es
va

ry
in

g
ca

ch
e

si
ze

s
an

d
as

so
ci

at
iv

iti
es

[1
06

]

27 Microarchitecture-Level SoC Design 885

Fig. 27.12 Examples of nonuniform thermal profiles [77, 111]

Hotspots and thermal gradient may result in various kinds of issues: reduced
reliability of a chip due to electromigration, [14] timing failure or communication
error between functional blocks in a chip due to increased clock skews, higher cost
than before for cooling solutions such as heavy cooling fans, heat sinks, etc. [103]

27.3.1 Reliability

One of the serious issues that can be caused by high operating temperatures and
a nonuniform thermal distribution over a die is the reduction in the reliability of
interconnects and the resulting short life expectancy of a chip due to electromigra-
tion [14]. Electromigration is the result of momentum transfer from the collision
between electrons and the atoms forming the lattice of the material, and it can
cause void or hillock formation along the metal lines in extreme cases. With CMOS
technology scaling, the reliability and the life expectancy of interconnects in a chip
are becoming more susceptible to electromigration than before. Black’s equation
or its modified equation [15] given below have been widely used as a way of
modeling and predicting the Mean Time to Failure (MTF) of interconnects subjected
to electromigration:

MTF D
A

J n
e

E
kT (27.11)

In this equation, A is a constant that is determined by the material properties and
the geometry of the interconnects, J is the current density, n is a scaling factor that
is to be determined experimentally, E is the thermal activation energy depending on
the used material, k is the Boltzmann’s constant, and T is the absolute temperature
of the metal in the unit of kelvin. The current density exponent n is usually set to a
value between one and two, and it depends on the failure mechanism [79]; a value
close to one characterizes well the failure due to void growth [62]; a value close to
two represents the failure due to void nucleation quite well [100]. In the equation,
two dominant factors determining the MTF of interconnects are the current density

886 F. Kurdahi et al.

Fig. 27.13 Trend in MTF as a function of temperature

J and the temperature T. As CMOS technology scales down, the current density of
interconnects generally increases [60], so the life expectancy of interconnects will
decrease. To make it worse, the MTF decreases exponentially with respect to the
temperature of interconnects. For example, when the temperature of an interconnect
changes from 45 to 65 ıC, the life expectancy of the interconnect is reduced by 70%
roughly, and the chip will fail much sooner than before if we design chips in a
traditional way without proper consideration on thermal issues and adequate cooling
solutions. The trend in MTF, which is normalized so that the MTF at 25 ıC is to be
one, is given in Fig. 27.13 as a function of temperature.

As process scaling develops further, the top metal layers get closer to the
substrates, and this will further intensify the impact of thermal gradients of
substrates on the thermal profile of interconnects [45]; thus, the reliability or the
MTF of interconnects decreases exponentially with the increase in the temperature
of substrates. In order to improve the reliability or the MTF of interconnects, it
becomes indispensable to manage the thermal distribution of a chip dynamically
and also to consider the thermal distribution of substrates during chip design or
interconnect design stage so that we can avoid hot regions or hotspots on the
substrates for the routing.

27.3.2 Dynamic Thermal Management

As we discussed in previous sections, temperature plays a critical role in the
reliability, the performance, and the power consumption of a chip in current and
future CMOS technology nodes. Therefore, temperature of a chip, especially in case
of a high performance chip, should be managed in a smart way at run time so that
the maximum temperature can be controlled and also temperature can be evenly
distributed both temporally and spatially for better reliability and performance of
a chip. According to [39], cost for the implementation of cooling and packaging
solutions was expected to increase at an alarming rate with the thermal dissipation of

27 Microarchitecture-Level SoC Design 887

65 W or higher; hence, thermal management of a high performance chip is also quite
crucial in terms of cooling and packaging cost. A large number of techniques for
Dynamic Thermal Management (DTM) have been proposed and developed in recent
years as ways of limiting the peak temperature of a chip or managing the temporal
and spatial temperature variation of a chip through proper resource management
[18, 53]. Those techniques can be roughly classified into one of two categories
based on how the source management is performed: hardware-based techniques and
software-based techniques.

Hardware-based DTM
The relationship between temperature and power dissipation is quite complicated,
but temperature can be managed to a certain extent by controlling power consump-
tion of a chip. One of the simple power management techniques, which is called
clock gating, began to be used generally in the early 2000s [39]; dynamic power
consumption can be minimized by disabling the clocks in a functional block when
the functional block is not in use or when the temperature of the functional block
reaches a threshold. Clock gating is relatively simple to implement and has good
cooling capability because we can effectively reduce the power consumption of a
clock tree, which may consume up to around 70% of total dynamic power [37], but
the performance degradation is quite high.

Changing dynamically the supply voltage and the clock frequency of a processor
based on the workload can be effective in reducing the dynamic power consumption
because of the quadratic relationship between dynamic power and the supply
voltage, and this technique is called Dynamic Voltage and Frequency Scaling
(DVFS) [102]. In case of a processor consisting of multiple cores, the supply voltage
and the clock frequency settings of each core can be scaled independently, and it is
termed local DVFS or distributed DVFS or per-core DVFS [26], while the chip-
level voltage and frequency control is usually termed global DVFS [37]. Additional
hardware components and increased design complexity to support multiple clock
domains or multiple Voltage/Frequency Islands (VFIs) might become a critical issue
especially in case of processors with a large number of cores [40].

Fetch gating [10, 102] is another way to cool down a chip through power con-
sumption reduction; it controls the instruction activity in the pipeline by throttling
the fetch stage, and its performance on power reduction and thermal management
highly depends on the implemented throttling mechanisms as expected.

Software-based DTM
A simple temperature-aware task scheduling technique for single-threaded proces-
sors was proposed in [93]; kernel monitors the CPU activity of each process and
the temperature readings from a thermal sensor. When the temperature of a chip
becomes higher than a threshold, the kernel identifies processes that use more
CPU activities than a predefined value, and then slows them down for cooling
purpose. Even though it was simple, it worked effectively to some extent. This basic
idea was extended to temperature-aware scheduling techniques for processors that
support multi-threading or have multiple cores. For example, a temperature-aware

888 F. Kurdahi et al.

Fig. 27.14 (a) Thread selection when the integer register file is thermally critical [32], (b)
Thermal aware task scheduling for MPSoC [29]

scheduling technique for simultaneously multi-threading (SMT) processors was
proposed in [32]; it manages the execution of threads selectively and dynamically
based on the probability of heat generation of each thread, and hardware event
counters [56] are used for the estimation of the heat generation probability. In
[29], a scheduling method specifically targeting Multi-Processor Systems-on-Chips
(MPSoCs) was proposed; for each core or processor, the probability of workload
assignment is calculated and updated regularly based on the temperature history in
the past, and one core with the highest probability is selected when a new workload
assignment is required.

When there are multiple cores or processors in a chip, process or task migration
can be used effectively in order to balance the thermal distribution among all
cores and also to improve the performance as a result; in [33] , a task migration
technique was used on top of local DVFS, and it successfully avoided all thermal
emergencies, and also achieved 2.6 times speedup when compared with the base
case of using local clock gating without task migration. Figure 27.14 illustrates such
systems.

27.3.3 Thermal Sensors

As discussed in previous sections, DTM solutions use temperature information to
manage the thermal distribution of a chip. Performance Counter-based temperature
information can be used for thermal management [56], but the information is not
a direct representation of thermal behaviors of a chip most of the time, and it can
supply approximation at best. In that sense, it is far better to use the temperature
information from thermal sensors because it represents actual thermal behavior of
a chip. Each thermal sensor basically provides point-wise temperature information.
Thus, it would be better to use a large number of thermal sensors in order to have
correct temperature information at any locations of interest on a chip. As for the
locations of interest, hotspots need to be monitored first for better reliability and
performance, and also for the reduction in power consumption of a chip just as we
discussed in previous sections. In addition, a lot more thermal sensors need to be

27 Microarchitecture-Level SoC Design 889

deployed across a die so that the thermal distribution over a die can be monitored
and balanced out for the increased reliability of a chip and also for the prevention of
performance degradation. However, it is not reasonable to allocate as many thermal
sensors as possible on a small-sized chip in reality due to a lot of practical design
constraints [63] power consumption and heat generation of thermal sensors, routing
and placement issues, etc. As a result, quite a large number of methods have been
proposed regarding how to select the number of thermal sensors properly and how to
allocate them on a die in order to have accurate temperature readings at any locations
of interest on a die at run time.

Another issue to be resolved is the accuracy of thermal sensors; a thermal sensor
in a 0.35�m 2.5 V digital CMOS technology, which was implemented in a general
purpose microprocessor in the late 1990s, had the reading accuracy of ˙12 ıCwith a
resolution of 4 ıC, [96]. Since then, great improvement has been made in its reading
accuracy, and recent sensors report accuracy of ˙1 [63], but there still remains a
lot of work to be done especially when it comes to the design of on-chip thermal
sensors that are fully compatible with digital CMOS technologies.

27.3.4 Sensor Allocation: Hotspot Monitoring

Since the late 1990s and the early 2000s, thermal distribution of a chip has become a
lot more complicated due to a large number of hotspots spreading across a die, and
multiple thermal sensors came into play to monitor the temperatures of hotspots
more efficiently and accurately.

One simple way to place multiple thermal sensors on a die is to place them on
a uniform grid. As a result, some hotspots might not be detected, and the accuracy
will be quite limited especially when a small number of thermal sensors is used.
Linear interpolation technique using the temperature readings of four neighboring
thermal sensors was proposed for the estimation of the maximum temperature of a
chip [69];

When thermal distribution of a chip is available, this information can be used
for sensor allocation, and thermal sensors can be allocated in a smart way so that
the hotspots of a chip can be monitored correctly while minimizing the number of
thermal sensors. In [72], a sensor allocation algorithm divides the die area into an
array of blocks using the information on hotspot locations, and the size of each
block is adjusted in such a way that all hotspots in each block can be covered and
monitored by a single thermal sensor assigned to the block. This method works well
when the number of hotspots is not large, but with the increase in the number of
hotspots, a lot more thermal sensors will be required.

A thermal sensor allocation method based on k-means clustering [65] was
proposed in [71]; each and every hotspot is assigned to one of k clusters recursively,
where k is the number of thermal sensors, so that the Euclidean distance between
the centroid of a selected cluster and the hotspot is minimized. Then, k thermal
sensors are assigned to the centroids of those k clusters. However, this method might

890 F. Kurdahi et al.

Fig. 27.15 Recursive bisection based thermal sensor allocation [72]

produce some unreasonable results especially when remotely located hotspots have
smaller temperature differences than closely located hotspots. Figure 27.15 shows
an example of such systems.

27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction

In recent years, a large number of new sensor allocation methods have been
proposed to support full-chip thermal profile reconstruction at run time from the
temperature readings of a small number of sensors. Sensor allocation is performed
with a view to a better run-time thermal profile reconstruction from the beginning,
and the number and the locations of thermal sensors are determined accordingly.
Fine-grain DTM solutions can make full use of the detailed temperature information
from full-chip profile reconstruction, especially on multi-core processors [88]; task
migration among cores can be performed more efficiently, and the thermal behavior
and static power consumption of caches, which consume a large portion of the die
area, can be optimized [47, 49].

In [77] (Fig. 27.16), energy analysis in frequency domain was used for sensor
allocation; the main idea of this method is that thermal sensors should be distributed
in proportion to the high-frequency energy in frequency domain so that more sensors
can be assigned to regions with large thermal variations. This method alternates
vertical bisection and horizontal bisection, and then compares the high-frequency
energy of the two bisected regions. Thermal sensors are allocated proportionately,
and the bisection continues until all thermal sensors are assigned.

In [112], a statistical methodology was developed for sensor allocation and full-
chip thermal profile reconstruction; the entire die area was divided into a 16-by-16

27 Microarchitecture-Level SoC Design 891

Fig. 27.16 Energy-aware thermal sensor allocation [77]

Power estimator

Sensor Placement

Thermal model Thermal estimation

Power calibrator

Thermal sensors

Fig. 27.17 Thermal profile estimation based on sensor-assisted power estimation [107]

grid, and a set of nodes on the grid were selected so that the thermal correlation
among them can be minimized, and the thermal correlation between the selected
nodes in the set and the nodes outside the set can be maximized at the same time.
In this way, each thermal sensor can provide as much temperature information as
possible on the non-sensor nodes, while the redundancy among the sensor nodes is
minimized.

One way to have accurate temperature information of a chip is to solve the heat
differential equation directly with correct power information [43]. Performance
counter-based run-time power estimators [86, 108] can be used to supply power
information at run time, but they tend to have some power estimation errors. A new
approach to achieve good temperature estimation based on the differential equation
was proposed in [107] (Fig. 27.17), and it exploits the temperature readings of
thermal sensors to correct the power estimation errors. According to the simulation
results on a dual-core processor and SPEC2000 benchmark suites [3], it achieved
the maximum error of 1.2 ıC, and the averaged error of 0.085 ıC with six thermal
sensors.

892 F. Kurdahi et al.

In [101] a novel approach of using multiple virtual thermal sensors to increase
the accuracy of temperature readings was presented; the virtual thermal sensors are
generated from a small low-power physical thermal sensor by adaptively switching
its calibration points on the run. Simulation results show that the RMS error of
temperature readings can be reduced by up to 91.1% with the use of four virtual
thermal sensors as compared with a single thermal sensor case.

27.4 Reliability Modeling

Modern highly scaled CMOS circuits suffer from performance and power losses
due to short channel effects that exacerbate process variations. Process-induced
variations are typically classified as either systematic or random variations. System-
atic variations are predictable in nature and depend on deterministic factors such
as layout and surrounding topological environment [74]. These types of errors are
handled by static redundancy techniques. Random variations, on the other hand,
pose one of the major challenges in circuit design in the nanometer regime [12]. This
variation shifts the process parameters of different transistors in a die in different
directions, which can result in significant mismatch between neighboring transistors
[66]. This phenomenon is typically referred to as Random Dopant Fluctuations
(RDF). RDF has the dominant impact on the transistors strength mismatch and
is the most noticeable type of intra-die variation that can lead to cell instability
and failure. These failures are manifested as either an increase in the cell access
time or unstable read and write operations. Typically, RDF effects are countered
by increasing the operational supply voltage, thus effectively masking away any
variations in the individual transistor threshold voltage. Clearly, this leads to higher
power consumption. One major aspect of RDF is that the randomness of the
variations results in a random distribution of the access errors across the two-
dimensional area of a memory [12, 66]. This phenomenon is a key element that
can be exploited by cross layer approaches, since random errors are much easier
to handle at higher layers of the system via error correction techniques such as
data redundancy (coding) or spatial and temporal filtering. Several research efforts
considered exploiting this phenomenon by reducing the supply voltage (i.e., Voltage
Over Scaling (VOS)) [6, 44, 73, 75, 76, 99], while informing higher network layers
of the anticipated increase in memory fault rates.

27.4.1 Memory

Figure 27.18 shows the typical six-transistor cell used for CMOS Static Random-
Access Memories (6T SRAM). The cell consists of two cross-coupled CMOS
inverters (NL,PL and NR,PR) that store one bit of information, and two N-type
transistors (SL and SR) that connect the cell to the bitlines (BLC and BLT).
Classically [66] failures in memory cells are categorized as either of a transient
nature dependent on operating conditions or of a fixed nature due to manufacturing

27 Microarchitecture-Level SoC Design 893

Fig. 27.18 6T SRAM Cell

errors. Symptoms of these failures are expressed as (1) increase in cell access
time, (2) write time, or (3) unstable read operations. Conventionally, we assumed
that fixed errors are predominant, with a minority of the errors introduced due
to transient effects. In sub-100 nm designs, RDF has the dominant impact on the
transistors strength mismatch and is the most noticeable type of intra-die variation
that can lead to cell instability and failure in embedded memories. RDF has a
detrimental effect on transistors that are colocated within one cell, by creating a
mismatch in their intrinsic threshold voltage Vt. Furthermore, these effects are a
strong function of the operating conditions (voltage, frequency, temperature, etc.).

The total cell failure probabilities for different Vdd as a function of TMax ,
PT ŒFail� D P robŒRAF [WF [DRF �, are shown in Fig. 27.19 where RAF
is read access failure, WF is write failure, and DRF is destructive read failure
[31]. This figure illustrates that designers can trade off Vdd , performance and error
(failure) tolerance to achieve an optimal solution for a given set of conditions. It is
important to make a distinction between errors and performance. Performance here
is taken to mean achieving a specific (TMax) target as a predefined speed for the
SRAM cell, while errors are taken to be hardware malfunction such as RAF, WF,
etc. Intuitively, for a specific performance target, the designers can trade off error
tolerance versus supply voltage. In other words, to achieve a low power solution,
the designer must first decide on the acceptable level of error tolerance that is

894 F. Kurdahi et al.

0.9

P
F

ai
l

10–5

10–6

10–4

10–2

100

0.85 0.8
Vdd (v)

0.75

TMax= 55 ps

TMax= 45 ps

TMax= 35 ps

TMax= 65 ps

0.7

Fig. 27.19 Total cell failure probabilities

permissible by the application and the overall system design while still maintaining
the required performance. Given that level, and a required performance level (i.e.,
TMax/, the designer can select the appropriate Vdd from Fig. 27.19. For instance,
consider the case that a wireless receiver using a Turbo Decoder is working at
nominal Vdd D 0:9 v and at the failure rate of 10�7 and delay of TMax D 65 ps.
It has been shown in [50] that this system can handle memory errors up to 0.1%
(10�3). From Fig. 27.19, one can find out that by dropping the Vdd from 0.9 v to
almost 0.775 v, the error is still less than 10�3 and the system can work at the same
performance level, but at lower power.

27.4.2 Combinational Logic

Unlike memory, the propagation delays (tpd) of arithmetic and logic circuits are
highly dependent on the input patterns to the block and its circuit implementation
[110]. Therefore, errors are not spatially random and one cannot find a closed form
failure model for arithmetic and logic circuits. Applying VOS to logic and arithmetic
blocks introduces input-dependent errors (timing violations) at the circuit level.
Consider a logic gate Z with two inputs a and b and output x. To characterize
this gate, the transistor-level circuit representing gate Z (or extracted from layout
for more precise modeling of parasitics) is implemented in a Spice simulation
making similar assumptions about threshold voltage, Vth as in Section 27.4.1. A
Monte-Carlo simulation is run on the circuit for each of the possible 22n input-
vectors, where n is the number of input signals to the gate, and an input-vector
consists of the previous and current states of the inputs. The propagation delays

27 Microarchitecture-Level SoC Design 895

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15
Propagation Delay (ps)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

20

00 to 11 - Actual

00 to 11 - Approx.

01 to 11 - Actual

01 to 11 - Approx.

25

Fig. 27.20 pdf of a 2 input CMOS AND gate

statistics and the average power consumption for each input-vector are measured
and stored. Figure 27.20 shows the Probability Density Functions (PDFs) of the
propagation delays of a two input CMOS AND gate simulated in a 32 nm process
under nominal supply voltage of 0.9 V using predictive transistor-models [1]. Two
input-vectors, with input state transitions ab D 00 ! 11 and ab D 01 ! 11, are
used. The PDFs of the measured propagation delays for the two scenarios show a
very close match as compared a normal distribution approximation N

�
�i ; �2

i

�
.

Note that even though the outputs of the two input vectors are the same, their
propagation delays are considerably different because of the initial state of the
inputs. As circuit size increases, the complexity of modeling such delay distributions
quickly becomes unmanageable. To address this challenge, one needs to incorporate
circuit-level failures into a system-level simulation. While Statistical Static Timing
Analysis (SSTA) [13] rapidly gives useful statistics of propagation delays and timing
violations of critical paths, it does not give any information about the specific input-
vectors that will cause timing violation errors in those paths. Therefore, SSTA
cannot be used to address this challenge. On the other hand, Dynamic Timing
Analysis (DTA) [61,106] simulates circuits for functionality to acquire propagation
delays on a per input-vector basis. Hence, DTA can be used to address the challenge
of trading off reliability versus energy efficiency. In doing so, one can attempt
to integrate a circuit simulator (such as Spice) into the system-level simulation
to acquire propagation delay results on a per input-vector basis. This, however,
will be very costly in terms of processing overhead and simulation time, since
the quality and accuracy of DTA is directly proportional to the number of input

896 F. Kurdahi et al.

Fig. 27.21 Comparing probability of error per bit from proposed model and from Spice simula-
tion

test vectors used. Simulating a simple digital block for one input-vector in Spice
requires run time in the order of few hundred milliseconds. This would be very
inefficient for processing large amounts of data. Methods such as [110] attempt to
macromodel these distributions and propagate them in a consistent way, allowing
the modeling of large combinational components such as Adders, multipliers, and
CORDIC. Figure 27.20 compares the probability of error per bit for the adder from
the proposed model and from the Spice simulation, and it confirms that the second
most significant output bit has the highest probability of error (Fig. 27.21).

27.4.3 Microarchitecture and System Level

In recent years, numerous research efforts have targeted reliability-power-
performance trade-offs via software, microarchitectural, and circuit techniques,
including several efforts by the Principal Investigators (PIs) as outlined above.
For example, in [91] Rinard et al. identify inherent redundancies in computational
patterns such as sum and mean calculations and indicate the insignificant impact
of resource reduction on such patterns. Moreover, techniques such as varying clock
frequencies, skipping tasks, loop perforation, dynamic knobs, and using alternative
implementations for key components [7, 9, 41, 70, 90] have also been performed
with minimal effect on the accuracy of final performance metrics. Other approaches
[24, 104] propose relaxing the correctness at the end results. These approaches
allow the user to determine the minimum necessary precision needed at a given
point or output of the code and adjust the amount of calculations performed to
only satisfy the required accuracy. To use the hardware redundancies, the EnerJ
approach [95] introduces an approximated language that enables the developer to

27 Microarchitecture-Level SoC Design 897

distinguish the precise and “approximatable” parts of the code and save energy
on portions that can tolerate approximation. Furthermore, a more detailed work
by the same research group [110] uses EnerJ as the guarantee for reliability and
proposes language constructs that focus more on power-saving possibilities in a
pipelined architecture and further specify the hardware implementations of such
approximated language. ERSA [59] is a more drastic technique for saving power
on a multi-core architecture. It divides the cores to reliable and unreliable cores
and proposes to reduce the voltage on all parts of the unreliable cores. Even though
there is no error recovery method introduced and the frozen cores are restarted
by reliable ones, the output remains more than 90% accurate for the tested set of
benchmarks. Earlier works such as the Aura/Odyssey/Coda project [76] investigated
mobility and adaptation at the software level via what was termed “application-
aware adaptation.” Finally, the work of Breuer and Gupta promotes the concept of
living with processing errors in some cases in order to improve yield [16, 17].

On the microarchitectural front, researchers have proposed several approaches
that attempt to exploit architectural innovations to reduce excessive design
margining associated with process variations. Examples include Razor [30, 35, 57]
and TEAtime [105] that add extra hardware to correct for errors. The research in
[76, 99], and [31] promoted the use of “algorithmic noise tolerance” and proposed
using adaptive filters and replication to minimize the impact of scaling Vdd beyond
the critical region for basic DSP functions, e.g., filtering and other communication
blocks. The work proposed in [73] and [75] considers faulty caches and means
of dealing with process faults through isolating faulty cache lines. On the circuits
front, there has been significant work to achieve low-power operation through a
combination of circuit design and technology-dependent optimizations [17, 21–
23, 28, 51, 52, 68, 81, 97].

27.5 Interplay between Power, Temperature, Performance, and
Reliability

The power, temperature, performance, and reliability of a chip exhibit a complex
relationship where a small change in one dimension can potentially affect other
characteristics. In order to illustrate the complexity of the interacting metrics
or power, performance, and reliability in a dynamically changing environment,
we present as an example an embedded memory block. Classically, failures in
embedded memory cells are categorized as either of a transient nature (because of
operating conditions) or of a fixed nature (due to manufacturing errors). Failures are
manifested as (1) increase in cell access time, or (2) unstable read/write operations.
In process technologies larger than 100 nm, fixed errors are predominant, with a
minority of the errors introduced due to transient effects. This model cannot be
sustained as scaling progresses due to the random nature of the fluctuation of dopant
atom distributions. In fact, in sub 100 nm design, RDF has the dominant impact
on the transistor’s strength mismatch and is the most noticeable type of intra-die
variation that can lead to cell instability and failure in embedded memories [55].

898 F. Kurdahi et al.

Temperature

Dynamic
Power

Leakage
Power

Vdd Vdd

Pe

Pe

T

Pe
f

T

D
yn

am
ic

P
ow

er

P
ow

er

Vdd

+

+

+

+

+

+

+–

Vdd

Vdd

f

f

T

Pe

8

+7

9

65

3

2

1

4

Frequency
(Memory Speed)

Floorplan

Steady State
Temperature

Probability of
Errors in Memory

Fig. 27.22 Sensitivity of memory errors to various parameters

RDF has a detrimental effect on transistors that are colocated within one cell by
creating a mismatch in their intrinsic threshold voltage, Vt . Furthermore, these
effects are a strong function of the operating conditions such as voltage, frequency,
temperature, etc.

Figure 27.22 shows how errors in memory are affected by different parameters.
As the operating frequency is increased, the probability of memory errors increases
(1) because it enforces tighter bounds on the time allowance for memory accesses.
Increase in Vdd reduces the cell delay and thus causes the errors to decrease (2).
The errors in memory increase along with the rise in temperature (3) because
of increase in the cell delay. These are not the only relationships that affect
memory errors. From Fig. 27.22, we also examine other interrelationships at work:
The dynamic power dissipation in memory cells increases with increase in both
frequency (/ f) and Vdd (/ V 2

dd) . The leakage power, on the other hand,

27 Microarchitecture-Level SoC Design 899

increases with Vdd (/ eˇVdd ; ˇ > 1). Both dynamic power and leakage power
determine the operating temperature. Leakage power dissipation of a cell is known
to increase superlinearly with increase in temperature. As temperature increases,
the leakage power dissipation increases which further elevates the temperature.
This “positive feedback loop” between temperature and leakage power stabilizes
when steady-state operating temperatures have been reached at which state, all the
dynamic and leakage power dissipation is transferred to the environment by the
package [30]. This discussion implies that probability of error is not a monotonically
decreasing function of supply voltage but rather exhibits a convex behavior as shown
in Fig. 27.23. A comprehensive approach to memory/logic design must consider
these mutual interdependent relationships. The effect of interplay between Vdd ,
probability of error, and temperature for different cell speeds is shown in Fig. 27.23
where the different curves represent the behavior of memories with maximum
allowed times of 70, 67, 65, and 60 ps, respectively. We observe that as the frequency
of the cell increases (or the delay decreases), the probability of error also increases.
We also observe that an increase in Vdd reduces the probability of error but only up
to a certain point (marked X). After X, the rise in temperature due to Vdd increases
the memory errors. However, for curve we do not observe this behavior because
the speed of the cell is low and the probability of failure is not detectable by our
simulation setup. In the absence of thermal considerations, these curves would have
continued to exhibit decreasing probabilities of error with increasing Vdd .

0.7

P
ro

ba
bi

lit
y

of
 E

rr
or

N
or

m
al

iz
ed

 T
ot

al
 P

ow
er

1.00E–10

1.00E–09

1.00E–08

1.00E–07

1.00E–06

1.00E–05

1.00E–04

1.00E–03

1.00E–02

1.00E–01

1.00E+00

0.8 0.9

Probability of Error Normalized Total Power

A

Effect of Vdd Effect of Temperature
is dominant is dominant

B

1 1.1 1.12

Vdd (v)

1.14 1.16 1.18 1.2
0

2

4

6

8

10

12

Fig. 27.23 Probability of error for different frequencies

900 F. Kurdahi et al.

0.7

P
ro

ba
bi

lit
y

of
 E

rr
or

10–20

10–15

10–10

10–5

100

0.8

Undetectable Error

Increasing the frequency

0.9 1

1

2

3

4

Vdd(v)
1.1 1.2 1.3

Fig. 27.24 Probability of error and total power

Figure 27.24 shows the normalized total power dissipation and the probability of
error for a cell with maximum allowed time of 65ps. Initially, the effect of increase in
Vdd is dominant and probability of error decreases with increase in Vdd . However, at
higher Vdd the effect of resulting temperature becomes dominant and probability of
error increases with increase in Vdd . The figure illustrates that for a given probability
of failure target, two voltage levels can be chosen that achieve the desired target. For
example, at a target probability of error of 10�8, one can select either 1.0 v (Point A)
or 1.16 v (Point B). However, the dynamic power at 1.0 v is 34.5% less than that at
1.16 v because dynamic power /V2

dd. Even without thermal dependence, the leakage
power at 1.0 v is 46.1% less than that at 1.16 v because leakage power /eˇVdd ;ˇ > 1.
Thus, the total power at 1.0 v is 2.5� less than that at 1.16 v. Designers can save
significant power by operating at lower Vdd voltages while maintaining performance
levels.

27.6 Power, Performance, and Resiliency Considerations in SoC
Design

While scaling Vdd is indeed one of the most effective means of controlling power,
it is imperative to understand how other effects can be factored in. For example,
incorporating temperature, process variations, etc. will lead to significantly different
system policies than those which would be adopted in a non-cross layer aware
approach. Figure 27.25 highlights the different phases in error development as Vdd

is scaled. When Vdd is close to its typical value, the system operates normally. As
we scale down, errors start to develop. Depending on the system, such errors may

27 Microarchitecture-Level SoC Design 901

Power Catastrophic
errors

Error cannot be
ignored but can
be compensated
for

Compensation
“penalty” Vdd

Errors can
be ignored

Fig. 27.25 Different phases in error development

be ignored, but only up to a point beyond which it becomes necessary to deploy
measures that will compensate, either partially or fully, for the drop in quality.
Discussed below, these measures can occur at different layers of abstraction and
incur a penalty causing a lessening of the power savings due to Vdd scaling. This
may lead to a “sweet spot” at which maximum power savings can be achieved. If
we keep decreasing Vdd , not only would the savings become less, but there typically
exists a point at which errors can become so large that the system breaks down and
quality cannot be recovered.

How much errors can be tolerated depends on the technology, architecture,
and application. Similarly the method of error compensation depends on these
parameters as well and can be applied at all the design layers. In the following,
we present examples of error tolerance at these various design layers and methods
of compensation. These examples serve as data points and are not intended to limit
the scope of the discussion.

27.6.1 Architecture-Level Error Tolerance

Consider the case of a stringently error-constrained system. A representative 16 KB
processor cache is assumed, with a block size of 16 bytes and associativity of 1,
based on an underlying 70 nm CMOS technology. Cache errors can either lead to
unstable system behavior or excessive delay due to a cache miss. By varying the
voltage of the cache from 0.9 to 0.7 v, it was observed that the miss rate increases
from 3.9 to 59.5%, respectively. It is clear that reducing the supply voltage increases
parametric errors to an extent where the memory becomes useless. To counter this
effect, a modified structure allows the memory to continue operation with minimal
impact on the miss rates even at elevated error rates [50]. The proposed architecture
is shown in Fig. 27.26 (Red dots indicate parametric errors), where, in addition to
the cache block, two other blocks are added, the Bit Lock Block (BLB) and the
Inquisitive Defect Cache (IDC). The BLB is an off cache defect map that stores
a tag bit to identify faulty locations. These can be updated via a built-in self-test
initiated at each configuration update. The IDC acts as a place holder for defective
cache words. Due to the random spatial distribution of RDF induced faults, as well

902 F. Kurdahi et al.

Fig. 27.26 IDC Error-tolerant cache architecture

as the locality of access in a cache, the size of IDC cache could be much smaller
than the total size of all the defective words in a cache. Since this cache is masking
parametric errors, it can be thought of as a means of tightening the distribution of
faults as a function of the change in supply voltage. In this sense, DMS can be
used to identify the optimum size of this cache based on an expected distribution of
errors due to supply changes. If the IDC size and associativity are chosen properly,
the execution window of a process in the cache (after its first pass) will experience
very little defective/disabled words.

Both the IDC and the BLB can be assumed to be operated at a higher and safer
voltage (within temperature constraints) or utilizing larger devices, while Adaptive
Supply Voltage (ASV)/Adaptive Body Bias (ABB) is applied on the cache body.
Early simulation results, using standard benchmarks, and a trace-driven simulator
are shown in Fig. 27.26 where the miss rate is reduced down to 6.45% (from
59.5% initially) and power savings of more than 40% are reported. The interested
reader is referred to [51] for more details about the simulation setup and results.
This approach benefits from the spatial randomness of process-induced faults, thus
allowing the use of a very small victim cache to perform cache remapping at elevated
error rates without reducing the size of the cache.

27.6.2 Application-Level Error Resiliency: Multimedia Applications
(H.264)

Consider an H.264 system Fig. 27.27 (left) as a representative application for mobile
multimedia systems. One of the biggest challenges is power consumption, which is
typically addressed by power management, mainly by reducing the supply voltage.
However the range of such a reduction is limited by (1) performance constraints and
(2) component reliability under very low Vdd .

By design, these systems have built-in error resiliency that has been exploited in
many different compression and transmission schemes mainly as a quality trade-off.
[54] proposed utilizing aggressive voltage scaling on embedded memories resulting
in low-power, high-frequency operation, albeit, with errors due to scaling. Based
on the error statistics, we propose, analyze, and quantify the performance and
overhead (in terms of power and area) of various filtering and mapping techniques

27 Microarchitecture-Level SoC Design 903

Coded
Image

a

b

Entropy
decode

Frame

Frame

Frame

Frame

Frame

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
0.62

total power savings with filter
PSNR(Y)

tot pwr saving
PSNR(U)

PSNR(V)

0.63 0.64 0.65 0.66 0.67

Memory Vdd

P
S

N
R

 (
dB

)

p
o

w
er

 s
av

in
g

s

0.68 0.69 0.7 0.8 0.9

0

5

10

15

20

25

30

35

40

45

50

Reorder and
Dequantization

IDCT

Fn–1
(reference)

Motion
Compensate

Image
Filter

Detect
Map

Vectors and
headers

DPB memory
(Embedded Data SRAM)

Fn
(reconstructed)

Fig. 27.27 H.264 decoder with filtering (left) & Image quality (PSNR) vs power savings at
different Vdd levels (Foreman Video) (right)

that compensate for the errors, thus enabling the system to operate at lower
voltages while meeting system specifications. Finally, we quantify the expected
system power savings due to the above mentioned approach. Figure 27.27 (right)
shows the results of such an exploration. When we lower Vdd on the decoder
memories, its reliability decreases and as a result, the output quality drops. This

904 F. Kurdahi et al.

can be compensated for by filtering, which consumes power so the gains from Vdd

reduction tend to lessen as error rates increase. However, the overall results indicate
that good performance (PSNR) can be maintained even at very low Vdd while saving
over 40% in overall system power consumption. While this case study highlights
a significant opportunity in power savings, it requires an important paradigm
shift in today’s system design flow. Current flow emphasizes compartmentalization
between system-level designers and backend (chip) designers, thus necessitating
100% correctness in hardware. The new paradigm de-compartmentalizes this flow
and allows system designers to be aware of the physical layer through model
abstractions.

27.6.3 Application-Level Error Resiliency: Wireless Modem
Application (WCDMA)

In this section, we now extend the discussion to the transmission medium, using
Wideband CDMA (WCDMA) as a representative of a wireless physical layer.
Figure 27.28 depicts the top-level block diagram of a diversity enabled WCDMA
SoC modem [34]. The SoC includes the modem section (RAKE receiver), the
coding layer and the protocol layer of the standard. It is based on a dual embedded
microcontroller architecture. The symbols from the modem are soft values with 10-
bit precision that are available for all the data and control symbols transmitted on the
data channels. Naturally, control symbols are very important and thus must be stored
in a protected memory with minimum loss. However, data symbols possess a high
degree of redundancy typically inserted by the channel coding scheme. Specifically
in WCDMA [50], both Turbo and Viterbi schemes are supported. Thus, the data

Fig. 27.28 WCDMA chip architecture

27 Microarchitecture-Level SoC Design 905

10–5
10–8

10–5

10–4

10–2

100

10–4

144Kbps, SNR=5dB
64Kbps, SNR=5dB
64Kbps, SNR=4dB

10–3 10–2 10–1

Fig. 27.29 Effect of the WCDMA memory errors on the system Bit Error Rate

memory can be partitioned into defect tolerant and non-defect tolerant sections.
A defect tolerant memory is a memory that is used primarily to buffer data and thus
can be a target of aggressive power management. It is interesting to note that the
data buffering memories (defect tolerant candidates) consume approximately 50%
of the overall memory required for the entire modem.

Figure 27.29 shows the effect of the memory errors on the WCDMA Bit Error
Rate (BER) for different transmission bit rates. As expected, given the same SNR,
for higher bit rates, the memory errors have higher impact on the BER since there
is less redundancy in the system. A power analysis of the architecture indicates that
the overall memory consumes roughly 45% of the total power. In prior work, the
PIs have shown that by applying error aware dynamic voltage scaling a savings of
46% in leakage power and 44% in dynamic power is possible in the error-tolerant
memories. It is important to note that these savings are independent of other power-
saving methods such as reducing frequency of operation, etc.

27.6.4 Mobile Phone SoC Example

The previous two case studies illustrated the design space exploration for a
wireless and a video application. In today’s mobile phones, these applications are
synergistic and are typically implemented on the same chip. Figure 27.30 illustrates
a hypothetical modern mobile phone SoC with a WCDMA physical layer to convey
the data stream and an H.264 video codec as the application. While in the previous
cases we considered each application separately, in this case, the question arises as
to which of the two applications to target for Vdd reduction in order to save overall
SoC power? To do so we investigated three scenarios: Case (A) Nominal-Vdd for
the WCDMA modem and aggressive dynamic voltage scaling (AVS) for the H.264

906 F. Kurdahi et al.

Fig. 27.30 A mobile phone
SoC architecture

Fig. 27.31
Application-aware design
space exploration for the cell
phone SoC

15
10%

15%

20%

25%

30%

20 25

P
ow

er
 S

av
in

g

30
Y PSNR (dB)

35

Case A
Case B
Case C

40

decoder engine, Case (B) supply scaling for the WCDMA modem and nominal-
Vdd for the H.264 decoder, and Case (C) supply scaling for both the H.264 decoder
and the WCDMA modem. Based on prior experience, the PIs have with WCDMA
systems, it is estimated that the WCDMA modem consumes 72% of the total power
whereas the H.264 decoder consumes 28% of the total power in 65 nm technology
node [50]. As this portion changes, the gains will scale accordingly. Figure 27.31
illustrates a summary of the results depicting the expected power savings for each
case versus the luma (Y) component of the image as a quality metric. From the
graph, we observe that some points are inferior to others. In other words, one case
may yield higher power savings than another for the same target PSNR. Such points
are considered as Pareto-optimal. Overall, Case B appears to be inferior to cases
A and C. However, this is a direct result of the ratio of power consumption of the
receiver and video decoder. Since the receiver consumes more than 3� the power of
the H.264 decoder, one would expect to get more power reduction by supply scaling
of the receiver. This situation would be reversed in another system where the ratios
are the opposite. As expected, case C yields the most Pareto-optimal design points
since it is a superset of cases A and B.

27 Microarchitecture-Level SoC Design 907

27.7 Summary and Conclusion

This chapter presented a typical design flow for integrating microarchitectural IPBs
into complex SoCs that must satisfy performance, power, thermal, and reliability
constraints. Toward this end, we first presented different abstraction levels for SoC
design that promote IP reuse and which enable fast simulation for early functional
validation of the SoC platform. Since SoCs must satisfy a multitude of interrelated
constraints, we then presented high-level power, thermal, and reliability models
for estimating these constraints. We outlined the complex interrelationship between
power, temperature, performance, and reliability of an SoC and illustrated these de-
pendencies. We concluded the chapter with several case studies presenting examples
of error tolerance at these various design layers and methods of compensation.

References

1. Predictive technology model(ptm). http://www.eas.asu.edu
2. Synopsys design compiler, primetime px, power compiler. http://www.synopsys.com
3. Standard performance evaluation council, performance evaluation in the new millennium,

v.1.1 (2000)
4. Functional Specification for SystemC 2.0. www.systemc.org (2001)
5. International technology roadmap for semiconductors (2011) System drivers. Technical

report.
6. Abdallah R, Shanbhag N (2009) Error-resilient low-power Viterbi decoder architectures.

IEEE Trans Signal Process 57(12):4906–4917. doi:10.1109/TSP.2009.2026078
7. Ansel J, Chan C, Wong YL, Olszewski M, Zhao Q, Edelman A, Amarasinghe S (2009)

Petabricks: a language and compiler for algorithmic choice. In: Proceedings of the 30th
ACM SIGPLAN conference on programming language design and implementation, PLDI
’09. ACM, New York, pp 38–49. doi:10.1145/1542476.1542481

8. ARM (2001) ARM AMBA specification and multi layer AHB specification, (rev2.0). http://
www.arm.com

9. Baek W, Chilimbi TM (2010) Green: a framework for supporting energy-conscious program-
ming using controlled approximation. In: Proceedings of the 31st ACM SIGPLAN conference
on programming language design and implementation, PLDI ’10. ACM, New York, pp 198–
209. doi:10.1145/1806596.1806620

10. Baniasadi A, Moshovos A (2001) Instruction flow-based front end throttling for power-aware
high performance processors. In: Proceedings of the 2001 international symposium on Low
power electronics and design (ISLPED’01). ACM, New York, pp 16–21. http://dx.doi.org/10.
1145/383082.383088

11. Bansal N, Lahiri K, Raghunathan A, Chakradhar S (2005) Power monitors: a framework
for system-level power estimation using heterogeneous power models. In: 18th international
conference on VLSI design, pp 579–585 doi:10.1109/ICVD.2005.138

12. Bhavnagarwala A, Tang X, Meindl J (2001) The impact of intrinsic device fluctu-
ations on CMOS SRAM cell stability. IEEE J Solid State Circuits 36(4):658–665.
doi:10.1109/4.913744

13. Blaauw D, Chopra K, Srivastava A, Scheffer L (2008) Statistical timing analysis: from
basic principles to state of the art. IEEE Trans Comput Aided Des Integr Circuits Syst
27(4):589–607. doi:10.1109/TCAD.2007.907047

14. Black J (1969) Electromigration – a brief survey and some recent results. IEEE Trans Electron
Devices 16(4):338–347

http://www.eas.asu.edu
http://www.synopsys.com
www.systemc.org
http://dx.doi.org/10.1109/TSP.2009.2026078
http://dx.doi.org/10.1145/1542476.1542481
http://www.arm.com
http://www.arm.com
http://dx.doi.org/10.1145/1806596.1806620
http://dx.doi.org/10.1145/383082.383088
http://dx.doi.org/10.1145/383082.383088
http://dx.doi.org/10.1109/ICVD.2005.138
http://dx.doi.org/10.1109/4.913744
http://dx.doi.org/10.1109/TCAD.2007.907047

908 F. Kurdahi et al.

15. Blair J, Ghate P, Haywood C (1971) Concerning electromigration in thin films. Proc IEEE lett
59:1023–1024

16. Breuer M (2010) Hardware that produces bounded rather than exact results. In: 2010 47th
ACM/IEEE design automation conference(DAC), Anaheim, pp 871–876

17. Breuer M, Gupta S, Mak T (2004) Defect and error tolerance in the presence of massive
numbers of defects. IEEE Des Test Comput 21(3):216–227. doi:10.1109/MDT.2004.8

18. Brooks D, Martonosi M (2001) Dynamic thermal management for high-performance
microprocessors. In: Proceedings of the 7th international symposium on high-performance
computer architecture (HPCA’01). IEEE Computer Society, Washington, DC, p 171

19. Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power
analysis and optimizations. In: Proceedings of the 27th international symposium on computer
architecture, Vancouver, pp 83–94

20. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: First IEEE/ACM/IFIP
international conference on hardware/software codesign and system synthesis, pp 19–24.
doi:10.1109/CODESS.2003.1275250

21. Calhoun B, Chandrakasan A (2004) Standby power reduction using dynamic voltage
scaling and canary flip-flop structures. IEEE J Solid State Circuits 39(9):1504–1511.
doi:10.1109/JSSC.2004.831432

22. Calhoun B, Daly D, Verma N, Finchelstein D, Wentzloff D, Wang A, Cho S, Chandrakasan
A (2005) Design considerations for ultra-low energy wireless microsensor nodes. IEEE Trans
Comput 54(6):727–740. doi:10.1109/TC.2005.98

23. Calhoun B, Wang A, Chandrakasan A (2005) Modeling and sizing for minimum en-
ergy operation in subthreshold circuits. IEEE J Solid State Circuits 40(9):1778–1786.
doi:10.1109/JSSC.2005.852162

24. Carbin M, Kim D, Misailovic S, Rinard MC (2012) Proving acceptability properties of
relaxed nondeterministic approximate programs. In: Proceedings of the 33rd ACM SIGPLAN
conference on programming language design and implementation, PLDI ’12. ACM, New
York, pp 169–180. doi:10.1145/2254064.2254086

25. Center for Embedded Computer Systems: SpecC system. http://www.cecs.uci.edu/~specc/
26. Chabloz J, Hemani A (2010) Distributed DVFS using rationally-related frequencies and

discrete voltage levels. In: Proceedings of the 16th ACM/IEEE international symposium on
Low power electronics and design (ISLPED’10). ACM, New York, pp 247–252. http://dx.doi.
org/10.1145/1840845.1840897

27. Chakrabarti C, Gaitonde D (1999) Instruction level power model of microcontrollers. In:
Proceedings of the 1999 IEEE international symposium on circuits and systems, ISCAS ’99,
vol 1, pp 76–79. doi:10.1109/ISCAS.1999.777809

28. Cho S, Chadrakasan A (2004) A 6.5-ghz energy-efficient BFSK modulator for wireless sensor
applications. IEEE J Solid State Circuits 39(5):731–739. doi:10.1109/JSSC.2004.826314

29. Coskun AK, Rosing TS, Whisnant K (2007) Temperature aware task scheduling in MPSoCS.
In: Proceedings of the conference on design, automation and test in Europe (DATE’07). EDA
Consortium, San Jose, pp 1659–1664

30. Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-
tuning dvs processor using delay-error detection and correction. IEEE J Solid State Circuits
41(4):792–804. doi:10.1109/JSSC.2006.870912

31. Djahromi A, Eltawil A, Kurdahi F, Kanj R (2007) Cross layer error exploitation for aggressive
voltage scaling. In: 8th international symposium on quality electronic design, ISQED ’07,
pp 192–197. doi:10.1109/ISQED.2007.53

32. Donald J, Martonosi M (2005) Leveraging simultaneous multithreading for adaptive thermal
control. In: Proceedings of the second workshop on temperature-aware computer systems

33. Donald J, Martonosi M (2006) Techniques for multicore thermal management: classification
and new exploration. ACM SIGARCH computer architecture news. 34(2). IEEE computer
society

34. Eltawil A, Grayver E, Zou H, Frigon J, Poberezhskiy G, Daneshrad B (2003) Dual
antenna UMTS mobile station transceiver asic for 2 mb/s data rate. In: IEEE international,

http://dx.doi.org/10.1109/MDT.2004.8
http://dx.doi.org/10.1109/CODESS.2003.1275250
http://dx.doi.org/10.1109/JSSC.2004.831432
http://dx.doi.org/10.1109/TC.2005.98
http://dx.doi.org/10.1109/JSSC.2005.852162
http://dx.doi.org/10.1145/2254064.2254086
http://www.cecs.uci.edu/~specc/
http://dx.doi.org/10.1145/1840845.1840897
http://dx.doi.org/10.1145/1840845.1840897
http://dx.doi.org/10.1109/ISCAS.1999.777809
http://dx.doi.org/10.1109/JSSC.2004.826314
http://dx.doi.org/10.1109/JSSC.2006.870912
http://dx.doi.org/10.1109/ISQED.2007.53

27 Microarchitecture-Level SoC Design 909

solid-state circuits conference on Digest of technical papers, ISSCC 2003, vol 1, pp 146–484.
doi:10.1109/ISSCC.2003.1234242

35. Ernst D, Das S, Lee S, Blaauw D, Austin T, Mudge T, Kim NS, Flautner K (2004) Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro 24(6):10–20.
doi:10.1109/MM.2004.85

36. Gasteier M, Glesner M (1996) Bus-based communication synthesis on system-level.
In: Proceedings of 9th international symposium on system synthesis, pp 65–70.
doi:10.1109/ISSS.1996.565880

37. Gerards M, Hurink JL, Kuper J (2015) On the interplay between global DVFS and scheduling
tasks with precedence constraints. IEEE Trans Comput 64(6):1742–1754

38. Gronowski P, Bowhill W, Preston R, Gowan M, Allmon R (1998) High-performance
microprocessor design. IEEE J Solid State Circuits 33:676–686

39. Gunther S, Binns F, Carmean D, Hall J (2001) Managing the impact of increasing micropro-
cessor power consumption. Intel Technol J 5:1–9

40. Herbert S, Marculescu D (2007) Analysis of dynamic voltage/frequency scaling in chip
multiprocessors. In: ACM/IEEE international symposium on low power electronics and
design (ISLPED). IEEE

41. Hoffmann H, Sidiroglou S, Carbin M, Misailovic S, Agarwal A, Rinard M (2011) Dynamic
knobs for responsive power-aware computing. In: Proceedings of the sixteenth international
conference on architectural support for programming languages and operating systems,
ASPLOS XVI. ACM, New York, pp 199–212. doi:10.1145/1950365.1950390

42. HP Labs (2015) CACTI – An integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model. http://www.hpl.hp.com/research/cacti/

43. Huang W et al (2006) Hotspot: a compact thermal modeling methodology for early-
stage VLSI design. IEEE Trans Very Large Scale Integr (VLSI) Syst 14(5):501–513.
doi:10.1109/TVLSI.2006.876103

44. Hussien A, Khairy M, Khajeh A, Amiri K, Eltawil A, Kurdahi F (2010) A combined
channel and hardware noise resilient Viterbi decoder. In: 2010 conference record of the forty
fourth Asilomar conference on signals, systems and computers (ASILOMAR), pp 395–399.
doi:10.1109/ACSSC.2010.5757543

45. Im S, Banerjee K (2000) Full chip thermal analysis of planar (2-D) and vertically integrated
(3-D) high performance ICs. In: International electron devices meeting 2000. Technical
digest. IEDM (Cat. No.00CH37138), San Francisco, pp 727–730.

46. ITRS International roadmap of semiconductors. http://www.itrs.net/
47. John JK, Hu JS, Ziavras SG (2005) Optimizing the thermal behavior of subarrayed data

caches. In: Proceedings of the 2005 international conference on computer design (ICCD’05).
IEEE computer society, Washington, pp 625–630. https://doi.org/10.1109/ICCD.2005.81

48. Kavvadias N, Neofotistos P, Nikolaidis S, Kosmatopoulos K, Laopoulos T (2003) Mea-
surements analysis of the software-related power consumption in microprocessors. In:
Proceedings of the 20th IEEE instrumentation and measurement technology conference,
IMTC ’03, vol 2, pp 981–986. doi:10.1109/IMTC.2003.1207899

49. Kaxiras S, Ju Z, Martonosi M (2001) Cache decay: exploiting generational behavior to
reduce cache leakage power. In: Proceedings of the 28th annual international symposium on
computer architecture (ISCA’01). ACM, New York, pp 240–251. http://dx.doi.org/10.1145/
379240.379268

50. Khajeh A, Cheng SY, Eltawil A, Kurdahi F (2007) Power management for cognitive
radio platforms. In: Global telecommunications conference, GLOBECOM ’07. IEEE,
pp 4066–4070. doi:10.1109/GLOCOM.2007.773

51. Khajeh A, Eltawil A, Kurdahi F (2011) Embedded memories fault-tolerant pre- and post-
silicon optimization. IEEE Trans Very Large Scale Integr (VLSI) Syst 19(10):1916–1921.
doi:10.1109/TVLSI.2010.2056397

52. Khajeh A, Kim M, Dutt N, Eltawil AM, Kurdahi FJ (2012) Error-aware algorithm/archi-
tecture coexploration for video over wireless applications. ACM Trans Embed Comput Syst
11S(1):15:1–15:23. doi:10.1145/2180887.2180892

http://dx.doi.org/10.1109/ISSCC.2003.1234242
http://dx.doi.org/10.1109/MM.2004.85
http://dx.doi.org/10.1109/ISSS.1996.565880
http://dx.doi.org/10.1145/1950365.1950390
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1109/TVLSI.2006.876103
http://dx.doi.org/10.1109/ACSSC.2010.5757543
http://www.itrs.net/
https://doi.org/10.1109/ICCD.2005.81
http://dx.doi.org/10.1109/IMTC.2003.1207899
http://dx.doi.org/10.1145/379240.379268
http://dx.doi.org/10.1145/379240.379268
http://dx.doi.org/10.1109/GLOCOM.2007.773
http://dx.doi.org/10.1109/TVLSI.2010.2056397
http://dx.doi.org/10.1145/2180887.2180892

910 F. Kurdahi et al.

53. Kumar A, Shang L, Peh L, Jha NK (2008) System-level dynamic thermal management
for high-performance microprocessors. IEEE Trans Comput-Aided Des Integr Circuits Syst
27(1):96–108

54. Kurdahi F, Eltawil A, Yi K, Cheng S, Khajeh A (2010) Low-power multimedia system
design by aggressive voltage scaling. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(5):
852–856. doi:10.1109/TVLSI.2009.2016665

55. Lahiri K, Raghunathan A, Lakshminarayana G, Dey S (2004) Design of high-performance
system-on-chips using communication architecture tuners. IEEE Trans Comput Aided Des
Integr Circuits Syst 23(5):620–636. doi:10.1109/TCAD.2004.826585

56. Lee KJ, Skadron K (2005) Using performance counters for runtime temperature sensing in
high-performance processors. In: 19th IEEE international parallel and distributed processing
symposium, pp 8. doi:10.1109/IPDPS.2005.448

57. Lee S, Das S, Pham T, Austin T, Blaauw D, Mudge T (2004) Reducing pipeline energy
demands with local DVS and dynamic retiming. In: Proceedings of the 2004 interna-
tional symposium on low power electronics and design, ISLPED ’04, Newport Beach,
pp 319–324.

58. Lee I, Kim H, Yang P, Yoo S, Chung EY, Choi KM, Kong JT, Eo SK (2006) Powervip: SoC
power estimation framework at transaction level. In: Asia and South Pacific conference on
design automation, pp 8. doi:10.1109/ASPDAC.2006.1594743

59. Leem L, Cho H, Bau J, Jacobson Q, Mitra S (2010) Ersa: error resilient system architecture
for probabilistic applications. In: Design, automation test in Europe conference exhibition
(DATE), pp 1560–1565. doi:10.1109/DATE.2010.5457059

60. Lienig J (2013) Electromigration and its impact on physical design in future technologies. In:
Proceedings of the 2013 ACM international symposium on physical design. ACM, 2013

61. Liou JJ, Krstic A, Jiang YM, Cheng KT (2000) Path selection and pattern generation for
dynamic timing analysis considering power supply noise effects. In: IEEE/ACM interna-
tional conference on computer aided design, ICCAD-2000, pp 493–496. doi:10.1109/IC-
CAD.2000.896521

62. Lloyd JR (1991) Electromigration failure. J Appl Phys 69:7601–7604
63. Long J, Memik S, Memik G, Mukherjee R (2008) Thermal monitoring mechanisms for chip

multiprocessors. ACM Trans Archit Code Optim (TACO) 5(2):9
64. Macii E, Pedram M, Somenzi F (1998) High-level power modeling, estimation, and

optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 17(11):1061–1079.
doi:10.1109/43.736181

65. MacQueen J (1967) Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol 1, no 14

66. Makhzan M, Khajeh A, Eltawil A, Kurdahi F (2007) Limits on voltage scaling for caches
utilizing fault tolerant techniques. In: 25th international conference on computer design,
ICCD 2007, pp 488–495. doi:10.1109/ICCD.2007.4601943

67. Mamidipaka M, Khouri K, Dutt N, Abadir M (2004) Analytical models for leak-
age power estimation of memory array structures. In: International conference on
hardware/software codesign and system synthesis, CODES + ISSS 2004, pp 146–151.
doi:10.1109/CODESS.2004.240909

68. Markovic D, Stojanovic V, Nikolic B, Horowitz M, Brodersen R (2004) Methods
for true energy-performance optimization. IEEE J Solid-State Circuits 39(8):1282–1293.
doi:10.1109/JSSC.2004.831796

69. Memik SO, Mukherjee R, Ni M, Long J (2008) Optimizing thermal sensor allo-
cation for microprocessors. IEEE Trans Comput Aided Des Integr Circuits Syst 27:
516–527

70. Misailovic S, Roy D, Rinard M (2011) Probabilistically accurate program transformations.
In: Yahav E (ed) Static Analysis. Lecture notes in computer science, vol 6887. Springer,
Berlin/Heidelberg, pp 316–333. doi:10.1007/978-3-642-23702-7_24

71. Mukherjee R, Memik SO (2006) Systematic temperature sensor allocation and placement for
microprocessors. In: Proceedings of the 43rd annual design automation conference. ACM

http://dx.doi.org/10.1109/TVLSI.2009.2016665
http://dx.doi.org/10.1109/TCAD.2004.826585
http://10.1109/IPDPS.2005.448
http://dx.doi.org/10.1109/ASPDAC.2006.1594743
http://dx.doi.org/10.1109/DATE.2010.5457059
http://dx.doi.org/10.1109/ICCAD.2000.896521
http://dx.doi.org/10.1109/43.736181
http://dx.doi.org/10.1109/ICCD.2007.4601943
http://dx.doi.org/10.1109/CODESS.2004.240909
http://dx.doi.org/10.1109/JSSC.2004.831796
http://dx.doi.org/10.1007/978-3-642-23702-7_24

27 Microarchitecture-Level SoC Design 911

72. Mukherjee R, Mondal S, Memik S (2006) Thermal sensor allocation and placement for
reconfigurable systems. In: IEEE/ACM international conference on computer-aided design
(ICCAD’06). IEEE

73. Mukhopadhyay S, Mahmoodi H, Roy K (2004) Statistical design and optimization of SRAM
cell for yield enhancement. In: IEEE/ACM international conference on computer aided
design, ICCAD-2004, pp 10–13. doi:10.1109/ICCAD.2004.1382534

74. Mukhopadhyay S, Kim K, Mahmoodi H, Roy K (2007) Design of a process variation
tolerant self-repairing SRAM for yield enhancement in nanoscaled CMOS. IEEE J Solid-
State Circuits 42(6):1370–1382. doi:10.1109/JSSC.2007.897161

75. Mukhopadhyay S, Mahmoodi H, Roy K (2008) Reduction of parametric failures in sub-100-
nm SRAM array using body bias. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):
174–183. doi:10.1109/TCAD.2007.906995

76. Noble B (2000) System support for mobile, adaptive applications. IEEE Pers Commun
7(1):44–49. doi:10.1109/98.824577

77. Nowroz A, Cochran R, Reda S (2010) Thermal monitoring of real processors: techniques
for sensor allocation and full characterization. In: Proceedings of the 47th design automation
conference. ACM

78. Onouchi M, Yamada T, Morikawa K, Mochizuki I, Sekine H (2006) A system-level
power-estimation methodology based on ip-level modeling, power-level adjustment, and
power accumulation. In: Asia and South Pacific conference on design automation, pp 4.
doi:10.1109/ASPDAC.2006.1594742

79. Orio Rd, Ceric H, Selberherr S (2010) Physically based models of electromigration: from
black’s equation to modern TCAD models. Microelectron Reliab 50:775–789

80. Park YH, Pasricha S, Kurdahi F, Dutt N (2007) System level power estimation methodology
with h.264 decoder prediction IP case study. In: 25th international conference on computer
design, ICCD 2007, pp 601–608. doi:10.1109/ICCD.2007.4601959

81. Park Y, Pasricha S, Kurdahi F, Dutt N (2008) Methodology for multi-granularity embedded
processor power model generation for an ESL design flow. IEEE/ACM CODES+ISSS

82. Pasricha S, Dutt N, Ben-Romdhane M (2004) Extending the transaction level modeling
approach for fast communication architecture exploration. In: Proceedings of 41st design
automation conference, New York, pp 113–118

83. Pasricha S, Dutt N, Ben-Romdhane M (2006) Constraint-driven bus matrix synthesis for
MPSoC. In: Asia and South Pacific conference on design automation, pp 6. doi:10.1109/ASP-
DAC.2006.1594641

84. Pasricha S, Park YH, Kurdahi F, Dutt N (2006) System-level power-performance trade-offs
in bus matrix communication architecture synthesis. In: Proceedings of the 4th interna-
tional conference hardware/Software codesign and system synthesis, CODES + ISSS ’06,
pp 300–305. doi:10.1145/1176254.1176327

85. Pinto A, Carloni L, Sangiovanni-Vincentelli A (2003) Efficient synthesis of networks on
chip. In: Proceedings of 21st international conference on computer design, pp 146–150.
doi:10.1109/ICCD.2003.1240887

86. Powell MD, Biswas A, Emer JS, Mukherjee S, Sheikh B, Yardi S (2009) Camp: a technique
to estimate per-structure power at run-time using a few simple parameters. In: IEEE 15th
international symposium on high performance computer architecture (HPCA’09). IEEE

87. Rabaey JM (1996) Digital integrated circuits: a design perspective. Prentice-Hall, Inc., Upper
Saddle River

88. Rao R, Vrudhula S, Chakrabarti C (2007) Throughput of multi-core processors under thermal
constraints. In: Proceedings of the 2007 international symposium on low power electronics
and design. ACM

89. Ravi S, Raghunathan A, Chakradhar S (2003) Efficient RTL power estimation for large
designs. In: Proceedings of 16th international conference on VLSI design, pp 431–439.
doi:10.1109/ICVD.2003.1183173

90. Rinard M (2006) Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks. In: Proceedings of the 20th annual international conference on supercomputing,
ICS ’06. ACM, New York, pp 324–334. doi:10.1145/1183401.1183447.

http://dx.doi.org/10.1109/ICCAD.2004.1382534
http://dx.doi.org/10.1109/JSSC.2007.897161
http://dx.doi.org/10.1109/TCAD.2007.906995
http://dx.doi.org/10.1109/98.824577
http://dx.doi.org/10.1109/ASPDAC.2006.1594742
http://dx.doi.org/10.1109/ICCD.2007.4601959
http://dx.doi.org/10.1109/ASPDAC.2006.1594641
http://dx.doi.org/10.1145/1176254.1176327
http://dx.doi.org/10.1109/ICCD.2003.1240887
http://dx.doi.org/10.1109/ICVD.2003.1183173
http://dx.doi.org/10.1145/1183401.1183447

912 F. Kurdahi et al.

91. Rinard M, Hoffmann H, Misailovic S, Sidiroglou S (2010) Patterns and statistical analysis for
understanding reduced resource computing. In: Proceedings of the ACM international con-
ference on object oriented programming systems languages and applications, OOPSLA ’10.
ACM, New York, pp 806–821. doi:10.1145/1869459.1869525

92. Rodriguez S, Jacob B (2006) Energy/power breakdown of pipelined nanometer caches
(90 nm/65 nm/45 nm/32 nm). In: Proceedings of the 2006 international symposium on low
power electronics and design, ISLPED’06, pp 25–30. doi:10.1109/LPE.2006.4271802

93. Rohou E, Smith M (1999) Dynamically managing processor temperature and power. In: 2nd
workshop on feedback-directed optimization

94. Sami M, Sciuto D, Silvano C, Zaccaria V (2000) Instruction-level power estimation for
embedded VLIW cores. In: Proceedings of the eighth international workshop on hardware/-
software codesign, CODES 2000, San Diego, pp 34–38

95. Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L, Grossman D (2011) Enerj:
approximate data types for safe and general low-power computation. In: Proceedings of the
32nd ACM SIGPLAN conference on programming language design and implementation,
PLDI ’11. ACM, New York, pp 164–174. doi:10.1145/1993498.1993518

96. Sanchez H, Philip R, Alvarez J, Gerosa G (1997) A CMOS temperature sensor for PowerPC
RISC microprocessors. In: Proceedings of the symposium on VLSI circuits. IEEE, pp 13–14

97. Sarrigeorgidis K, Rabaey J (2004) Ultra low power cordic processor for wireless communi-
cation algorithms. J VLSI Signal Process Syst Signal Image Video Technol 38(2):115–130.
doi:10.1023/B:VLSI.0000040424.11334.34

98. Sarta D, Trifone D, Ascia G (1999) A data dependent approach to instruction level power
estimation. In: Proceedings of IEEE Alessandro volta memorial workshop on low-power
design, pp 182–190. doi:10.1109/LPD.1999.750419

99. Shanbhag N(2002) Reliable and energy-efficient digital signal processing. In: Proceedings of
39th design automation conference, pp 830–835. doi:10.1109/DAC.2002.1012737

100. Shatzkes M, Lloyd JR (1986) A model for conductor failure considering diffusion concur-
rently with electromigration resulting in a current exponent of 2. J Appl Phys 59, 3890–3893

101. Shin JY, Kurdahi F, Dutt N (2015) Cooperative on-chip temperature estimationusing multiple
virtual sensors. IEEE Embed Syst Lett 7(2):37–40. doi:10.1109/LES.2015.2400992

102. Skadron K, Stan MR, Huang W, Velusamy S, Sankaranarayanan K, Tarjan D (2003)
Temperature-aware computer systems: opportunities and challenges. IEEE Micro 23(6):
52–61

103. Skadron K, Stan M, Sankaranarayanan K, Huang W, Velusamy S, Tarjan D (2004)
Temperature-aware microarchitecture: modeling and implementation. ACM Trans Archit
Code Optim 1:94–125

104. Sloan J, Sartori J, Kumar R (2012) On software design for stochastic processors. In:
Proceedings of the 49th annual design automation conference, DAC ’12. ACM, New York,
pp 918–923. doi:10.1145/2228360.2228524

105. Uht A (2004) Going beyond worst-case specs with teatime. Computer 37(3):51–56.
doi:10.1109/MC.2004.1274004

106. Wan L, Chen D (2010) Analysis of circuit dynamic behavior with timed ternary decision
diagram. In: 2010 IEEE/ACM international conference on computer-aided design (ICCAD),
pp 516–523. doi:10.1109/ICCAD.2010.5653852

107. Wang H, Tan S, Swarup S, Liu X (2013) A power-driven thermal sensor placement algorithm
for dynamic thermal management. In: Design, automation & test in Europe conference &
exhibition (DATE’13). IEEE

108. Wu W, Jin L, Yang J, Liu P, Tan S (2006) A systematic method for functional unit power
estimation in mircoprocessors. In: 2006 43rd ACM/IEEE on design automation conference.
IEEE

109. Ye W, Vijaykrishnan N, Kandemir M, Irwin M (2000) The design and use of simplepower: a
cycle-accurate energy estimation tool. In: Proceedings of 2000 design automation conference,
pp 340–345. doi:10.1109/DAC.2000.855333

http://dx.doi.org/10.1145/1869459.1869525
http://dx.doi.org/10.1109/LPE.2006.4271802
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1023/B:VLSI.0000040424.11334.34
http://dx.doi.org/10.1109/LPD.1999.750419
http://dx.doi.org/10.1109/DAC.2002.1012737
http://dx.doi.org/10.1109/LES.2015.2400992
http://dx.doi.org/10.1145/2228360.2228524
http://dx.doi.org/10.1109/MC.2004.1274004
http://dx.doi.org/10.1109/ICCAD.2010.5653852
http://dx.doi.org/10.1109/DAC.2000.855333

27 Microarchitecture-Level SoC Design 913

110. Zaynoun S, Khairy M, Eltawil A, Kurdahi F, Khajeh A (2012) Fast error aware model for
arithmetic and logic circuits. In: 2012 IEEE 30th international conference on computer design
(ICCD), pp 322–328. doi:10.1109/ICCD.2012.6378659

111. Zhang Y, Li Y, Li X, Yao SC (2013) Strip-and-zone micro-channel liquid cooling of integrated
circuits chips with non-uniform power distributions. In: ASME 2013 heat transfer summer
conference

112. Zhang Y, Shi B, Srivastava A (2010) A statistical framework for designing on-chip thermal
sensing infrastructure in nano-scale systems. IEEE Trans Very Large Scale Integration (VLSI)
Syst 22(2):270–279

http://dx.doi.org/10.1109/ICCD.2012.6378659

	27 Microarchitecture-Level SoC Design
	Contents
	27.1 Introduction
	27.1.1 A Typical System-on-Chip Design Flow

	27.2 Power Modeling
	27.2.1 Sources of Power Consumption and Defining Energy
	27.2.2 Overview of Power Saving Techniques
	27.2.3 Overview of System-Level Power Estimation Methodologies
	27.2.4 Cache Power Modeling

	27.3 Thermal and Reliability Issues and Modeling in the Nano-CMOS Era
	27.3.1 Reliability
	27.3.2 Dynamic Thermal Management
	27.3.3 Thermal Sensors
	27.3.4 Sensor Allocation: Hotspot Monitoring
	27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction

	27.4 Reliability Modeling
	27.4.1 Memory
	27.4.2 Combinational Logic
	27.4.3 Microarchitecture and System Level

	27.5 Interplay between Power, Temperature, Performance, and Reliability
	27.6 Power, Performance, and Resiliency Considerations in SoC Design
	27.6.1 Architecture-Level Error Tolerance
	27.6.2 Application-Level Error Resiliency: Multimedia Applications (H.264)
	27.6.3 Application-Level Error Resiliency: Wireless Modem Application (WCDMA)
	27.6.4 Mobile Phone SoC Example

	27.7 Summary and Conclusion
	References

