
26Memory-Aware Optimization of Embedded
Software for Multiple Objectives

Peter Marwedel, Heiko Falk, and Olaf Neugebauer

Abstract

Information processing in Cyber-Physical Systems (CPSs) has to respect a
variety of constraints and objectives such as response and execution time, energy
consumption, Quality of Service (QoS), size, and cost. Due to the large impact
of the size of memories on their energy consumption and access times, an
exploitation of memory characteristics offers a large potential for optimizations.
In this chapter, we will describe optimization approaches proposed by our
research groups. We will start with optimizations for single objectives, such as
energy consumption and execution time. As a consequence of considering hard
real-time systems, special attention is on the minimization of the Worst-Case
Execution Time (WCET) within compilers. Three WCET reduction techniques
are analyzed: exploitation of scratchpads, instruction cache locking, and cache
partitioning for multitask systems. The last section presents an approach for
considering trade-offs between multiple objectives in the design of a cyber-
physical sensor system for the detection of bio-viruses.

Acronyms

CFG Control-Flow Graph
CPS Cyber-Physical System
CPU Central Processing Unit
CRPD Cache-Related Preemption Delay
DRAM Dynamic Random-Access Memory

P. Marwedel (�) • O. Neugebauer
Computer Science, TU Dortmund University, Dortmund, Germany
e-mail: Peter.Marwedel@tu-dortmund.de; Olaf.Neugebauer@tu-dortmund.de

H. Falk
Institute of Embedded Systems, Hamburg University of Technology, Hamburg, Germany
e-mail: Heiko.Falk@tuhh.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_27

829

mailto:Peter.Marwedel@tu-dortmund.de
mailto:Olaf.Neugebauer@tu-dortmund.de
mailto:Heiko.Falk@tuhh.de

830 P. Marwedel et al.

FIFO First-In First-Out
GA Genetic Algorithm
GPU Graphics Processing Unit
ILP Integer Linear Program
LRU Least-Recently Used
MMU Memory Management Unit
PAMONO Plasmon-Assisted Microscopy of Nano-Objects
QoS Quality of Service
SPM Scratchpad Memory
SRAM Static Random-Access Memory
SVM Support Vector Machine
WCC WCET-aware C Compiler
WCEC Worst-Case Energy Consumption
WCEP Worst-Case Execution Path
WCET Worst-Case Execution Time

Contents

26.1 Introduction . 831
26.2 Constraints and Objectives . 831

26.2.1 Timing . 831
26.2.2 Energy Consumption and Thermal Behavior . 832
26.2.3 Quality of Service and Precision . 832
26.2.4 Safety, Security, and Dependability . 833
26.2.5 Further Constraints and Objectives . 833

26.3 Optimization Potential in the Memory System. 833
26.3.1 Caches . 834
26.3.2 Scratchpad Memories . 835
26.3.3 A Bound for Improvements . 836
26.3.4 Importance of Memory-Aware Load Balancing . 837

26.4 Scratchpad Allocation Algorithms . 838
26.4.1 Classification . 838
26.4.2 Non-overlaying Allocation Algorithms . 838
26.4.3 Overlaying Allocation Algorithms . 840
26.4.4 Supporting Different Architectures and Objectives . 842

26.5 WCET-Oriented Compiler Strategies . 843
26.5.1 WCET-Oriented Scratchpad Allocation . 844
26.5.2 Static Instruction Cache Locking . 848
26.5.3 Instruction Cache Partitioning for Multitask Systems 851

26.6 Trade-Off Between Energy Consumption, Precision, and Run Time 854
26.6.1 Memory-Aware Mapping with Optimized Energy Consumption

and Run Time . 854
26.6.2 Optimization for Three Objectives for the PAMONO Virus Sensor 856

26.7 Conclusions and Future Work . 862
References . 863

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 831

26.1 Introduction

This chapter considers the mapping of software applications to execution platforms
for embedded systems. Embedded systems are information processing systems
embedded into enclosing products such as cars or smart homes [29]. In combination
with their physical environment, embedded systems form so-called Cyber-Physical
Systems (CPSs). According to the National Science Foundation (NSF), “CPSs
are engineered systems that are built from and depend upon the synergy of
computational and physical components” [31]. In our view, embedded systems
can be seen as the information processing part in a CPS. Due to the integration
with the physical environment, embedded systems have to meet a large set of
functional requirements, constraints, and objectives. Hence, in addition to meeting
the functional requirements, optimization for the relevant objectives within the
design space imposed by the constraints is an essential part of design methodologies
for embedded systems. Analyzing currently available technology, it turns out that
much of the potential for optimizations concerns memories and their usage. In
the following sections, the existence of this potential will be proved by means of
examples. The examples are intended to provide an overview over optimization
potential in this area, using our research results for demonstration. Specific pointers
to our publications are included for further reference and more in-depth discussion.

26.2 Constraints and Objectives

One of the characteristics of embedded systems is the need to consider a large
variety of constraints and objectives during their design.

26.2.1 Timing

Embedded systems often have to meet real-time constraints that make them real-
time systems. Not completing computations within a given time can result in a
serious loss of the quality provided by the system (e.g., if the audio or video quality
is affected) or may cause harm to the user (e.g., if cars, trains, or planes do not
operate in the predicted way). Time constraints are called hard if not meeting them
could result in a catastrophe. All other time constraints are called soft.

During the design of real-time systems, the Worst-Case Execution Time (WCET)
plays an important role. The WCET is the largest execution time of a program
for any input and any initial execution state of the hardware platform. In general,
it is undecidable whether or not the WCET is finite, because it is undecidable
whether or not a program terminates. Hence, the WCET can only be computed for
certain simply structured programs. For realistic and general programs, it is usually
practically impossible to compute the WCET. Instead, reliable upper bounds have

832 P. Marwedel et al.

to be determined by sound methods. Such upper bounds are usually called estimated
WCET (WCETEST) values and should have at least two properties:

1. The bounds should be safe (WCETEST � WCET).
2. The bounds should be tight (WCETEST � WCET Ý 0).

If safe WCET guarantees for hard real-time systems are needed, static program
analyses are used. At binary code level, such static analyzers estimate register
values in order to identify loop counters, determine loop iteration counts, and extract
hardware-specific states of a processor’s caches and pipelines. The path analysis
stage finally estimates a program’s global WCET by finding that path within a
program’s Control-Flow Graph (CFG) that has the maximal WCET – the so-called
Worst-Case Execution Path (WCEP). The length of this longest path is the sum
of the products T � C over all blocks along the path, where T denotes a block’s
maximum execution time and C represents the block’s maximal execution count.

26.2.2 Energy Consumption and Thermal Behavior

These days, we are almost exclusively using electrical devices to process infor-
mation. Unfortunately, the operation of known devices requires the conversion of
electrical energy into thermal energy. There are various reasons for trying to keep
the amount of dissipated electrical energy as small as possible. For example, we
would like to keep the impact on global warming as small as possible and we would
like to avoid high operating temperatures and too high current densities. Energy may
be available only in limited quantities. For mobile systems, electrical energy has to
be either carried around with the system (e.g., in the form of batteries) or harvested
(e.g., by using solar cells).

Using the consumed energy as an objective or constraint is not easy, since the
amount of consumed energy depends on many factors. There are essentially two
ways of estimating this objective: estimation can be either based on measurements
for real hardware or based on computer models. Measurements can provide very
precise results but can be performed only for existing hardware. Models can be used
also for non-existing hardware, but they are inherently less precise.

The thermal behavior is very much linked to the energy consumption: the
conversion of electrical energy into thermal energy is a source of heating the system.
Thermal modeling has to take the thermal resistance between the system and the
environment as well as thermal capacities into account. Again, computer models as
well as measurements can be used.

26.2.3 Quality of Service and Precision

Overall, embedded systems have to provide some service, e.g., controlling a
physical behavior (such as braking a car), showing some video, or generating
some functional information. Such a service can be of high quality or of a reduced

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 833

quality. For example, a video can have various signal to noise ratios and different
timing jitters. Control loops may be needing different amounts of time to stabilize.
For functional information, there may be a deviation between known precise results
and a computed approximation. In the following, the different levels of service will
be called Quality of Service (QoS), and we will consider the precision of some
functional result as a special case.

26.2.4 Safety, Security, and Dependability

Embedded systems may have a direct impact on their physical environment.
Therefore, if embedded systems fail to perform the intended service, the physical
environment may be at risk. System failures can be caused by internal malfunctions
of the system as well as by attackers compromising the system. As a result, safety
and security of embedded systems are extremely important.

Due to the impact on the physical environment, dependability of embedded
systems is also important. By dependability, we capture the fact that an initially
correctly designed and manufactured system may fail due to some internal fault,
e.g., a bit flip in memory. Various physical effects can lead to such faults. Shrinking
dimensions of microelectronic circuits are known to increase the rate of such
faults [6]. Hence, they will have to be considered more carefully in the future.

26.2.5 Further Constraints and Objectives

There are many more constraints and objectives which are relevant. These include
size, cost, and weight or the availability of hardware platforms. Embedded systems
may have to resist certain types of radiation and may need to be environmentally
friendly disposable. Not all of these can be described in detail in this chapter.

The principle of Pareto optimality can be used to take design decisions in the
presence of multiple objectives. For further information on multi-objective design
space exploitation, refer to our textbook [29] and to “�Chap. 6, “Optimization
Strategies in Design Space Exploration”” of this book.

26.3 Optimization Potential in the Memory System

Much optimization potential is available in the memory system, because small
memories are faster and consume less energy per access than larger memories. This
observation was already made very early by Burks, Goldstein, and von Neumann in
1946 [7]:

Ideally one would desire an indefinitely large memory capacity such that any particular ...
word ... would be immediately available – i.e. in a time which is ... shorter than the operation
time of a fast electronic multiplier. ... It does not seem possible physically to achieve such a
capacity. We are therefore forced to recognize the possibility of constructing a hierarchy of
memories, each of which has greater capacity than the preceding but which is less quickly
accessible.

http://dx.doi.org/10.1007/978-94-017-7267-9_7

834 P. Marwedel et al.

 0.01

 0.1

 1

 10

 100

1k 16k 512k 16M 512M 4G

En
er

gy
/A

cc
es

s(
nJ

)

Size(bytes)

32Bit - Main Memory - Total Dynamic Read Energy per Read

DRAM Comm 8 banks
DRAM Comm 1 bank

DRAM LP 8 banks
DRAM LP 1 bank

SRAM HP 8 banks
SRAM HP 1 bank

SRAM LOP 8 banks
SRAM LOP 1 bank 1

 10

 100

 1000

1k 16k 512k 16M 512M 4G

Cy
cl

e
Ti

m
e(

nS
)

Size(bytes)

32Bit - Main Memory - Cycle Time

Fig. 26.1 Access times and energy consumption for DRAM and for SRAM

Figure 26.1 shows access times and energy consumptions per access for con-
temporary Dynamic Random-Access Memories (DRAMs) as well as for Static
Random-Access Memories (SRAMs), for high-power and for low-power variants
of these and for a single and eight banks. Numbers have been computed with
CACTI [19]. Access times as well as energy consumptions vary by more than two
orders of magnitude. Due to this, memory hierarchies have been introduced. Their
key goal is to assign frequently accessed information to small and fast layers of the
hierarchy such that, overall, the impression of a fast, energy-efficient, and still large
memory is achieved on the average.

Small and fast memories thus act as buffers between main memory and the
processor. For embedded systems, the architecture of these small memories has to
be highly energy-efficient and must guarantee a predictable real-time performance.
(More information on power and energy models can be found in �Chap. 27,
“Microarchitecture-Level SoC Design” of this book).

26.3.1 Caches

Let us briefly look again at some of the memories which were described in
detail in �Chap. 13, “Memory Architectures” of this book. Cache-based memory
hierarchies are today’s state of the art, because caches are fully transparent to the
software running on a system. No code modification has to be done, since caches
are hardware controlled. Caches are effective in exploiting temporal locality and
spatial locality. The former means that particular memory locations will be accessed
multiple times within a short period of time. The latter refers to the reference of
contiguous memory locations over time.

N -way set-associative caches are organized as a matrix with N columns (usually
called ways). During a memory access with a given address, the least significant
bits of this address (i.e., its index bits) unambiguously identify the row of the cache
matrix (usually called set) that potentially buffers the requested memory cell’s con-
tents. Within the selected cache set, the requested item can now reside in any of the
N ways. Thus, the most significant address bits (the tag bits) are compared with the

http://dx.doi.org/10.1007/978-94-017-7267-9_28
http://dx.doi.org/10.1007/978-94-017-7267-9_14

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 835

tag bits buffered in all N ways of the selected set. If the tag bits match (cache hit), the
requested memory cell is buffered in the cache and the data buffered in the identified
way and set is returned to the processor. If no tag comparison matches (cache
miss), the cache does not buffer the requested memory cell. A replacement policy
is responsible for deciding which item to evict from the currently selected set if all
ways of that set are currently occupied, but a new item shall be inserted in this set.

This architecture of set-associative caches combined with replacement policies
enables a very high flexibility of caches so that they can autonomously adapt to
varying memory access patterns issued by the processor. However, the drawbacks
of caches are their large penalties in terms of the objectives introduced in Sect. 26.2.
Caches exhibit a rather high-energy dissipation due to the additional memory
required to store the tag bits and due to the hardware comparators performing the tag
bit comparison for the currently selected cache set. Regarding real-time deadlines,
caches are notorious for their inherent unpredictability. Depending on its replace-
ment policy, it is hard, if not impossible, to predict during a static WCET analysis
if a memory access results in a definite cache hit or miss. If a static WCET analyzer
is uncertain about the cache’s behavior, it has to assume the worst-case behavior of
the cache which frequently leads to highly overestimated WCETEST values.

Modern architectures support cache locking, i.e., cache cells are protected from
being evicted by effectively partially disabling the replacement policy. This way, it
is possible to predict access times of data or instructions that have been locked in
the cache and to make precise statements about the cache’s worst-case timing.

26.3.2 Scratchpad Memories

As an alternative to caches, small and “conventional” memories can be mapped
into the processor’s address space. These memories are frequently called Scratch-
pad Memories (SPMs) and differ from caches in that they are not operating
autonomously in hardware. Instead, a simple address decoder decides whether a
memory cell that is accessed by the processor is part of the SPM’s address space
or not, and the requested item is then fetched from the SPM or from some other
memory.

Since SPMs completely lack tag memories and comparators, their energy
efficiency is significantly higher than that of caches [5]. Furthermore, an access
to the SPM always takes a constant time which is usually one clock cycle. As a
consequence, varying memory access latencies due to cache misses or hits cannot
occur in SPM-based architectures, thus rendering WCET estimates extremely tight
and accurate. The drawback of SPMs is their lacking flexibility. Since they are
unable to decide autonomously in hardware which items to buffer in and to evict
from the SPM memory, there must be some software instance that assigns energy-
or timing-critical parts of a program’s code or data to the SPM. Frequently, this
instance is the compiler that applies scratchpad allocation techniques and that
determines a memory layout of a program such that it exploits the available SPM
resources best. See �Chap. 13, “Memory Architectures” of this book for a detailed
comparison of caches and SPMs.

http://dx.doi.org/10.1007/978-94-017-7267-9_14

836 P. Marwedel et al.

26.3.3 A Bound for Improvements

By how much can we improve memory references with respect to some objective
on the average? Suppose that we are given two layers of the memory hierarchy and
that memory mi is closer to the processor and memory miC1 further away from the
processor. Suppose that ai is the access time of memory mi and aiC1 is the access
time of miC1. Furthermore, let us assume that a fraction P of memory references to
miC1 can be replaced by references to mi , leaving a fraction of .1 � P / (the miss
rate) of the memory references using miC1. Then, the average access time is

average new access time D P � ai C .1 � P / � aiC1 (26.1)

Let S be the ratio of access times (for available memory technologies, S can
easily be in the order of 100):

S D
aiC1

ai

(26.2)

The relative saving is

relative saving D
average old access time � average new access time

average old access time

D
aiC1 � P � ai � aiC1 C P � aiC1

aiC1

D
ai � S � P � ai � ai � S C P � ai � S

ai � S

D
S � P � S C P � S

S

D P �
P

S
(26.3)

The speedup of memory accesses can then be computed as follows:

speedup D
average old access time

average new access time

D
aiC1

P � ai C .1 � P / � aiC1

D
aiC1

P �
aiC1

S
C .1 � P / � aiC1

D
1

P
S

C .1 � P /
(26.4)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 837

If S gets large, the first term in the denominator approaches zero and the improve-
ment gets limited by the second term, .1 � P /. Hence, making S very large has
a limited benefit when the miss rate cannot be made smaller. This effect is well
known for caches. In practice, this means that the miss rate must be made as small
as possible. Due to the problem of making the miss rate small, we have to make
sure that almost every memory object can potentially be mapped to faster levels in
the memory hierarchy. Excluding the stack, heap, or other memory objects from a
mapping to fast memories would have a negative impact of the feasible speedup. In
general, the goal of an ideal memory hierarchy is not always reached. Drepper has
shown for the case of single-core systems that run times of programs can change by
orders of magnitude if their working set exceeds the sizes of caches [13]. Hence, a
clever use of memory hierarchies is already needed for single cores.

Equation (26.4) also corresponds to Amdahl’s law [3], describing bounds for
speedup by parallelization, where P is the fraction of the code which is parallelized
and S is the speedup during parallel execution.

Equations (26.1) to (26.4) can also be generalized to capture effects for
objectives other than access times. In particular, they can be applied to the case
of modeling access energies and the resulting improvements.

26.3.4 Importance of Memory-Aware Load Balancing

For multi-core systems, an excessive amount of threads can lead to a lack of
memory, as demonstrated, e.g., by Kotthaus and Korb [23]. Figure 26.2 (resulting

SVM Classification

 0 500 1000 1500 2000 2500 3000

pr
oc

es
se

s

 0
 400
 800

 1200
 1600
 2000

 0 500 1000 1500 2000 2500 3000

m
em

or
y

[M
B]

time [s]

Free memory

CPU utilizationlow high

Fig. 26.2 SVM application on a four-core system: lack of free memory resulting in idling cores

838 P. Marwedel et al.

from the experiments of Kottaus and Korb) shows profiling results for a Support
Vector Machine (SVM) application running on a four-core system.

The application is programmed in the R language and is executed by version
3 of the R system running on a Lenovo L512 comprising an i5 processor. Due to
memory-unaware allocation of cores, there are phases in which the system runs
out of free memory. This happens even though load balancing of R is turned
on. However, R is unaware of actual resource requirements. As a result, there is
sometimes no free memory remaining. This is indicated by horizontal lines in the
lower part of the diagram. Due to a too large number of processes, the system runs
out of main memory and suffers from an increased swapping activity. This example
demonstrates that memory-unaware allocation of computing resources results in
wasting resources and cannot be efficient. We should care about required memory
resources even for scenarios in which we address the programming of multi-core
systems at a high level. Therefore, we will be looking at memory allocation in more
detail in the remaining sections of this chapter.

26.4 Scratchpad Allocation Algorithms

26.4.1 Classification

In an earlier paper [5], we provided a detailed side-by-side comparison of caches
and SPMs with respect to access times, energy consumptions, and silicon areas. A
detailed comparison is also included in �Chap. 13, “Memory Architectures” of this
book.

In contrast to caches, SPMs must be explicitly managed by software. In the
following, we classify the approaches to SPM management according to three
dimensions:

• The type of allocation algorithm
• The type of architecture
• The optimization objective

We start by looking at allocation algorithms. SPM allocation algorithms can
be classified into non-overlaying (or “static”) and overlaying (or “dynamic”)
algorithms. For the first type of algorithms, memory objects are resident in the SPM
during the entire lifetime of an application, whereas for the latter, objects are moved
between the memories during run time.

26.4.2 Non-overlaying Allocation Algorithms

For the non-overlaying case, the optimization problem for energy or run-time
optimization can be modeled as a Knapsack problem or as an Integer Linear
Program (ILP).

http://dx.doi.org/10.1007/978-94-017-7267-9_14

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 839

Let i denote a memory object and let si denote its size. Let �i denote the saving
with respect to the considered objective if i is mapped to the SPM. The saving is the
difference between the objective values for a mapping to some main memory and
the SPM. Let SSPM denote the size of the SPM. Let xi be 1 if i is mapped to the
SPM and 0 otherwise. Then, the following ILP model can be used to find an optimal
mapping of memory objects to the SPM:

Maximize
X

i

xi � �i (26.5)

Subject to
X

i

xi � si � SSPM (26.6)

Algorithms by Steinke [38] and by Verma [44] are examples based on such
models. They are particular examples of hardware-aware compilation discussed in
�Chap. 25, “Hardware-Aware Compilation” of this book. In order to minimize the
fraction .1 � P / of “unimproved” memory references, most of our optimizations
consider code and data references. For data references, global data can be easily
taken into account. We have also considered stack variables. As a result, large
savings (as computed by Equation (26.3)) have been observed.

We will demonstrate these for partitioned memories. Here, we have at our
disposal J memories, each of them having an energy consumption ej per access
and a size Sj . Let ni be the number of accesses to memory object i . A decision
variable xi;j will be 1 if memory object i is mapped to memory j and 0 otherwise.
Then, the following ILP model allows us to minimize the energy consumption:

Minimize
X

j

ej �

X

i

xi;j � ni

!
(26.7)

Subject to

8j 2 J W
X

i

xi;j � si � Sj (26.8)

8i W
X

j

xi;j D 1 (26.9)

Figure 26.3 shows results for partitioned SPMs with 1 to 8 partitions.
For a single SPM, the savings (as computed by Equation (26.3) but indicated as a

percentage, rather than a fraction) decrease when the SPM is larger than the working
set of the application. For partitioned SPMs, the saving remains at the maximum,
even for oversized SPMs. These savings refer to dynamic power consumption.
Partitioned SPMs provide even larger advantages when leakage power is also taken
into account.

http://dx.doi.org/10.1007/978-94-017-7267-9_26

840 P. Marwedel et al.

Fig. 26.3 Energy savings achieved by SPM allocation of a GSM application

26.4.3 Overlaying Allocation Algorithms

For overlaying algorithms, memory objects are migrated between different levels of
the hierarchy. This migration can be either explicitly programmed in the application
or inserted automatically. Overlaying algorithms are beneficial for applications with
multiple hotspots, for which the code can be evicting each other. For overlaying
algorithms, we are typically assuming that all applications are known at design
time such that memory allocation can be considered at this time. Algorithms by
Verma [44] and Udayakumararan et al. [41] are early examples of such algorithms.

Verma’s algorithm starts with the CFG of the application to be optimized. For
edges of the graph, Verma considers potentially freeing the SPM for locally used
memory objects.

In Fig. 26.4, we are considering control blocks B1 to B10 and control flow
branching at B2. We assume that array A is defined, modified, and used along the left
path. T3 is only used in the right part of the branch. We consider potentially freeing
the SPM so that T3 can be locally allocated to the SPM. This requires spill and load
operations in potentially inserted blocks B9 and B10 (thin and dotted lines: potential
inserts). Cost and benefit of these spill operations are then incorporated into a global
ILP. Solving the ILP yields an optimal set of memory copy operations. For a set
of benchmarks, the average reductions in energy consumption and execution time,
compared to the non-overlaying case, are 34% and 18%, respectively. Blocks of
code are handled as if they were arrays of data.

Udayakumararan’s algorithm is similar, but it evaluates memory objects accord-
ing to their number of memory accesses divided by their size. This metric is then

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 841

SPILL_LOAD(T3);

DEF A SP size=|A|=|T3|

MOD A

USE A

USE A

USE T3

T3

USE T3

SPILL_LOAD(A)

SPILL_STORE(A);

B10

B9

B6

B5

B8

B7

B4

B3

B2

B1

Fig. 26.4 Potential spill code

used to heuristically guide the optimization process. This approach can also take
heap objects into account.

In more dynamic cases, the set of applications may vary during the use of the
system. For such cases, dynamic memory managers are appropriate. Pyka [36]
published an algorithm based on an SPM manager which is part of the operating
system.

Egger et al. [9] proposed to exploit an existing Memory Management Unit
(MMU) for dynamic replacements within the SPM. In his approach, code objects
are classified into those that should potentially be moved into the SPM and those
that should not. Potential SPM objects are then grouped into pages. Corresponding
MMU entries are initially set to invalid. During execution, MMU exceptions are
generated for accesses to SPM candidates not (yet) available in SPM. An exception
handler is then invoked. The handler decides which memory objects to move into the
SPM and which objects to move out. The approach is designed to handle code and
is capable of supporting a dynamically changing set of applications. Unfortunately,
the size of current SPMs corresponds to just a few entries in today’s page tables,
resulting in a coarse-grained SPM allocation.

Large arrays are difficult to allocate to SPMs. In fact, even a single array can
be too large to fit into an SPM. The splitting strategy of Verma [16] is restricted
to a single-array splitting. Loop tiling is a more general technique, which can be
applied either manually or automatically [24]. Furthermore, array indexes can be
analyzed in detail such that frequently accessed array components can be kept in
the SPM [27].

Our explanations have so far mainly addressed code and global data. Stack and
heap data require special attention. In both cases, two trivial solutions may be
feasible: In some cases, we might prefer not to allocate code or heap data to the

842 P. Marwedel et al.

SPM at all. Obviously, this would have an immediate effect on the bound for the
achievable speedup as per Equation (26.4). In other cases, we could run stack [2]
and heap size analysis [18] to check whether stack or heap fit completely into the
SPM and, if they do, allocate them to the SPM.

For the heap, Dominguez et al. [12] proposed to analyze the liveness of heap
objects. Whenever some heap object is potentially needed, code is generated to
ensure that the object will be in the SPM. Objects will always be at the same address,
so that the problem of dangling references to heap objects in the SPM is avoided.
McIllroy et al. [30] propose a dynamic memory allocator taking characteristics
of SPM into account. Bai et al. [4] suggest that the programmer should enclose
accesses to global pointers by two functions p2s and s2p. These functions provide
conversions between global and local (SPM) addresses and also ensure a proper
copying of memory contents.

For the stack, Udayakumararan et al. [41] proposed to use two stacks, one for
calls to short functions with their stack being in main memory and one for calls to
computationally expensive functions whose stack area is in the SPM. Kannan et al.
[22] suggested to keep the top stack frames in the SPM in a circular fashion. During
function calls, a check for a sufficient amount of space for the required stack frame
is made. If the space is not available, old stack frames are copied to a reserved area
in main memory. During returns from function calls, these frames can be copied
back. Various optimizations aim at minimizing the necessary checks.

26.4.4 Supporting Different Architectures and Objectives

A second dimension in SPM allocation (in addition to the allocation type) is the
architectural dimension. Implicitly, we have so far considered single-core systems
with a single memory hierarchy layer and a single SPM. Other architectures exist as
well. For example, there may be hybrid systems containing both caches and SPMs.
We can try to reduce cache misses by selectively allocating SPM space in case of
cache conflicts [8, 21, 48]. Also, we can have different memory technologies, like
flash memory or other types of non-volatile RAM [45]. For flash memory, load
balancing is important. Also, there might be multiple levels of memories. So far, we
have just considered single-core processors. For multi-core systems, new tasks and
options exist. SPMs can possibly be shared across cores. Also, there may be multiple
memory hierarchy levels, some of which can be shared. Liu et al. [25] present an
ILP-based approach for this.

A third dimension in SPM allocation is the objective function. So far, we have
focused on energy or run-time minimization. Other objectives can be considered as
well. Implicitly, we have modeled the average case energy consumption. The Worst-
Case Energy Consumption (WCEC) is an objective considered, for example, by Liu
[25]. Reliability and endurance are relevant for the design of reliable applications,
in particular in the presence of aging [46]. It may also be necessary to avoid
overheating of memories. From among other possible objectives, we will be looking
at the WCET in the following sections.

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 843

26.5 WCET-Oriented Compiler Strategies

In contrast to simple optimization objectives like, e.g., energy consumption that can
be modeled using single values like, e.g., �i or ej (cf. Sect. 26.4.2), the systematic
reduction of WCET estimates is much more subtle due to the nature of the WCET.
As already motivated in Sect. 26.2.1, the WCET of a program corresponds to the
length of the longest path WCEP through a program’s CFG. Thus, WCET-oriented
optimizations must exclusively focus on those parts of the program that lie on the
WCEP. The optimization of parts of the program aside the WCEP is ineffective,
since this does not shorten the WCEP. Therefore, optimization strategies for WCET
reduction must have detailed knowledge about the WCEP.

Unfortunately, this WCEP can be highly unstable in the course of an optimiza-
tion. Consider the CFG of a function main in Fig. 26.5a, consisting of five basic
blocks each of them having the indicated WCET values given in clock cycles.
Obviously, the longest path through this CFG is main, a, b, and c. This WCEP,
highlighted with solid arrows in Fig. 26.5a, has a WCET of 205 cycles. Assuming
that some optimization is able to reduce b’s WCET from 80 down to 40 cycles, the
CFG shown in Fig. 26.5b results from this optimization. As can be seen, the WCEP
after optimization of b is main, d, and c. This example shows that the WCEP is
very unstable during optimization – it can switch from one path within the CFG to
a completely different one in the course of optimizations.

Thus, WCET-oriented and memory-aware compiler optimizations are faced with
the challenges to always accurately model the current WCEP and to always be
aware of possible WCEP switches. The following sections outline examples of
WCET-oriented optimizations that exploit scratchpads and caches and that carefully
consider WCEP switches. First, we present WCET-oriented SPM allocations to
make the structural differences between memory-aware optimizations of energy
dissipation (cf. Sect. 26.4) and of WCET estimates (cf. the following Sect. 26.5.1)
evident. Next, we discuss cache locking optimizations in Sect. 26.5.2, followed by
a presentation of cache partitioning for multitask systems in Sect. 26.5.3. Other
approaches for timing models are explained in �Chap. 19, “Host-Compiled Sim-
ulation” of this book. The importance of WCET-oriented optimizations for actual
applications is stressed in Sect. 4 in �Chap. 37, “Control/Architecture Codesign for
Cyber-Physical Systems” of this book.

main

b

c

a d

main

b

c

a d

a b

Fig. 26.5 (a) Original example CFG (b) Example CFG after optimization of b

http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_37

844 P. Marwedel et al.

26.5.1 WCET-Oriented Scratchpad Allocation

This section presents an ILP-based SPM allocation of program code that moves
basic blocks statically onto the SPM [14, 39]. This is done under simultaneous
consideration of possibly switching WCEPs by formulating ILP constraints that
inherently model the longest path which starts at a certain basic block. The following
equations use lowercase letters for ILP variables and uppercase letters for constants.

In analogy to the techniques presented previously in Sect. 26.4, the ILP also uses
one binary decision variable vi per basic block bi of a program:

vi D

�
0 if basic block bi is assigned to memMAIN

1 if basic block bi is assigned to memSPM
(26.10)

A scratchpad assignment is legal if the size of all basic blocks allocated to the SPM
does not exceed the scratchpad’s capacity. This property is ensured by adding in
Equation (26.6) to the ILP again.

A block bi of a function f causes some costs ci , i.e., bi ’s WCETEST depending
on whether bi is allocated to main memory or to the SPM:

ci D C i
MAIN � .1 � vi / C C i

SPM � vi (26.11)

Constants C i
MAIN and C i

SPM model the WCETEST values of bi if it is executed from
main memory or from the SPM, respectively. For reducible CFGs, an innermost
loop l has exactly one back edge that turns it into a cyclic graph. Not considering
this back edge turns l’s CFG into an acyclic graph. This acyclic graph without l’s
back edge is denoted as Gl D .V; E/ here. Each node of Gl models a single basic
block. Without loss of generality, there is exactly one unique exit node bl

exit of loop l

in Gl and one unique entry node bl
entry. The WCETEST wl

exit of bl
exit is set to the costs

of bl
exit:

wl
exit D cl

exit (26.12)

The WCETEST of a path from a node bi (different from bl
exit) to bl

exit must be greater
or equal than the WCETEST of any successor of bi in Gl , plus bi ’s costs:

8bi 2 V n fbl
exitg W 8.bi ; bsucc/ 2 E W wi � wsucc C ci (26.13)

Variable wl
entry thus represents the WCET of all paths of loop l starting in bl

entry if l

is executed exactly once. To model several executions of l , all CFG nodes v 2 V

of Gl are merged to a new super-node vl . The costs of vl are equal to l’s WCET if
executed once, multiplied by l’s maximal loop iteration count C l

max:

cl D wl
entry � C l

max (26.14)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 845

Replacing a loop l by its super-node vl may turn another loop l 0 of function f

that immediately surrounds l into an innermost loop with acyclic CFG G0
l . Hence,

Equations (26.12), (26.13), and (26.14) can be formulated analogously for l 0. This
way, the innermost loops of f are successively collapsed in the CFG so that ILP
constraints that model f ’s control flow are created from the innermost to the
outermost loops.

A program’s WCEP can switch only at a block bi with more than one successor
because only there, forks in the control flow are possible. Since Equation (26.13)
is created for each successor of bi , variable wi always reflects the WCET of any
path starting from bi – irrespective of which of the successors actually lies on the
current WCEP. This way, Equation (26.13) realizes the implicit consideration of
(switching) WCEPs in the ILP.

In analogy to the ILP modeling of loops, the WCETEST of a program’s function
f is represented by the variable wf

entry if basic block b
f
entry is F ’s unique entry point.

Whenever a basic block bi calls some function f , variable wf
entry is added to wi in

Equation (26.13) in order to model the interprocedural control flow correctly.
Finally, an entire C program’s WCETEST is modeled by the ILP variable wmain

entry
that denotes the WCETEST of the program’s unique entry point main. To minimize
a program’s WCET by the ILP, the following simple objective function is thus used:

Minimize wmain
entry (26.15)

Furthermore, our ILP includes many additional constraints that take care of adjusted
branch instructions making sure that a basic block located in main memory can still
branch to a successor placed onto the SPM, and vice versa [14]. The discussion of
these branching related constraints is omitted here for the sake of brevity.

This structure of the ILP can also be used to allocate global variables of a
program onto the SPM. The main difference between the SPM allocation of code as
described by Equations (26.10)–(26.15) and that of data objects is the cost modeling
part. A binary variable xj per data object dj of a program specifies whether to
allocate it to the SPM or not:

xj D

�
0 if data object dj is assigned to memMAIN

1 if data object dj is assigned to memSPM
(26.16)

Here, the scratchpad capacity constraint (26.6) is simply formulated over the
decision variables and sizes of the allocatable data objects. Again, each basic block
bi of a program causes some costs ci . For the SPM allocation of data, these costs ci

reflect bi ’s WCETEST depending on whether the data objects accessed by bi are put
in main memory or in the SPM:

ci D Ci �
X

dj 2 data objects

Gi;j � xj (26.17)

Here, Ci denotes bi ’s WCETEST if all data objects accessed by bi are placed in
main memory. Gi;j is a constant that denotes the WCET reduction that bi exhibits

846 P. Marwedel et al.

if data object dj is put on the SPM. All other constraints (26.12), (26.13), (26.14),
and (26.15) of the SPM allocation of program code that model the structure of a
program’s CFG remain unchanged when allocating data to the SPM.

Both ILP models are fully integrated into the WCET-aware C Compiler (WCC)
[15, 47]. Due to the integration of a static WCET analyzer into the compiler,
the constants C i

MAIN , C i
SPM and Ci used in Equations (26.11) and (26.17) are

determined fully automatically. The sizes of basic blocks, data objects and SPM
memories as well as the gain Gi;j from Equation (26.17) are determined using
WCC’s processor-specific low-level intermediate representation. The maximal loop
iteration counts C l

max used in Equation (26.14) stem from WCC’s polyhedral loop
analyzer [26] or from user annotations. The WCC compiler infrastructure allows to
generate the ILPs, their solution using IBM’s cplex solver and the final memory
allocation of the binary executable code in a fully automated fashion without any
user intervention.

The following paragraphs show some experimental results that illustrate the
WCETEST reductions that can be achieved by these two SPM allocations of program
code and of data. Experiments have been performed for an Infineon TriCore TC1796
processor that features a 47 kB code SPM and a separate 40 kB data SPM that are
both accessible within one clock cycle. The processor’s main memory has an access
latency of six clock cycles. WCET analyses were performed using the static timing
analyzer aiT [1]. All results are generated using WCC’s optimization level -O2 so
that our SPM allocations were applied to already highly optimized code.

We applied our SPM allocation of program code to 73 different real-life
benchmarks. Code sizes range from 52 bytes up to 18 kB. Since these code sizes
are much smaller than the totally available SPM size, we artificially limit the
available SPM space for benchmarking. For each benchmark, SPM sizes of 10%,
20%, . . . , 100% of the benchmark’s code size were used. Figure 26.6 shows the
WCET estimates of all benchmarks produced by the WCET analyzer aiT that result
from our SPM allocation as a percentage of the WCETEST when not using the
program SPM at all. The bars in the diagram represent the average values over
all 73 benchmarks. As can be seen, steadily decreasing WCETEST values were
observed for increasing SPM sizes. Already for tiny SPMs with a capacity of 10%
of a benchmark’s code size, WCETEST decreases to 92.6% compared to the case

Fig. 26.6 Average relative WCETEST values after WCET-oriented SPM allocation of code

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 847

Fig. 26.7 Average relative WCETEST values after WCET-oriented SPM allocation of data

when not using the SPM at all. For SPMs large enough to hold entire benchmarks,
an average WCETEST of only 60% of the original WCET was obtained. Thus, the
achieved savings range between 7.4% and 40%. Our SPM allocation of program
code potentially changes the benchmarks’ code sizes due to the insertion of adjusted
jump instructions in order to keep the control flow correct. It turned out that these
changes are negligible – we observed a maximal code size increase by 128 bytes
for our benchmarks. On average over all 73 benchmarks, code sizes increased by
0.02%.

Figure 26.7 shows the results of our SPM allocation of data averaged over all
benchmarks that contain global data. The x-axis represents varying SPM sizes in
absolute values. Again, we observed that WCETEST decreased steadily for increas-
ing data SPM sizes. Already for SPMs of only 8 bytes size, average WCET estimates
over all benchmarks were reduced by 2.6%. For the real TriCore architecture with
its 40 kB data SPM, average overall savings of 20.2% were achieved. The run-time
complexity of both ILP-based SPM allocations is negligible in practice. ILP solving
times of at most two CPU seconds were observed on an Intel Xeon at 2.4 GHz.

Both SPM allocations for code and data assume constant values to represent
WCET values of basic blocks depending on the actual memory allocation (cf.
Equations (26.11) and (26.17)). This in turn implies that the access latencies of
the memories are also assumed to be constant like the six clock cycles for main
memory accesses considered in this section. However, if Flash memory is used as
main memory, its access latencies can vary, since Flash memory is organized in
blocks and consecutive accesses within one block are faster than the six clock cycles
used here. This behavior of Flash memories has no effect on the SPM allocation
of code, since Equation (26.11) uses WCET values provided by a static timing
analyzer that is inherently aware of the varying access latencies of Flash memories.
The SPM allocation of data uses a constant gain Gi;j for data memory accesses in
Equation (26.17) which relies on the assumption of constant access latencies. Thus,
this SPM allocation could take suboptimal allocation decisions so that its objective
function from Equation (26.15) does not optimally minimize the global WCET of
a program. However, since all WCET estimates used to generate Fig. 26.7 were
solely obtained by aiT with its built-in support for Flash memories, our results can
be considered safe, and the savings depicted in Fig. 26.7 are considerable despite of

848 P. Marwedel et al.

the conservative ILP model. We expect that the additional WCET reductions that
could potentially be achieved by an improved ILP model considering block Flash
accesses are marginal and not worth the effort.

26.5.2 Static Instruction Cache Locking

It is worthwhile mentioning that the structure of the ILP presented in the pre-
vious section is very general and flexible so that it can be employed to realize
other memory-oriented optimizations beyond SPM allocation. The key difference
between SPM allocation and cache locking is the granularity of the items to be
allocated to the SPM or cache, respectively. In the case of SPMs, basic blocks
or global variables of arbitrary size are candidates for memory allocation – cf.
Equations (26.10) and (26.16). In contrast, the granularity of items that can be
locked into a cache is defined by the cache’s hardware architecture and its lockdown
scheme.

For example, the ARM926EJ-S architecture supports way-based instruction
cache locking which means that only complete columns of an N -way set-associative
cache (cf. Sect. 26.3) can be locked. For an N -way set-associative cache with a total
capacity of SCACHE bytes, each way comprises SWAY bytes:

SWAY D SCACHE=N (26.18)

For a size B of a cache block given in bytes, the number of lines L per cache way is

L D SWAY=B (26.19)

Loading content from the main memory and locking it into a single cache line causes
some architecture-specific but constant costs CLINE. Thus, the costs for locking a
complete way consisting of L lines are

CWAY D L � CLINE (26.20)

Due to the modulo addressing of caches, memory addresses with addr
mod SWAY � 0 are mapped to the beginning of a cache way. Thus, the main
memory can be divided into memory blocks mb with a size of SWAY bytes each such
that each block can be entirely locked into a single cache way. This partitioning
into blocks of size SWAY is then applied to a program to be optimized by our cache
locking approach – these blocks mb1; : : : ; mbm denote candidates for cache locking.
Thus, the ILP for instruction cache locking includes binary decision variables per
memory block mbj :

yj D

�
0 if memory block mbj remains unlocked
1 if memory block mbj is locked into the instruction cache

(26.21)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 849

An N -way set-associative cache can keep copies of up to N such memory blocks
at the same time, since ways can only be locked in their entirety. Thus, an ILP
constraint needs to ensure that the size of the contents locked into the cache does
not exceed the cache size:

mX

j D1

yj � N (26.22)

As already shown in Sect. 26.5.1, each basic block bi of a program causes some
costs ci . The WCET estimate of bi if it is executed from main memory is denoted
by the constant C i

MAIN while C i
CACHE represents its Worst-Case Execution Time if

the block is locked into the cache. Given the size Si of each basic block bi and its
start address in main memory, it is easy to determine the number of bytes Si;j of bi

that are part of memory block mbj . Then, the potential WCETEST reduction of bi

in clock cycles Ri;j if parts of it are executed from the cache due to a lockdown of
mbj is:

Ri;j D
Si;j

Si

� .C i
MAIN � C i

CACHE/ (26.23)

In the ILP for instruction cache locking, the costs ci reflect bi ’s WCETEST depending
on whether memory objects that bi is part of are locked into the cache:

ci D C i
MAIN �

mX

j D1

yj � Ri;j (26.24)

Using these basic block costs ci , the constraints from Equations (26.12), (26.13),
(26.14) that model the structure of a program’s CFG can, again, be reused without
any further modification in order to realize the ILP for cache locking.

In analogy to Sect. 26.5.1, the WCETEST of a complete C program is represented
by the ILP variable wmain

entry . However, static instruction cache locking as presented
here involves some overhead in terms of WCETEST , since some newly inserted code
for loading and locking contents into the cache needs to be executed in the very
beginning of function main. Thus, the objective function of the ILP for instruction
cache locking that has to be minimized now models the WCETEST of the complete
program including this lockdown overhead [34]:

Minimize wmain
entry C

mX

j D1

yj � CWAY (26.25)

This ILP model is again fully integrated and automated within the WCC
compiler [15,47]. An evaluation has been carried out for an ARM926EJ-S processor
that features a 16-kB large instruction cache with 32-byte line size, Least-Recently
Used (LRU) replacement, and a configurable associativity of 2 or 4. Content can
be accessed from the cache within one clock cycle, while main memory accesses

850 P. Marwedel et al.

Fig. 26.8 Average relative WCETEST values after WCET-oriented locking of 2-way set-
associative instruction caches

take six cycles. The instruction cache supports way-based locking as described in
this section. Loading and locking a single cache line of 32 bytes takes CLINE D 47

clock cycles. The assumption of constant values for main memory access latencies
and thus for the cache line locking overhead CLINE has already been discussed at the
end of Sect. 26.5.1. In the context of the instruction cache locking presented here,
the imprecision of the ILP model is again considered marginal, since the constant
locking overhead contributes exactly once to a benchmark’s overall WCET, because
the locking code is executed exactly once during the system startup phase.

Our cache locking optimization has been evaluated using 100 different real-
life benchmarks from various commonly used benchmarking suites (DSPstone,
MediaBench, MRTC, UTDSP, and some benchmarks from miscellaneous sources).
For our evaluations, we artificially limited the cache sizes to 10%, 15%, and 20% of
a benchmark’s overall code size.

Figure 26.8 depicts the results of our static instruction cache locking scheme if
applied to an architecture with a 2-way set-associative cache. The bars of the dia-
gram show the WCET estimates that result from our cache locking as a percentage
of the WCETEST when executing the benchmarks without any cache. The figure
shows average results over all used benchmark suites for the sake of readability.
Per benchmark suite, detailed results are given for ILP-based cache locking as
well as for a freely operating instruction cache without any locking. All locking-
based results include the overhead for loading and locking blocks into the cache
prior to a benchmark’s execution. As can be seen from Fig. 26.8, ILP-based cache
locking leads to maximal overall WCETEST reductions of 35.4% (misc benchmarks)
for very small caches with a capacity of 10% of a benchmark’s code size. For
caches of size 15% and 20%, respectively, the maximally achieved WCETEST

reductions increase up to 37.7% (misc benchmarks) and 43.1% (MRTC). The
maximal improvements achieved by a regularly operating cache without locking
amount to 32.6%, 36.3%, and 37.8% for the MediaBench suite and caches of sizes
10%, 15%, and 20%, respectively. Interestingly, our proposed cache locking always
outperforms the regular caches except for MediaBench. Due to the static nature of
the cache locking approach described here, the originally dynamic behavior of the
cache gets lost. MediaBench exhibits a number of computation kernels that cannot
be locked simultaneously into the size-restricted cache. In contrast, the regularly

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 851

Fig. 26.9 Average relative WCETEST values after WCET-oriented locking of 4-way set-
associative instruction caches

operating cache can exchange the content during run time and adapt better to the
characteristics of these benchmarks. Partial cache locking as described in [11] would
be an alternative for such cases. For all other benchmark suites, the WCETEST values
resulting from our cache locking are significanly lower than those obtained by a
regular cache. On average over all 100 considered benchmarks, locking leads to
improvements of 27.1%, 31.2%, and 34.3% for 10%, 15%, and 20% large caches,
respectively, while the unlocked caches of the same sizes only show improvements
of 3.3%, 12.4%, and 19.6%, respectively.

The same trends were observed for a 4-way set-associative cache (cf. Fig. 26.9).
Compared to the previous case with associativity of 2, the regular and unlocked
4-way set-associative cache achieves much better results due to its higher degree of
freedom in which way to store some blocks: here, maximal WCETEST reductions
of 35.5%, 38.9% (MediaBench), and 39.5% (misc) were achieved. However, the
locked cache still outperforms the unlocked one except for MediaBench. Cache
locking leads to maximal improvements of 35.4%, 46.1%, and 48.3% (misc
benchmarks) for caches of size 10%, 15%, and 20%, respectively. On average
over all benchmarks, locking the 4-way set-associative cache improves WCETESTs
between 29.5% (10% cache size) and 39.6% (20% cache size) while the regular
unlocked cache only achieves reductions from 19.8% (10% cache size) up to 29.2%
(20% cache size).

Locking of content into data caches could be done in a similar fashion as
described here. A first approach on static data cache locking using compile-time
cache analysis was originally proposed in [42].

26.5.3 Instruction Cache Partitioning for Multitask Systems

While the techniques described so far are effective in reducing the WCETEST of
a single program, today’s systems are often multitask systems where different
programs are preempted and activated by a scheduler. For such multitask sys-
tems, caches are an even larger source of timing unpredictability as compared
to single-task systems (cf. Sect. 26.3), because interrupt-driven schedulers lead to
unknown points of time where task preemptions and context switches may happen.

852 P. Marwedel et al.

Furthermore, it may happen that one task evicts cache contents belonging to some
other task so that this other task exhibits additional cache misses if it resumes its
execution. Finally, it is also unknown at which address the execution of a preempted
task continues; hence it is unknown which cache set is accessed and eventually
evicted next. Recent work on Cache-Related Preemption Delay (CRPD) analysis
tries to incorporate scheduling and task preemption into timing analysis. But since
the behavior of a cache in preemptive multitask systems cannot be predicted with
100% accuracy, the resulting WCET estimates are often highly overestimated, or
some scheduling policies are not analyzable at all.

Cache partitioning is a technique to make the I-cache behavior perfectly
predictable even for preemptive multitask systems. Here, the cache is divided into
partitions of different sizes, and each task of a multitask system is assigned to one of
these partitions. This partitioning is done such that each task can only evict entries
from the cache that belong to its very own partition. By construction, a task can
never evict cache contents of other tasks. As a consequence, multiple tasks do not
interfere with each other any longer w.r.t. the cache during context switches. This
allows to apply static WCET analyses for each individual task of the system in
isolation. The overall WCETEST of a multitask system using partitioned caches is
then composed of the WCETEST values of the single tasks given a certain partition
size, plus the overhead required for scheduling and context switching.

Cache partitioning can be realized fully in software and thus does not require
any support by the underlying cache hardware, as opposed to cache locking as
presented in the previous Sect. 26.5.2. For this purpose, the code of each task has to
be scattered over the main memory’s address space in a way that it only uses such
memory addresses that map to those cache sets that belong to the task’s partition.
Thus, a task’s executable code is split into many chunks which are stored in non-
consecutive regions in main memory. To make sure that a task’s control flow remains
correct after splitting it into chunks, additional jump instructions between these
chunks need to be inserted. The generation of these chunks in the executable code
can be done easily by the linker if a dedicated linker script describing this scattering
and the different chunks is provided.

The remaining challenge consists of determining a partition size per task
such that a multitask system’s overall WCETEST is minimized. In the following,
preemptive round-robin scheduling of tasks is assumed and the period Pi of each
task ti 2 ft1; : : : ; tmg is known a priori. The length of the entire system’s hyper-
period is equal to the least common multiple of all tasks’ periods Pi . The schedule
count Hi then reflects the number of times that each task ti is executed within
a single hyper-period. Furthermore, a couple of n possible cache partition sizes
Sj 2 fS1; : : : ; Sng measured in bytes is given beforehand.

WCET-aware software-based cache partitioning is modeled inside the WCC
compiler using integer linear programming again [35]. A binary decision variable
zi;j is used to model whether task ti is assigned to a partition of size Sj :

zi;j D

�
0 if task ti is not assigned to a partition of size Sj

1 if task ti is assigned to a partition of size Sj

(26.26)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 853

The following constraints ensure that each task is assigned to exactly one partition:

8 tasks ti 2 ft1; : : : ; tmg W

nX

j D1

zi;j D 1 (26.27)

In analogy to the SPM allocations presented in Sect. 26.5.1, the cache capacity
constraint is given by:

mX

iD1

nX

j D1

zi;j � Sj � SCACHE (26.28)

It is assumed here that the WCETEST Ci;j of each task ti if executed once using
a cache partition of each possible size Sj is given a priori. This is achieved by
performing a WCET analysis of each task for each partition size before generating
the ILP for software-based cache partitioning. A task ti ’s WCETEST ci depending
on the partition size assigned to the task by the ILP can thus be expressed as:

8 tasks ti 2 ft1; : : : ; tmg W ci D

nX

j D1

zi;j � Ci;j (26.29)

The objective function of the ILP models the WCETEST of the entire task set for one
hyper-period. This overall WCET estimate to be minimized is thus defined by:

Minimize
mX

iD1

Hi � ci (26.30)

Figure 26.10 shows the WCET estimates achieved by cache partitioning for
three different benchmark suites. Since no multitask benchmark suites currently
exist, randomly selected task sets from single-task benchmark suites were used.

50%

60%

70%

80%

90%

100%

256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384
[Bytes]

Re
la

tiv
e

W
CE

T
[%

]

[Bytes]
MRTC

[Bytes]
UTDSP

Fig. 26.10 Average relative WCETEST values after cache partitioning for multitask systems

854 P. Marwedel et al.

Figure 26.10 shows results for task sets consisting of 5, 10, and 15 tasks, respec-
tively. Each individual point in the figure’s curves denotes the average value over
100 randomly selected task sets of a certain size. Benchmarking was done for an
Infineon TriCore TC1796 processor with instruction cache sizes ranging from 256
bytes up to 16 kB. An access to the cache requires one clock cycle, accessing the
main memory takes six cycles. All results are given as a percentage, with 100%
corresponding to the WCETEST values achieved by a standard heuristic that uses a
partition size per task which depends on the task’s code size relative to the code size
of the entire task set.

As can be seen, substantial WCETEST reductions of up to 36% were obtained.
In general, WCET savings are higher for small caches and lower for larger caches.
For DSPstone, WCETEST reductions between 4% and 33% were achieved. For the
MRTC benchmarks, an almost linear correlation between WCETEST reductions and
cache sizes was observed, with maximal WCET savings of 34%. For the large
UTDSP benchmarks, WCETEST reductions of up to 36% were finally observed.
In most cases, larger task sets exhibit a higher optimization potential so that cache
partitioning achieves higher WCETEST improvements as compared to smaller task
sets.

Software-based instruction cache partitioning as described in this section can
be used for any processor and does not require any hardware support. However,
hardware cache partitioning could be advantageous if dynamic repartitioning and
adaptation of partition sizes at run time are desired. Such a dynamic partitioning
scheme is difficult to realize in software, because it involves relocating the scattered
code in memory at run time. As mentioned previously, additional jump instructions
need to be added to the tasks’ code in order to keep its control flow correct. The
additional overhead contributed by these jumps is obviously the larger, the smaller
the considered cache sizes are. For tiny caches of only 256 bytes, the overhead due to
the additional jumps lies between 10% and 34% of the benchmark’s total WCETEST

for UTDSP and MRTC, respectively. For 16 kB large caches, the overhead lies
between 1% and 2%.

A combination of partitioning and locking for data caches has been proposed
in [43]. The authors use dynamic cache locking, static cache analyses and cache
partitioning to ensure that all intratask conflicts, and consequently, memory access
times, are exactly predictable.

26.6 Trade-Off Between Energy Consumption, Precision, and
Run Time

26.6.1 Memory-Aware Mapping with Optimized Energy
Consumption and Run Time

Thiele et al. designed the DOL tool for the optimized mapping of applications
to multi-processor systems on a chip (MPSoCs) [40]. The original system is
unaware of the sizes of the involved memory systems. Jovanovic modified this

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 855

Fig. 26.11 Reduction in run time and energy achieved by run-time minimization

system such that the characteristics of available memories are also taken into
account [20]. Also, the modified tool accepts general C-programs as input, instead of
Kahn process networks. Input programs are generated by automatic parallelization
[10]. Communication is based on First-In First-Out (FIFO) buffers. Two separate
ILP models minimize either the energy consumption or the run time. The model
minimizing the execution time includes access times of memories as well as
expected execution times for the processors. Optimizations exploit available fast
on-chip memories.

Figure 26.11 shows the reduction in run time and energy consumption for an ILP
system minimizing run time. The baseline is an ILP-based mapping using run time
as its objective.

In this case, the execution platform comprises four processors, each equipped
with local data and instruction level-1 SPMs and a larger local level-2 memory.
Furthermore, the platform includes a global shared memory which is used for
communication. On average, memory awareness results in a reduction of the run
time by 18% and of the energy by 27%.

Figure 26.12 shows the corresponding reduction for an ILP system minimizing
the energy consumption. The baseline is an ILP-based mapping using energy as its
objective. Compared to the results for run-time minimization, average run time is
increased by 28%.

Both figures prove by means of an example that memory awareness allows a
reduction of objectives run time and energy consumption. Also, minimization of run
time does not automatically minimize energy consumption and vice versa, despite
time being one variable in the computation of the energy consumption.

In a similar way, a trade-off between QoS and timeliness of results can be
considered. For example, we can introduce qualifiers indicating whether or not

856 P. Marwedel et al.

Fig. 26.12 Reduction in run time and energy achieved by energy minimization

variables should be allocated to reliable memory [37]. For variables not requiring
reliable memory reads, we can skip error correction in the interest of timeliness of
results.

26.6.2 Optimization for Three Objectives for the PAMONO Virus
Sensor

In this section, we would like to demonstrate by means of an example how trade-
offs between several objectives can be considered in such a way that reliable energy
estimates are used. As an example, we will use a CPS for the detection of biological
viruses based on Plasmon-Assisted Microscopy of Nano-Objects (PAMONO). The
overall structure of the system can be seen in Fig. 26.13.

The sensor system includes an optical prism. On one of the sides (at the top
in Fig. 26.13), there is a very thin gold layer covered with antibodies. Laser light
entering through the second side of the prism, illuminating the backside of the gold
layer and leaving through the third side is captured by a video camera. This prism is
attached to a flow cell where the samples are applied. A pipe can be used to pump
streams of gas or liquids across the gold layer. In case the stream contains viruses,
they get stuck onto the gold layer with a certain probability. In case this happens,
reflectivity of light reflected on the other side of the gold layer is affected and
captured by the camera. Due to a resonance effect, the change is visible even when
the size of the viruses is smaller than the wavelength of light. Real-time diagnosis
of viruses like chicken-flu is among the potential applications.

However, due to the small dimensions of the camera sensor, video streams
contain a significant amount of noise. A sophisticated image processing pipeline is
needed in order to achieve a good detection quality. Figure 26.14 shows the pipeline

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 857

Fig. 26.13 Overall structure
of the PAMONO virus
sensor [33]

Signal Restoration
4 Integer Parameters
1 Float Parameter
6 Hardware Parameters

Feature Extraction
2 Integer Parameters
5 Float Parameters
2 Hardware Parameters

Classification
2 Float Parameters
1 Harware Parameter

Preprocessing
2 Hardware Parameters

Segmentation
3 Integer Parameters
2 Float Parameters
7 Hardware Parameters

Fig. 26.14 Image processing pipeline to detect viruses. Listed parameters are modified by the GA
to optimize the performance [33]

used in our research. In contrast to the previous section on WCET optimization, the
application has soft real-time requirements.

In the pre-processing step, 16-bit gray-scale images are copied to the Graphics
Processing Unit (GPU) and converted to floating-point arrays. In the next step,
constant background noise is removed, and the signal of attaching virus is restored
based on a sensor model of the PAMONO sensor. This step includes parameters
which can be optimized for the best noise reduction under given circumstances.
Various per-pixel and per-polygon features are computed during the feature extrac-
tion step. Per-pixel features describe the degree of membership to pixel classes
representing virus adhesion. Per-polygon features perform the same function for
polygons and their membership to polygon classes representing virus adhesion.
During feature extraction, parameters comprise detection thresholds and parameters
to switch between different feature extraction algorithms. Segmentation parameters
control the way in which polygons are created and the way in which extracted
features per pixel are combined to features per polygon. False classifications are
minimized by appropriate classification parameters. The virus detection quality is
measured with the F1 score. This score is defined as the harmonic mean of the
precision p and recall r :

F1 D 2
p � r

p C r
(26.31)

with

precision p D
TP

TP C FP
(26.32)

858 P. Marwedel et al.

and recall r D
TP

TP C FN
(26.33)

TP W true positives

FP W false positives

FN W false negatives

One of the goals of our research was to demonstrate that the overall system can
be downsized from a PC-based environment such that it can be operated even
in environments with limited compute performance and power availability. For
demonstration purposes, we selected the Odroid-XU3 [17] platform as an execution
platform.

The XU3 contains two powerful multi-core processors with four cores each and a
GPU resulting in a performance matching the needs of our application. The overall
structure is shown in Fig. 26.15. Also and very importantly, it provides facilities for
measuring the currents for all the cores and the memory. In this way, we can get
around the problem of the limited precision of computer-based energy models. This
allows considering energy during the optimization of the mapping of our application
to the cores and the GPU. Unfortunately, the Odroid XU3 is superseded by the
Odroid XU4 platform, which does not have this facility.

Odroid-XU3

IN
A2

31
IN
A2

31
IN
A231

IN
A2 31

Low Power BUS - AMBA ACE

ARM
Mali-T628

MP6

Low Power
DDR3

Cortex-A15

Core Core

Core Core

Cortex-A7

Core Core

Core Core

Exynos 5422

Fig. 26.15 Odroid execution platform [33]

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 859

A Genetic Algorithm (GA) is used to find Pareto-optimized design points
considering execution times, energy consumption, and detection quality as ob-
jectives. (See �Chap. 6, “Optimization Strategies in Design Space Exploration”
of this book for a general discussion of Genetic Algorithm (GA)-based design
space exploration. Other approaches for automatic parallelization and mapping
to platforms can be found in �Chaps. 28, “MAPS: A Software Development
Environment for Embedded Multicore Applications” and � 29, “HOPES: Pro-
gramming Platform Approach for Embedded Systems Design” of this book.) The
design space exploration is based on a heavily modified version of ECJ (Java-
based Evolutionary Computation Research System) [28]. These modifications take
parameter dependencies and parameter restrictions into account such that invalid
parameter combinations are not generated. The evaluation of run times and energy
consumption is based on the execution of the software on two available Odroid
XU3 platforms concurrently as shown in Fig. 26.16. GPU; both Central Processing
Units (CPUs) and memory energy consumptions are measured. Fitness results are
averaged over several executions in order to remove jitter. Our energy measurement
tool has been made publicly available [32].

An overview of the pipeline parameters is depicted in Fig. 26.14. Software
parameters ranging from Boolean to restricted [0,1] floating-point values lead
already to a large solution space. Beside pipeline parameters of the detection
algorithm, several hardware parameters of our Odroid platform are considered by
the optimization algorithm:

1. The used governor controlling operating parameters at run time (e.g., perfor-
mance, powersave, interactive)

2. The frequency (200 MHz to 2 GHz in 100 MHz steps) of the Cortex-A15 core, if
control is allowed by the governor

3. Work group sizes of all pipeline elements mapped to the Mali-T628 GPU
4. The memory allocation size for buffers storing among other things the detected

polygons on the GPU

Fitness Evaluation

Energy Meter

Fitness Evaluation

Energy Meter

Odroid-XU3

A7

Mali
T628 RAM

A15

Odroid-XU3

A7

Mali
T628 RAM

A15Master PC

Genetic
Algorithm

Fig. 26.16 Evolutionary optimization process [33]

http://dx.doi.org/10.1007/978-94-017-7267-9_7
http://dx.doi.org/10.1007/978-94-017-7267-9_2
http://dx.doi.org/10.1007/978-94-017-7267-9_1

860 P. Marwedel et al.

In the following, we will focus on parameters dealing with memory configura-
tions. The work group sizes on the Mali-T628 GPU affect the number of threads
concurrently running on the GPU and thus have major impact on how fast the data
can be processed and how much energy is consumed by the GPU. Partial results
within the work group are shared by synchronizing using the shared memory on
the streaming multi-processor on the GPU. Thus, memory restricts the parallelism
which could be extracted. In addition, the memory allocation size for some of the
buffers on the GPU can affect the detection quality. Within the different pipeline
steps, ring buffers on the GPU store some of the previously processed images.
Depending on the ring buffer sizes, the number of available images varies, e.g.,
for noise reduction or the feature extraction, which increases/decreases the quality
of the results.

To give a detailed example on memory (buffer) allocation optimization, we will
now focus on the application of the sensor model and temporal noise reduction
applied to the captured images to identify possible virus pixels. According to
the PAMONO sensor model, a captured image consists of a background signal,
multiplied with a virus signal and an additive noise term. A potential virus pixel can
be identified by an increase in intensity. Thus, a sliding window of size b of the past
and a sliding window of size a of the future are used to detect potential virus pixels.
Since the virus-binding process takes some time, it is not to be seen instantaneously.
Thus, a time interval of size g is used to model this attaching process. Figure 26.17
shows the intensity of one pixel over a time series of frames. The detection algorithm
calculates the median (red horizontal line) over b and a images. If the difference
between the two medians exceeds a specific threshold, this pixel is considered

29000

30000

31000

32000

33000

34000

35000

36000

250 300 350 400 450 500 550 600

Se
ns

or
 Im

ag
e

In
te

ns
ity

Frames

a g b
Δ

>
 th

re
sh

ol
d

→
 p

os
si

bl
e

vi
ru

s
pi

xe
l d

et
ec

te
d

Fig. 26.17 Sensor model application and temporal noise reduction for one pixel and one time step
to detect possible virus pixels

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 861

as a possible virus pixel. As time moves forward, this is comparable to a sliding
window moving over large data. For this preprocessing step, a C b C g images need
to be stored in GPU’s memory and intuitively, increasing the intervals increases
the performance of this processing step. However, the memory is limited, and
determining a good combination regarding the other memory parameters in the
pipeline is complex. Thus, the genetic algorithm takes care of this selection process.
In later pipeline stages, all possible virus pixels are analyzed in more detail, e.g.,
additional per-pixels and polygon features are extracted.

For the evaluation, we used two data sets for the virus detection program. We
used a training and a testing data set, each consisting of 1,000 16-bit gray-scale
sensor images with size 706 pixels � 167 pixels. Both data sets were labeled, thus
the correct positions of all virus pixels are known, and we can calculate the F1

score according to Equation (26.31). We conducted three different experiments.
Firstly, only hardware parameters were optimized. Secondly, only software param-
eters were optimized. Thirdly, hardware and software parameters were optimized
simultaneously. The unoptimized detection software achieves 7.5 frames per second
while reaching the best detection quality. The greatest improvements could be
observed for the combined optimization. Figure 26.18 shows the result of this
combined optimization experiment. For execution time and energy consumption,

Fig. 26.18 Trade-off between detection quality, energy consumption, and run time resulting
from an optimization of hardware and image pipeline parameters. For execution time and energy
consumption, lower values are better, and for detection quality, higher values are better [33]

862 P. Marwedel et al.

Table 26.1 Excerpt of the Pareto front for the objectives virus detection quality (F1 training),
energy consumption, and execution time. In addition, the detection quality (F1 testing) for the
unseen testing data set is shown. As baseline/comparative measurement, an unoptimized run is
given in the first row, which was measured with an unmodified system and program [33]

F1 training F1 test Energy cons. Energy sav. Exec. time Speedup Frame rate

100% (fixed) 99.5% (fixed) 370.0 Joule – 119.8 s – 7.5 fps

100% 99.5% 57.5 Joule 84% 29.3 s 4:1 30.7 fps

100% 99.5% 84.5 Joule 77% 28.9 s 4:1 31.1 fps

98.5% 97.4% 47.9 Joule 87% 25.5 s 4:7 35.3 fps

97.4% 99.5% 69.3 Joule 81% 23.9 s 5:0 37.7 fps

96.9% 87.8% 27.7 Joule 93% 14.8 s 8:1 60.8 fps

87.9% 76.6% 22.3 Joule 94% 10.8 s 11:1 83.3 fps

84.2% 60.5% 20.7 Joule 94% 11.4 s 10:5 78.9 fps

74.2% 63.9% 23.5 Joule 94% 10.7 s 11:2 84.1 fps

74.2% 64.7% 33.6 Joule 91% 10.4 s 11:5 86.5 fps

51.9% 55.8% 33.0 Joule 91% 10.0 s 12:0 90.0 fps

lower values are better, and for detection quality, higher values are better. The
Pareto front is highlighted, and Table 26.1 shows an excerpt of it. Without losing
quality, for example, a solution running at 30.7 fps with 84% energy savings was
generated. A not 100% detection quality might be sufficient to prove that a sample
is contaminated with viruses. By accepting loss of quality, even higher frame rates
and energy savings were observed. For example, a solution which still achieves a
good detection quality like 76.6% results in an energy saving of 94% and a speedup
of more than 11. This indicates that one could use a less capable and thus cheaper
hardware or increase the resolution of the camera sensor. An increased resolution
enables the simultaneous detection of different virus types. Here, the gold layer is
partitioned with different antibodies, and an increased resolution is necessary to
detect viruses.

Flexibility with respect to the detection quality is the new objective in this
example. This example demonstrates that, in the future, we should not just optimize
the usage of the memory in isolation. Rather, it should be included in an overall
optimization process for several objectives. This optimization needs to include both
the software compilation process as well as the exploration of hardware parameters.
This example also demonstrates that hardware parameters exist even in the case of
off-the-shelf hardware.

26.7 Conclusions and Future Work

In this chapter, we have demonstrated consequences of the fact that the size
of memories has a large impact on their access times and energy consumption.
This impact leads to heterogeneous memory architectures comprising a mixture
of fast small memories and relatively slow larger memories. Other consequences
are resulting from the fact that information processing in Cyber-Physical Systems

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 863

has to take a number of objectives and constraints into account. This leads to the
idea of an exploitation of memory characteristics such that constraints are met and
objectives are used for optimizations. In this chapter, we have presented results of
our research groups. First results concern the optimized use of Scratchpad memories
for a reduction of the energy consumption. Detailed results are presented for the case
of hard real-time systems: we present compiler optimizations using the Worst-Case
Execution Times as their objective. We are also briefly describing the optimized
mapping to multi-core platforms with a choice of objectives to optimize for. Finally,
we demonstrate the integration of memory optimizations into a global approach for
the optimization of a cyber-physical sensor system with soft deadlines. In this case,
the scope for optimizations comprises software and hardware parameters. The goal
is to find good trade-offs between multiple objectives, including quality of service.

We believe that this chapter demonstrates trends in the design of embedded and
CPS very nicely. There is a trend from the consideration of just the memory system
for mono-processors and single objectives towards whole system optimization for
multi-core systems for multiple objectives. The inclusion of the Quality of Service
as an objective offers new opportunities, since we can trade off the quality of service
against other objectives.

Acknowledgments Part of the work on this section has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information
by Resource-Constrained Analysis,” project B2. URL: http://sfb876.tu-dortmund.de

References

1. AbsInt Angewandte Informatik GmbH (2016) aiT: Worst-Case Execution Time Analyzers.
http://www.absint.com/ait

2. AbsInt Angewandte Informatik GmbH (2016) Stack overflow is a thing of the past. https://
www.absint.com/stackanalyzer/index.htm

3. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS spring joint computer conference

4. Bai K, Shrivastava A (2010) Heap data management for limited local memory (LLM) multi-
core processors. In: Proceedings of the international conference on hardware/software codesign
and system synthesis (CODES+ISSS), pp 317–325

5. Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P (2002) Scratchpad memory: a
design alternative for cache on-chip memory in embedded systems. In: Proceedings of the
international symposium on hardware-software codesign (CODES), Estes Park (Colorado)

6. Borkar S (2005) Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro 25(6):10–16

7. Burks A, Goldstine H, von Neumann J (1946) Preliminary discussion of the logical design
of an electronic computing element. Report to U.S. Army Ordnance Department, reprinted at
https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf

8. Chang DW, Lin IC, Chien YS, Lin CL, Su AWY, Young CP (2014) CASA: contention-aware
scratchpad memory allocation for online hybrid on-chip memory management. IEEE Trans
Comput-Aided Des Integr Circuits Syst 33(12):1806–1817. doi:10.1109/TCAD.2014.2363385

9. Cho H, Egger B, Lee J, Shin H (2007) Dynamic data scratchpad memory management
for a memory subsystem with an MMU. In: Proceedings of the conference on languages,
compilers, and tools for embedded systems (LCTES). ACM, New York, pp 195–206. doi:10.
1145/1254766.1254804

http://sfb876.tu-dortmund.de
http://www.absint.com/ait
https://www.absint.com/stackanalyzer/index.htm
https://www.absint.com/stackanalyzer/index.htm
https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf
http://dx.doi.org/10.1109/TCAD.2014.2363385
http://dx.doi.org/10.1145/1254766.1254804

864 P. Marwedel et al.

10. Cordes D, Engel M, Neugebauer O, Marwedel P (2013) Automatic extraction of pipeline
parallelism for embedded heterogeneous multi-core platforms. In: Proceedings of the interna-
tional conference on compilers, architectures, and synthesis for embedded systems (CASES),
Montreal

11. Ding H, Liang Y, Mitra T (2012) WCET-centric partial instruction cache locking. In:
Proceedings of the design automation conference (DAC), San Francisco

12. Dominguez A, Udayakumaran S, Barua R (2005) Heap data allocation to scratch-pad memory
in embedded systems. J Embed Comput 1(4):521–540

13. Drepper U (2007) What every programmer should know about memory. http://www.akkadia.
org/drepper/cpumemory.pdf

14. Falk H, Kleinsorge JC (2009) Optimal static WCET-aware scratchpad allocation of program
code. In: Proceedings of the design automation conference (DAC), San Francisco, pp 732–737

15. Falk H, Lokuciejewski P (2010) A compiler framework for the reduction of worst-case
execution times. Int J Time Crit Comput Syst (Real Time Syst) 46(2):251–300

16. Falk H, Verma M (2004) Combined data partitioning and loop nest splitting for energy
consumption minimization. In: Proceedings of the international workshop on software and
compilers for embedded systems (SCOPES), Amsterdam, pp 137–151

17. Hardkernel Co., Ltd., Odroid-XU3. http://www.hardkernel.com/main/products/prdt_info.php?
g_code=G140448267127 (2015)

18. Hofmann M, Jost S (2003) Static prediction of heap space usage for first-order functional
programs. In: Proceedings of the symposium on principles of programming languages (POPL).
ACM, New York, pp 185–197. doi:10.1145/604131.604148

19. HP Labs, CACTI – an integrated cache and memory access time, cycle time, area, leakage, and
dynamic power model. http://www.hpl.hp.com/research/cacti/ (2015)

20. Jovanovic O, Kneuper N, Marwedel P, Engel M (2012) ILP-based memory-aware mapping
optimization for MPSoCs. In: Proceedings of the conference on embedded and ubiquitous
computing (EUC), Paphos, Cyprus

21. Kang S, Dean AG (2012) Leveraging both data cache and scratchpad memory through
synergetic data allocation. In: Proceedings of the real time and embedded technology and
applications symposium (RTAS). IEEE Computer Society, Washington, DC, pp 119–128.
doi:10.1109/RTAS.2012.22

22. Kannan A, Shrivastava A, Pabalkar A, Lee JE (2009) A software solution for dynamic stack
management on scratch pad memory. In: Proceedings of the Asia and South Pacific design
automation conference (ASPDAC), pp 612–617

23. Kotthaus H, Korb I, Marwedel P (2015) Performance analysis for parallel R programs: towards
efficient resource utilization. Technical Report 1/2015, TU Dortmund, CS Department

24. Li L, Wu H, Feng H, Xue J (2007) Towards data tiling for whole programs in scratchpad
memory allocation. In: Proceedings of the Asia-Pacific conference on advances in com-
puter systems architecture (ACSAC). Springer, Berlin/Heidelberg, pp 63–74. doi:10.1007/
978-3-540-74309-5_8

25. Liu Y, Zhang W (2015) Scratchpad memory architectures and allocation algorithms for hard
real-time multicore processors. J Comput Sci Eng 9:51–72

26. Lokuciejewski P, Cordes D, Falk H, Marwedel P (2009) A fast and precise static loop analysis
based on abstract interpretation, program slicing and polytope models. In: Proceedings of the
international symposium on code generation and optimization (CGO), Seattle, pp 136–146

27. Luican II, Zhu H, Balasa F (2006) Formal model of data reuse analysis for hierarchical
memory organizations. In: Proceedings of the international conference on computer-aided
design (ICCAD). ACM, New York, pp 595–600. doi:10.1145/1233501.1233623

28. Luke S, Panait L, Balan G, Paus S, Skolicki Z, Popovici E, Sullivan K, Harrison J, Bassett J,
Hubley R (2015) ECJ: a java-based evolutionary computation research system. http://cs.gmu.
edu/~eclab/projects/ecj/

29. Marwedel P (2010) Embedded system design – embedded systems foundations of cyber-
physical systems. Springer, New York

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://dx.doi.org/10.1145/604131.604148
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1109/RTAS.2012.22
http://dx.doi.org/10.1007/978-3-540-74309-5_8
http://dx.doi.org/10.1145/1233501.1233623
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 865

30. McIlroy R, Dickman P, Sventek J (2008) Efficient dynamic heap allocation of scratch-pad
memory. In: Proceedings of the international symposium on memory management, pp 31–40

31. National Science Foundation (2013) Cyber-physical systems (CPS). http://www.nsf.gov/pubs/
2013/nsf13502/nsf13502.htm

32. Neugebauer O, Libuschewski P (2015) Odroid energy measurement software. http://sfb876.tu-
dortmund.de/auto?self=Software

33. Neugebauer O, Libuschewski P, Engel M, Mueller H, Marwedel P (2015) Plasmon-based virus
detection on heterogeneous embedded systems. In: Proceedings of the international workshop
on software and compilers for embedded systems (SCOPES)

34. Plazar S, Falk H, Kleinsorge JC, Marwedel P (2012) WCET-aware static locking of instruction
caches. In: Proceedings of the international symposium on code generation and optimization
(CGO), San Jose, pp 44–52

35. Plazar S, Lokuciejewski P, Marwedel P (2009) WCET-aware software based cache partitioning
for multi-task real-time systems. In: Proceedings of the international workshop on worst-case
execution time analysis (WCET), Dublin, pp 78–88

36. Pyka R, Fassbach C, Verma M, Falk H, Marwedel P (2007) Operating system integrated energy
aware scratchpad allocation strategies for multi-process applications. In: Proceedings of the
international workshop on software and compilers for embedded systems (SCOPES)

37. Schmoll F, Heinig A, Marwedel P, Engel M (2013) Improving the fault resilience of an H.264
decoder using static analysis methods. ACM Trans Embed Comput Syst (TECS) 13(1s):31:
1–31:27. doi:10.1145/2536747.2536753

38. Steinke S, Wehmeyer L, Lee BS, Marwedel P (2002) Assigning program and data objects
to scratchpad for energy reduction. In: Proceedings of design, automation and test in Europe
(DATE)

39. Suhendra V, Mitra T, Roychoudhury A, et al. (2005) WCET centric data allocation to
scratchpad memory. In: Proceedings of the real-time systems symposium (RTSS), Miami,
pp 223–232

40. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

41. Udayakumararan S, Dominguez A, Barua R (2006) Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans Embed Comput Syst (TECS) 5:472–511

42. Vera X, Lisper B, Xue J (2003) Data cache locking for higher program predictability. ACM
SIGMETRICS Perform Eval Rev 31(1):272–282

43. Vera X, Lisper B, Xue J (2007) Data cache locking for tight timing calculations. ACM Trans
Embed Comput Syst (TECS) 7(1):1–38

44. Verma M, Marwedel P (2006) Overlay techniques for scratchpad memories in low power
embedded processors. IEEE Trans Very Large Scale Integr Syst 14(8):802–815

45. Wang P, Sun G, Wang T, Xie Y, Cong J (2013) Designing scratchpad memory architecture with
emerging STT-RAM memory technologies. In: Proceedings of the international symposium on
circuits and systems (ISCAS), pp 1244–1247. doi:10.1109/ISCAS.2013.6572078

46. Wang Z, Gu Z, Yao M, Shao Z (2015) Endurance-aware allocation of data variables on NVM-
based scratchpad memory in real-time embedded systems. IEEE Trans Comput-Aided Des
Integr Circuits Syst 34(10):1600–1612. doi:10.1109/TCAD.2015.2422846

47. WCET-aware Compilation (2016) http://www.tuhh.de/es/esd/research/wcc
48. Zhang W, Ding Y (2013) Hybrid SPM-cache architectures to achieve high time predictability

and performance. In: Proceedings of the conference on application-specific systems, architec-
tures and processors (ASAP), pp 297–304. doi:10.1109/ASAP.2013.6567593

http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=Software
http://dx.doi.org/10.1145/2536747.2536753
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1109/ISCAS.2013.6572078
http://dx.doi.org/10.1109/TCAD.2015.2422846
http://www.tuhh.de/es/esd/research/wcc
http://dx.doi.org/10.1109/ASAP.2013.6567593

	26 Memory-Aware Optimization of Embedded Software for Multiple Objectives
	Contents
	26.1 Introduction
	26.2 Constraints and Objectives
	26.2.1 Timing
	26.2.2 Energy Consumption and Thermal Behavior
	26.2.3 Quality of Service and Precision
	26.2.4 Safety, Security, and Dependability
	26.2.5 Further Constraints and Objectives

	26.3 Optimization Potential in the Memory System
	26.3.1 Caches
	26.3.2 Scratchpad Memories
	26.3.3 A Bound for Improvements
	26.3.4 Importance of Memory-Aware Load Balancing

	26.4 Scratchpad Allocation Algorithms
	26.4.1 Classification
	26.4.2 Non-overlaying Allocation Algorithms
	26.4.3 Overlaying Allocation Algorithms
	26.4.4 Supporting Different Architectures and Objectives

	26.5 WCET-Oriented Compiler Strategies
	26.5.1 WCET-Oriented Scratchpad Allocation
	26.5.2 Static Instruction Cache Locking
	26.5.3 Instruction Cache Partitioning for Multitask Systems

	26.6 Trade-Off Between Energy Consumption, Precision, and Run Time
	26.6.1 Memory-Aware Mapping with Optimized Energy Consumption and Run Time
	26.6.2 Optimization for Three Objectives for the PAMONO Virus Sensor

	26.7 Conclusions and Future Work
	References

