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Abstract

Hardware-aware compilers are in high demand for embedded systems with
stringent multidimensional design constraints on cost, power, performance,
etc. By making use of the microarchitectural information about a processor,
a hardware-aware compiler can generate more efficient code than a generic
compiler while meeting the design constraints, by exploiting those highly
customized microarchitectural features. In this chapter, we introduce two appli-
cations of hardware-aware compilers: a hardware-aware compiler can be used
as a production compiler and as a tool to efficiently explore the design space of
embedded processors. We demonstrate the first application with a compiler that
generates efficient code for embedded processors that do not have any branch
predictor to reduce branch penalties. To demonstrate the second application, we
show how a hardware-aware compiler can be used to explore the Design Space
of the bypass designs in the processor. In both the cases, the hardware-aware
compiler can generate better code than a hardware-ignorant compiler.
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HPC Horizontally Partitioned Cache
ISA Instruction-Set Architecture
MAC Multiply-Accumulator
OT Operation Table
RT Response Time
SPU Synergistic Processor Unit
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25.1 Introduction

Hardware-aware compilation refers to the compilation that exploits the microar-
chitectural information of the processor to generate better code. Minimally, com-
pilers only require information about the Instruction-Set Architecture (ISA) of
the processor to generate code. This ISA-dependent compilation is often good-
enough to generate code for high-performance superscalar processors, in which
the hardware may drastically modify the instruction stream (e.g., break complex
instructions into simpler microinstructions, fuse simple instructions into complex
macro-instructions, reorder the instruction execution, and perform speculative and
predictive computations) for efficient execution.

However, the processors in embedded systems, or embedded processors, are
characterized by lean designs and specialization for the application domain [12, 16].
To meet the strict multidimensional constraints of the embedded systems, cus-
tomization is very important. For example, even though register renaming improves
performance in processors by avoiding false data dependencies, embedded proces-
sors may not be able to employ it because of the high power consumption and the
increased complexity of the logic. Therefore embedded processors might deploy
a “trimmed-down” or “lightweight” version of register renaming, for example,
register scoreboarding, which provides a different trade-off in the cost, complexity,
power, and performance of the embedded system. In addition, designers often
implement some irregular design features, which are not common in general
purpose processors, but will lead to significant improvements in some design
parameters for the relevant set of applications. For example, several cryptography
application processors come with hardware accelerators that implement the complex
cryptography algorithm in the hardware. By doing so, the cryptography applications
can be made faster, and consume less power, but may not have any noticeable
impact on normal applications. Embedded processor architectures often have such
application-specific “idiosyncratic” architectural features. And last but not the least,
some design features that are present in the general-purpose processors may be
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entirely missing in embedded processors. For example, support for prefetching is
now a standard feature in general-purpose processors, but it may consume too much
energy and require too much extra hardware to be appropriate in an embedded
processor.

How can we effectively compile for such uniquely designed embedded pro-
cessors? Just the information about the ISA is not enough. A good uniquely
designed compiler needs microarchitectural information, including sizes of caches,
buffers, and execution policies (e.g., register scoreboarding, branch prediction
mechanism, etc). Many of these microarchitectural features are independent of the
ISA but affect the performance very significantly [20, 28]. By knowing about these
microarchitectural features, compilers can design a plan for efficient execution.
For example, popular compilers such as GCC [13] and Clang [19], inlines many
functions and unrolls loops to improve the run-time performance of applications.
However, these optimization techniques increase program code size and thus may
not be usable for embedded systems that have very limited instruction memory. To
accommodate such diversified and sometimes multidimensional design restraints,
not only the compiler must be aware of the memory size of the processor but
also make sure that the compiled code can reside in the available memory. A
compiler that uses microarchitectural information to generate efficient code is called
a hardware-aware compiler.

Figure 25.1 shows the general flow of a hardware-aware compiler. The archi-
tectural description is provided along the input program to the compiler, in an
Architecture Description Language (ADL). An ADL is a formal language that is
used to describe the architecture of a system, including the memory hierarchy,
pipeline stages, etc. Examples of ADLs include EXPRESSION [11], LISA [34], and
RADL [30]. By taking into consideration the microarchitectural features described
by the ADL, the compiler can generate a code that is better optimized for the
target architecture. For example, by taking into consideration the memory access
timing, the compiler may be able to generate better schedules of instructions for
execution [8, 9].

Clearly a hardware-aware compiler is valuable as a production compiler, where
it is used to generate carefully tuned code for the target microarchitecture, but it is

Fig. 25.1 Hardware-aware compiler uses the microarchitecture description of the processor to
generate efficient code
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also (and arguably even more) valuable for the design of the embedded processor
itself. The typical way to design embedded processors, i.e., to determine the
microarchitectural configuration – which microarchitectural features to keep in the
processor, which execution policy, what buffer, which cache sizes, etc. – is through
a simulator-based DSE. In this methodology, a cycle-accurate simulator of the
processor with different microarchitectural features is designed. The applications
are executed on the simulator to figure out which microarchitectural configuration
works best. This methodology relies solely on processor simulators for Design
Space Exploration (DSE) on traditional superscalar processors, since the code
quality is not very important in them. However, including compiler in the DSE loop
is more important for efficient designs of embedded processors, where a compiler
can have very significant impact on the eventual power and performance of the
application. In the Compiler-In-the-Loop (CIL) DSE methodology, the compiler is
used to generate a code for each microarchitectural variation, and the best design
is selected. This methodology enables us to pick microarchitectural configurations
that may not be as effective by themselves, but lend themselves to very effective use
by the compiler, and achieve superior power saving and performance improvement.
Such configurations will be disregarded by the traditional simulation-only DSE.

In summary, hardware-aware compilers that use the microarchitectural informa-
tion about the processor to generate better code can improve the power consumption
and performance of embedded processors. They can be used both as a production
compiler and be used in the compiler-based processor design. We dive into both
of these uses of the hardware-aware compiler in the rest of this chapter. In the next
section, we describe the use of a hardware-aware compiler as a production compiler.
We present an example of a compiler that generates good code for embedded
processors that do not have any branch predictor at all. Branch predictors, though
very useful in eliminating most of the branch penalty, are costly (require a lot of
hardware) and drain significant amount of power. As a result, some embedded
processors may choose to drop them. Note that the presence/absence of a branch
predictor does not affect the ISA but has a very significant impact on the power
consumption and performance of the execution. Indeed without a branch predictor,
all branches will incur branch penalty, and this will be excessive for execution.
However, a compiler can help. Instead of expensive branch predictors, embedded
processors may choose to have a branch hint instruction, which can indicate to the
processor the direction of the imminent branch. If the application developer or the
compiler can insert these branch hint instructions at the right places in the code, it
can ameliorate most of the branch penalty and result in efficient execution.

Next we will describe how a hardware-aware compiler can be used as an effective
tool in the design of embedded processors. We explain this through the example of
designing the bypasses in the processor. In pipelined processors, even though the
result is evaluated, it cannot be read by the next instruction (if there are no bypasses),
until the instruction is committed, and writes its results in the register file. This
pipeline penalty due to data dependencies among the instructions can be alleviated
to a large extent by using bypasses that forward the results of instructions after
evaluation to the operand read stage of dependent instructions. However, processors
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now feature extremely long pipelines, often more than 20 stages [3, 6], and a full
bypassing, e.g., bypasses from all the later stages of the pipeline to the operand read
stage, can be extremely complex and expensive. Skipping some bypasses can reduce
the overhead of bypassing logic. However, which bypasses to remove? Clearly, the
bypasses that are used least often can be removed, but the compiler has an important
role to play in this. If the compiler can reschedule the instructions around the
missing bypasses, then the effect of the missing bypasses can be eliminated. The
following section first describes, given a partial bypass configuration (i.e., not all
bypasses are present), how do we reschedule the code so as to avoid the missing
bypasses and then shows the results of DSE with and without this bypass-sensitive
compiler in the loop.

For readers that are interested to learn more about related topics, �Chap. 26,
“Memory-Aware Optimization of Embedded Software for Multiple Objectives”
introduces compiler-based techniques that map applications to embedded systems
with scratchpad memories, focusing on minimizing the worst-case execution time
of the applications. �Chapter 27, “Microarchitecture-Level SoC Design” presents
typical system-on-chip design flow and detailed issues in power modelings, thermal,
and reliability, as well as their relation, and presented some interesting solutions.

25.1.1 Hardware-Aware Compilers as Production Compilers

A hardware-aware compiler can be used as a production compiler to generate
a code for embedded systems once the microarchitecture is fixed. Researchers
have discovered several use-cases for hardware-aware compilers. Muchnick [23]
has developed the concept of Response Time (RT) and RT-based compiler that
reschedules instructions to minimize the data dependence penalty in processors. A
RT specifies how an operation may use the resources of a processor as the operation
executes. Their compiler uses the specification of the pipeline of the processor as
an input. Using this, it can create RT for the given instructions and detect conflicts
among them – the structural and data hazards – so as to generate better instruction
scheduling [21, 31]. Bala and Rubin [1] and Proebsting and Fraser [26] proposed
compiler techniques that use the finite-state automaton (FSA), a derivative of the RT,
to further speed up the detection of pipeline hazards during instruction scheduling.
These approaches improve the power and performance of execution.

Hardware-aware compilers have also been proposed to help hide memory latency
[25]. The most important source of memory latency in processors is the cache
miss penalty, as cache misses typically take orders of magnitude longer time
than cache hits. Grun et al. developed a compiler optimization that uses accurate
timing information of both memory operations and the processor pipeline to exploit
memory access modes, such as page mode and burst mode, so as to allow the
compiler to reorder memory operations to help hide the memory latency [8]. They
later extended the work and used memory access timing information to perform
aggressive scheduling of memory operations, so that cache miss transfers can be
overlapped with the cache hits and CPU operations [9]. For example, an instruction
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that will cause a cache miss (known by cache analysis) can be scheduled earlier so
that the following cache hits to the same cache line will not be stalled while the
cache line is being transferred.

Hardware-aware compilers have also been proposed to reduce the power and
temperature. Power gating [17, 24, 27] is one such application used in integrated
circuit design to reduce the leakage power of processors. Leakage power already
contributes to more than 30% of the power consumed by the processor. But by
turning off the unused blocks, leakage power of that block can be reduced. However,
power gating will backfire if the power spent in turning off and turning on an
execution unit is more than the power saved while it is power gated or if we turn on
the block too late, and there is a performance penalty corresponding to it. As a result,
prediction-based techniques to power-gated blocks are not as effective. However, a
compiler can analyze the application and find out regions of code where a functional
block is not going to be used. If the functional block is going to be unused longer
than a threshold of time, it can be safely power gated to minimize the leakage power
of the functional block. To prevent such undesired leakage, the compiler can be
utilized to analyze the control flow graph to predict the idle cycles of the execution
units and ensure that power gating is applied only if the power saved during these
cycles is greater than the power used to turn on/off the execution unit.

Another example of hardware-aware compilation to reduce power consumption
can be found in computer architectures with Horizontally Partitioned Cache (HPC).
An HPC architecture maintains multiple caches at the same level of memory
hierarchy (in contrast to one cache per level to traditional computer architec-
tures). Thanks to caching different kinds of data in separate caches to avoid
interference between each other, e.g., between scalar variables and arrays, the
HPC architecture is able to reduce the number of cache misses, which directly
translates to the improved performance and abated power consumption. Moreover,
HPC architectures include at the same level of memory hierarchies one or more
small additional caches, aside the large-sized main cache. For example, in the
Intel XScale [15], the L1 caches consist of the 32 KB main cache and a 2 KB
additional cache. The additional caches typically consume less power per access,
which further decreases the power consumption. Although the benefits of the
HPC architecture are inviting, it is nontrivial to exploit such an architecture as its
performance is highly dependent on the design parameters. Compiler techniques
can be used to explore these parameters and carefully partition data to achieve
the maximum benefit. For example, Shrivastava et al. identified the access pattern
of data, and cached data with temporal locality in the main cache, while leaving
data with spatial locality to the additional caches [29]. This is because the size
of a cache does not affect the miss rate of memory accesses to data that exhibits
spatial locality, while on the other hand, a larger (main) cache is able to have
a higher chance to retain the data that shows temporal locality for repeated
accesses.

For the rest of this subsection, we will present and detail a software branch
hinting technique for processors without hardware branch prediction, but a simple
software branch hinting mechanism [22].
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25.1.1.1 The Case for Software Branch Hinting
Control hazards or branching hazards pose a serious limitation on the performance
of pipelined processors, which becomes worse as the pipeline depth grows. A branch
predictor that predicts the direction (taken or not taken) and the target address
if the branch is to be taken can solve this predicament. Branch predictors are
typically implemented in hardware so as to handle dynamism of branches. However,
branch predictors can be expensive in both the area and power [4, 18]. As multi-
core processors become increasingly popular even in embedded systems, some
embedded multi-core processor designers remove the hardware branch predictors
to meet the power cap while still being able to accommodate more cores. The IBM
Cell processor [5], in an effort to improve its power efficiency, removes the hardware
branch predictors from its Synergistic Processor Unit (SPU) coprocessors.

Doubtlessly, the lack of branch prediction will cause significant performance
penalty. Table 25.1 manifests the huge overhead caused by branches when running
some typical embedded benchmarks due to the lack of hardware branch prediction.
To prevent such extreme performance loss, processors without hardware branch
prediction may provide instructions for software branch prediction or software
branch hinting, as the IBM Cell processor does. Branch hint instructions must
be used wisely in such processors, in order to achieve comparable or even better
performance than hardware branch prediction.

A branch hint instruction typically predicts the target address a branch will
jump to when the branch is actually taken. This implies that such an instruction
must be inserted only if it is for sure that the branch will be taken, to avoid the
misprediction from slowing down the program execution. Fortunately, there have
been many research works for predicting the direction of a branch [2, 32, 33] with
pretty good accuracy. However, even if we know a branch is taken, finding an
appropriate place in the program to insert the branch hint instruction is a nontrivial
task. On the one hand, it takes time to set up the branch hint instruction, so the
hint must be executed early enough to be recognized by the branch to be hinted. In
other words, the branch hint instruction must be inserted early enough before the
branch to take effect. On the other hand, there is also the restriction on the number
of branch hint instructions that can be activated at the same time. Therefore, simply
bringing forward the insertion point of a hint may cause problems in some cases.
For example, in the IBM Cell processor, only one active branch hint instruction is
allowed. So if there are two branches close to each other in the program, placing
both hints of the two branches before the first branch (i.e., the second hint is also
placed before the first branch to ensure there is enough time left for the second

Table 25.1 The percentage
of execution time spent in
branch penalty of typical
embedded applications
without branch prediction in
Cell SPU

Benchmark Branch penalty (%)

cnt 58.5

insert_sort 31.4

janne_complex 62.7

ns 50.9

select 36.2
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branch to be hinted) may cause the effect of the first hint overwritten by the second
hint, if the second hint has been activated by the time the first branch is executed.
This will cause the misprediction at the first branch, force the execution to stall, and
wait for the target address to be recalculated.

While the insertion of branch hint instructions can be done by programmers
manually, it can be a tedious and time-consuming process. A compiler-based
solution may be preferred. In the rest of this subsection, we will present a compiler-
based approach for minimizing the branch penalty in processors with only software
branch prediction. We will first introduce the model used for the cost function of
branch penalties. It is based on the number of cycles between the hint instruction
and the branch instruction, the taken probability of the branch, and the number of
times the branch is executed. Subsequently, three basic methods for reducing branch
penalties using the branch hint instruction are introduced and detailed:

(i) A no operation (NOP) padding scheme that inserts NOP instructions before a
branch to leave enough time interval for its hint to be set up, for small basic
blocks without enough margin originally.

(ii) A hint pipelining technique that allows two very close branches where origi-
nally only one of them can be hinted, to be now both hinted.

(iii) A loop restructuring technique that changes the loop structure so the compiler
can insert the hints for more branches within the loop. The heuristic that
combines and applies these basic methods to the code prudently is also briefly
explained. Finally, experimental results collected are examined to demonstrate
the efficacy of the technique.

The discussion will be based on the SPU coprocessor in the IBM Cell processor.
However, the presented technique is applicable to other processors with only
software branch prediction. Also, we will assume that every instruction takes one
cycle for the sake of simplicity, although this is not necessarily true.

25.1.1.2 Mechanism of Software Branch Hinting
Figure 25.2 shows the overview of how a hint instruction works. The execution of a
hint instruction comprises two stages: (i) launching the operation and setting up and
(ii) loading the target instruction. Similar to hardware branch predictors, software
branch hinting employs a Branch Target Buffer (BTB) to predict the target of a taken
branch. When a hint instruction is executed, it needs to search the BTB and see if
it can find any matched entry, and update the BTB if it fails to find one. This is
done in the first stage. Once this stage is over, the hint instruction will start to fetch
the target instruction into the hint target buffer. By default, the next instruction will
be loaded to the in-line prefetch buffer, so the processor can fetch the instruction
and continue the execution. However, when a branch instruction is identified, its PC
address is used to search for any matching BTB entry (the BTB would have been
updated, in the presence of a hint). If any entry is found matched, the processor will
then instead fetch the next instruction from the hint target buffer.
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Fig. 25.2 The overview of software branch hint instructions

Given such mechanism of software branch hinting, we should readily identify
the three critical design parameters that will seriously affect the performance of
resultant implementation:

• d : the number of cycles used for starting up the operation
• f : the number of cycles to load the target instruction
• s: the number of BTB entries

The parameter d decides the minimum interval between a hint and the branch it
aims to hint. In other words, a hint instruction must be executed at least d cycles
earlier than the branch instruction in the program for it to take effect. After the
startup of the hint instruction, a request is made to the arbiter [14] to load the target
instruction from main memory into the hint target buffer. This is because in the cell
processor, SPUs cannot access the main memory directly, so code and data must be
first loaded into the local storage. This stage will take f cycles to complete. Once
this stage is finished, the hint instruction is also completed. Therefore, if the hint
instruction is executed d C f cycles earlier, the branch it hints can be executed
without any stall. In particular, if the branch is actually not taken, it will still wait
for the hint instruction to load the incorrect target instruction, and then start over to
load the correct instruction.

The number of BTB entries, s, decides size of the hint target buffer, since the
buffer must be large enough to hold the target instructions for all the active hint
instructions. For example, each SPU of the cell processor has only one entry in the
BTB. Therefore, at the same time, only one active hint instruction is allowed for
applications run on SPU. The bigger s is, the larger the BTB, and the more power
consumption. Therefore, s is usually small.
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25.1.1.3 Cost Model of Branch Penalties Under Software Branch Hinting
The branch penalty of a branch with software branch hinting can be modeled as the
expected value of the penalty when the branch is successful predicted and when it
is mispredicted, respectively. From our previous discussion of the software branch
hinting mechanism, we know the branch penalty is related to the number of cycles
between a hint and the branch to be hinted, whether the branch is correctly predicted.
Therefore, the branch penalty can be modeled as below:

Penalty.l; n; p/ D Penaltycorrect.l/ � np (25.1)

C Penaltyincorrect.l/ � n.1 � p/

where l , n, and p, respectively, represent the number of cycles between the hint and
the branch, the number of times the branch is executed, and the branch probability.
We assume n and p are given in our discussion. To find out the relation between
the branch penalty and l when a branch is predicted correctly (Penaltycorrect.l/) or
incorrectly (Penaltyincorrect.l/), a synthetic benchmark that includes only a branch
hint instruction and the branch instruction to hint is run in the SPU in the IBM cell
processor. The hint and the branch are separated by lnop instructions (one type of
NOP instructions). By increasing the number of lnop instructions between the hint
and the branch, the change of branch penalties can be inferred through the variation
of the execution time.

Two types of NOP instructions are available in the SPU, thanks to its dual-issue
nature – nop for the even pipeline and lnop for the odd pipeline. The even pipeline
is used to execute fixed point and floating point arithmetic operations, while the
odd pipeline is used to execute memory, logic, and flow-control instructions, which
include the branch instruction and the branch hint instruction. By filling only lnop
and branch/hint instructions, the SPU is forced to use the odd pipeline only and
issue one instruction at a time.

Figure 25.3 shows the relation between the branch penalty and the number of
cycles between the hint instruction and the branch instruction, when the branch

Fig. 25.3 The relation of the branch penalty, and the number of cycles between the hint instruction
and the branch instruction, when the branch is predicted correctly
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is correctly predicted. In other words, the branch is actually taken (since a hint
instruction always loads the instruction at the target address of the taken branch).
When the hint instruction is scheduled less than 8 cycles before the branch, the
branch penalty is always 18 cycles. It implies the hint needs so much time to be
properly set up and recognized when the branch starts to execute. By default,
the SPU always does not take branch prediction. Therefore, without the hint,
the SPU will keep predicting the incorrect direction for the branch and force the
execution to pay the full branch penalty, i.e., resolving the target address and loading
the instruction. The full branch penalty is measured as 18 cycles. As the interval
between the hint and the branch is increased to be equal or greater than eight cycles
(by inserting lnop instructions), the branch instruction is now aware of the existence
of the hint. It still takes 18 cycles from the beginning of the hint instruction to the
end of the branch instruction, since it also needs to resolve the branch target address
and load the instruction, just like a branch instruction. However, by starting the
entire process earlier, the hint instruction can hide some of the penalty, thanks to
the instructions between the hint and the branch (the lnop instructions inserted),
when the branch starts to execute. Notice the lnop instructions inserted are just
placeholders for investigating the effect of the interval (between the hint and the
branch) on the branch penalty. In the real execution, these will be replaced by the
meaningful instructions. When the interval becomes equal or greater than 19 cycles,
the branch penalty is completely eliminated. The branch penalty model in the SPU
can be therefore built from the observation from the above experiment as follows:

Penaltycorrect.l/ �

8
<

:

18; if l < 8

18 � l; if 8 � l < 19

0; if l � 19

(25.2)

where l denotes the number of cycles between the hint and the branch to be hinted.
Figure 25.4 shows the relation between the branch penalty and the number of

cycles between the hint instruction and the branch instruction, when the branch is

Fig. 25.4 The relation of the branch penalty, and the number of cycles between the hint instruction
and the branch instruction, when the branch is mispredicted
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mispredicted. In other words, the branch is not taken. When the interval is less than
8 cycles, the hint is not recognized at the branch, and it pays 18 cycles branch
penalty just like before. However, when the interval is increased to be equal or
greater than 8 cycles, the number of cycles spent from the beginning of the hint until
the finish of the branch becomes greater than 18 cycles. This is because the branch
instruction will start to wait for the incorrect target instruction to be loaded once it
perceives the hint instruction. After the loading of the (incorrect) target instruction
is completed, the branch instruction will start over, which will spend another 18
cycles. If the interval is further increased to be equal to or more than 19 cycles, the
penalty becomes 18 cycles again, since the effect of misprediction will have been
completely hidden by the time spent on executing the instructions between the hint
and the branch, so that the branch will be executed as if the hint never happens
and pays the 18 cycle penalty as if there is not any hint. The penalty of a branch
misprediction thus can be modeled as follows:

Penaltyincorrect.l/ �

8
<

:

0; if l < 8

.18 � l/C 18 D 36 � l; if 8 � l < 19

18; if l � 19

(25.3)

where l denotes the number of cycles between the hint and the branch to be hinted
in the number of cycles.

25.1.1.4 Branch Hinting-Based Compilation

No Padding. When the number of cycles between the hint and the branch it will
hint is smaller than a threshold value (eight in the SPU), the branch has to pay for
the full branch penalty. In this case, we can insert NOP instructions (both nop and
lnop instructions) to create a sufficiently large interval. Take Fig. 25.5 as an example.

Fig. 25.5 NOP padding increases the interval between the hint instruction and the branch from 6
instructions/cycles in (a) to 8 instructions/cycles in (b) so that b1 can be hinted
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Assume the branch br is taken and the hint instruction hbrr was originally executed
six cycles earlier than br. According to the branch penalty model, the branch penalty
is 18 cycles. After inserting two pairs of nop/lnop instructions, the interval becomes
eight cycles, since each pair of nop/lnop can be executed in the even/odd pipeline at
the same cycle, respectively, in the SPU. The branch penalty is therefore reduced to
10 cycles. The overall improvement is hence 18 � 10 � 2 cycles, i.e., 6 cycles.

The SPU GCC compiler also provides a scheme for inserting nop (inserts both
nop and lnop instruction) when a user-specified flag is enabled [7]. The SPU GCC
inserts whenever the interval between a hint and the branch is not long enough.
Carrying out NOP padding without deliberation may hurt performance sometimes.

To find out whether NOP padding is necessary under certain circumstances, we
need a way to estimate the effect to the performance of applications if we insert the
NOP instructions. Let l , n, p, and nNOP , respectively, denote the interval between a
hint and the branch to hint before NOP padding, the number of times the branch is
executed, the taken probability of the branch, and the number of NOP instructions
inserted. The branch penalties before the NOP padding can be calculated as follows:

Penaltyno_pad D Penalty.l; n; p/ (25.4)

The branch penalties after the NOP padding can be calculated as follows,

Penaltypad D Penalty.l C nNOP ; n; p/ (25.5)

For example, before the NOP padding, if the interval is smaller than eight cycles
so that the hint is not recognized, then by applying the model of branch penalty
introduced, we can get the branch penalty as 18 � np C 18 � n.1 � p/ D 18n.

When the branch instruction is executed in a loop, the corresponding hint
instruction and the inserted NOP instructions must also be executed within the loop
so to take effect at each iteration. Therefore, the number of times the inserted NOP
instructions executed will be the same as the number of times the branch instruction
is executed. Moreover, each pair of nop and lnop instructions can be executed in
one cycle, thanks to the dual-issue pipeline in the SPU. Therefore, the overhead for
executing the inserted NOP instructions can be modeled as the follows:

Overheadpad D n.nNOP C 1/=2 (25.6)

So far, we have discussed the branch penalties before and after NOP padding and
the extra overhead for the execution of the inserted NOP instructions. The impact of
NOP padding on performance can be now modeled as follows:

Profitpad D Penaltyno_pad � Penaltypad � Overheadpad (25.7)

Clearly, the NOP padding should be carried out only when the calculated number is
positive.
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Fig. 25.6 Hint pipelining makes use of the minimum interval required to activate a hint instruction
to insert extra hint instructions

Hint Pipelining. When two branches are close to each other, the hint instruc-
tions for the branches may interfere with each other. Figure 25.6a shows an example
on how the SPU GCC compiler deals with such case. The SPU GCC compiler first
tries to insert hints for both branches b1 and b2. However, when the hint instruction
for b2 has to be placed before b1 to create a sufficiently large interval, it may
overwrite the hint instruction for b1. In this case, the GCC compiler estimates the
priorities of the two branches, decides b2 should be prioritized, and thus discards
the hint for b1. This problem is nevertheless not unsolvable, by prudently choosing
the locations for both hints.

From the previous discussion, we have learned that a hint instruction will not be
recognized by a branch instruction if it is executed within eight cycles before the
branch. This gives us an opportunity to hint both branches. Figure 25.6b shows the
method to hint two branches that are very close to each other. Although the hint
instruction for b2 is inserted before b1, the interval between them is less than eight
cycles. When b1 is executed, the second hint is not recognized, so b1 can be hinted
correctly. However, when b2 starts to execute later, the second hint will have been
set up properly and take effect. With this approach, both b1 and b2 can be hinted.
This method is called hint pipelining, as it “pipelines” hint instructions in the sense
that the execution of the hint instructions are overlapped.

Again, to make sure this method is profitable, we need a cost model to find out
the cost before applying this method and after applying this method. Assume in the
given example in Fig. 25.6b that lx denotes the number of instructions in the basic
block Lx , px denotes the taken probability of the branch bx , and nx denotes the
number of times bx is executed. Keep in mind that we assume each instruction takes
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one cycle, so lx can be equally understood as the number of cycles that Lx takes
to execute. The branch penalties before applying the hint pipelining method can be
then calculated as follows:

Penaltyno_pipeline D Penalty.0; n1; p1/

C .1 � p1/ � Penalty.l1 C l2; n2; p2/

C p1 � Penalty.0; n2; p2/

The first term on the right-hand side is the branch penalty for b1. Originally b1 is
not hinted, which can be viewed as if the interval is 0 cycle. The second and third
term on the right-hand side are the branch penalties for b2 when b1 is not taken
and when it is taken, respectively. When b1 is not taken, b2 will be hinted, and the
interval between it and its hint is the sum of the number of instructions in both basic
blocks L1 and L2; on the other hand, when b1 is taken, b2 will not be hinted, since
the control flow will be diverted to a different basic block.

After hint pipelining is applied, both branches are hinted, although the interval
between branch b2 and its hint is decreased from l1 C l2 to 7 C l2 in the example.
The branch penalties are changed as follows:

Penaltypipeline D Penalty.l1; n1; p1/

C .1 � p1/ � Penalty.7C l2; n2; p2/

C p1 � Penalty.0; n2; p2/

Notice l1 should be at least eight for this method to pan out, since otherwise the
hint for b1 will still not be recognizable.

The overhead of hint pipelining is the number of times the newly introduced hint
instruction for b1 is executed. Since the hint is inserted in basic block L1, the number
of times it is executed will be the same as b1. The overhead is therefore as follows:

Overheadpipeline D n1 (25.8)

The impact of hint pipelining on performance can be modeled as follows:

Profitpipeline D Penaltyno_pipeline (25.9)

� Penaltypipeline

� Overheadpipeline

We should apply hint pipelining method only if the calculated number is positive.

Loop Restructuring. The NOP padding and hint pipelining methods are ap-
plicable when there is no loop or in the innermost loop. The loop restructuring
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Fig. 25.7 Loop restructuring increases the leeway of hinting b4 from l4 in (a) to l2 C l4 in (b).
Notice b4 in (a) becomes b2 in (b)

method, on the other hand, can be applied to outer loops in nested loops. This is
done by altering the order of the basic blocks of the loops while keeping the semantic
unchanged.

Figure 25.7 shows an example of nested loop restructuring method to reduce
branch penalties in nested loops. Originally in Fig. 25.7a, b4 is the condition of the
outer loop, and the hint instruction for the branch b4 is limited within the basic block
L4. This is because L4 is preceded by a loop that consists of one basic block L3.
If the hint instruction for b4 is inserted in any other basic block (earlier than L4), it
needs to either wait for the execution of all the iterations of L3 (if the hint is inserted
earlier than L3), or it will be executed in every iteration of L3 (if the hint is inserted
in L3). Neither case will lead to satisfactory performance. After restructuring as
in Fig. 25.7b, L2 is moved after L4. To maintain the semantic, two unconditional
branches from L1 to L2 and from L2 to L4 are introduced, respectively, and the
condition of L4 is modified accordingly. Such restructuring essentially turns b2 into
the condition of the outer loop. As a result, the possible location to insert a hint for
b2 is now increased to cover both L4 and L2.

Again, let lx , px , and nx , respectively, denote the number of instructions in the
basic block Lx , the taken probability of the branch bx , and the number of times bx

is executed. The branch penalties before restructuring of loops are as follows:

Penaltyno_reorder D Penalty.l3; n3; p3/C Penalty.l4; n4; p4/ (25.10)
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The branch penalties after restructuring the loops are as follows:

Penaltyreorder D 18 C Penalty.l2 C l4; n2; p2/

C Penalty.l3; n3; p3/ C 18

Here the two 18s are the penalties for b1 when entering the outer loop for the first
time and for b4 when exiting the outer loop when it is done, respectively.

The overhead of loop restructuring depends on the original size of basic block
L4. If it has less than eight instructions, then originally no hint can be made for b4.
After the restructuring, we will introduce a new hint in basic block L4, which will
be executed n4 times. Otherwise, if originally there are more than eight instructions
in L4, no extra hint is introduced, and the overhead is zero. Therefore, the overhead
for this method is as follows:

Overheadreorder D

�
n4; if l4 < 8

0; otherwise
(25.11)

As a further optimization, some of the hint instructions can be promoted to be
outside of a loop to avoid repeated computations. For example, Fig. 25.8a shows
the code after promoting the hint for b3 in the code given in Fig. 25.7a. After
the promotion, the hint instruction only needs to be executed once while still

Fig. 25.8 The hint for b3 is promoted to L2 from L3 in (a). This however may cause problems
after loop restructuring as in (b), when the hint for b3 overwrites the hint for b2. Hint pipelining
can be applied to enable both branches being hinted as in (c)
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maintaining the semantics of the code. However, after the restructuring of nested
loops as in Fig. 25.8b shows, the hint for b3 overwrites the hint for b2. This problem
can be solved by applying the hint pipelining technique, as shown in Fig. 25.8c.
Notice the promotion of a hint instruction should be applied only if the basic block
the hint is promoted to itself does not have any taken branches, e.g., conditional or
unconditional branches; otherwise, the promoted hint may interfere with the hints
for the taken branches.

The three methods of reducing branch penalties – NOP padding, hint pipelining,
and nested loop restructuring – can be combined and integrated into the compiler,
as an optimization pass. The pass first restructures nested loops. It then traverses the
Control-Flow Graph (CFG) of each function, in a bottom-up manner. That is to say,
the pass first visits the bottom node (last basic block), and then recursively goes up
along its predecessors. Once a branch is identified, the pass tries to promote its hint
to its basic block whenever possible: if there is a branch that is likely taken in the
predecessor, the traversal stops and the hint is inserted in the basic block the stop
happens; otherwise, the pass keeps going up until it meets a basic block with any
likely taken branch, or the basic block is the root of the CFG. Notice that a compiler
with this pass enabled needs three extra parameters other than the input program,
i.e., d , f , and s.

A microarchitecture-aware compiler is extremely important to improve the power
saving and performance of execution in a software branch hinted processors.
Figure 25.9 shows the performance improvement of the presented heuristic when
being compared to the software branch hinting scheme provided by the SPU GCC
compiler. The benchmarks that spend less than or equal to 20% of overall execution
time for branches are considered with low branch penalty, while the others are
considered as with high branch penalty. The heuristic outperforms the GCC scheme
in every benchmark, and in general, the higher the ratio of branch penalty, the more
the performance gain from applying the presented heuristic.

Fig. 25.9 Performance improvement of the presented heuristic is as much as 18% compared to
the SPU GCC
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25.1.2 Hardware-Aware Compilers for Design Space Exploration

Hardware-aware compilers are especially important for the design of embedded
processors. At high level, the embedded processor design comprises of figuring
out the microarchitectural configuration of the processor that will result in the best
power and performance characteristics. Traditional DSE relies solely on simulation,
as shown in Fig. 25.10. The same (compiled) code is measured on architectural
models with different design parameters. The design parameters that yield the
most desirable outcome are chosen. However, using the same code for different
architectural variations may not guarantee fairness of the comparison, since the
optimal code generated may vary as the design parameters changes. For example,
loop tiling divides the iteration space into tiles or blocks to better fit the data cache.
If we change the cache parameters, such as cache-line size or cache associativity,
then we may need to change the size of each tile. Therefore, to be able to accurately
explore the design space, a hardware-aware compiler should be included in the loop
of DSE, so that every time the architectural design parameters are changed, the code
generation should be adjusted accordingly, by compiling with the changed design
parameters. Figure 25.11 shows the example of a framework of CIL DSE. CIL DSE
is especially important in embedded systems, where the hardware-aware compiler
can have a very notable impact on the power and performance characteristics of the
processor.

In the rest of this subsection, we will study PBExplore – a framework for
CIL DSE of partial bypassing in embedded processors. At the heart of the

Fig. 25.10 Traditional DSE relies solely on simulation

Fig. 25.11 CIL DSE includes the compiler in the loop of exploring best design parameters
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PBExplore is a compiler that can generate high-quality code for a given partial
bypassing configuration. Such a compiler can be used to explore different bypass
configurations and discover the one that offers the best power, performance, cost,
and complexity trade-offs.

25.1.2.1 The Case for Partial Bypassing
Pipelining is a widely used technique in modern processors to explore instruction-
level parallelism and allow processors to achieve much higher throughput. However,
the presence of hazards in the pipeline greatly impairs its value as they stall
the pipeline and cause significant performance loss. Consequently, techniques are
proposed to resolve the problems [10, 23]. Bypassing, also known as operand
forwarding, is a popular solution to reduce data hazards. Bypassing adds additional
datapaths and control logic to the processor so that the result of an operation can be
forwarded to subsequent dependent operations even before it is written back to the
register file.

While bringing in the great benefit, bypasses increase design complexity and
may introduce significant overhead. Bypasses are often included in time-critical
datapaths and therefore cause pressure on cycle time, especially the single cycle
paths. This is particularly important in wide issue machines, where the delay may
become more significant – due to extensive bypassing very wide multiplexors
or buses with several drivers may be needed. Partial bypassing presents a trade-
off between the performance, power, and cost of a processor and is therefore an
especially valuable technique for application-specific embedded processors. Also,
note that adding or removing bypasses or the bypass configuration of the processor
does not affect its ISA.

25.1.2.2 Operation Latency-Based Schedulers Cannot Accurately Model
Partial Bypassing

Traditionally, the retargetable compiler uses constant operation latency of each
operation to detect and avoid data hazards [23]. The operation latency of an
operation o is defined as a positive integer ol 2 IC, such that if any data-dependent
operation is issued more than ol cycles after issuing o, there will be no data hazards.
When no bypassing or complete bypassing (the result of an operation can be
forwarded at every stage of a pipeline once it is calculated and before it is committed
to the memory system) is implemented in a pipeline, the operation latency is
constant, and therefore the retargetable compiler can work perfectly. However, the
presence of partial bypassing (the result of an operation can be forwarded only
at some stage(s) but not all the stages of a pipeline) introduces variable operation
latency and poses challenges for such a compiler.

To better understand the challenge of designing retargetable compilers in the
presence of partial bypassing, let us first consider the differences of pipelines with-
out bypassing, with complete bypassing, and with partial bypassing. Figure 25.12
illustrates the execution of an ADD operation in a simple five-stage pipeline without
any bypassing. In the absence of any hazards, if the ADD operation is in F pipeline
stage in cycle i, then it will be in OR pipeline stage in cycle i + 2. At this time, it
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Fig. 25.12 A 5-stage processor pipeline with no bypassing

Fig. 25.13 A 5-stage processor pipeline with complete bypassing

reads the two source registers. The ADD operation then writes back the destination
register in cycle i + 4, when it reaches the WB pipeline stage. The result of the ADD
operation can be read from the register file in and after cycle i + 5. The operation
latency of the ADD operation is three cycles ((i + 5) � (i + 2)), so any instructions
that are dependent on the result of the current instruction have to be scheduled at
least three cycles later to avoid the data hazards. Figure 25.13 shows the pipeline
with complete bypassing. The pipeline now includes forwarding paths from both
execution (EX) and write back (WB) stages to both the operands of operand reading
(OR) stage. The operation latency now becomes one cycle, since any dependent
instructions scheduled one or two cycles after the ADD instruction can read its result
from the bypasses, while those scheduled three or more cycles later can read the
result from RF. Finally, we show an example of partial bypassing in Fig. 25.14. The
pipeline only contains bypasses from EX (but not WB) stage to both the operands of
OR pipeline stage. In this circumstance, scheduling a data-dependent operation one



816 A. Shrivastava and J. Cai

Fig. 25.14 A 5-stage processor pipeline with partial bypassing

or three cycles after the ADD will not result in a data hazard, since its result can be
read either from EX pipeline stage via the bypasses or from the register file after the
ADD operation writes back its result. However, if the data-dependent operation is
scheduled two cycles after the scheduling ADD operation which is currently in WB
stage, then it cannot do anything but wait, since no bypasses from WB are present. A
data hazard happens. The operation latency of ADD in the partial bypassed pipeline
in Fig. 25.14 is denoted by one, three, which means that scheduling a data-dependent
operation one or three or more cycles after the schedule cycle of ADD will not cause
any data hazard, but scheduling the data-dependent operation two cycles after the
schedule cycle of ADD will cause a data hazard. The operation latency becomes
nonconstant under partial bypassing. As a result, partial bypassing paralyzes the
traditional retargetable compilers, which assumes a constant operation latency to
detect pipeline hazards.

Without the accurate pipeline hazard detection technique, the retargetable com-
piler has to either conservatively assume no bypassing is present or aggressively
assume that the pipeline is completely bypassed. However, both approaches will re-
sult in suboptimal code generated. To solve this problem, Operation Table (OT) [28]
can be employed. An OT maintains the snapshot of the processor resources an
operation uses in each cycle of its execution. It takes into consideration the (partial)
bypassing in the pipeline and can therefore detect data hazards in advance even
for partially bypassed processors. Besides, as the OT records at each cycle which
processor resources are used, it is able to detect the structural hazards as well. As a
result, an OT-based scheduler can accurately detect and avoid pipeline hazards and
improve processor performance.

25.1.2.3 OT to Accurately Model the Execution of Operations in a
Pipeline

In this subsection, we present the concept of OT that can accurately model the
execution of operations in a processor pipeline, and later we will use them to
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Table 25.2 Definition of the
OT

OperationTable := { otCycle }

otCycle := unit ros wos bos dos

ros := ReadOperands { operand }

wos := WriteOperands { operand }

bos := BypassOperands { operand }

dos := DestOperands { regNo }

operand := regNo { path }

path := port regConn port regFile

Table 25.3 The OT of ADD
R1 R2 R3

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C5, p3, EX

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p2, OR

5 WB

WriteOperands

R1

p4, C3, p8, RF

develop a bypass-aware instruction scheduler. An OT describes the execution of
one operation in the processor. Table 25.2 shows the grammar of an OT. Each entry,
otCycle, in an OT describes the state of the operation in that execution cycle in
the pipeline. otCycles are sorted in temporal order. Each otCycle records in that
cycle the pipeline unit the operation is in (unit), the operands it needs to read (ros),
write (wos), or bypass (bos), and the destination registers (dos) the operation
may write to. Each operand (operand) is defined by the register number (regNo)
and all the possible paths it may be transferred. Each possible path (path) con-
sists of the ports (port), register connections (regConn), and the register file
(regFile).

Table 25.3 shows the OT of executing an add operation, ADD R1 R2 R3, on
the partially bypassed pipeline shown in Fig. 25.15. Without loss of the generality,
assume by the time the add operation starts to execute, no hazards are present, so
the add operation can be executed in five cycles, and consequently the OT of this
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Fig. 25.15 An example partially bypassed pipeline

add operation contains five otCycles. The add operation is fetched to the F pipeline
unit and decoded at D pipeline unit, respectively, during the first two cycles. In the
third cycle, the add operation proceeds to OR pipeline unit and reads its source
operands R2 and R3. All the possible paths to read the each operand are included
in the table. The first operand R2 can be read only from the register file RF via
connection C1, while the second operand R3 can be read either from the register
file RF via the connection C2 from port p7 to p2 or from the pipeline unit EX
via connection C5 from port p3 to port p2. In addition to the source operands, the
destination operands R1 are listed as well, and the dependent operations should be
scheduled after accordingly. In the fourth cycle, the add operation is sent to the
pipeline unit EX for execution. At the end of this cycle, the result of the operation is
calculated and available for bypassing. The operation at the OR unit at that time can
read the calculated result as its second operand via connection C5. In the last cycle,
the operation is written back to R1 from WB pipeline unit to the register file RF via
connection C3.

There may be multiple paths to read each operand in the presence of bypasses. As
an example, the Intel XScale processor provides seven possible bypasses for each
operand, in addition to the register file. The OT of an operation lists all the possible
paths to read each operand. As a result, the OT may potentially have to store eight
paths (seven from bypasses plus one from the register file) for each an operand to
read. To prevent such superfluity to consume too much space in the OT, the concept
of Bypass Register File (BRF) is introduced. A BRF is essentially a virtual register
file that serves as a temporary storage for each operand having bypasses. All the
values bypassed to the operand are first written to the BRF and then read by the
operation. A value from the bypass must be read in the same cycle once the value
is calculated; therefore, each value can exist only for one cycle in the BRF. Each
operand needs only one BRF to accept values from all the bypasses that attach to it.
As a result, the space consumed by an OT can be greatly reduced.
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Fig. 25.16 An example partially bypassed pipeline with BRF

Table 25.4 The OT of ADD
R1 R2 R3 with BRF

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C6, p11, BRF

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p10, BRF

5 WB

WriteOperands

R1

p4, C3, p8, RF

Figure 25.16 shows the processor pipeline with a BRF. The bypassed result from
the EX unit to the second source operand of the OR unit is first written to the BRF via
connection C5. The OR unit then reads the value either from the BRF via connection
C6 or from actual register file RF via connection C2. Table 25.4 shows the OT of
the operation ADD R1 R2 R3 in the pipeline with the BRF in Fig. 25.16. The only
differences are that the second source operand of OR unit can be read from either the
actual register file RF or the virtual register file BRF, and the result of the EX unit
is now first bypassed to the BRF instead of directly to the second source operand of
the OR unit.
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Detecting Pipeline Hazards Using OT
To illustrate the power OT possesses in detecting pipelining hazards, let us consider
an example of applying OT-based scheduling in the pipeline in Fig. 25.16 on the
three operations as follows:

MUL R1 R2 R3 (R1 R2 �R3)
ADD R4 R2 R3 (R4 R2CR3)
SUB R5 R4 R2 (R5 R4 �R2)

Assume both SUB and ADD operations take one cycle in the EX stage and the
MUL operation spends two cycles in the same stage. In addition, all the pipeline
resources are available initially. Therefore, when the MUL operation is scheduled at
the first cycle, there will be no hazards. Table 25.5 shows the state of the machine
after MUL is scheduled.

We then try to schedule ADD in the next cycle. However, a resource hazard will
happen, since the EX pipeline unit is still busy executing the second cycle of MUL
operation. Table 25.6 shows the state of the processor pipeline after scheduling ADD
in the second cycle. A resource hazard is detected when the fourth otCycle of ADD
is tried in the fifth cycle, so the otCycle should be not be scheduled at this cycle.

At this point, if we keep scheduling the SUB operation in the third cycle, a
data hazard will be detected. The SUB operation needs to read the value of the
first operand R4, which is calculated by the previous ADD operation. However, the

Table 25.5 Pipeline states
after scheduling MUL R1 R2
R3 in Cycle 1

Cycle Busy resources !RF BRF

Operation1

1. F – –

2. D – –

3. OR, p1, C1, p6, p2, C2, p7 – –

4. EX R1 –

5. EX, p3, C4, p10 R1 R1

6. WB, p4, C3, p8 R1 –

7. – –

Table 25.6 Pipeline states after scheduling ADD R4 R2 R3 in Cycle 2

Cycle Busy resources !RF BRF

Operation1 Operation 2

1. F – –

2. D F – –

3. OR, p1, C1, p6, p2, C2, p7 D – –

4. EX OR, p1, C1, p6, p2, C2, p7 R1 –

5. EX, p3, C4, p10 Resource hazard R1 R4 R1

6. WB, p4, C3, p8 EX, p3, C4, p10 R1 R4 R4

7. WB, p4, C3, p8 R4 –

8. – –
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Table 25.7 Pipeline states after scheduling SUB R5 R4 R2 in cycle 3

Cycle Busy resources !RF BRF

Operation1 Operation 2 Operation 3

1. F – –

2. D F – –

3. OR, p1, C1, p6,
p2, C2, p7

D F – –

4. EX OR, p1, C1, p6,
p2, C2, p7

D R1 –

5. EX, p3, C4, p10 Resource hazard Data hazard R1 R4 R1

6. WB, p4, C3, p8 EX, p3, C4, p10 Data hazard R1 R4 R4

7. WB, p4, C3, p8 Data hazard R4 –

8. OR, p1, C1, p6, p2, C2, p7 R5 –

9. EX, p3, C4, p10 R5 R5

10. WB, p4, C3, p8 R5 –

11. – –

bypass in Table 25.5 is from EX pipeline unit to the second operand in OR pipeline
unit, so there will not be any available path for this operand to be transferred at the
time the SUB operation enters to the EX pipeline unit. The data hazard is resolved in
the eighth cycle. Table 25.7 shows that the state of the processor pipeline after SUB
is scheduled in the third cycle. After the scheduling of the SUB operation, all the
operations are successfully scheduled with both data and resource hazards detected,
even in the presence of partial bypassing.

25.1.2.4 List Scheduling Algorithm Using OT
In the presence of partial bypassing, the operation latency of an operation is not
sufficient to avoid all the data hazards – OT is needed. The traditional list scheduling
algorithm can be very easily modified by using OT. Figure 25.17 shows the list
scheduling algorithm that uses OT for pipeline hazard detection. The DetectHazard
function (line 10) and the AddOperation function (line 13) are two functions that
are based on OT. The DetectHazard function checks if scheduling all otCycles of
the operation v starting from the machine cycle t will cause any hazards. Once the
scheduler finds the earliest available machine cycle, it calls AddOperation function
to schedule operation v in cycle t.

Experiments are performed in the Intel XScale microarchitecture to verify the
capability of the OT-based scheme. Figure 25.18 shows the pipeline of XScale
architecture. The experimental setup is shown in Fig. 25.19. Each benchmark
application is first compiled with the GCC cross compiler for Intel XScale processor.
The OT-based scheduling is then applied to each basic block of the original program
to generate the executable again. The two versions of executable files are then run on
the XScale cycle-accurate simulator, respectively. Performance is measured as the
number of cycles spent on executing applications. The improvement of performance
is measured as .gccCycles� otCycles/� 100=gccCycles, where gccCycles is
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Fig. 25.17 List scheduling
algorithm using OT

ListScheduleUsingOTs(V)

01:U =V − v0;F = φ;S= v0

/* initialize */
02: foreach (v ∈V )
03: schedTime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
06: F = {v|v ∈U, parents(v) ⊂ S}
07: F.sort() /* some priority function */
08: v= F.pop()
09: t =MAX(schedTime(p)), p ∈ parents(v)
10: while (DetectHazard(machineState,v.OT, t))
11: t++
12: endWhile

13: AddOperation(machineState,v.OT, t)
14: schedTime[v] = t
15: endWhile

Fig. 25.18 The pipeline in XScale

Fig. 25.19 Experimental
setup
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the number of cycles spent on running an applications compiled with GCC compiler,
and otCycle is its counterpart with OT-based scheduling. Figure 25.20 shows the
details. The OT-based scheme improves the performance over the GCC compiler by
up to 20%.

25.1.2.5 CIL Partial Bypass Exploration
With effectiveness of OT-based scheme, we can further make use of it to explore
the design space of partial bypassed processors. PBExplore, a CIL Framework
for DSE of partial bypassing in processors is proposed to accommodate the need.
The compiler in the PBExplore takes as input bypass configuration, as shown in
Fig. 25.21. A bypass configuration describes the pipeline stage each individual
bypass starts (source), and the operand that can consume the value the bypass
transfers (destination). The binary generated by the bypass-aware compiler is

Fig. 25.20 Performance improvement of the compiler with OT-based scheduling over the GCC
compiler

Fig. 25.21 PBExplore: A CIL framework for partial bypass exploration
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then run on a cycle-accurate simulator that is parameterized on the same bypass
configuration. The simulator then dumps the estimations of cycles of execution,
area, and power consumption.

PBExplore can effectively guide designers to use the best design decisions
and avoid suboptimal design decisions that may happen in simulation-only DSE.
Figures 25.22, 25.23 and 25.24 show, respectively, the change of execution cycles
when only the X-bypasses (enabling bypassing of the pipeline stages in the integer
pipeline in Fig. 25.18), D-bypasses (enabling bypassing of the pipeline stages in
the memory pipeline), and M-bypasses (enabling bypassing of the pipeline stages
in the Multiply-Accumulator (MAC) pipeline) are varied, respectively, while the
other two bypasses are fixed. Figure 25.22 shows that while the execution cycles
for configurations < X2 X1 >, < XWB X1 > and < XWB X2 > are similar under

Fig. 25.22 X-bypass exploration for the bitcount benchmark

Fig. 25.23 D-bypass exploration for the bitcount benchmark
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Fig. 25.24 M-bypass exploration for the bitcount benchmark

simulation-only approach, the bypass-sensitive compiler is able to identify < X2 X1
> the best among the three choices. If designers choose to have only two bypasses
in the processor, then they would have made the wrong choice based on simulation
solely. Similarly, Fig. 25.23 shows that when there is only one bypass, bypassing
D2 pipeline stage is a better choice than bypassing DWB according to PBExplore,
while the simulation-only approach may mislead designers to bypass either D2 or
DWB. Similar observations can be found for the M-bypass exploration in Fig. 25.24
and the D-bypass exploration in Fig. 25.23.

25.1.3 Conclusions

Embedded systems are ubiquitous in our daily life, ranging from portable music
players to real-time control systems in space shuttles. The diversity of embedded
applications eventually boils down to multidimensional design constraints on
embedded systems. To meet these constraints, embedded processors often feature
unique design parameters, several missing features, and often quite quirky designs.
For these embedded processors, the compiler often has a very significant impact
on the power and performance characteristics of the processor – and therefore
hardware-aware compilers are most useful and effective for embedded processors.
Hardware-aware compilers take the microarchitectural description of the processor
into account in addition to the application code in order to compile. There are two
main use-cases for hardware-aware compilers. The first one is the traditional use,
i.e., as a production compiler for an embedded processor. In addition to this, a
hardware-aware compiler can be used to design an efficient embedded processor.
The hardware-aware compiler enables the CIL DSE of the microarchitectural space
of the processor, which takes into consideration the effects compilers have on the
power consumption and performance of the processor. We demonstrate these two
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uses by presenting a compiler technique to significantly alleviate branch penalties
in processors without hardware branch prediction in Sect. 25.1.1, and a OT-based
compiler technique that can be used to improve the performance and to help the
design of processors with partial bypassing in Sect. 25.1.2. The experimental results
corroborate the importance of hardware-aware compilation.
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