
24Networked Real-Time Embedded Systems

Haibo Zeng, Prachi Joshi, Daniel Thiele, Jonas Diemer,
Philip Axer, Rolf Ernst, and Petru Eles

Abstract

This chapter gives an overview on various real-time communication protocols,
from the Controller Area Network (CAN) that was standardized over twenty
years ago but is still popular, to the FlexRay protocol that provides strong
predictability and fault tolerance, to the more recent Ethernet-based networks.
The design of these protocols including their messaging mechanisms was driven
by diversified requirements on bandwidth, real-time predictability, reliability,
cost, etc. The chapter provides three examples of real-time communication
protocols: CAN as an example of event-triggered communication, FlexRay as

This work was done while Daniel Thiele was with Technische Universität Braunschweig

H. Zeng (�) • P. Joshi
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
e-mail: hbzeng@vt.edu; haibo.zeng@gmail.com; prachi@vt.edu

D. Thiele
Elektrobit Automotive GmbH, Erlangen, Germany
e-mail: daniel.thiele@elektrobit.com

J. Diemer
Symtavision, Braunschweig, Germany
e-mail: diemer@symtavision.com

P. Axer
NXP Semiconductors, Hamburg, Germany
e-mail: philip.axer@nxp.com

R. Ernst
Institute of Computer and Network Engineering, Technical University Braunschweig,
Braunschweig, Germany
e-mail: ernst@ida.ing.tu-bs.de

P. Eles
Department of Computer and Information Science, Linköping University, Linköping, Sweden
e-mail: petru.eles@liu.se

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_25

753

mailto:hbzeng@vt.edu
mailto:haibo.zeng@gmail.com
mailto:prachi@vt.edu
mailto:daniel.thiele@elektrobit.com
mailto:diemer@symtavision.com
mailto:philip.axer@nxp.com
mailto:ernst@ida.ing.tu-bs.de
mailto:petru.eles@liu.se

754 H. Zeng et al.

a heterogeneous protocol supporting both time-triggered and event-triggered
communications, and different incarnations of Ethernet that provide desired
temporal guarantees.

Acronyms

ADAS Advanced Driver Assistance System
AFDX Avionics Full-Duplex Switched Ethernet
ARQ Automatic Repeat Request
AVB Audio/Video Bridging
CAN Controller Area Network
CPA Compositional Performance Analysis
CSMA/CD Carrier Sense Multiple Access/Collision Detection
ECU Electronic Control Unit
ET Event-Triggered
FIFO First-In First-Out
ILP Integer Linear Program
LIN Local Interconnect Network
MAC Media Access Control
MOST Media Oriented Systems Transport
QoS Quality of Service
SPNP Static-Priority Non-Preemptive
TSN Time-Sensitive Networking
TT-CAN Time-Triggered CAN
TTEthernet Time-Triggered Ethernet
TTP Time-Triggered Protocol
TT Time-Triggered

Contents

24.1 Introduction . 755
24.2 Event-Triggered Communication: Controller Area Network . 757

24.2.1 CAN Message Format and Bus Arbitration . 757
24.2.2 Timing Analysis with Ideal Models . 759
24.2.3 Analysis with Non-idealized Models . 762

24.3 A Heterogeneous Communication Protocol: FlexRay . 764
24.3.1 Introduction . 764
24.3.2 Static Segment . 765
24.3.3 Dynamic Segment . 769

24.4 Packet-Switched Networks: Ethernet . 779
24.4.1 Introduction . 779
24.4.2 Modeling Ethernet Networks for Performance Analysis 780
24.4.3 Analysis of Standard Ethernet (IEEE 802.1Q) . 782
24.4.4 Analysis Extensions . 787

24 Networked Real-Time Embedded Systems 755

24.5 Conclusion . 788
References . 788

24.1 Introduction

The communication network has been a key enabling technology for the ad-
vancement of distributed embedded systems, as evidenced in application domains
like automotive, avionics, and industrial automation. With ever-increasing contents
(safety, driver assistance, infotainment, etc.) in such systems relying on electronics
and software, the supporting architecture is often integrated and interconnected by a
complex set of heterogeneous data networks. For example, a modern automobile
contains up to 100 Electronic Control Units (ECUs) and several heterogeneous
communication buses (such as Controller Area Network (CAN), FlexRay, Media
Oriented Systems Transport (MOST), and Local Interconnect Network (LIN)),
exchanging thousands of signals [60].

This chapter intends to provide an overview of the real-time communication
networks that are mainly categorized according to their messaging mechanism (or
link layer protocol): Event-Triggered (ET), Time-Triggered (TT), or the coexistence
of the two. In the first category (ET), messages are produced and transmitted based
on the significant events occurring in the network, for example, the successful
transmission of other messages. This category includes CAN, switched Ethernet,
Avionics Full-Duplex Switched Ethernet (AFDX), and Ethernet Audio/Video Bridg-
ing (AVB). In the second category (TT), messages are transmitted at predefined
time slots. Hence, it is essential to establish a global notion of time among all
communication nodes to avoid possible collision. Time-Triggered CAN (TT-CAN)
and Time-Triggered Protocol (TTP) belong to this category. In the third category,
both time- and event-triggered traffics exist on the same communication network.
Examples in this category include FlexRay, Ethernet Time-Sensitive Networking
(TSN), and Time-Triggered Ethernet (TTEthernet).

The messaging mechanism in the communication network has a large impact
on the temporal performance guarantees it can provide. Specifically, real-time
performance metrics on the communication network include message latency
and jitter. Message latency (or response time) is defined as the time that the
message is ready for transmission to the time it is successfully received. Meeting
the worst-case latency requirement is of fundamental importance to validate the
system behavior against message deadlines. Jitter is the difference between the
worst-case and best-case latencies, a key metric to the control performance of the
features [44].

For time-triggered communication, the bandwidth is assigned to messages
according to a time-triggered pattern, and the transmission of a message is triggered
exactly when the global time reaches certain time points. Hence, a deterministic

756 H. Zeng et al.

Table 24.1 Summary of real-time communication protocols

Property CAN FlexRay TTP TT-
Ethernet

AFDX Switched
Ethernet

AVB TSN

Bandwidth 1 Mbps 10 Mbps 25 Mbps 1 Gbps 100 Mbps 100 Mbps–1 Gbps

Message size
(bytes)

0–8 0–254 0–240 46–1500 64–1518 42–1542

Channels 1 2 2 2 2 1 1 2+

Messaging ET TT + ET TT TT + ET ET ET ET ET/ET +
TT

Composability No Mixed Yes Yes Yes Yes Yes Yes

Medium
access

CSMA/
CA

TDMA +
FTDMA

TDMA TDMA +
SPNP

SPNP +
BAG

SPNP SPNP +
CBS

TDMA +
SPNP

CRC error de-
tection

15-bit 11-bit
Header
+ 24-bit
Tailer

24-bit 32-bit 32-bit 32-bit 32-bit 32-bit

communication pattern on the bus is guaranteed. The message latency/jitter can
easily be calculated by checking the predefined transmission slots, which is
independent from the rest of the network. On the contrary, in event-triggered
communication, network delay occurs due to conflicts on media access and
queuing mechanisms in the network. Event-triggered communication can be further
classified by the temporal guarantees it can provide. In CAN, the dynamic segment
of FlexRay, and switched Ethernet the temporal bounds on latency and jitter can
oftentimes be analyzed a priori with its priority-based scheduling. However, changes
to one node have an impact on the temporal behavior of messages from other nodes
in the network. This makes the system composition difficult. As a remedy, several
event-triggered communication protocols provide guaranteed service (bounds for
latency and jitter) to a message regardless of the rest of the network, given that the
message is produced at a speed that does not exceed the predefined maximum rate.
Examples include the bandwidth allocation gap in AFDX and the rate-constrained
messages in TTEthernet.

Table 24.1 summarizes the main communication protocols that are currently
being deployed or considered in the application domains of real-time embedded
systems. (Acronyms in the table: CSMA/CA, carrier sense multiple access with col-
lision avoidance; TDMA, time division multiple access; FTDMA, flexible TDMA;
SPNP, static priority non-preemptive; BAG, bandwidth allocation gap; CBS, credit-
based shaping.) They all provide some degrees of predictability on temporal behav-
ior. Those that are more suitable for non-real-time application, such as CSMA/CD-
based Ethernet, are left out of the comparison. Besides the messaging mechanism
and composability, the table also compares their maximum bandwidth, message
size, number of (redundant) channels, medium access policy, and error detection.

The rest of the chapter describes in detail three different communication proto-
cols, focusing on their messaging mechanism and timing predictability: CAN as an

24 Networked Real-Time Embedded Systems 757

example of event-triggered communication, FlexRay as a heterogeneous protocol
supporting both time-triggered and event-triggered communications, and different
incarnations of Ethernet that provide desired temporal guarantees.

24.2 Event-Triggered Communication: Controller Area Network

Controller Area Network is a broadcast digital bus designed to operate at speeds
from 20 kbit/s to 1 Mbit/s, standardized as ISO/DIS 11898 [36]. The transmission
rate depends on the bus length and transceiver speed. CAN is an attractive solution
for embedded control systems because of its low cost, light protocol management,
the deterministic resolution of the contention, and the built-in features for error
detection and retransmission. Today CAN networks are widely used in automotive
applications, as well as in factory and plant controls, robotics, medical devices, and
some avionics systems.

Since its standardization in the mid-1990s, it has attracted a significant amount
of research from the real-time systems community. The CAN protocol adopts a
collision detection and resolution scheme, where the message to be transmitted
is chosen according to its identifier. When multiple nodes need to transmit over
the same bus, the lowest identifier message is selected for transmission. This
arbitration protocol allows encoding the message priority into the identifier field
and implementing priority-based scheduling.

24.2.1 CAN Message Format and Bus Arbitration

The CAN protocol has the message format of Fig. 24.1, where the sizes of the fields
are expressed in bits. Priorities are encoded in the message identifier field (ID),
which is 11 bits wide for the standard format. The identifier is used not only for
bus arbitration but also for describing the data content (identification of the message
stream). The CAN protocol requires that all contending messages have a unique
identifier (unique priority). The other fields are the start-of-frame (SOF) bit; the
control field (CTL) containing information on the type of message; the data field
(DATA) containing the actual data to be transmitted, up to a maximum of 8 bytes; the
checksum (CRC) used to check the correctness of the message bits; the acknowledge
field (ACK) used to acknowledge the reception; the end-of-frame (EOF) delimiter
used to signal the end of the message; and the idle space or inter-frame bits (IF)
used to separate one frame from the following one.

bit length
0

DATA IFEOFCRC
1 1 1 1 1 1 1 1 1

SOF ID CTL

1 11 6 0−64 16 2 7 3

ACKfield name
1

Fig. 24.1 The CAN data frame format

758 H. Zeng et al.

The CAN bus [36] essentially works as wired AND channels connecting all
nodes. The two possible states encoded in the physical media are defined as
“recessive” and “dominant,” where dominant is a logical 0 (actively driven to a
voltage by the transmitter) and recessive is a logical 1 (passively returned to a
voltage by a resistor). The protocol allows multi-master access to the bus. At the
lowest level, if multiple masters try to drive the bus state at the same time, the
“dominant” configuration also prevails upon the “recessive.”

The CAN arbitration protocol is both priority based and non-preemptive, as a
message that is being transmitted cannot be preempted by higher-priority messages
that are made available at the network adapters after the transmission has started.
The media access protocol works by alternating contention and transmission phases.
The time axis is divided into slots that must be larger than or equal to the time
it takes for the signal to travel back and forth along the channel. The contention
and transmission phases take place during the digital transmission of the frame
bits.

At any time, if a node wishing to transmit finds the shared medium in an idle
state, it waits for the end of the current bit (as defined by its internal oscillator)
and then starts an arbitration phase by issuing a start-of-frame bit (a dominant bus
state). At this point in time, each node with a message to be transmitted can start
the competition to get access to the shared medium. All nodes will synchronize
on the SOF bit edge and then, when the identifier field starts, they will serially
transmit the identifier (priority) bits of the message they want to send, one bit for
each slot, starting from the most significant ones. Collisions among identifier bits
are resolved by the logical AND semantics, and each node reads the bus state while
it transmits.

If a node reads its identifier bits on the medium without any change, it realizes
it is the winner of the contention and is granted access to transmit the rest of
the message. On the other hand, if one of the bits is changed when reading it
back from the medium, this means that there is another node sending a higher-
priority (dominant) bit; thus the message is withdrawn by the node that has lost the
arbitration. The node stops transmitting the message bits and switches to listening
mode only.

Clearly, according to this contention resolution protocol, the node with the lowest
identifier is always the winner of the arbitration round and is transmitted next (the
transmission stage is actually not even a distinct stage, given that the message frame
is transmitted sequentially with the fields following the Identifier). All the other
nodes switch to a listening mode. In a CAN system, at any time, there can be no
two messages with the same identifier (this property is also referred to as unique
purity). The message identifiers shall be assigned in a centralized fashion (e.g., by
the system integrator). The arbitration is deterministic and also priority based, as
that the message identifier gives in this case an indication of the message priority
(the lowest identifier always wins).

24 Networked Real-Time Embedded Systems 759

24.2.2 Timing Analysis with Ideal Models

To predictably guarantee that the messages transmitting on CAN bus meet their
deadlines, Tindell et al. [77] developed the seminal analysis of CAN message
worst-case response times. The analysis is derived out of an analogy with CPU
scheduling results but adapted to a message system scheduled by priority but
without preemption. The result of the original paper influenced the design of on-chip
CAN controllers like the Motorola msCAN and was included in the development of
the early versions of Volcano’s Network Architect tool. Volvo used these tools and
the timing analysis results from Tindell’s theory to evaluate communication latency
in several car models, including the Volvo S80, XC90, S60, V50, and S40 [7]. The
analysis was later found to be flawed by Davis et al. [12], where a set of formulas is
provided for the exact evaluation and safe approximation of the worst-case message
response times.

The analysis methods [12, 77] are based on a number of assumptions at
the middleware, driver, and controller levels of the CAN communication stack,
including

• The existence of a perfect priority-based software queue at each node for the
outgoing messages

• The availability of one output buffer (i.e., transmit object, or simply TxObject)
for each message, or preemptability of the TxObjects

• Immediate (zero-time) copy of the highest priority message from the software
queue to the TxObjects

However, these idealized assumptions are often violated in practical systems
(especially automotive systems) [15].

Under such analyses, each periodic or sporadic message mi is defined by the
tuple

mi D fidi ; Ti ; Ji ; Ci ; Di g

where idi is the CAN identifier, Ti is the period or the minimum inter-arrival time,
Ji is the queuing jitter (sometimes also referred to as release jitter), Ci is the worst-
case transmission time, and Di is the deadline. The worst-case transmission time
Ci is given by the total number of transmitted bits (including the worst-case stuffed
bits) divided by the bus transmission rate.

The schedulability analysis [12] starts with the theorem that the worst-case
response time is always inside the busy period. The busy period of priority level-
i is a contiguous interval of time that starts at the critical instant. During the busy
period, any message of priority lower than mi is unable to start transmission and win
arbitration. For mi , the critical instant is the time instant where (1) the contention

760 H. Zeng et al.

Ti

BiJi Ci

wi (q)

Ri (q)

mi

Ti

Fig. 24.2 The worst-case busy period and response time of message mi

on the bus has just won by the longest lower-priority message (if one exists) and (2)
all the higher-priority messages hp.i/ become simultaneously ready and arrive at
their maximum rates thereafter.

Figure 24.2 illustrates the analysis of the worst-case response time for mi . The
dashed downward arrows denote the arrivals of mi , separated by at least Ti . The
solid downward arrow is the queuing time of mi . The busy period consists of the
queuing jitter, the blocking time, the queuing delay, and the transmission time of mi

itself.
To find the correct worst-case response time, the formula to be applied is a small

modification to [77] that checks all the instances of message mi transmitted inside
the busy period. The response time of the q-th instance in the hyperperiod is

Ri .q/ D Ji C wi .q/ � .q � 1/Ti C Ci (24.1)

where q ranges from 1 to the last instance qmax
i of mi inside the busy period. The

blocking time, i.e., the time spent on waiting for the transmission of a lower-priority
message already on the bus when mi becomes ready, is denoted as Bi . The worst-
case queuing delay wi .q/ for the q-th instance in the busy period is

wi .q/ D Bi C .q � 1/Ci C
X

k2hp.i/

�
wi .q/ C Jk C �bit

Tk

�
Ck (24.2)

where �bit is the time to transmit one bit of data on the bus.
In Eq. (24.2), wi .q/ appears on both sides. However, the right hand side is a

monotonic nondecreasing function of wi .q/. Hence, wi .q/ can be solved using the
iterative procedure defined in the equation below.

wnC1
i .q/ D Bi C .q � 1/Ci C

X

k2hp.i/

�
wn

i .q/ C Jk C �bit

Tk

�
Ck (24.3)

The calculation can start with an initial value of w0
i .q/ D Bi C .q � 1/Ci and stop if

wnC1
i .q/ D wn

i .q/ or when Ji CwnC1
i .q/�.q �1/Ti CCi > Di , the latter condition

indicating that mi is unschedulable.

24 Networked Real-Time Embedded Systems 761

The length of the longest busy period Li and the index of the last instance are
calculated as

8
ˆ̂̂
<̂

ˆ̂̂
:̂

Li D Bi C
X

kDhp.i/
S

fig

�
Li C Jk C �bit

Tk

�
Ck

qmax
i D

�
Li C Ji

Ti

� (24.4)

The worst-case message response time is the maximum among all its instances
in the busy period.

Ri D max
qD1;:::;qmax

i

fRi .q/g (24.5)

The above analysis (Eq. (24.1), (24.2), (24.3), (24.4), and (24.5)) requires to
consider all the qmax

i instances in the busy period. Under the assumption that the
deadline is no greater than the period (Di � Ti), a sufficient but not necessary
condition can be derived [12], which only checks the schedulability of the first
instance by using its response time upper bound. Davis et al. [12] define the concept
of push through interference, the largest interference that can be pushed through
into the next period of message mi due to the non-preemptive transmission of the
previous instances. Any instance of mi is subject to either direct blocking from
lower-priority messages or indirect blocking from the previous instances of mi ,
upper bounded by the push through interference of at most Ci . Hence, the queuing
delay of the first instance (q D 1) of mi is bounded by the result of the following
equation:

wi D max.Bi ; Ci / C
X

k2hp.i/

�
wi C Jk C �bit

Tk

�
Ck (24.6)

which can be solved in a similar way to Eq. (24.2).
Besides the above analysis technique [12, 77], the schedulability of CAN mes-

sages is also addressed with other methods. Sufficient schedulability tests based on
system utilization bound are derived for CAN (or in general, for systems under non-
preemptive fixed-priority scheduling) with deadline monotonic and rate monotonic
priority assignment policies [1, 6]. Navet et al. [62] introduce the concept of worst-
case deadline failure probability because of transmission errors. In [5], Broster et al.
present the probabilistic analysis of the impact of faults on CAN message latencies
in the worst-case scenario. In [64], Nolte et al. extend the worst-case response
time analysis using random message transmission times that take into account the
probability of a given number of stuff bits. These works [5, 62, 64] still perform
the analysis with respect to the critical instant, i.e., the worst-case response time
scenario. Zeng et al. [81] provide a stochastic analysis framework for CAN message
response times. In another work [82], they build a probability mix model to predict
the distribution of message response times in CAN. The model is a mixture of the
gamma distribution and the degenerate distribution. In [45], Liu et al. present an

762 H. Zeng et al.

extreme value theory-based statistical method to estimate the worst-case response
times of CAN messages.

The analysis in [12, 77] has also been extended to other models of CAN
messages. [8, 79] studied the worst-case response time for CAN messages that
are scheduled with offsets. Mubeen et al. [51] consider the analysis for mixed
messages, i.e., those with simultaneous time triggered (periodic) and event triggered
(sporadic). They further provide analysis method to support mixed messages that
are scheduled with offsets [55, 56]. In addition, the analysis on mixed messages is
extended for nonideal CAN networks, including those where some nodes implement
FIFO queues [54] or with CAN controllers implementing abortable [53] and non-
abortable [52] transmit buffers. Liu et al. [46, 47] consider messages under the
multi-frame task model [50] and its generalization [4] and present a sufficient
schedulability analysis for systems with mixed message queues.

24.2.3 Analysis with Non-idealized Models

The analysis techniques in Sect. 24.2.2 assume an idealized model for the message
queuing and the configuration and management of the peripheral TxObjects. In
reality, CAN controllers have a limited number of available transmit buffers
(TxObjects). When the number of TxObjects available at the controller is smaller
than the number of messages sent by the node (as is the case for automotive
gateways and nodes with lots of output information, or when message reception
is polling based and a relatively large number of buffers must be reserved to input
streams in order to avoid message loss by overwriting), it is necessary to use a
software queue to hold messages waiting to be copied to a TxObject. Several
commercial drivers (including those from Vector [78], probably the most commonly
used in automotive systems) allow to put the outgoing messages in software queues
as a temporary storage for accessing TxObjects. It is also quite common to use
multiple queues, with each queue linked to a single TxObject. When a TxObject is
available, a message is extracted from the queue and copied into it.

When software queues are used, the preservation of the priority order of the
messages for accessing the CAN bus requires the following:

• (a) The messages in the software queue must be sorted by their priority (i.e., by
message identifier).

• (b) When a TxObject (transmit buffer) becomes free, the highest priority message
in the queue is immediately extracted and copied into the TxObject. In addition,
messages in the TxObjects must be sent in the order of their CAN identifier.

• (c) If a higher-priority message becomes ready and all the TxObjects are used
by lower-priority messages, the lowest-priority message in one of the TxObjects
must be evicted and put back in the queue to ensure that a TxObject is available
for the highest priority message.

24 Networked Real-Time Embedded Systems 763

When any of these conditions do not hold, priority inversion occurs, and
the worst-case timing analysis in [12] is not necessarily safe. These issues are
discussed in [14, 16] where the impact of transmission by polling (as opposed to
interrupt driven) is also outlined. Using FIFO or any work-conserving queuing for
messages inside the CAN driver/middleware layers (violating (a) in the previous
list) is discussed and analyzed in [11, 13, 57]. When the copy time from the
message queue to the TxObject cannot be neglected (disobeying (b) in the list), the
introduced priority inversion is analyzed in [40]. Di Natale and Zeng [15] provides
theory for the analysis of systems in which message output at the CAN driver is
performed by polling (another break of the rule (b)). For the violation to (c) in
the list, additional delay can be caused by limited number of TxObjects at the
CAN controller that are non-abortable. Natale [41] and Khan et al. [61] provide
an analysis to these driver configuration issues and controller policies that can
lead to (possibly multiple) priority inversions. Di Natale and Zeng [15] provides
further insight on the management of TxObjects without preemption and proposes
a heuristic for the design of message queuing systems with guaranteed real-time
properties. Finally, [58, 59] integrate the effect of these hardware and software
limitations with messages that are triggered by both time (periodic) and event
(sporadic).

As an example, the analysis for systems with FIFO software queue [13], under
the condition that the messages have constrained deadlines (D � T), is summarized
below. The more general case of unconstrained deadlines is discussed in [11]. For a
message mi , the maximum time that it waits in the FIFO queue before it becomes
the oldest message (hence ready for priority-based arbitration) is defined as the
buffering delay of mi . The buffering delay of mi is denoted as fi .

The analysis returns the same worst-case response time bound for all messages
M in the same FIFO queue. It is similar to Eq. (24.6) in that the blocking time is
safely bounded to avoid checking multiple instances in the busy period. For each
contributing delay to the response time, it makes pessimistic but safe assumptions
to derive a correct upper bound. The first delay is the blocking time, upper bounded
by the maximum between direct blocking time from lower-priority messages or
the indirect blocking bounded by the push through interference C max

M D max
j 2M

Cj .

The second is the interferences from messages from the same FIFO queue. Since
messages have a deadline no larger than the period, there can be at most one instance
from each message waiting in the queue for a schedulable system. Hence, the
maximum interference caused by these messages is upper bounded by C SUM

M �C min
M

where C SUM
M D

X

j 2M

Cj and C min
M D min

j 2M
Cj . In this way, among the total

transmission time C SUM
M , the maximum amount is also exposed to interference from

messages in other queues when mi has a transmission time Ci D C min
M . The third

delay is the interferences from messages in other queues. This delay is maximized
when we consider the lowest-priority message mLi 2 M queued in the same FIFO
as mi .

764 H. Zeng et al.

Summating all the above, the queuing delay wi can be derived from a sufficient
condition similar to that in Eq. (24.6) for priority-queued messages:

wi D max.BLi ; C max
M /C.C SUM

M �C min
M /C

X

k2hp.Li /^k…M

�
wi C Jk C fk C �bit

Tk

�
Ck

(24.7)

and the response time of mi is bounded by adding the queuing delay and the
transmission time together:

Ri D wi C C min
M (24.8)

In Eq. (24.7), besides the queuing jitter Jk , the buffering delay fk should be
treated as an additional jitter. This is because fk quantifies the variation from the
readiness of mk to the time it enters the priority-based arbitration (and becomes
capable of interfering mLi). The buffering time fi of mi can be bounded as

fi D Ri � C min
M (24.9)

24.3 A Heterogeneous Communication Protocol: FlexRay

24.3.1 Introduction

The FlexRay standard was developed by a consortium including the major car
manufacturers and their suppliers, with a stated objective to support cost-effective
deployment of distributed by-wire controls. It is now defined in a set of ISO
standards, ISO 17458-1 to 17458-5 [37]. In addition to the stringent requirements on
determinism and short latencies as those for the x-by-wire functions, the definition
of FlexRay also was motivated by the large volumes of data traffic from active safety
functions.

The upper bound of communication speed in FlexRay is defined as 10 Megabits
per second (Mbps), as opposed to 1 Mbps for CAN. Time is divided into communi-
cation cycles that are of equal length. Each communication cycle contains up to four
segments: static, dynamic, symbol window (to transmit FlexRay-defined symbols
for, e.g., maintenance and cold-start cycles), and network idle time (NIT) (for clock
correction due to, e.g., clock drift), as shown in Fig. 24.3. Clock synchronization is
embedded in the standard, using part of the NIT segment.

The static segment of the communication cycle enables the transmission of time-
critical messages according to a periodic pattern, i.e., with time-triggered (TDMA)
communication. It is divided into a set of equal-sized time slots. The transmission
of frames in the static segment is fixed in a given slot, at a given time window.
The dynamic segment allows for flexible communications. The transmission of
frames in the dynamic segment is event triggered, arbitrated by their identifiers,
where the lowest identifier frames are transmitted first. Frames from different nodes

24 Networked Real-Time Embedded Systems 765

Channel 2

N2−2 N3−3 N1−4 N4−5unused 2 3 8 14

NITDynamic segmentStatic segment

FlexRay cycle

Channel 1

Symbol window

N1−1

N1−1 N3−3 N1−4unused 4 6 1211

Fig. 24.3 The four segments in a FlexRay communication cycle

can share the same identifier, but they differ in the allowed communication cycle.
This flexibility, called slot multiplexing, is supported in the most recent FlexRay
standard [37]. For increased reliability and timing protection, FlexRay includes
specifications of dual channel as well as bus guardians at the node and star level.
In a dual-channel configuration, frames for safety-critical communications can be
replicated in both channels (as those from node N1 in Fig. 24.3), or the slots can be
assigned independently.

The FlexRay bus configuration includes the selection of several parameters,
including the length of the communication cycle, the number and length of time slots
in the static segment, and the slot time of the dynamic segment. There are several
issues that require careful consideration in the definition of the bus configuration:
future extensibility, the composability of subsystems, and the possible standardiza-
tion for reusing of ECU components. Due to the nature of the automotive supply
chain and the desire to reuse ECUs on different car platforms, there is a trend of
global standardization of these FlexRay bus configuration parameters.

24.3.2 Static Segment

In FlexRay static segment, each node keeps the specification of the time slots for
its outgoing and incoming communications in its local scheduling table. The local
scheduling tables of all nodes shall be consistent (i.e., no two nodes are scheduled
to send frames in the same slot of the same communication cycle). In this way, the
schedule is composable (in the sense that no timing conflicts or interferences arise),
each node executes with respect to its own (synchronized) clock, and there is no
need for storing a global scheduling table.

Slots that are left free in the (virtual) global table resulting from the composition
of the local tables can be used for future extensions. Bus guardians monitor and
prevent a node from transmitting outside the allocated time window. This guarantees
time protection and isolation from timing faults.

The scheduling of FlexRay systems consists of the scheduling of the task and
signal instances in an application cycle. Broadly speaking, there are two possible
synchronization patterns between tasks and signals:

• Asynchronous scheduling. Such a scheduling model does not require that the
job (an instance of the task that produces the signal) and signal schedulers are
synchronized. Jobs post data values for the output signals in shared variables.

766 H. Zeng et al.

The communication drivers have the responsibility to pack the signals into frames
and fill the registers for the outgoing communication slot. At the receiving side,
the received frames are de-packed and written into input registers such that they
can be read asynchronously by the reader tasks.

• Synchronous scheduling. Different from the asynchronous scheduling model,
job executions and frame transmissions are synchronized such that a job must
complete before the beginning of the slot that transmits its output signal (with a
margin determined by the necessary copy time). It is then necessary to know
what job produces the data that is transmitted by a frame and what is the
job that reads the data delivered by the frame. It leverages the full benefits
of the FlexRay deterministic communication: Scheduling can be arranged to
achieve small sampling delays, providing very tight end-to-end latencies and
small jitter. Also, equally important, this scheduling model allows to guarantee
time determinism and the preservation of the stream of data exchanged over the
bus [27].

For synchronous scheduling of signals and tasks, besides packing the signals
into frames, designers will need to schedule the software tasks and frames, such
that timing constraints including end-to-end deadlines are satisfied. The precedence
constraints induced by information passing between tasks and signals and the end-
to-end delays associated with control path should be taken into consideration.
ILP-based approaches, holistic or two-stage, are studied by Zeng et al. [80], where
the tasks are scheduled at job level (each job in the hyperperiod can be scheduled
independently). Lukasiewycz et al. [49] provide a framework for scheduling buses
and ECUs at the task level, to enable an AUTOSAR compliant system. Besides
the timing-related metrics (bandwidth, end-to-end latency), synchronous scheduling
is also addressed under other contexts, such as application-level acknowledgment
and retransmission scheme [43], robustness to uncertainties in design parame-
ters [24], and message authentication/verification for security enhancement [28].
Also, Han et al. [27] discuss that system-level time-triggered schedules allow
the semantics-preserving implementation of distributed control models with a
synchronous reactive semantics and develop algorithms for minimizing functional
delays to improve control quality.

When considering the asynchronous scheduling, the FlexRay scheduling prob-
lem consists in the optimization of the communication scheduling for a set of
periodic signal streams, generated at the ECU interface and considered indepen-
dently from their sender and receiver tasks. For several car manufacturers this is a
problem of high practical interest, because the first step in the move to FlexRay is
likely to be the remapping of existing CAN communication flows, which are today
typically asynchronous with respect to computations. This problem is addressed in
a number of papers as follows:

Ding et al. adopt genetic algorithm and its combination with bin packing [22,23].
Schmidt et al. present a two-stage Integer Linear Program (ILP) approach [67],
where the first stage packs signals to frames and the second stage determines
the schedule from the set of frames. Grenier et al. [26] design a simple heuristic

24 Networked Real-Time Embedded Systems 767

assuming one signal per frame. Lukasiewycz et al. [48] develop a bin-packing-based
approach for allocating signals to slots. Tanasa et al. [69] propose to use message
retransmissions on the FlexRay static segment to provide guarantees on reliability.
These works focus on the earlier version of FlexRay 2.1 where slot multiplexing is
disallowed, hence preventing the share of the same slot across different ECUs. In
compliance with the latest FlexRay 3.0 standard, Schenkelaars et al. [66] consider
the mapping of frames to slots but assume the signals are already packed to frames.
Kang et al. [39] consider the problem of packing signals to frames. Hu et al. [30]
adopt a list-scheduling-based approach. Darbandi et al. [9] transform the problem
to a strip packing problem. They also propose an ILP-based approach for a direct
packing of signals to slots [10].

In the following, the ILP-based approach for synthesizing asynchronous schedule
is described. The approach extends the formulation from [48] by considering the slot
multiplexing allowed in FlexRay 3.0.

24.3.2.1 ILP-Based Approach for Asynchronous Scheduling
For asynchronous scheduling, the problem the designers are facing is to pack the
signals into frames and assign frames to slots such that there is one instance of
the signal transmitted within its period, and the number of used slots (the used
bandwidth) is possibly minimized.

For the purpose of scheduling in the static segment, it is sufficient to consider the
following set of design parameters in the FlexRay bus configuration: .cc; ns; ls/,
where cc is the number of communication cycles, ns is the number of slots in the
static segment of the communication cycle, and ls is the length of the slot in bytes.
The application contains a set of ECUs E, each ECU e sending a set of signals Me .
The set of all signals is denoted as M. For each signal m 2 M, it is configured
with a tuple of parameters .lm; rm/, where lm is the length of m in bytes and rm

is the cycle repetition of m. The cycle repetition rm is essentially the period Tm in
the unit of communication cycle: rm D Tm=lcomm, where lcomm is the length of the
communication cycle in time. rm shall always be an integer divisor of the number
of FlexRay communication cycles cc.

Another option is to evaluate several possible FlexRay configurations in an initial
branching of the search procedure. If the number of possible configurations is not
very large, it should be possible to explore them and run the optimization framework
as an inner loop, comparing the results at the end and choosing the best one with
respect to the objective function.

The mapping of signals to slots is encoded in a set of binary variables. For signal
m, the base cycle bm is smaller than rm (bm 2 f0: : :rm � 1g); hence the signal to slot
mapping is defined as

8c D 0; : : : ; rm � 1; 8s D 0; : : : ; ns � 1;

Bm;c;s D

�
1; if m is mapped to base cycle c; slot s

0; otherwise
(24.10)

768 H. Zeng et al.

Another set of binary variables encodes the status of each slot:

Us D

�
1; if slot s is used
0; otherwise

(24.11)

A third set of binary variables encodes the ownership of a slot in a communica-
tion cycle:

Oe;c;s D

�
1; if slot s in cycle c is owned by ECU e

0; otherwise
(24.12)

The problem now can be formulated as follows. For the set of constraints, each
signal is mapped to one and only one slot in its cycle repetition:

8m 2 M;

rm�1X

cD0

ns�1X

sD0

Bm;c;s D 1 (24.13)

The sum of the payloads over all mapped signals within each slot will be upper
bounded by the slot size:

8c D 0; : : : ; cc�1; s D 0; : : : ; ns�1;
X

m; b�c .mod rm/

lm�Bm;b;s � ls (24.14)

If signal m is mapped to communication cycle c and slot s, then m’s source ECU
e must own that slot:

8m 2 Me; c D 0; : : : ; cc�1; b � c .mod rm/; s D 0; : : : ; ns�1; Bm;b;s � Oe;c;s

(24.15)

If no signal is mapped to slot s in any communication cycle, then the slot
ownership is set to null:

8e 2 E; c D 0; : : : ; cc � 1; s D 0; : : : ; ns � 1; Oe;c;s �
X

m2Me ; b�c .mod rm/

Bm;b;s

(24.16)

Each slot in each cycle can only be owned by one ECU:

8c D 0; : : : ; cc � 1; s D 0; : : : ; ns � 1;
X

e2E

Oe;c;s � 1 (24.17)

The slot is used if any of the ECUs owns it:

8s D 0; : : : ; ns � 1;
X

e2E

cc�1X

cD0

Oe;c;s � Us (24.18)

24 Networked Real-Time Embedded Systems 769

The objective is to minimize the number of used slots:

min
X

s

Us (24.19)

24.3.3 Dynamic Segment

The FlexRay dynamic segment is partitioned into a number of minislots (MS) that
are of equal length. Each frame is assigned a frame identifier (FrameID, or simply
ID) within which it can transmit. The dynamic segment is arbitrated in the following
way. At the beginning of the dynamic segment, the minislot index is set to one.
If there is a ready frame with ID that matches the current slot index, the frame
is transmitted. Correspondingly, the dynamic slot is extended to a length equal
to the number of minislots needed to transmit the frame, plus one minislot for
idle phase (used to separate frame transmissions). Otherwise, the minislot elapses
without frame transmission, and the dynamic slot index is incremented before the
next minislot starts.

To make sure there is enough time to transmit a frame before the end of the
dynamic segment, a parameter pLatestT x is specified for each ECU as the number
of minislots in the dynamic segment minus the largest frame size (in minislots).
If the current minislot index is larger than pLatestT x (LT x for short in the
following), then no frame can start transmission, and all the ready frames are
delayed to the next communication cycle.

In the example of Fig. 24.4, five dynamic frames are transmitted over a FlexRay
channel. Two frames, m2 and m4, share the same ID. At the beginning of the
dynamic segment, the dynamic slot index is initialized as 1, and the controller
checks whether there is a frame with FrameID 1 ready to be transmitted. m1, and,
consequently, m2 and m3, is transmitted in the first communication cycle. However,
m5 with ID 5 cannot be transmitted since there is not enough room to accommodate
it and its transmission is delayed to the next cycle (assuming it is allowed to transmit
there). In the second communication cycle, there is no frame with ID 1; thus the
first dynamic slot is collapsed to one minislot and m4, which cannot be transmitted

Dynamic segment Dynamic segmentother segments other segments

Communication cycle Communication cycle

1 12 2 33 44 5 56 67 7 88 9 910 10 111112 12

M
S

M
S

M
S

M
S

M
S

1 2 3 4 5 1 2 3 4 5Dynamic slot index
Minislot index

m5m4m3m2m1

Fig. 24.4 An example of FlexRay dynamic frame transmission

770 H. Zeng et al.

in the first communication cycle because of the transmission of another frame m2

with the same ID 2, is transmitted, followed by a minislot for indexes 3 and 4 and
the transmission of m5 with ID 5.

For the purpose of scheduling and analysis in the dynamic segment, the FlexRay
bus configuration is captured with a list of parameters .lcomm; lST; nMS; lMS/, where
lcomm is the length of the FlexRay communication cycle, lST is the length of the
static segment, nMS is the number of minislots in the dynamic segment, and lMS is
the length of the minislot in time (the length of the dynamic segment is lDYN D nMS �

lMS). In the design flows in the automotive industry, these parameters (in particular
the communication cycle and the slot size) are often defined and standardized based
on the need to reuse legacy components and standardize configurations, which is
likely to induce carmakers to freeze the definition of these parameters for their
product lines.

A set of CC max (of value that is a power of 2, i.e., 1, 2, 4, 8, 16, 32, 64)
communication cycles constitute a hyperperiod, for which the scheduling table is
specified and repeated. Each dynamic frame mi 2 M is characterized by a tuple
of parameters fNi ; Ti ; Ji ; Di ; Ci g, where Ni is its source ECU, Ti is its period, Ji

denotes its release jitter (the maximum delay with respect to the periodic activation
event), Di is the deadline, and Ci is the transmission time (the time mi occupies
when transmitted on the bus, including the one minislot needed for the idle phase).
For convenience, Ci is defined in terms of the (integer) number of lMS. For example,
Ci D 5 � lMS for frame m4 in Fig. 24.4. The deadline Di is assumed to be arbitrary,
i.e., it can be smaller, equal, or lager, compared to Ti . The worst-case response
time Ri of mi is the maximum difference between the finish time and the arrival
time. For each mi , LT xi indicates the latest minislot index in which it is allowed
to start transmission. The set of frames with lower ID than mi is denoted as
lf .mi / D fmj jIDj < IDi g. Also, the set of frames with lower ID than mi plus
itself is denoted as le.mi / D lf .mi /

S
fig.

In the latest FlexRay 3.0 standard [37], slot multiplexing is added as a new
feature, which allows different frames sent in different cycles to share the same ID.
With slot multiplexing, each frame mi is assigned with two attributes, base cycle
bi and cycle repetition ri . Then mi can only transmit in every ri -th communication
cycle starting at the bi -th cycle. ri only assumes a value as a power of 2 that is no
greater than CC max, and bi 2 f0: : :ri � 1g. As a special case, if mi exclusively
occupies the slot (i.e., mi is the only message allowed to transmit in its slot for all
communication cycles), like those without slot multiplexing, and then bi D 0 and
ri D 1. Obviously, to avoid infinite waiting for mi , it shall be Ti � ri � lcomm.

Since the scheduling in FlexRay dynamic segment is not work conserving, i.e.,
the bus may be left idle even if a message is ready, its timing analysis is inherently
more difficult compared to other fixed-priority-based protocols like CAN. First,
even if there is no message to be sent in a particular slot, it will occupy one minislot.
Second, if more than one instance of a message is ready, only one of them can be
sent in one dynamic segment. Third, a message may only be ready after its slot has

24 Networked Real-Time Embedded Systems 771

started. Fourth, there are not enough minislots to transmit a message as its LT x

has elapsed. Lastly, due to slot multiplexing, the pending messages may not be
transmitted in the current communication cycle.

In the following, the timing analysis is discussed in two cases: with or without
slot multiplexing. The case of no slot multiplexing is first discussed because of its
relative simplicity.

24.3.3.1 Timing Analysis Without Slot Multiplexing
When the feature of slot multiplexing is not used, i.e., the parameters bi D 0 and
ri D 1 for all frames mi , it essentially means that a frame can be transmitted in any
cycle.

FlexRay dynamic frames are transmitted in the order of the IDs (priorities) of
ready frames and without preemption: If a frame becomes ready while another frame
with higher ID is being transmitted (after its slot passed), it cannot preempt the
lower-priority frame and must wait until the next cycle. Like other systems with non-
preemptive fixed-priority scheduling (such as CAN), the response time analysis is
based on the calculation of the busy period of level-i , denoted as ti . The busy period
is the worst-case time interval that starts from the critical instant for an instance of
mi queued at t D 0 with jitter Ji , where the bus is always busy transmitting frames
with priority higher than or equal to mi except for a possible initial blocking Bi .

Here, Bi denotes the longest blocking delay that happens in the communication
cycle when mi becomes ready. In the worst case, the slot with index i starts as soon
as possible in the cycle where no frame with ID lower than i is sent, and mi is
queued right after that. Thus, the worst-case blocking Bi is

Bi D lcomm � .lST C .IDi � 1/lMS/ (24.20)

Also, for mj 2 lf .mi /, n
.k/
j denotes the maximum number of instances of mj

activated in the busy period for the k-th iteration t
.k/
i . n

.k/
i is the number of instances

of mi activated in the busy period (before the one considered for the analysis). The
vector n.k/ is defined as n.k/ D fn

.k/
j g; j 2 le.mi /. The function fi .n.k// gives

the worst-case interference caused by the static segment and the transmission of
dynamic frames mj 2 le.mi / (each activated n

.k/
j times). The computation for

fi .n.k// is discussed in the later part of the section.
The overall length of the busy period can be found as the fixed-point solution of

the iterative procedure:

(
t
.0/
i D Bi

t
.kC1/
i D Bi C Ci C fi .n.k//

(24.21)

772 H. Zeng et al.

For the iterations in the computation of the busy period ti , n.k/ is

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

n
.k/
j D

&
Jj C t

.k/
i

Tj

'
; 8j 2 lf .mi /

n
.k/
i D

&
Ji C t

.k/
i

Ti

'
� 1

(24.22)

Inside the busy period ti , up to qmax
i instances of mi are ready for transmission:

qmax
i D

�
Ji C ti

Ti

�
(24.23)

The worst-case response time of mi is the maximum among those qmax
i instances

in the busy period. These instances are indexed as q D 1; : : : ; qmax
i . The longest time

from the start of the busy period to the time the q-th instance starts transmission is
calculated by the following iterative formula:

(
w.0/

i .q/ D Bi

w.kC1/
i .q/ D Bi C fi .n.k//

(24.24)

where n.k/ is given as

8
ˆ̂<

ˆ̂:

n
.k/
j D

&
w.k/

i .q/ C Jj

Tj

'
; 8j 2 lf .mi /

n
.k/
i D q � 1

(24.25)

The response time of the q-th instance is

Ri .q/ D Ji C wi .q/ � .q � 1/Ti C .Ci � lMS/ (24.26)

where lMS is subtracted from Ci as a frame is considered received before the idle
phase (whose length is one minislot).

Go back to the computation of fi .n.k//, the function computing the worst-case
delay caused by frames in le.mi / with known vector n.k/ of activated instances.
Since each previous instance of mi delays the transmission of the following instance
of mi by at least one cycle, their occurrences will produce a delay equal to at least
n

.k/
i communication cycles. Consider the frames in lf .mi /. Let s

.k/
cycle be the number

of communication cycles the .n
.k/
i C 1/-th instance of mi has to wait because of

interference from frames in lf .mi / and r
.k/
cycle be the time from the start of the last

cycle to the beginning of the transmission of the .n
.k/
i C1/-th instance of mi . fi .n.k//

can be expressed as

24 Networked Real-Time Embedded Systems 773

fi .n.k// D .n
.k/
i C s

.k/
cycle/lcomm C r

.k/
cycle (24.27)

The computation of scycle and rcycle is demonstrated to be NP hard [65, 68]. For
simplicity, from now on the iteration index k is dropped from n, scycle and rcycle.

Next, an overview is given on the calculation of the exact value of fi .n/. The
calculation is based on the solution of two ILPs [65], which is generally time-
consuming especially for large problem sizes. Hence, a load-based heuristic and a
heuristic leveraging the results on bin-covering problem are summarized afterward.

The calculation of fi .n/ can be viewed as a constrained version of the bin-
covering problem. A bin-covering problem is to maximize the number of bins using
a given list of items with known weights, such that each bin is at least filled to
a minimum capacity (the sum of the weights from items packed to the bin is no
smaller than the minimum bin capacity). To calculate fi .n/, after the number of
instances nj from each frame mj 2 lf .mi / is calculated, these instances are used to
cover bins (communication cycles) with minimum capacity LT xi � lMS. Each frame
mj has nj instances, and its weight is Cj . The problem also contains additional
constraints such as (24.34) and (24.35) below.

Exact Solution for fi.n/

Below a brief summary is given on the ILP optimization formulation proposed
in [65] to find the exact solutions. The number of busy communication cycles scycle

can be bounded by the total number of frame instances in lf .mi /:

scycle � sub
cycle D

X

j 2lf .mi /

nj (24.28)

or better, by using the heuristic in (24.41) presented in the following subsections.
The number of binary variables in the ILP formulation depends linearly on the
maximum number of busy communication cycles; thus using a tighter bound
like (24.41) can greatly reduce the complexity.

A set of binary variables defines the transmission of the instances of frames in
lf .mi / in the cycles:

8j 2 lf .mi /; n � nj ; s � sub
cycle; xj;n;s D

8
<

:

1 if the n-th instance of mj

is sent in cycle s

0 otherwise
(24.29)

Another set of binary variables denotes whether cycle s is busy transmitting frames
2 lf .mi / or not:

8s � sub
cycle; ys D

�
1 if the s-th cycle is busy
0 otherwise

(24.30)

774 H. Zeng et al.

The total load Ni;s from lf .mi / and idle minislots with slot index < IDi in cycle
s is

Ni;s D
X

j 2lf .mi /

X

n�nj

xj;n;s � Cj C
X

j <IDi

.1 �
X

n�nj

xj;n;s/lMS (24.31)

A set of constraints encodes the FlexRay protocol requirements. First, in any
busy cycle s, Ni;s must be no smaller than the length of LT xi minislots:

8s � sub
cycle; Ni;s � LT xi � lMS � ys (24.32)

Second, each frame instance is transmitted at most once:

8j 2 lf .mi /; n � nj ;
X

s�sub
cycle

xj;n;s � 1 (24.33)

and each frame ID is transmitted at most once in each cycle

8j 2 lf .mi /; s � sub
cycle;

X

n�nj

xj;n;s � 1 (24.34)

Third, each instance of mj is sent no later than the minislot of index LT xj ,
formulated using the “big-M” formulation:

8j 2 lf .mi /; n � nj ; s � sub
cycle; Nj;s < LT xj �lMS �ys CM.1�xj;n;s/ (24.35)

Here M is a large-enough constant, e.g., lDYN.
To find the maximum number of busy communication cycles scycle, an opti-

mization problem is solved, with objective function in (24.36) and constraints
in (24.32), (24.33), (24.34), and (24.35):

scycle D max.
X

s�sub
cycle

ys/ (24.36)

With the solution to scycle, the value of rcycle can be determined by maximizing
the communication load in the .scycle C 1/-th cycle after filling up the first scycle

cycles:

rcycle D max.lST C Ni;scycleC1/ (24.37)

Load-based Heuristic Solution for fi.n/.
The basic idea to approximate fi .n/ is to assume that the scycle communication
cycles are always filled with the minimum amount of load from frames in lf .mi /.

24 Networked Real-Time Embedded Systems 775

Hence, the concept of the minimum serviced load is defined as the minimum trans-
mission time that is needed in addition to the idle minislots to fill a communication
cycle bin. It can be calculated as

pi D LT xi � lMS � .IDi � 1/lMS

D .LT xi � IDi C 1/lMS

(24.38)

This may also be derived by manipulating constraint (24.32):

Ni;s D
X

j 2lf .mi /

X

n�nj

xj;n;sCj C
X

j <IDi ;j …lf .mi /

lMS C
X

j 2lf .mi /

.1 �
X

n�nj

xj;n;s/lMS

D
X

j 2lf .mi /

X

n�nj

xj;n;s.Cj � lMS/ C .IDi � 1/lMS

�LT xi � lMS � ys

(24.39)
With C 0

i D Ci � lMS, constraint (24.32) is equivalent to

X

j 2lf .mi /

X

n�nj

xj;n;s � C 0
j � pi � ys (24.40)

An upper bound on scycle can be derived by considering a bin-packing problem
formulation, where (24.32) (or equivalently (24.40)) and (24.33) are respected but
constraints (24.34) and (24.35) are ignored [65]. With the notation Ki as

Ki D

P
j 2lf .mi /

.nj � C 0
j /

pi

(24.41)

it is

scycle � bKi c (24.42)

The upper bound on fi .n/ is

fi .n/ � .ni C bKi c/lcomm C lST C .IDi � 1/lMS C .Ki � bKi c/pi (24.43)

However, the upper bound in Eq. (24.43) is in general loose, since con-
straint (24.34) that requires each frame identifier is used at most once in each
cycle is ignored. With this observation, constraint (24.34) is brought back into
consideration: at most one instance of any frame mj 2 lf .mi / can be packed in
each communication cycle.

Algorithm 1 reflects this idea and gives a tighter upper bound f H
i .n/ on fi .n/

than Eq. (24.43). It uses a load variable L to denote the available requested
transmission time within a communication cycle. The loop from Lines 2–15

776 H. Zeng et al.

implements the iterative procedure to calculate L and s. It tries to fill each bin
(communication cycle) starting from cycle s D 0. In each cycle s, one instance
from each mj 2 lf .mi / that has nj > 0 is added to get the load variable L

(Lines 3–8). L is the maximum amount of time that is available for transmission
in the communication cycle s. By adding only a term C 0

j D Cj � lMS for each
mj 2 lf .mi /, at most one instance from each frame mj can be transmitted in this
cycle. If L � pi , the cycle s is filled, the bin capacity pi is subtracted from the
load variable L, and the iteration continues to the next cycle (Lines 9–11). The
reason is that in the worst-case scenario, only pi of these loads is transmitted in
the communication cycle and the maximum amount of remaining loads is delayed
to the next cycles. If L < pi , there is not enough load to fill the bin, and mi is
transmitted in the current communication cycle, and the iteration stops (Lines 12–
13). Then, s is assigned to sH

cycle, and rH
cycle is calculated as lST C .IDi � 1/lMS C L,

assuming L as the additional load in the communication cycle in which the .ni C1/-
th instance of mi is transmitted (Line 16). Finally, fi .n/ is calculated as the length
of .ni C scycle/ communication cycles plus rcycle (Line 17).

Algorithm 1 Algorithm to compute the upper bound f H
i .n/ on fi .n/

1: pi D .LT xi � IDi C 1/lMS, L D 0, s D 0

2: while true do
3: for each frame j 2 lf .mi / do
4: if nj > 0 then
5: L D L C Cj

6: nj D nj � 1

7: end if
8: end for
9: if L � pi then

10: s D s C 1

11: L D L � pi

12: else
13: break
14: end if
15: end while
16: sH

cycle D s, rH
cycle D lST C .IDi � 1/lMS C L

17: f H
i .n/ D .ni C sH

cycle/lcomm C rH
cycle

The value of f H
i .n/ returned by Algorithm 1 is proven to be no smaller than the

exact value fi .n/ [83]. Essentially sH
cycle is solved with a more relaxed problem than

the exact solution scycle. It ignores the constraints (24.32) and (24.35). The complete
proof is documented in [83]. Hence, the algorithm is a pessimistic but safe procedure
in that the resulted worst-case response time Ri is always an upper bound for the
actual response time.

24 Networked Real-Time Embedded Systems 777

Bin-Covering-Based Heuristic Solution for fi.n/.
Alternatively, Tanasa et al. [68] apply recent theoretical advances [38] to approx-
imate the upper bounds on the optimal solution for the bin-covering problem. It
takes an input parameter � to define the precision of the results. The details of how
the bin-covering heuristic is solved can be found in [68]. It is reported that [68] the
approach provides improvement over the load-based heuristic when � � 1=16 and is
comparable when � D 1=8. Hence, a value between 1=16 and 1=8 for � can provide
the right balance between efficiency and quality.

24.3.3.2 Extension to Slot Multiplexing
The generalization of the two techniques to slot multiplexing is now discussed.
For this purpose, pi is extended with an additional parameter cc, i.e., pi .cc/,
to denote the minimum serviced load for communication cycle cc. Similarly,
lf .mi ; cc/ denotes the set of messages in lf .mi / which can be transmitted in cc,
i.e., lf .mi ; cc/ D fmj jmj 2 lf .mi /; cc � bj .mod rj /g.

Consider an example as presented in [68], which contains five frames with
their cycle repetition and base cycle in Table 24.2. Figure 24.5 illustrates the
communication cycles that each frame is allowed to transmit.

Load-Based Heuristic
Slot multiplexing provides flexibility and efficiency for scheduling but also intro-
duces new challenges to the timing analysis. Each communication cycle should be
regarded differently, due to the facts that the message mi under analysis and those
with lower ID (in lf .mi /) cannot be transmitted in every cycle.

Table 24.2 Frame
parameters of an example

m1 m2 m3 m4 m5

Cycle repetition 1 2 4 8 2

Base cycle 0 0 0 0 0

1

m5m5m5m5

m4

m3 m3

m2 m2 m2 m2

m1 m1

cycle3 cycle4 cycle5 cycle6 cycle7cycle0 cycle1 cycle2

type 2type1 type 3

m1 m1 m1 m1 m1 m1

Fig. 24.5 The allowed communication cycles for the frames in Table 24.2

778 H. Zeng et al.

• First, the first complete communication cycle cc0 after the start of the busy
window can be any one in the hyperperiod. Hence, in the analysis, it is sufficient
to enumerate the possible values f0: : :CC max � 1g for cc0.

• Second, it is insufficient to use a single load variable since the load accumulated
in one cycle may not be delayed to the next cycles. This can be illustrated with a
simple example that mi can be transmitted in every cycle, and each message mj

in lf .mi / has rj D 2 and bj D 0. Even if the accumulated load from lf .mi / in
cycle 0 can be larger than 2pi , it is not deferrable to cycle 1, and mi can be sent
in cycle 1. The solution to this issue is explained later.

• Third, the minimum serviced load pi in each cycle is different as mi may
not be transmitted in certain cycles. A conservative estimate is that for those
communication cycle cc mod ri ¤ bi , pi .cc/ is set to be 0. This can be
improved to pi .cc/ D min

j 2lf .mi ;cc/
pj .cc/, since any of the messages in lf .mi /

could still start transmission if less load was serviced [63].

To analyze the effects of slot multiplexing on the interference that messages in
lf .mi / may introduce (the second challenge above), a set of load variables Lb;r is
added to denote the cycle-dependent load, where b is the base cycle and r is the
repetition factor. At a given cycle cc during the analysis, the transmission time Cj

of mj is added to the load variable Lbj ;rj only if cc � bj .mod rj /, to reflect the
fact that mj is only allowed to transmit in such communication cycles. Hence, the
total available load L.cc/ at cc is

L.cc/ D
X

b;rW cc�b .mod r/

Lb;r (24.44)

If L.cc/ < pi .cc/, then there is not enough load to further delay mi , and mi will
be sent in the earliest cycle � cc that it is permitted to transmit. Otherwise, mi will
be delayed, and the minimum serviced load should be subtracted.

Since L.cc/ is in general composed of loads from several suitable Lb;r variables,
there is an additional question about which Lb;r should pi .cc/ be subtracted from.
Neukirchner et al. [63] observe that the repetition factors are only allowed to be a
power of 2, which helps to simplify the problem. Because of this restriction in the
FlexRay specification, any load variable coincides with several load variables of a
lower repetition factor. For example, L3;4 always coincides with L1;2 and L0;1. To
maximize the L.cc/ for every cc, it is sufficient to maximize the Lb;r variable with
the smallest cycle repetition r . This can be achieved by subtracting the minimal
serviced load pi .cc/ first from the available Lb;r with the highest cycle repetition.

Bin-Covering-Based Heuristic
The heuristic based on bin-covering approximation algorithm can also be extended
to slot multiplexing. However, the problem is no longer a traditional bin-covering
problem. Rather, the problem becomes what was called bin-covering problem
with conflicts [68], as not all messages (items) can be transmitted in every

24 Networked Real-Time Embedded Systems 779

communication cycle (bin). The number of types of bins P is determined by the
distinct communication cycles in a hyperperiod, where two communication cycles
are considered distinct if the set of messages they can carry are different. With this
understanding, the problem then can be reformulated as bin-covering problem with
specific requirements on the number of bins to be packed for each of the P types.
For example, in Fig. 24.5, there are three types of bins for the purpose of analyzing
m5’s response time: type 1 containing cycle 0 where all higher-priority messages
m1–m4 can transmit, type 2 for cycles 2 and 6, and type 3 for cycle 4.

24.4 Packet-Switched Networks: Ethernet

24.4.1 Introduction

In addition to traditional buses such as CAN or FlexRay, packet-switched Ethernet
will be used in next-generation automotive communication architectures. Ethernet’s
superior bandwidth and flexibility make it ideal to address the high communication
demands of, for example, Advanced Driver Assistance Systems (ADASs), info-
tainment systems, and ECU flashing. As a switched network, Ethernet provides
a scalable, high-speed, and cost-effective communication platform, which allows
arbitrary topologies.

Ethernet evolved from a shared bus communication medium with Carrier Sense
Multiple Access/Collision Detection (CSMA/CD)-based link access scheme to
a switched network. Frame collisions in CSMA/CD were resolved by a binary
exponential backoff algorithm which picked a random delay until a retransmission
could be started after a collision. This deemed CSMA/CD unsuitable for real-
time systems with tight latency or jitter requirements. Switched Ethernet made
CSMA/CD obsolete. In switched Ethernet, contention is moved into the switches,
where a scheduler has full control over each output port. This enables the imple-
mentation of elaborate link schedulers, which allow the derivation of real-time
guarantees. Today, Ethernet installations (including the automotive domain) are
almost always switched. Hence, in the following, we will refer to switched Ethernet
as standard Ethernet.

In the automotive context, Ethernet is anticipated to serve as an in-vehicle
communication backbone, where it must be able to transport traffic streams of mixed
criticality. This requires Quality of Service (QoS) mechanisms, in order to provide
deterministic timing guarantees for critical traffic. Standard Ethernet (IEEE 802.1Q)
introduced eight traffic classes. These classes can be used to prioritize traffic, which
is typically implemented by a Static-Priority Non-Preemptive (SPNP) scheduler
at each output port in each switch and end point. This limited number of classes
requires that multiple traffic streams share a class, making streams of equal priority
indistinguishable to the scheduler. Traffic within a shared class is usually scheduled
in First-In First-Out (FIFO) order.

Compared to CAN or FlexRay, Ethernet exhibits complex timing behavior, as
each switch output port is a point of arbitration, which adds delay to the overall

780 H. Zeng et al.

end-to-end latency. While mature formal performance analysis techniques have
been established for CAN and FlexRay, such techniques are even more required
for Ethernet before it can be used in timing- and safety-critical systems. This will
become even more important in the context of highly automated and autonomous
driving. In this section, we use Compositional Performance Analysis (CPA) (see
�Chap. 23, “CPA: Compositional Performance Analysis” and [29]) to derive worst-
case performance bounds for Ethernet.

24.4.2 Modeling Ethernet Networks for Performance Analysis

Before timing guarantees can be derived for an Ethernet network, the components
of this network must be mapped to the CPA system model (cf. Sect. 2 in �Chap. 23,
“CPA: Compositional Performance Analysis”). This mapping process is explained
in detail in [19]. Here, a brief summary covering the essential steps, using Figs. 24.6
and 24.7 as illustration, is presented.

Figure 24.6 shows an Ethernet model comprising two switches and four ECUs.
A sequence of related Ethernet frames between a source and one (or more)
destination(s) is called an Ethernet traffic stream. There are two traffic streams in
the network: a unicast stream from ECU0 to ECU3 and a multicast stream from
ECU2 to ECU1 and ECU3.

In order to map the Ethernet model to the CPA system model, resources, tasks,
and event models must be identified. Resources model points of contention. In
Ethernet, contention between individual frames happens at the switches. Inside a
switch there are several delay sources. At the input port, there is input queuing
delay, the switch fabric adds forwarding delay, and at the output port, there is
output queuing delay. Contemporary switches are fast enough that input queuing
delay and forwarding delay only have a negligible impact on the overall timing
guarantees. Hence, these delays can be ignored or approximated by constant terms.
The output queuing delay considers the time it takes to transmit a given frame,
including the interference from other frames. Consequently, switch output ports are
modeled by CPA resources. The scheduling policy of these resources is determined
by the switch port’s scheduling mechanism. Additionally, here is transmission delay
on the link between switches. This delay corresponds to the propagation delay of
electric signals on the link’s wire and can also be modeled by a constant term.

The transmission of a frame via an output port of a switch is modeled in CPA as
the execution of a task on the port’s resource. An Ethernet traffic stream is modeled
as a chain of dependent frames (tasks) according to its path through the network

Fig. 24.6 Ethernet model

ECU0 S0

ECU2

S1 ECU3

ECU1

http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_24

24 Networked Real-Time Embedded Systems 781

Port0.0 Port1.1

d2

d0

Switch S1

Port1.0Port0.1

Switch S0

ECU0

ECU2

ECU3

ECU1

Fig. 24.7 CPA system model for the Ethernet model from Fig. 24.6

(see Fig. 24.7). This chain may fork to model multicast or broadcast trees. On each
resource, a task consumes service according to its execution time bounds, which are
derived from the best-case and worst-case transmission times of its corresponding
Ethernet frame. The transmission time of a frame is defined to be the time it takes
the frame to be transmitted without any interference from other frames. For a frame
of traffic stream i with maximum/minimum payload p

�=C
i , the best-case and worst-

case transmission times C �
i and C C

i can be computed to

C
C=�
i D

42 bytes C max
n
42 bytes; p

C=�
i

o

rTX
(24.45)

where rTX is the transmission rate of the port that transmits the frame. The
constant terms correspond to the protocol overhead. The first 42 bytes account
for preamble (7 bytes), start of frame delimiter (1 byte), destination and source
Media Access Control (MAC) address (both 6 bytes), IEEE 802.1Q tag (4 bytes),
EtherType (2 bytes), frame check sequence (4 bytes), and inter-frame gap (12 bytes).
The second 42 bytes account for the fact that there is a minimum Ethernet frame size
of 84 bytes and that the payload must be padded if necessary.

Frame arrivals (and emissions) are modeled by event models. These models come
from either external sources or from dependent frames.

Figure 24.7 shows the corresponding CPA model of the Ethernet model from
Fig. 24.6. As can be seen, the output ports of both switches are modeled as resources
(light blue boxes with rounded corners). Both traffic streams are modeled by a chain
of tasks (red and green circles) reflecting their paths through the network. Notice
that the green path originating at ECU2 splits into a multicast tree. ECU0 and ECU2
inject frames into the network according to the event models ı0 and ı2 (respectively).
This model can then be analyzed with CPA’s iterative approach.

782 H. Zeng et al.

24.4.3 Analysis of Standard Ethernet (IEEE 802.1Q)

In order to derive upper bounds on the worst-case performance of Ethernet
networks, an analysis which captures all delay effects on the CPA resources that
model the switch output ports must be developed. This analysis will then be used
in the local analysis step of the CPA loop to derive worst-case frame transmission
latencies on each output port.

Definition 1. A frame’s transmission latency is the time interval, which starts when
the frame has been received at an input port and ends when it has been transmitted
entirely from an output port. The transmission latency includes all timing effects
from interfering traffic streams.

In the context of the model transformation from Sect. 24.4.2, the transmission
latency of a frame corresponds to the response time of a task.

When deriving formal performance guarantees, the worst-case transmission
latency of the frames of a given traffic stream i (among all for stream i ’s
possible frames transmission latencies) is of particular interest. For non-preemptive
scheduling (such as standard Ethernet), it has been shown that, in order to find this
worst-case transmission latency, the transmission latencies of all frames of stream
i in its longest scheduling horizon must be evaluated (cf. [12]). The scheduling
horizon of a traffic stream i is the time a switch port is busy processing frames of
stream i , including interference from frames of other traffic streams (cf. Sect. 2.2.1
in �Chap. 23, “CPA: Compositional Performance Analysis” and [17]). Particularly,
the worst-case transmission latency of the q-th frame of traffic stream i can be
derived from its worst-case multiple activation queuing delay Qi .q; a

q
i / (cf. Eq.

(9) in �Chap. 23, “CPA: Compositional Performance Analysis”).

Definition 2. Assuming that the q-th frame of a traffic stream i arrives at time a
q
i

at a switch output port, its worst-case multiple activation queuing delay Qi .q; a
q
i /

is the time interval, which starts with the arrival of the first frame of stream i that
initiates the scheduling horizon and ends when the q-th frame can be transmitted
(i.e., it does not include the transmission of the q-th frame).

Note that, in contrast to the multiple activation queuing delay Qi .q/ introduced in
Sect. 2.2.1 in �Chap. 23, “CPA: Compositional Performance Analysis”, the queuing
delay in the Ethernet context additionally depends on the arrival time a

q
i of the q-th

frame. This is due to the FIFO scheduling of frames with equal priority and will be
explained later in this section. The arrival time a

q
i of the q-th frame of stream i is

measured relative to the beginning of the scheduling horizon.
As stated in Sect. 24.4.2, it is assumed that the queuing delay of a given frame at

a switch output port accounts for all delays induced by interfering traffic streams.
The amount of interference from other traffic streams depends on the output port’s
scheduling policy. In standard Ethernet, traffic streams are categorized into (up to)

http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_24

24 Networked Real-Time Embedded Systems 783

eight traffic classes, which correspond to priority levels. Inside each output port
there is a set of FIFO queues, one for each traffic class. These FIFO queues are
served by an SPNP scheduler. Consequently, to calculate the worst-case queuing
delay Qi .q; a

q
i / in standard Ethernet, all blocking effects, which can occur in this

combination of FIFO and SPNP scheduling, must be considered.
Lower-priority blocking: In non-preemptive scheduling, a frame which started

transmitting is guaranteed to finish without interruption. Hence, a frame of traffic
stream i can experience blocking from at most one lower-priority frame, if this
lower-priority frame started transmitting just before the arrival of the first frame of
traffic stream i [21]:

I LPB
i D max

j 2lp.i/

n
C C

j

o
(24.46)

where lp.i/ is a function yielding the set of all traffic streams whose priority is
lower than that of stream i .

Higher-priority blocking: In any time interval of length �t , a frame of traffic
stream i can experience blocking from all frames of higher-priority streams, which
arrive during �t , i.e., before the frame of stream i can be transmitted [21]:

I HPB
i .�t/ D

X

j 2hp.i/

�C
j .�t C �/C C

j (24.47)

where hp.i/ is a function yielding the set all traffic streams whose priority is higher
than that of stream i . Recall from Sect. 2.1.2 in �Chap. 23, “CPA: Compositional
Performance Analysis” that �C.�t/ yields an upper bound on the number of events,
i.e., frame arrivals, in any half open time interval of length �t . As the multiple
activation queuing delay Qi .q; a

q
i / covers the time until the q-th frame can be

transmitted, higher-priority frames arriving exactly at the end for �t can also
interfere with the q-th frame. We model this by adding an infinitesimal small time �

to �t to cover the closed time interval Œt; t C �t�. In practice, � corresponds to a bit
time.

Same-priority blocking: As frames of identical priority are processed in FIFO
order, frames of traffic stream i can experience blocking from frames of other traffic
streams with the same priority as stream i . Hence, if the q-th frame of traffic stream
i arrives at time a

q
i , it must wait for all frames from other streams with identical

priority, which arrived before or at a
q
i , as well as wait for its own q � 1 predecessor

frames to finish [21]:

I SPB
i .q; a

q
i / D .q � 1/C C

i C
X

j 2sp.i/

�C
j .a

q
i C �/C C

j (24.48)

Here, sp.i/ is a function yielding the set of all traffic streams whose priority is
equal to that of stream i (excluding stream i). In the worst case, any same-priority
frames arriving concurrently at exactly a

q
i are assumed to interfere with the q-frame

of stream i . Again, an infinitesimal small time � is added to �t to cover this case.

http://dx.doi.org/10.1007/978-94-017-7267-9_24

784 H. Zeng et al.

In [21] it is shown that FIFO scheduling requires a candidate search in order
to determine the worst-case blocking. The reason for this candidate search is that
if frame q arrives early (within its jitter bounds), it might experience additional
blocking from some of its own q �1 queued predecessors. However, if it arrives late
(within its jitter bounds), it might experience additional blocking from previously
queued frames of interfering same-priority streams. The set of arrival candidates
A

q
i can be reduced to points in time where the candidates a

q
i coincide with

the earliest arrivals of interfering frames from same-priority traffic streams [21].
Consequently, all candidates for the arrival of the q-th frame of stream i can be
found by investigating the arrivals of interfering frames between the earliest arrival
ı�

i .q/ of the q-th frame and its q-activation scheduling horizon Si .q/, which is the
time a switch port is busy processing q frames of stream i , including interfering
frames from other traffic streams (cf. Eq. (4) in �Chap. 23, “CPA: Compositional
Performance Analysis”):

A
q
i D

[

j 2sp.i/

n
ı�

j .n/jı�
i .q/ � ı�

j .n/ < Si .q/
o

n�1
(24.49)

where, in the context of standard Ethernet, Si .q/ can be computed as follows:

Si .q/ D max
j 2lp.i/

n
C C

j

o
C qC C

i C
X

j 2sp.i/[hp.i/

�C
j .Si .q// C C

j (24.50)

Note that the computation of the q-activation scheduling horizon does not require
a candidate search for the same-priority interference, as it is only concerned about
the time when the port is busy. As Si .q/ occurs on both sides, Eq. (24.50) cannot
be solved directly. However, it represents an integer fixed-point problem, which can
be solved by iteration, as all terms are monotonically increasing (cf. [29]). A valid
starting point is, e.g., Si .q/ D maxj 2lp.i/fC

C
j g C qC C

i .
In order to compute the worst-case queuing delay Qi .q; a

q
i / of the q-th frame

arrival of traffic stream i , which arrived at time a
q
i , all presented blocking effects

must be considered:

Qi .q; a
q
i / D I LPB

i C I SPB
i .q; a

q
i / C I HPB

i

�
Qi .q; a

q
i /

�
(24.51)

Again, Qi .q; a
q
i / occurs on both sides, and Eq. (24.51) cannot be solved directly.

Like the integer fixed-point problem in Eq. (24.50), it can be solved by iteration
with, e.g., Qi .q; a

q
i / D .q � 1/C C

i as a starting point.
Now, the largest transmission latency Ri .q/ for the q-th frame arrival of traffic

stream i can be computed by adding the transmission time C C
i of this q-th frame

to its worst-case queuing delay and accounting for the fact that the frame arrived at
time a

q
i (see, e.g., [3]). This is illustrated in Fig. 24.8:

Ri .q/ D max
a

q
i 2A

q
i

˚
Qi .q; a

q
i / C C C

i � a
q
i

�
(24.52)

http://dx.doi.org/10.1007/978-94-017-7267-9_24

24 Networked Real-Time Embedded Systems 785

Fig. 24.8 Example queuing
delay and transmission
latency computation (cf. [75]) ISPBILPB IHPB

By taking the maximum overall Ri .q/, the worst-case frame transmission latency
for a frame of stream i can be computed:

RC
i D max

1�q�q
C
i

fRi .q/g (24.53)

As mentioned before, in order to derive the worst-case frame transmission latency
of stream i , all frame arrivals of stream i in its longest scheduling horizon must be
evaluated. Let qC

i be the maximum number of these frame arrivals. It can be derived
by computing the maximum number of frames, which arrive during the scheduling
horizon of their respective predecessors (cf. [18]):

qC
i D max

q�1
fqjı�

i .q/ � Si .q � 1/g (24.54)

Now, as established in Sects. 2.2.1 and 2.2.2 in �Chap. 23, “CPA: Compositional
Performance Analysis”, the worst-case bounds on the maximum path latency and
the maximum frame backlog can be derived from the maximum frame transmission
latencies and maximum q-activation processing times.

24.4.3.1 End-to-End Latency Bounds
From the individual worst-case transmission latencies of the frames along the path
of a traffic stream through the network, the worst-case end-to-end latency of the
stream can be derived. Let Path.i/ be the path of stream i through the network. Now,
the time it takes to transmit q frames of stream i , i.e., its worst-case q-activation
end-to-end latency, can be bounded by (cf. [20]):

LC
i .q/ D ı�

i .q/ C
X

j 2Path.i/

RC
j (24.55)

Here, the frames of stream i are injected into the network at their maximum rate (i.e.,
with minimum inter-arrival times ı�

i .q/) to induce maximum load on the system’s
resources. Along any given path, frames of a traffic stream are processed in order,
i.e., they cannot overtake each other. Equation (24.55) assumes that the last of the
q frames experiences the worst-case transmission latency on all its ports. Due to
in-order processing, all q � 1 previously sent frames must have arrived by then.

http://dx.doi.org/10.1007/978-94-017-7267-9_24

786 H. Zeng et al.

Obviously, for q D 1, Eq. (24.55) yields the worst-case end-to-end latency of a
single frame (recall that ı�

i .1/ D 0). Larger q are convenient in cases where, for
example, a large IP packet is distributed over multiple Ethernet frames.

24.4.3.2 Buffer Size Bounds
Apart from timing guarantees, buffer size requirements are also important, as
actual systems (e.g. ,switches) only have limited memory resources (buffer space).
Insufficient buffer space can lead to frame drop, which is highly undesirable for
(time) critical traffic.

The maximum activation backlog of a traffic stream i is an upper bound on the
number of frames from i that can be queued at a resource at any given time. It can be
derived by computing, for each q-th frame, the maximum number of frames, which
arrived until the q-th frame has been transmitted, and subtracting from this number
the q � 1 frames that must have been transmitted prior to the q-th one (cf. [21]):

bC
i D max

1�q�q
C
i

˚
�C

i

�
BC

i .q/
�

� q C 1
�

(24.56)

where BC
i .q/ is the multiple activation processing time. Given q consecutive frames

of a traffic stream i , the multiple activation processing time is the longest time
interval between the arrival of the first frame and end of the transmission of the q-th
frame (cf. Eq. (8) in �Chap. 23, “CPA: Compositional Performance Analysis”):

BC
i .q/ D Qi .q/ C C C

i (24.57)

In the Ethernet context, it can be bounded by the multiple activation queuing delay
under the assumption that all event arrive as soon as possible (i.e., we do not need to
consider different event arrivals as in Eq. (24.51)) by adding the frames worst-case
transmission time C C

i (cf. Eq. (9) in �Chap. 23, “CPA: Compositional Performance
Analysis”):

Qi .q/ D I LPB
i C I SPB

i .q; Qi .q// C I HPB
i .Qi .q// (24.58)

From the maximum activation backlogs, the maximum buffer size requirements
can be derived. Typically, the memory in Ethernet switches can only be allocated
block wise, e.g., in blocks of 128 or 256 bytes. This must be taken into account
when deriving the maximum buffer size requirements. Assuming that a switch only
allows the allocation of memory blocks of size m and that only the destination and
source MAC addresses, the IEEE 802.1Q tag, the EtherType, the maximum payload
pC, and the frame check sequence of an Ethernet frame must be stored in switch
memory, the buffer size requirement (in bytes) for a traffic stream i can be bounded
by (cf. Sect. 24.4.2):

ObC
i D bC

i

�
22 bytes C maxf42 bytes; pCg

m

�
m (24.59)

http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_24

24 Networked Real-Time Embedded Systems 787

The buffer size requirement per port can be computed by summing the buffer size
requirements of all streams passing this port, and the buffer size requirement of a
switch can be computed by summing up the requirements of each of its ports.

24.4.4 Analysis Extensions

24.4.4.1 Other Ethernet Schedulers
As Ethernet strives to cover a wide range of application domains, it supports many
different schedulers and shapers to forward frames, each of which has a different
impact on the queuing delay at a switch’s output port. For the most prominent ones,
CPA-based analyses are available.

Ethernet AVB [31] introduced standardized traffic shaping in the form of credit-
based shaping on top of standard Ethernet. The motivation is to shape higher-priority
traffic streams to bound their interference on lower-priority ones, e.g., to prevent
starvation. However, as any form of traffic shaping introduces additional delays,
a careful timing analysis is required to evaluate Ethernet AVB’s applicability for
real-time applications. Formal analyses for Ethernet AVB in the context of the CPA
framework are presented in [21] and [3].

Ethernet TSN defines a set of Ethernet standards, which were designed with
real-time requirements in mind. Some of these standards specify new link arbi-
tration mechanisms. Namely, IEEE 802.1Qbv [35] introduces time-triggered frame
forwarding to Ethernet, i.e., frames of time-triggered traffic classes are scheduled at
predefined points in time such that they do not experience interference from other
traffic classes. IEEE 802.1Qbv relies on so-called guard bands to block non-time-
triggered traffic early enough to prevent interference with time-triggered traffic. In
IEEE 802.1Qch [32], cyclic frame forwarding is defined, i.e., frame forwarding is
based on alternating time intervals and frames received in one interval will be sent
in the next interval etc. A new credit-based shaper, which aims to improve the
forwarding of bursts, is discussed in [25]. Formal analyses for these shapers are
presented in [75] and [74].

Although not explicitly standardized by the IEEE, weighted round robin schedul-
ing can be implemented as an IEEE 802.1Q enhanced transmission selection
algorithm. A CPA-compatible formal analysis for weighted round robin scheduling
in the Ethernet context has been presented in [71].

In order to improve the timing of critical traffic, frame preemption has been intro-
duced to Ethernet via the IEEE 802.3br [33] and IEEE 802.1Qbu [34] standards. A
CPA-compatible formal analysis for frame preemption has been presented in [73].

24.4.4.2 Analysis Improvements
This section covered the fundamental approach to derive timing guarantees for
Ethernet networks in CPA. The presented baseline analysis has been improved and
extended in many directions.

Different analysis optimizations to exploit various kinds of correlations between
Ethernet traffic streams have been proposed in [3] and [70]. Axer et al. [3] exploits

788 H. Zeng et al.

the fact that both Ethernet links and Ethernet AVB’s traffic shapers limit the amount
of workload, which can pass them in a given time interval. This property can
be used to limit the interference during the computation of the worst-case frame
transmission latencies. In [70], the authors show how FIFO scheduling can be
exploited to reduce the interference a frame can experience from its same-priority
predecessors.

24.4.4.3 Higher-Layer Protocols
Ethernet only defines frame forwarding on layer 2 of the ISO/OSI model. Higher-
layer protocols often have additional timing implications. In [2] and [72] analyses to
determine a bound on the worst-case timing impact of Automatic Repeat Requests
(ARQs) and software-defined networking (SDN) [42] are presented.

Due to the compositional nature of CPA, the Ethernet analysis can be easily
combined with other analyses from the CPA framework to derive system-wide
performance guarantees. In [76], this has been done to compute end-to-end la-
tency bounds for CAN-over-Ethernet traffic, where Ethernet ports are modeled
as described in this section, but CAN buses and gateway processors are modeled
according to their respective scheduling policies.

24.5 Conclusion

This chapter gives the overview on three representative communication protocols
for real-time embedded systems, focusing on their timing related design principles
and analysis. We note that real-time embedded systems are increasingly equipped
with more sophisticated features (such as autonomous driving) that require high
adaptivity and large volume data exchange. As a consequence, we envision that
their future supporting communication networks will provide better extensibility
and higher bandwidth while still keeping their behavior predictable.

Acknowledgments The contribution Packet-Switched Networks: Ethernet has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
No 644080.

References

1. Andersson B, Tovar E (2009) The utilization bound of non-preemptive rate-monotonic
scheduling in controller area networks is 25%. In: 2009 IEEE international symposium on
industrial embedded systems, pp 11–18

2. Axer P, Thiele D, Ernst R (2014) Formal timing analysis of automatic repeat request for
switched real-time networks. In: Proceedings of the SIES, Pisa

3. Axer P, Thiele D, Ernst R, Diemer J (2014) Exploiting shaper context to improve performance
bounds of Ethernet AVB Networks. In: Proceedings of the DAC, San Francisco

4. Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe tasks. Real-Time Syst
17(1):5–22

24 Networked Real-Time Embedded Systems 789

5. Broster I, Burns A, Rodriguez-Navas G (2002) Probabilistic analysis of can with faults. In:
23rd IEEE real-time systems symposium, pp 269–278

6. von der Bruggen G, Chen JJ, Huang WH (2015) Schedulability and optimization analysis for
non-preemptive static priority scheduling based on task utilization and blocking factors. In:
2015 27th Euromicro conference on real-time systems (ECRTS). IEEE, pp 90–101

7. Casparsson L, Rajnak A, Tindell K, Malmberg P (1998) Volcano revolution in on-board
communications. Technical report, Volvo

8. Chen Y, Kurachi R, Takada H, Zeng G (2011) Schedulability comparison for can message with
offset: priority queue versus FIFO queue. In: 19th international conference on real-time and
network systems, pp 181–192

9. Darbandi A, Kim MK (2014) Schedule optimization of static messages with precedence
relations in FlexRay. In: Sixth international conference on ubiquitous and future networks,
pp 495–500

10. Darbandi A, Kwon S, Kim MK (2014)Scheduling of time triggered messages in static segment
of FlexRay. Int J Softw Eng Appl 8(6):195–208

11. Davis R, Navet N (2012) Controller area network (CAN) schedulability analysis for messages
with arbitrary deadlines in FIFO and work-conserving queues. In: 9th IEEE international
workshop on factory communication systems, pp 33–42

12. Davis RI, Burns A, Bril RJ, Lukkien JJ (2007) Controller area network (CAN) schedulability
analysis: refuted, revisited and revised. Real-Time Syst 35(3):239–272

13. Davis RI, Kollmann S, Pollex V, Slomka F (2013) Schedulability analysis for controller
area network (CAN) with FIFO queues priority queues and gateways. Real-Time Syst 49(1):
73–116

14. Di Natale M, Zeng H (2010) System identification and extraction of timing properties from
controller area network (CAN) message traces. In: IEEE conference on emerging technologies
and factory automation, pp 1–8

15. Di Natale M, Zeng H (2013) Practical issues with the timing analysis of the controller area
network. In: 18th IEEE conference on emerging technologies factory automation, pp 1–8

16. Di Natale M, Zeng H, Giusto P, Ghosal A (2012) Understanding and using the controller area
network communication protocol: theory and practice. Springer Science & Business Media,
New York

17. Diemer J (To appear) Predictable network-on-chip for general-purpose processors – formal
worst-case guarantees for on-chip interconnects. Ph.D. thesis, Technische Universität Braun-
schweig, Braunschweig. N/A

18. Diemer J, Axer P, Ernst R (2012) Compositional performance analysis in python with pyCPA.
In: International workshop on analysis tools and methodologies for embedded and real-time
systems

19. Diemer J, Rox J, Ernst R (2012) Modeling of Ethernet AVB networks for worst-case timing
analysis. In: MATHMOD – Vienna international conference on mathematical modelling,
Vienna

20. Diemer J, Rox J, Negrean M, Stein S, Ernst R (2011) Real-time communication analysis for
networks with two-stage arbitration. In: Proceedings of the ninth ACM international conference
on embedded software (EMSOFT 2011). ACM, Taipei, pp 243–252

21. Diemer J, Thiele D, Ernst R (2012) Formal worst-case timing analysis of ethernet topologies
with strict-priority and AVB switching. In: IEEE international symposium on industrial
embedded systems. Invited Paper

22. Ding S (2010) Scheduling approach for static segment using hybrid genetic algorithm in
FlexRay systems. In: 10th IEEE international conference on computer and information
technology, pp 2355–2360

23. Ding S, Murakami N, Tomiyama H, Takada H (2005) A ga-based scheduling method for
FlexRay systems. In: 5th ACM international conference on embedded software, pp 110–113

24. Ghosal A, Zeng H, Di Natale M, Ben-Haim Y (2010) Computing robustness of FlexRay
schedules to uncertainties in design parameters. In: Proceedings of the conference on design,
automation and test in Europe, pp 550–555

http://N/A

790 H. Zeng et al.

25. Götz FJ (2013) Alternative shaper for scheduled traffic in time sensitive networks. In: IEEE
802.1 TSN TG meeting, Vancouver

26. Grenier M, Havet L, Navet N (2008) Configuring the communication on FlexRay-the case of
the static segment. In: 4th European congress on embedded real time software

27. Han G, Di Natale M, Zeng H, Liu X, Dou W (2013) Optimizing the implementation of
real-time simulink models onto distributed automotive architectures. J Syst Archit 59(10):
1115–1127

28. Han G, Zeng H, Li Y, Dou W (2014) SAFE: security-aware FlexRay scheduling engine. In:
Design, automation and test in Europe conference and exhibition

29. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance
analysis – the SymTA/S approach. In: IEE proceedings computers and digital techniques

30. Hu M, Luo J, Wang Y, Lukasiewycz M, Zeng Z (2014) Holistic scheduling of real-
time applications in time-triggered in-vehicle networks. IEEE Trans Ind Inf 10(3):
1817–1828

31. IEEE Audio Video Bridging Task Group (2010) 802.1Qav – forwarding and queuing enhance-
ments for time-sensitive streams. http://www.ieee802.org/1/pages/802.1av.html

32. IEEE Audio Video Bridging Task Group (2016) 802.1Qch – cyclic queuing and forwarding.
http://www.ieee802.org/1/pages/802.1ch.html

33. IEEE P802.3br Interspersing Express Traffic Task Force. P802.3br – standard for ethernet
amendment specification and management parameters for interspersing express traffic. https://
standards.ieee.org/develop/project/802.3br.html

34. IEEE Time-Sensitive Networking Task Group. 802.1Qbu – frame preemption. http://www.
ieee802.org/1/pages/802.1bu.html

35. IEEE Time-Sensitive Networking Task Group (2015) P802.1Qbv (Draft 3.0) – enhancements
for scheduled traffic. http://www.ieee802.org/1/pages/802.1bv.html

36. International Standards Organisation (ISO) (1993) ISO 11898-1. Road vehicles – interchange
of digital information – controller area network (CAN) for high-speed communication. ISO
Standard-11898

37. International Standards Organisation (ISO) (2013) Road vehicles – FlexRay communications
system – part 1: general information and use case definition. ISO Standard-17458

38. Jansen K, Solis-Oba R (2003) An asymptotic fully polynomial time approximation scheme for
bin covering. Theor Comput Sci 306(1):543–551

39. Kang M, Park K, Jeong MK (2013) Frame packing for minimizing the bandwidth consumption
of the FlexRay static segment. IEEE Trans Ind Electron 60(9):4001–4008

40. Khan D, Bril R, Navet N (2010) Integrating hardware limitations in can schedulability analysis.
In: 8th IEEE international workshop on factory communication systems, pp 207–210

41. Khan D, Davis R, Navet N (2011) Schedulability analysis of can with non-abortable transmis-
sion requests. In: 16th IEEE conference on emerging technologies factory automation, pp 1–8

42. Kreutz D, Ramos F, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S (2015)
Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

43. Li W, Di Natale M, Zheng W, Giusto P, Sangiovanni-Vincentelli A, Seshia S (2009) Opti-
mizations of an application-level protocol for enhanced dependability in flexray. In: Design,
automation test in Europe conference exhibition (DATE 2009), pp 1076–1081

44. Lincoln B, Cervin A (2002) Jitterbug: a tool for analysis of real-time control performance. In:
Proceedings of the 41st IEEE conference on decision and control, vol 2, pp 1319–1324

45. Liu M, Behnam M, Nolte T (2013) An EVT-based worst-case response time analysis of
complex real-time systems. In: 8th IEEE international symposium on industrial embedded
systems, pp 249–258

46. Liu M, Behnam M, Nolte T (2013) Schedulability analysis of multi-frame messages over con-
troller area networks with mixed-queues. In: 18th IEEE conference on emerging technologies
factory automation, pp 1–6

47. Liu M, Behnam M, Nolte T (2014) Schedulability analysis of GMF-modeled messages over
controller area networks with mixed-queues. In: 10th IEEE workshop on factory communica-
tion systems, pp 1–10

http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1ch.html
https://standards.ieee.org/develop/project/802.3br.html
https://standards.ieee.org/develop/project/802.3br.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bv.html

24 Networked Real-Time Embedded Systems 791

48. Lukasiewycz M, Glaß M. Teich J, Milbredt P (2009) FlexRay schedule optimization of the
static segment. In: 7th IEEE/ACM international conference on hardware/software codesign
and system synthesis, pp 363–372

49. Lukasiewycz M, Schneider R, Goswami D, Chakraborty S (2012) Modular scheduling of
distributed heterogeneous time-triggered automotive systems. In: 17th Asia and South Pacific
design automation conference, pp 665–670

50. Mok A, Chen D (1996) A multiframe model for real-time tasks. In: 17th IEEE real-time
systems symposium, pp 22–29

51. Mubeen S, Mäki-Turja J, Sjödin M (2011) Extending schedulability analysis of controller
area network (CAN) for mixed (periodic/sporadic) messages. In: 16th IEEE conference on
emerging technologies factory automation, pp 1–10

52. Mubeen S, Mäki-Turja J, Sjödin M (2012) Extending response-time analysis of mixed
messages in can with controllers implementing non-abortable transmit buffers. In: 17th IEEE
conference on emerging technologies factory automation, pp 1–4

53. Mubeen S, Mäki-Turja J, Sjödin M (2012) Response time analysis for mixed messages in can
supporting transmission abort requests. In: 7th IEEE international symposium on industrial
embedded systems, pp 291–294

54. Mubeen S, Mäki-Turja J, Sjödin M (2012) Response-time analysis of mixed messages in
controller area network with priority- and FIFO-queued nodes. In: 9th IEEE international
workshop on factory communication systems, pp 23–32

55. Mubeen S, Mäki-Turja J, Sjödin M (2012) Worst-case response-time analysis for mixed
messages with offsets in controller area network. In: 17th IEEE conference on emerging
technologies factory automation, pp 1–10

56. Mubeen S, Mäki-Turja J, Sjödin M (2013) Extending offset-based response-time analysis
for mixed messages in controller area network. In: 18th IEEE conference on emerging
technologies factory automation, pp 1–10

57. Mubeen S, Mäki-Turja J, Sjödin M (2014) Extending worst case response-time analysis for
mixed messages in controller area network with priority and FIFO queues. IEEE Access 2:
365–380

58. Mubeen S, Mäki-Turja J, Sjödin M (2014) Response time analysis with offsets for mixed
messages in can supporting transmission abort requests. In: Emerging technology and factory
automation (ETFA 2014). IEEE, pp 1–10

59. Mubeen S, Mäki-Turja J, Sjödin M (2015) Integrating mixed transmission and practical
limitations with the worst-case response-time analysis for controller area network. J Syst Softw
99:66–84

60. Mundhenk P, Steinhorst S, Lukasiewycz M, Fahmy SA, Chakraborty S (2015) Security
analysis of automotive architectures using probabilistic model checking. In: 52nd ACM/IEEE
design automation conference (DAC), pp 1–6

61. Natale MD (2006) Evaluating message transmission times in controller area networks without
buffer preemption. In: 8th Brazilian workshop on real-time systems

62. Navet N, Song YQ, Simonot F (2000) Worst-case deadline failure probability in real-time
applications distributed over controller area network. J Syst Archit 46(7):607–617

63. Neukirchner M, Negrean M, Ernst R, Bone TT (2012) Response-time analysis of the
FlexRay dynamic segment under consideration of slot-multiplexing. In: 7th IEEE international
symposium on industrial embedded systems, pp 21–30

64. Nolte T, Hansson H, Norstrom C (2003) Probabilistic worst-case response-time analysis for
the controller area network. In: 9th IEEE real-time and embedded technology and applications
symposium, pp 200–207

65. Pop T, Pop P, Eles P, Peng Z, Andrei A (2008) Timing analysis of the FlexRay communication
protocol. Real-Time Syst 39(1–3):205–235

66. Schenkelaars T, Vermeulen B, Goossens K (2011) Optimal scheduling of switched FlexRay
networks. In: Design, automation test in Europe conference exhibition, pp 1–6

67. Schmidt K, Schmidt E (2009) Message scheduling for the FlexRay protocol: the static segment.
IEEE Trans Veh Technol 58(5):2170–2179

792 H. Zeng et al.

68. Tanasa B, Bordoloi UD, Kosuch S, Eles P, Peng Z (2012) Schedulability analysis for the
dynamic segment of FlexRay: a generalization to slot multiplexing. In: 18th IEEE real-time
and embedded technology and applications symposium, pp 185–194

69. Tanasa B, Dutta Bordoloi U, Eles P, Peng Z (2011) Reliability-aware frame packing for the
static segment of FlexRay. In: Proceedings of the ninth ACM international conference on
embedded software, pp 175–184

70. Thiele D, Axer P, Ernst R (2015) Improving formal timing analysis of switched ethernet by
exploiting FIFO scheduling. In: Design automation conference (DAC), San Francisco

71. Thiele D, Diemer J, Axer P, Ernst R, Seyler J (2013) Improved formal worst-case timing
analysis of weighted round robin scheduling for ethernet. In: Proceedings of the CODES+ISSS,
Montreal

72. Thiele D, Ernst R (2016) Formal analysis based evaluation of software defined networking for
time-sensitive ethernet. In: Proceedings of the design, automation, and test in Europe (DATE),
Dresden

73. Thiele D, Ernst R (2016) Formal worst-case performance analysis of time-sensitive Ethernet
with frame preemption. In: Proceedings of emerging technologies and factory automation
(ETFA), Berlin, p 9

74. Thiele D, Ernst R (2016) Formal worst-case timing analysis of Ethernet TSN’s burst-limiting
shaper. In: Proceedings of the design, automation, and test in Europe (DATE), Dresden

75. Thiele D, Ernst R, Diemer J (2015) Formal worst-case timing analysis of Ethernet TSN’s time-
aware and peristaltic shapers. In: IEEE vehicular networking conference (VNC)

76. Thiele D, Schlatow J, Axer P, Ernst R (2015) Formal timing analysis of can-to-ethernet
gateway strategies in automotive networks. Real-Time Syst. http://dx.doi.org/10.1007/s11241-
015-9243-y

77. Tindell K, Hansson H, Wellings A (1994) Analysing real-time communications: controller area
network (CAN). In: IEEE real-time systems symposium, pp 259–263

78. Vector. CANbedded interaction layer. [Online] http://www.vector.com
79. Yomsi P, Bertrand D, Navet N, Davis R (2012) Controller area network (CAN): response time

analysis with offsets. In: 9th IEEE international workshop on factory communication systems,
pp 43–52

80. Zeng H, Di Natale M, Ghosal A, Sangiovanni-Vincentelli A (2011) Schedule optimization of
time-triggered systems communicating over the FlexRay static segment. IEEE Transactions on
Industrial Informatics 7(1):1–17

81. Zeng H, Di Natale M, Giusto P, Sangiovanni-Vincentelli A (2009) Stochastic analysis of CAN-
based real-time automotive systems. IEEE Transactions on Industrial Informatics 5(4):388–401

82. Zeng H, Di Natale M, Giusto P, Sangiovanni-Vincentelli A (2010) Using statistical methods
to compute the probability distribution of message response time in controller area network.
IEEE Transactions on Industrial Informatics 6(4):678–691

83. Zeng H, Ghosal A, Di Natale M (2010) Timing analysis and optimization of FlexRay
dynamic segment. In: 7th IEEE international conference on embedded software and systems,
pp 1932–1939

http://dx.doi.org/10.1007/s11241-015-9243-y
http://dx.doi.org/10.1007/s11241-015-9243-y
http://www.vector.com

	24 Networked Real-Time Embedded Systems
	Contents
	24.1 Introduction
	24.2 Event-Triggered Communication: Controller Area Network
	24.2.1 CAN Message Format and Bus Arbitration
	24.2.2 Timing Analysis with Ideal Models
	24.2.3 Analysis with Non-idealized Models

	24.3 A Heterogeneous Communication Protocol: FlexRay
	24.3.1 Introduction
	24.3.2 Static Segment
	24.3.2.1 ILP-Based Approach for Asynchronous Scheduling

	24.3.3 Dynamic Segment
	24.3.3.1 Timing Analysis Without Slot Multiplexing
	24.3.3.2 Extension to Slot Multiplexing

	24.4 Packet-Switched Networks: Ethernet
	24.4.1 Introduction
	24.4.2 Modeling Ethernet Networks for Performance Analysis
	24.4.3 Analysis of Standard Ethernet (IEEE802.1Q)
	24.4.3.1 End-to-End Latency Bounds
	24.4.3.2 Buffer Size Bounds

	24.4.4 Analysis Extensions
	24.4.4.1 Other Ethernet Schedulers
	24.4.4.2 Analysis Improvements
	24.4.4.3 Higher-Layer Protocols

	24.5 Conclusion
	References

