
22Semiformal Assertion-Based Verification
of Hardware/Software Systems in a
Model-Driven Design Framework

Graziano Pravadelli, Davide Quaglia, Sara Vinco, and Franco Fummi

Abstract

Since the mid-1990s, Model-Driven Design (MDD) methodologies (Selic, IEEE
Softw 20(5):19–25, 2003) have aimed at raising the level of abstraction through
an extensive use of generic models in all the phases of the development of
embedded systems. MDD describes the system under development in terms
of abstract characterization, attempting to be generic not only in the choice
of implementation platforms but even in the choice of execution and inter-
action semantics. Thus, MDD has emerged as the most suitable solution to
develop complex systems and has been supported by academic (Ferrari et al.,
From conception to implementation: a model based design approach. In: Pro-
ceedings of IFAC symposium on advances in automotive control, 2004) and
industrial tools (3S Software CoDeSys, 2012. http://www.3s-software.com; At-
ego ARTiSAN, 2012. http://www.atego.com/products/artisan-studio; Gentleware
Poseidon for UML embedded edition, 2012. http://www.gentleware.com/uml-
software-embedded-edition.html; IAR Systems IAR visualSTATE, 2012. http://
www.iar.com/Products/IAR-visualSTATE/; rhapsodyIBM Rational Rhapsody,
2012. http://www.ibm.com/software/awdtools/rhapsody; entarchSparx Systems
Enterprise architet, 2012. http://www.sparxsystems.com.au; Aerospace Valley
TOPCASED project, 2012. http://www.topcased.org). The gain offered by the
adoption of an MDD approach is the capability of generating the source code
implementing the target design in a systematic way, i.e., it avoids the need of
manual writing. However, even if MDD simplifies the design implementation,
it does not prevent the designers from wrongly defining the design behavior.
Therefore, MDD gives full benefits if it also integrates functional verification.

G. Pravadelli (�) • D. Quaglia • F. Fummi
Università di Verona, Verona, Italy
e-mail: graziano.pravadelli@univr.it; davide.quaglia@univr.it; franco.fummi@univr.it

S. Vinco
Politecnico di Torino, Turin, Italy
e-mail: sara.vinco@polito.it

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_23

683

http://www.3s-software.com
http://www.atego.com/products/artisan-studio
http://www.gentleware.com/uml-software-embedded-edition.html
http://www.gentleware.com/uml-software-embedded-edition.html
http://www.iar.com/Products/IAR-visualSTATE/
http://www.iar.com/Products/IAR-visualSTATE/
http://www.ibm.com/software/awdtools/rhapsody
http://www.sparxsystems.com.au
http://www.topcased.org
mailto:graziano.pravadelli@univr.it
mailto:davide.quaglia@univr.it
mailto:franco.fummi@univr.it
mailto:sara.vinco@polito.it

684 G. Pravadelli et al.

In this context, Assertion-Based Verification (ABV) has emerged as one of
the most powerful solutions for capturing a designer’s intent and checking
their compliance with the design implementation. In ABV, specifications are
expressed by means of formal properties. These overcome the ambiguity of
natural languages and are verified by means of either static (e.g., model checking)
or, more frequently, dynamic (e.g., simulation) techniques. Therefore ABV
provides a proof of correctness for the outcome of the MDD flow. Consequently,
the MDD and ABV approaches have been combined to create efficient and
effective design and verification frameworks that accompany designers and veri-
fication engineers throughout the system-level design flow of complex embedded
systems, both for the Hardware (HW) and the Software (SW) parts (STM
Products radCHECK, 2012. http://www.verificationsuite.com; Seger, Integrating
design and verification – from simple idea to practical system. In: Proceedings of
ACM/IEEE MEMOCODE, pp 161–162, 2006). It is, indeed, worth noting that
to achieve a high degree of confidence, such frameworks require to be supported
by functional qualification methodologies, which evaluate the quality of both
the properties (Di Guglielmo et al. The role of mutation analysis for property
qualification. In: 7th IEEE/ACM international conference on formal methods and
models for co-design, MEMOCODE’09, pp 28–35, 2009. DOI 10.1109/MEM-
COD.2009.5185375) and the testbenches which are adopted during the overall
flow (Bombieri et al. Functional qualification of TLM verification. In: Design,
automation test in Europe conference exhibition, DATE’09, pp 190–195, 2009.
DOI 10.1109/DATE.2009.5090656). In this context, the goal of the chapter
consists of providing, first, a general introduction to MDD and ABV concepts
and related formalisms and then a more detailed view on the main challenges
concerning the realization of an effective semiformal ABV environment through
functional qualification.

Acronyms

ABV Assertion-Based Verification
CTL Computation Tree Logic
DUV Design Under Verification
EFSM Extended Finite-State Machine
ES Embedded System
ESL Electronic System Level
FSM Finite-State Machine
HDL Hardware Description Language
HW Hardware
I/O Input/Output
LLVM Low-Level Virtual Machine
LTL Linear Time Logic
MARTE Modeling and Analysis of Real-Time Embedded Systems
MDA Model-Driven Architecture

http://www.verificationsuite.com

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 685

MDD Model-Driven Design
MLBJ Multi-Level Back Jumping
MMIO Memory-Mapped I/O
MoC Model of Computation
OMG Object Management Group
OSCI Open SystemC Initiative
OVL Open Verification Library
PIM Platform Independent Model
PSL Property Specification Language
PSM Platform Specific Model
RTL Register Transfer Level
SERE Sequential Extended Regular Expression
SoC System-on-Chip
SVA System Verilog Assertions
SW Software
TLM Transaction-Level Model
UML Unified Modeling Language
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Contents

22.1 Introduction to Model-Driven Design . 685
22.2 Introduction to Assertion-Based Verification . 687
22.3 Integrating MDD and ABV. 687
22.4 Models and Flows for Verification . 689

22.4.1 Automata-Based Formalisms . 689
22.4.2 Top-Down and Bottom-Up Flows for System Verification 694

22.5 Assertion Definition and Checker Generation . 698
22.5.1 Template-Based Assertion Design . 699

22.6 Mutant-Based Quality Evaluation . 701
22.6.1 Testbench Qualification . 702
22.6.2 Property Qualification . 707

22.7 Automatic Stimuli Generation . 711
22.7.1 EFSM-Based Stimuli Generation . 712

22.8 Conclusion . 715
References . 716

22.1 Introduction to Model-Driven Design

The focus of MDD is to elevate the system development to a higher level of
abstraction than that provided by HW description languages (e.g., VHDL and Ver-
ilog) for Hardware (HW) aspects and by third-generation programming languages
for Software (SW) aspects [92]. The development is based on models, which are

686 G. Pravadelli et al.

abstract characterizations of requirements, behavior, and structure of the embedded
system without anticipating the implementation technology.

Due to the noticeable effort of the Object Management Group (OMG) [84], the
Unified Modeling Language (UML) [85] was originally adopted as the reference
modeling language for describing software, and then it was also applied to the de-
scription of embedded hardware. UML provides general-purpose graphic elements
to create visual models of systems and attempts to be generic in both the integration
and the execution semantics. Due to such a general-purpose semantics, more specific
UML profiles have been introduced for dealing with specific domains or concerns.
They extend subsets of the UML meta-model with new standard elements, and they
refine the core UML semantics to cope with particular hardware/software problems.
For example, the SysML [97] profile supports the specification, the analysis, and
the design of complex systems, which may include physical components. The
Gaspard2 [57] profile, instead, supports the modeling of System-on-Chip (SoC).
The synchronous reactive [35] profile provides a restrictive set of activity diagrams
and sequence diagrams with a clear and semantically sound way of generating valid
execution sequences. The Modeling and Analysis of Real-Time Embedded Systems
(MARTE) [83] profile adds capabilities to UML for modeling and analysis of real-
time and embedded systems. Its modeling concepts provide support for representing
time and time-related mechanisms, the use of concurrent resources and other em-
bedded systems characteristics (such as memory capacity and power consumption).
The analysis concepts, instead, provide model annotations for dealing with system
property analysis, such as schedulability analysis and performance analysis. It is
worth noticing that other UML profiles exist for hardware-related aspects such as
system-level modeling and simulation [81,90]. Other hardware-oriented profiles and
a comparison of them are clearly described in [18]. Model-Driven Design (MDD)
has been also used for modeling embedded systems that interact together through
communication channels to build distributed applications. In this context, the MDD
approach consists in using a UML deployment diagram to capture the structural
representation of the whole distributed application. MARTE stereotypes (e.g., the
MARTE-GQAM sub-profile and MARTE nonfunctional properties) can be used to
represent attributes such as throughput, price, and power consumption. Furthermore
some aspects (e.g., node mobility) require the definition of an ad-hoc UML network
profile [46].

Besides the standard UML supported by OMG, some proprietary variants of the
UML notations also exist. The most famous ones are the MathWorks’ Stateflow
and Simulink [98] formalisms. They use finite-state, machine-like and functional-
block, diagram-like models, respectively, for specifying behavior and structure of
reactive hardware/software systems with the aim of rapid embedded SW prototyping
and engineering analysis. Several MDD tools on the market support UML and
Model-Driven Architecture (MDA). The underlying idea of MDA is the definition
of models at different levels of abstraction which are linked together to form
an implementation. MDA distinguishes the conceptual aspects of an application
from their representation on specific implementation technologies. For this reason,
the MDA design approach uses Platform Independent Models (PIMs) to specify

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 687

what an application does, and Platform Specific Models (PSMs) to specify how
the application is implemented and executed on the target technology. The key
element of an MDA approach is the capability to automatically transform models:
transformation of PIM into PSM enables realizations, whereas transformations
between PIMs enable integration features.

22.2 Introduction to Assertion-Based Verification

Assertion-based verification aims at providing verification engineers with a way to
formally capture the intended specifications and checking their compliance with the
implemented embedded system. Specifications are expressed by means of formal
properties defined according to temporal logics, e.g., Linear Time Logic (LTL) or
Computation Tree Logic (CTL), and expressed by means of assertion languages,
like Property Specification Language (PSL) [64].

Approaches based on ABV are traditionally classified in two main categories:
static (i.e., formal) and dynamic (i.e., simulation based). In static Assertion-
Based Verification (ABV), formal properties, representing design specifications,
are exhaustively checked against a formal model of the design by exploiting, for
example, a model checker. Such an exhaustive reasoning provides verification
engineers with high confidence in system reliability. However, the well-known state
space explosion problem limits the applicability of static ABV to small/medium-
size, high-budget, and safety-critical projects [67]. On the contrary, thanks to the
scalability provided by simulation-based techniques, dynamic ABV approaches are
nowadays preferred for verifying large designs, which have both reliability require-
ments and stringent development cost/time-to-market constraints. In particular, in
the hardware domain, dynamic ABV is affirming as a leading strategy in industry
to guarantee fast and high-quality verification of hardware components [24, 80],
and several verification approaches have been proposed [50, 51]. In dynamic ABV,
properties are compiled into checkers [17], i.e., modules that capture the behavior
of the corresponding properties and monitor if they hold with respect to the design,
when the latter is simulated by using a set of (automatically generated) stimuli.

22.3 Integrating MDD and ABV

Even if MDD simplifies software implementation, it does not prevent the designer
from wrongly defining system behavior. Certain aspects concerning the verification
of the code generated by MDD flows are automated, as, for example, the structural
analysis of code, but specification conformance, i.e., functional verification, is still a
human-based process [47,55]. Indeed, the de facto approach to guarantee the correct
behavior of the design implementation is monitoring system simulation: company
verification teams are responsible for putting the system into appropriate states by
generating the required stimuli, judging when stimuli should be executed, manually
simulating environment and user interactions, and analyzing the results to identify

688 G. Pravadelli et al.

Fig. 22.1 The combined model-driven and verification framework implemented in the RadSuite

unexpected behaviors. MDD and dynamic ABV, if combined in a comprehensive
framework, enable automatic functional verification of both embedded SW and
HW components. The approach generally relies on a design and verification
framework composed of two environments: a UML-like modeling and development
environment - supporting model-driven design - and a dynamic ABV environment
that supports assertion definition and automatic checkers and stimuli generation.

An example of this design and verification flow, which integrates MDD and
ABV, is represented by the commercial RadSuite, composed by radCASE and
radCHECK [38] (Fig. 22.1). Starting from informal specifications and requirements,
the designer, with the model editor of radCASE, defines the system model by
using a UML-based approach. Concurrently, with the property editor of radCHECK,
he/she defines a set of PSL assertions that the system must fulfill. Then, radCASE
automatically translates the UML specifications in the C-code implementation, and
it automatically extracts an Extended Finite-State Machine (EFSM) model (see
Sect. 22.4.1.1 for this formalism) to support automatic verification. At the same
time, radCHECK can be used to automatically generate executable checkers from
the defined PSL assertions. The dynamic ABV is guided by stimuli automatically

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 689

generated by a corner-case-oriented concolic stimuli generator that exploits the
EFSM model to explore the system state space (see Sect. 22.7). Checkers execute
concurrently with the Design Under Verification (DUV) and monitor if it causes any
failure of the corresponding properties. The designer uses the resulting information,
i.e., failed requirements, for refining the UML specifications incrementally and in
an iterative fashion.

22.4 Models and Flows for Verification

The key ingredient underpinning an effective design and verification framework
based on MDD and ABV is represented by the possibility of defining a model of
the desired system and then automatically deriving the corresponding simulatable
description to be used for virtual prototyping. Selecting the formalism to represent
the model is far from being a trivial choice, as the increasing complexity and
heterogeneity of embedded systems generated, over time, a plethora of languages
and different representations, each focusing on a specific subset of the Embedded
System (ES) and on a specific domain [44]. Examples are EFSMs, dedicated
to digital HW components and cycle-accurate protocols, hybrid automata for
continuous physical dynamics, high-level UML diagrams for high-level modeling
of hardware, software, and network models. This heterogeneity reflects on the
difficulty of standardizing automatic approaches that allow the conversion of the
high-level models in executable specifications (e.g., SystemC/C code). Such an
automatic conversion is indeed fundamental to reduce verification costs, particularly
in the context of virtual prototyping of complex systems that generally integrate
heterogeneous components through both bottom-up and top-down composition
flows. In this direction, automata-based formalisms represent the most suitable
solutions to enable a precise mapping of the model into simulatable descriptions.
Thus, the following discussion in this section is intended to summarize the main
automata-based formalisms available as state of the art, together with bottom-up and
top-down flows, whose combined adoption allows the generation of a homogeneous
simulatable description of the overall system.

22.4.1 Automata-Based Formalisms

The most widespread models for representing the behavior of a component or a
system are based on automata, i.e., models that rely on the notions of states and of
transitions between states. The simplest automata-based model, i.e., the finite-state
machine, has proved to be too strict to allow a flexible and effective view of modern
components. This originated a number of extensions, each targeting specific aspects
and domains, as summarized in the following of this section.

22.4.1.1 Extended Finite-State Machines
EFSMs extend standard Finite-State Machines (FSMs) to allow a more compact
representation of the system that reduces the risk of state explosion for complex
designs [4]. An EFSM differs from the traditional FSM, since transitions between

690 G. Pravadelli et al.

states are not labeled in the classical form input/output values, but they take care
of the values of internal variables too. Practically, transitions are labeled with an
enabling function, which represents the guard of the transition, and an update
function, which specifies how the values of variables and outputs evolve when the
transition is fired upon the satisfaction of its guard.

To exemplify the concept, Fig. 22.2 reports the EFSM of a simplified in-flight
safety system. The states of the EFSM are S D fSafe;Warning; C rit icalg,
where Safe is the reset state. The input variables are I D ft; p; o; rstg and
represent the corresponding temperature, pressure, and oxygen variables, whereas
rst represents the EFSM reset signal. O D flight; sound g is the set of output
variables corresponding to light and sound controls. Finally, D D ftva; pva; ovag

is the set of internal variables of the EFSM. For each transition, the enabling function
and update function are reported in the table under the figure. For readability, only
a reset transition t0 is depicted with a dotted arrow as a representative of each of the
reset transitions outgoing from the states of the EFSM and entering in Safe.

Unfortunately, the semantics of EFSMs is strictly discrete, and it does not support
continuous-time physical models. Thus it cannot, for instance, represent an ES with
its continuous-time environment.

Fig. 22.2 An EFSM specification of a simplified in-flight safety system

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 691

22.4.1.2 Hybrid Automata
A hybrid automaton is modeled as a set of states and transitions, but, as opposed to
EFSMs, it supports both discrete time and continuous time dynamics [58]. The dis-
crete time dynamics coincides with FSM semantics, and it is implemented through
transitions between states that respond to system evolution and to synchronization
events. The continuous-time dynamics is implemented by the states, which are
associated with two predicates: the flow predicate that constrains the evolution
of continuous variables into the state, and the invariant predicate, that specifies
whether it is possible to remain into the state or not, depending on a set of conditions
on variables. Variables can be assigned continuous values, as opposed to EFSMs.

Figure 22.3 depicts an example of a simple hybrid automaton. If compared
with Fig. 22.2, the automaton now associates each state with an invariant condition
(e.g., x � 18, for the state S0) and with a flow predicate which shows the rate of
change of the variable x with time (e.g., x0 D �0:1x, for the state S0, where x0

represents the first derivative of variable x). Furthermore, a synchronization event,
close, is used to force the transition to S1, irrespective of the current state of
variable x.

A special class of automata, namely, timed automata, introduces the notion of
time [6]. Time evolution is modeled with dense variables, called clocks, whose
evolution is constrained by predicates and used in transition guards. Furthermore,
events and variables are associated with a time stamp. As a result, automaton
evolution depends also on time. This is extremely useful in the modeling of real-
time systems with time constraints.

Hybrid automata are especially suited for modeling control scenarios, modeling a
tight interaction between a controller and a continuous time environment. However,
this formalism is suited for modeling only high-level systems. Unfortunately,
describing cycle-accurate hardware behaviors as well as software functionalities
(such as interrupt handling) would exponentially increase the complexity of the
related model, and it would lead to state space explosion [56].

22.4.1.3 UML Diagrams
UML is a standardized general-purpose modeling language, specially suited for
modeling SW intensive systems, but often adopted also for modeling HW com-
ponents and networked systems [85]. UML includes a set of graphic notation
techniques for clearly representing different aspects of a system, i.e., its structure
(structural diagrams) or its behavior (behavioral diagrams).

The most useful class from the point of view of MDD approaches for HW/SW
systems is represented by behavioral diagrams, which model what happens in the
system, either in terms of internal behavior or from the communication perspective.

Fig. 22.3 Example of a
hybrid automaton

x > 21

x < 19

S0
x' = -0.1x

x≥18

S1
x' = 5 – 0.1x

x≤22
close

692 G. Pravadelli et al.

Behavioral diagrams can be further classified into different classes, among which
the most relevant for modeling HW/SW systems are:

• Activity diagrams, which represent the data and control flow between activities
• Interaction diagrams, which represent the interaction between collaborating

parts of a system, in terms of message exchange (sequence diagram and
communication diagrams), and of state evolution depending on timed events
(timing diagrams)

• State machine diagrams, which are automata-based model representing the state
transitions and actions performed by the system in response to events

Besides behavioral diagrams, deployment diagrams, belonging to the category
of structural diagrams, have been also used in the context of MDD to capture
the structural representation of network aspects, in conjunction with MARTE
stereotypes [46].

In general, UML diagrams have been specialized to fit many different domains
through the definition of profiles. However, their diagrams are too high level to
represent cycle accurate models and physical models with a sufficient accuracy,
without incurring in the state explosion problem or degenerating into standard
FSMs.

Figure 22.4 shows a sequence diagram example. Sequence diagrams show how
processes operate and their interactions, represented as exchanged messages. For
this reason, they are the most common diagrams to specify system functionality,
communication, and timing constraints. Lifelines (the vertical dashed lines) are the
objects constituting the system. The rectangles in a lifeline represent the execution
of a unit of behavior or of an action, and they are called execution specification.
Execution specifications may be associated with timing constraints that represent
either a time value (3�) or a time range (4�). Finally, messages, written with
horizontal arrows, display interaction. Solid arrowheads represent synchronous
calls, open arrowheads represent asynchronous messages, and dashed lines represent
reply messages.

D0 D1 D2 D3

Message

Message0
Message2

Message3

Message4

Message5
[0,10]

loop

@t0

[t0..3*t0]

1

3
3

4

5

LIFELINE

EXECUTION
SPECIFICATION

SYNCHRONOUS
MESSAGE AND

REPLY

ASYNCHRONOUS
MESSAGES

CONSTRAINTS

Fig. 22.4 Example of UML sequence diagram

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 693

22.4.1.4 The UNIVERCM Model of Computation (MoC)
UNIVERCM is an automaton-based MoC that unifies the modeling of both the
analog (i.e., continuous) and the digital (i.e., discrete) domains, as well as hardware-
dependent SW. A formal and complete definition is available in [44, 56].

In each UNIVERCM automaton (depicted in Fig. 22.5), states reproduce the
continuous-time dynamics of hybrid automata, while transitions reproduce the
discrete-time semantics of EFSMs. As a consequence, UNIVERCM automata can be
reduced to either EFSMs or hybrid automata, depending on the enabled features. An
automaton can be transformed in an equivalent EFSM by transforming its continu-
ous time features into discrete transitions (e.g., by discretizing the flow predicate). A
UNIVERCM automaton can also be transformed into an equivalent hybrid automaton
by reducing discrete transitions to conditions that allow to change state and by
moving the corresponding actions to the flow predicate of the destination state. This
correspondence of UNIVERCM automata to well-established formal models allows
to apply well-known design or verification techniques, originally defined for EFSMs
or hybrid automata, also to the context of UNIVERCM. This makes UNIVERCM an
important resource in the design of HW/SW systems, as it covers the heterogeneity
of ES, ranging from analogue and digital HW to dedicated SW, in order to build
reuse and redesign flows [44].

Note that UNIVERCM states and transitions are provided with two additional
tags, i.e., atomic and priority. The atomic tag is used to define atomic regions
that are considered to all intent a single transition when performing parallel
composition with other automata. The priority tag is used to handle nondeterministic
behaviors that may be present in a system: in case two or more transitions can be
performed at the same time, the automaton activates the one with lower value of the
priority tag.

UNIVERCM variables fall back in three main classes: discrete variables, wire
variables, and continuous variables. Wire variables extend discrete variables with
an event that is activated whenever the corresponding variable changes value.
This mechanism is used to mimic the event-driven semantics of Hardware De-
scription Languages (HDLs). Continuous variables are dense variables that can
be either assigned an explicit value (e.g., in discrete transitions) or constrained
through the flow predicate. They thus resemble the clock variables of timed
automata [6].

Fig. 22.5 Example of
UNIVERCM automaton

S0 S1

x≥18
x' = -0.1x

priority: 1
atomic: false

x≤22
x' = 5 – 0.1x
priority: 1
atomic: false

priority: 0
x > 21

priority: 2
x < 19

priority: 0
close

error = true

694 G. Pravadelli et al.

22.4.2 Top-Down and Bottom-Up Flows for System Verification

UNIVERCM bridges the characteristics of the major automata-based formalisms, and
it thus allows to reduce both top-down and bottom-up flows to a single framework, to
build a homogeneous simulatable description of the overall ES. Such a description
can then be the focus of redesign and validation flows, targeting the homogeneous
simulation of the overall system [43]. This section presents the main flows that can
be reduced to UNIVERCM, as summarized in Fig. 22.6.

22.4.2.1 Bottom-Up: Mapping Digital HW to UNIVERCM
The mapping of digital HW to UNIVERCM can be defined focusing on the
semantics of HDLs, i.e., of the languages used for reproducing and designing HW
execution. In HDLs, digital HW is designed as a number of concurrent processes
that are activated by events and by variations of input signals, constituting the
process sensitivity list. Process activation is managed by an internal scheduler that
repeatedly builds the queue of runnable processes and advances simulation time.

When mapping to UNIVERCM, each HDL process is mapped to an automaton,
whose transitions are activated by variations in the value of the signals in the sen-
sitivity list. In the example in Fig. 22.7, the automaton is activated by events on the
read signal b that fires the transaction from state H0 to state H1. This mechanism, to-
gether with the sharing of variables and signals, ensures that process communication
and interaction are correctly preserved. Note that, since digital HW does not foresee
continuous-time evolution, the automaton is restricted to the discrete-time dynamics
(i.e., to an EFSM). The existence of predefined synchronization points (e.g., wait
primitives) is ensured in UNIVERCM with an ad hoc predicate, called atomic,
that allows to consider a number of transitions and states as a single transition
(e.g., transitions from H0 to H4 in Fig. 22.7). This guarantees that the original
execution flow is preserved.

The mapping of the sensitivity list to events, and the parallel semantics of
UNIVERCM automata, builds an automatic scheduling mechanism that avoids the
need for an explicit scheduling routine. The advancement of simulation time is
explicitly modeled with an additional automaton [43].

AUTOMATA-BASED
FORMALISMS

UNIVERCM
EFSMs

Hybrid automata

DIGITAL HW AS
HDL MODELS

EMBEDDED
SW

HYBRID
AUTOMATA

HOMOGENEOUS
SIMULATION THROUGH

CODE GENERATION
(C++/SystemC)

Fig. 22.6 Top-down and bottom-up flows proposed in the following of this section

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 695

Fig. 22.7 Mapping of a digital HW component and of the communicating embedded SW to
UNIVERCM automata

22.4.2.2 Bottom-Up: Mapping Embedded SW to UNIVERCM
Embedded SW is typically structured into a number of functions that can be easily
represented as UNIVERCM automata evolving among a certain set of states via
transitions. Since SW does not allow continuous evolution, each automaton is
restricted to its discrete-time dynamics (i.e., to an EFSM).

Each function is provided with an activation event (for representing function
invocation, event interrupt in Fig. 22.7) and a return label, which is used to
communicate to the caller that the function has finished its execution (event return
in Fig. 22.7).

Note that the atomic predicate can be used also in case of SW to avoid race
conditions and unpredictable behaviors due to concurrency, e.g., in Fig. 22.7 all
transitions are encapsulated in an atomic region, to guarantee that the execution
of function interrupt_handler is non-interruptible.

Communication with HW devices based on the Memory-Mapped I/O (MMIO)
approach is easily implemented in UNIVERCM by representing MMIO locations as
variables shared with the HW automata. HW interrupts are mapped to synchroniza-
tion events. The interrupt handling routine is mapped to an automaton, just like any
other function. The activation event of the automaton is the interrupt fired by the HW
device. The automaton remains suspended until it receives the interrupt event and,
on receipt of the event, it executes the necessary interrupt handling operations. In
the example of Fig. 22.7, the activation event of the function (event interrupt) is the
interrupt fired by the HW automaton (in the transition from H1 to H3, as highlighted
by the red arrow).

696 G. Pravadelli et al.

22.4.2.3 Bottom-Up: Mapping Hybrid Automata to UNIVERCM
Since UNIVERCM is a superset of hybrid automata, this mapping is quite straight-
forward. Care must be taken in the mapping of synchronization events, as hybrid
automata may activate an event only if all its recipients may perform a transition
in response to the event. To reproduce this semantics in UNIVERCM, each recipient
automaton is provided with a flag variable that is false by default and that is set to
true only if the current state has an outgoing transition fired by the synchronization
event. The event may be fired only after checking that all the corresponding flag
variables are true.

Hybrid automata may be hierarchical, for simplifying the design of analog
components. Mapping a hierarchical hybrid automaton to UNIVERCM requires to
remove the hierarchy by recursively flattening the description.

22.4.2.4 Top-Down: Mapping UML Diagrams to UNIVERCM
The mapping of UML diagrams is defined to EFSMs, that are the reference
automata-based model for MDD approaches. Given that EFSMs can be considered
the discrete-time subset of UNIVERCM, this is equivalent to mapping the diagrams
to UNIVERCM automata. For this reason, in the following, the terms EFSM and
UNIVERCM automaton are interchangeable.

The mapping is defined for UML sequence diagrams. These are the most
common diagrams to specify system functionality, communication, and timing
constraints. However, a similar approach can be applied also to other classes of
UML diagrams.

The mapping of sequence diagrams to UNIVERCM is exemplified in Fig. 22.8.
Each diagram is turned into one automaton, whose states are defined one per lifeline
(D0, D1, D2, and D3) [45]. Message receipt forces transition from one state to the
next (e.g., from D0 to D1 at 1�). Messages are enumerated, to define enabling
conditions that preserve the execution order imposed by the sequence diagram
(2�). This allows to reproduce also control constructs, such as the loop construct
in Fig. 22.8, that iterates a message transfer ten times (5�). Timing constraints are
used to perform check constraints through an additional state W (3� and 4�) that
may raise timing errors.

22.4.2.5 Top-Down: Mapping UNIVERCM Automata to C++/SystemC
UNIVERCM has been specifically defined to ease the conversion of UNIVERCM
automata toward C++ and SystemC descriptions [43, 44].

Each UNIVERCM automaton is mapped in a straightforward manner to a C++
function containing a switch statement, where each case represents one of the
automaton states. Each state case lists the implementation of all the outgoing edges
and of the delay transition provided for the state. When an edge is traversed,
variables are updated according to the update functions, and the continuous flow
predicates and synchronization events are raised, where required.

The code generated from UNIVERCM automata is ruled by a management
function, in charge of activating automata and of managing the status of the overall
system and parallel composition of automata.

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 697

D0 D1 D2 D3

Message

Message0
Message2

Message3

Message4

Message5
[0,10]

loop

@t0

[t0..3*t0]

1

2
3

4

5

D0

true
priority: 1
atomic: false

D1
priority: 0
received_
message

true
priority: 1

atomic: false

D2
priority: 0
received_
message

true
priority: 1

atomic: false

D3
true
priority: 1
atomic: false

priority: 0
seq == 2

received_message
t0 = time

W priority: 0
((time < t0) or
(time > 3*t0))

1

2

3

4

5

false
priority: 0

atomic: false

priority: 0
((seq == 5) or

(seq <= seq+10))

priority: 0
((seq == 5) or

(seq <= seq+10))

5

priority: 0
seq == 2

seq++

5

Fig. 22.8 Mapping of a UML sequence diagram to an EFSM (and thus to the discrete-time
restriction of UNIVERCM)

In case of conversion toward SystemC descriptions, the presence of a simulation
kernel allows to delegate some management tasks and to reproduce automata be-
havior through native SystemC constructs. Thus, UNIVERCM automata are mapped
to processes, rather than functions. This allows to delegate automata activation to
the SystemC scheduler, by making each process sensitive to its input variables.
Automata activation is removed from the management function, that still updates
the status of variables and events at any simulation cycle. The management function
itself is declared as a process.

698 G. Pravadelli et al.

22.5 Assertion Definition and Checker Generation

In software verification, software designers widely use executable assertions [59]
for specifying conditions that apply to some states of a computation, e.g., “pre-
conditions” and “post-conditions” of a procedural code block. A runtime error is
released whenever execution reaches the location at which the executable assertion
occurs and the related condition does not hold any more. This kind of executable
assertions is limited to Boolean expressions, which are totally unaware of temporal
aspects. However, if the designers aim to check more complex requirements in
which Boolean expressions are used for defining relations spanning over the time,
they have to (i) define assertions in a formal language and (ii) synthesize them
as executable modules, i.e., checkers. Checkers, integrated into the simulation
environment, monitor the software execution for identifying violations of the
intended requirement.

In hardware verification, several solutions have already been proposed. These
approaches can be classified in (i) library based or (ii) language based.

Library-based approaches rely on libraries of predefined checkers, e.g., Open
Verification Library (OVL) [52], which can be instantiated into the simulation envi-
ronment for simplifying the checking of specific temporal behaviors. Unfortunately,
due to their inflexibility for checking general situations, the predefined checkers
limit the completeness of the verification.

Language-based approaches, instead, use declarative languages, such as
PSL [64] and System Verilog Assertions (SVA) [94], for formalizing the temporal
behaviors into well-defined mathematical formulas (i.e., assertions) that can be
synthesized into executable checkers by using automatic tools named checker
generators [2, 16, 17, 34]. These tools may generate checkers implementations
at different levels of abstraction, from the Register Transfer Level (RTL), e.g.,
MBAC [17] and FoCs [2], to the C-based Electronic System Level (ESL) [33],
e.g., FoCs.

However, a large part of an ES is software, which must also be verified. Some
attempts have been tried to extend hardware ABV to embedded software and a
comprehensive work is in [38].

In [26], the authors present a Microsoft’s proprietary approach for binding C
language with PSL. They define a subset of PSL and use a simulator as an execution
platform. In this case, only a relatively small set of temporal assertions can be
defined, since only the equality operator is supported for Boolean expressions, and
the simulator limits the type of embedded software applications.

Another extension of PSL is proposed in [101], where the authors unify assertion
definition for hardware and software by translating their semantics to a common
formal semantic basis. In [100], the authors use temporal expressions of the e
hardware verification language to define checkers. In both these cases, temporal
expressions are similar but not compatible with PSL standards.

Finally, in [74] the authors propose two approaches based on SystemC checkers.
In the first case, embedded software is executed on top of an emulated SystemC

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 699

processor, and, at every clock cycle, the checkers monitor the variables and functions
stored in the memory model. In the second approach, embedded software is
translated to SystemC modules which run against checkers. In this case, timing
reference is imposed by introducing an event notified after each statement, and the
SystemC process is suspended on additional wait() statements. In both cases,
there are several limitations. First, the approaches are not general enough to support
real-life embedded software: the SystemC processor cannot reasonably emulate real
embedded system processors. In addition, the translation of embedded software
applications in SystemC may be not flexible enough. Secondly, in both cases
the SystemC cosimulation and the chosen timing references introduce significant
overhead. In particular, clock cycle or statement step may be an excessively fine
granularity for efficiently evaluating a sufficient number of temporal assertions.
Moreover, on the one hand, defining assertions which consider absolute time may
generate significantly large checkers to address the high number of intermediate
steps; on the other, it is difficult to define temporal assertions at source code level,
i.e., C applications, in terms of clock cycles.

22.5.1 Template-Based Assertion Design

Previous sections show that assertion definitions can be unified for both hardware
and software, that is, they can be applied to an entire ES. An effective tool in this
case is DDPSL [41]: a template library and a tool which simplify the definition
of formal properties. It combines the advantages of both PSL and OVL, i.e.,
expressiveness and simplicity.

The template library is composed of DDTemplates, i.e., PSL-based templates
accompanied with an interface semantics. The adoption of a PSL-based property
implementation guarantees the same expressiveness of LTL and CTL temporal
logics, a wide compatibility with HDL (e.g., VHDL, Verilog and SystemVerilog,
SystemC) and programming languages (e.g., C++), and enables a large reuse of
already available verification tools previously described. Moreover, like the OVL
approach, the use of an interface semantics allows a clean separation between prop-
erty implementation and property semantics. Such an interface notably simplifies
property definition: the user needs only to understand the semantics of the interface
and replace parameters with the intended expression, and a correct-by-construction
PSL code is automatically generated.

DDTemplates are characterized by (i) a parametric interface, (ii) a formal
PSL implementation, and (iii) a detailed semantics (i.e., interface semantics) that
specifies how to use the corresponding interface for defining properties.

The interface consists of a synthetic description that gives an intuitive idea of
the semantics of the property. Such a description is characterized by parameters
that are placeholders inside the property. These parameters are strongly typed and
distinguished into Boolean, arithmetic, temporal, and Sequential Extended Regular
Expression (SERE) parameters. The interaction with such placeholders guides

700 G. Pravadelli et al.

property definition: the user can replace parameters only with compatible elements
according to a predefined semantics check.

Figure 22.9 shows an example of the “conditional events bounded by time”
DDTemplate. In particular, it reports the synthetic description adopted as interface
showing the three parameters (i.e., $P , $Q, and $i) that the user can substitute.

Although the interface is explanatory, major details of the interface semantics
are described by means of online documentation provided by the DDEditor. Such
documentation reports information related to the parameters type and their meaning,
the temporal behavior the template aims to check and possible warnings. For
example, the online documentation corresponding to the DDTemplate shown in
Fig. 22.9 reports:

• Semantics of the parameters
– $P is a Boolean expression that represents a configuration, an event or an

input/output for the system/program.
– $i is an integer that specifies the instant in the future within which $Q must

hold.
– $Q is a Boolean expression that represents a new configuration, an event or an

input/output for the system/program.
• Semantics of the template

– The template specifies that if the system takes the configuration $P (or the
event $P happens) in the cycle t0, then the new configuration or the event $Q
must occur within the cycle t0 C $i .

• Warnings
– Notice that $Q may occur in many cycles within t0 C $i , but it is not possible

that $Q never happens within the cycle t0 C $i .

The PSL implementation, instead, consists of a formal PSL definition (Fig. 22.10).
More than 60 templates have been defined and organized into five libraries

(e.g., a selection of templates is reported in Table 22.1); each one focuses on
a specific category of patterns: universality, existence, absence, responsiveness,
and precedence. The universality library describes behaviors that must hold
continuously during the software execution (e.g., a condition that must be preserved
for the whole execution, or that has to hold continuously after that the software
reaches a particular configuration). The existence library describes behaviors
in which the occurrence of particular conditions is mandatory for the software
execution (e.g., a condition must be observed at least once during the whole

Every time that $P then, within $i cycle(s), $Q

Fig. 22.9 Example of a DDTemplate interface

Fig. 22.10 Example of
formal PSL definition

always (%P → next_e[0..%i](%Q))

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 701

Table 22.1 Selection of assertion templates

Library Parametric interface Parametric PSL definition

Universality
P holds continuously after Q always ($Q -> next (always $P))

P holds continuously since Q
up to R

always (($Q & !$R) -> ($P until_
$R))

Existence
P holds at least once since Q next_event!($Q)(eventually! $P)

P holds at least once since Q
up to R

always (($Q & !$R) -> (!$R
until! $P))

Absence
P is continuously false after Q
until R

always (($Q & !$R) -> next (!$P
until! $R))

P is continually false before R !$P until! $R

Responsiveness
P causes S to happen always ($P -> eventually! ($S))

P causes S to happen, but af-
ter Q

always ($P -> (($Q before! $S) &
eventually! ($S)))

Precedence
P precedes R globally always ($P -> ($P before $R))

P precedes R before S always ($P ->(($P before $R)&($R
before! $S)& eventually! ($S)))

execution or after that a particular configuration is reached, etc.). The absence
library describes behaviors that must not occur during the software execution or
under certain conditions. The responsiveness library, instead, describes behaviors
that specify cause-effect relations (e.g., a particular condition implies a particular
configuration of the software variables). Finally, the precedence library describes
behaviors that require a precise ordering between conditions during the software
execution (e.g., a variable has to assume specific values in an exact order).

Notice that the user can ignore the exact PSL formalization. He/she can
define properties by simply dragging and dropping expressions onto placeholders
contained into the interface by exploiting the DDEditor tool [41].

22.6 Mutant-Based Quality Evaluation

Assertion-based verification can hypothetically provide an exhaustive answer to the
problem of design correctness, but from the practical point of view, this is possible
only if (1) the DUV is stimulated with testbenches that generate the set of all
possible input stimuli and (2) a complete set of formal properties is defined that
totally captures the designer’s intents. Unfortunately, these conditions represent two
of the most challenging aspects of dynamic verification, since the set of input stimuli
for sequential circuits is generally infinite, and the answer to the question “have I
written enough properties?” is generally based on the expertise of the verification
engineers. For these reasons, several metrics and approaches have been defined to
address the functional qualification of dynamic verification methodologies and
frameworks, i.e., the evaluation of the effectiveness of testbenches and properties
adopted to check the correctness of a design through semiformal simulation-based
techniques.

702 G. Pravadelli et al.

Among existing approaches, mutation analysis and mutation testing [37], orig-
inally adopted in the field of software testing, have definitely gained consensus,
during the last decades, as being important techniques for the functional qualifica-
tion of complex systems both in their software [61] and hardware [15] components.

Mutation analysis [86] relies on the perturbation of the DUV by introducing
syntactically correct functional changes that affect the DUV statements in small
ways. As a consequence, many versions of the model are created, each containing
one mutation and representing a mutant of the original DUV. The purpose of
such mutants consists in perturbing the behavior of the DUV to see if the test
suite (including testbenches and, in case, also properties) is able to detect the
difference between the original model and the mutated versions. When the effect of
a mutant is not observed on the outputs of the DUV, it is said to be undetected. The
presence of undetected mutants points out inadequacies either in the testbenches,
which, for example, are not able to effectively activate and propagate the effect of
the mutant, or in the DUV model, which could include redundant code that can
never be executed. Thus, mutation analysis has been primarily used for helping
the verification engineers in developing effective testbenches to activate all DUV
behaviors and discovering design errors. More recently, it has been used also
to measure the quality of formal properties that are defined in the context of
assertion-based verification. The next sections will summarize some of the most
recent approaches based on mutation analysis for the functional qualification of
testbenches and properties.

22.6.1 Testbench Qualification

Nowadays, (i) the close integration between HW and SW parts in modern embedded
systems, (ii) the development of high-level languages suited for modeling both
HW and SW (like SystemC with the Transaction-Level Model (TLM) library), and
(iii) the need of developing verification strategies to be applied early in the design
flow require the definition of simulation frameworks that work at the system level.
Consequently, mutation analysis-based strategies for the qualification of testbenches
need to be defined at system level too, possibly before HW and SW functionalities
are partitioned. In this context, the mutation analysis techniques proposed for over
30 years in the SW testing community can be reused for perturbing the internal
functionality of the DUV, which is indeed implemented like a SW program,
often by means of C/C++ behavioral algorithms. In particular, several approaches
[5, 12, 13, 20, 88, 89], empirical studies [75], and frameworks [19, 31, 36, 76] have
been presented in the literature for mutation analysis of SW program. Different as-
pects concerning software implementation are analyzed in all these works, in which
the approaches are mainly suited for perturbing Java or C constructs. However, all
these proposals are suited to target basic constructs and low-level synchronization
primitives rather than high-level primitives typically used for modeling TLM com-
munication protocols. Other approaches present mutation operators targeting formal
abstract models, independently from specific programming languages [9,12,88,89].

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 703

These approaches are valuable to be applied at TLM levels. However, the authors
do not show a strict relation between the modeled mutants and the typical design
errors introduced during the modeling steps. To overcome this issue, a native TLM
mutation model to evaluate the quality of TLM testbenches has been proposed
in [14, 15]. It exploits traditional SW testing framework for perturbing the DUV
functional part, but it presents a new mutation model for addressing the system-level
communication protocol typical of TLM descriptions. The approach is summarized
in the rest of this section.

22.6.1.1 Mutant-Based Qualification of TLM Testbenches
The approach assumes that the functionality of the TLM model is a procedural style
of code in one or more SystemC processes. Therefore, the mutation model for the
functionality is derived from the work in [36] that defined mutation operators for
the C language. Selective mutation (suggested in [78] and evaluated in [87]) is
applied to ensure the number of mutations grows linearly with the code size. On
the contrary, the communication part of the DUV is mutated by considering the
effect of perturbations injected on the EFSM models representing the Open SystemC
Initiative (OSCI) SystemC TLM-2.0 standard primitives adopted for implementing
blocking and non-blocking transaction-level interfaces.

In TLM-2.0, communication is generally accomplished by exchanging packets
containing data and control values, through a channel (e.g., a socket) between an
initiator module (master) and a target module (slave). For the sake of simplicity and
lack of space, we report in Fig. 22.11 the EFSMs representing the primitives and the
proposed mutations of the most relevant interfaces (i.e., blocking and non-blocking
interfaces).

a

A B
Setting payload
to be sent;
b_transport(payload,time);

true

socket_event
Data handling;

C

b

A

B

Setting of payload
to be sent and phase;
nb_transport_fw(payload,phase
Handling of received data;

true

c

A

B

Handling of received data;
Setting of payload to be sent back
 and phase;
nb_transport_bw(payload,phase,time);

true

Fig. 22.11 EFSM models of some SystemC TLM-2.0 primitives

704 G. Pravadelli et al.

• Blocking interface. It allows a simplified coding style for models that com-
plete a transaction in a single-function call, by exploiting the blocking prim-
itive b_transport(). The EFSM model of primitive b_transport()
is composed of three states (see Fig. 22.11a). Once the initiator has called
b_transport(), the EFSM moves from state A (initial state) to state B,
and it asks the socket channel to provide a payload packet to the target. Then,
the primitive suspends in state B waiting for an event from the socket channel
(socket_event) indicating that the packet can be retrieved. Finally, the retrieved
data is handled by executing the operations included in the update function,
moving from B to the final state C. Timing annotation is performed by exploiting
the time parameter in the primitives and managing the time information in the
handling code of the received data for implementing, for example, the loosely
timed models.

• Non-blocking interface. Figure 22.11b, c show the EFSM models of the non-
blocking primitives, which are composed of two states only. Primitives such
as nb_transport_fw() and nb_transport_bw() perform the required
operation as soon as they are called, and they immediately reach the final state
in the corresponding EFSM. The caller process is informed if the non-blocking
primitive succeeded by looking at its return value. Timing annotation is still
performed by exploiting the time parameter in the primitives, while parameter
phase is exploited for implementing more accurate communication protocols,
such as the four phases approximately timed.

Several TLM communication protocols can be modeled by using the TLM
primitives previously described, and their EFSM models can be represented by
sequentially composing the EFSMs of the involved primitives. Starting from the
EFSM models, the mutation model for the communication protocols is defined by
following the next steps:

1. Identify a set of design errors typically introduced during the design of TLM
communication protocols.

2. Identify a fault model to introduce faults (i.e., mutations) in the EFSM represen-
tations of the TLM-2.0 primitives.

3. Identify the subset of faults corresponding to the design errors identified at step 1.
4. Define mutant versions of the TLM-2.0 communication primitives implementing

the faults identified at step 3.

Based on the expertise gained about typical errors made by designers during the
creation of a TLM description, the following classes of design errors have been
identified:

1. Deadlock in the communication phase
2. Forgetting to use communication primitives (e.g., the TLM communication

primitive nb_transport_bw() for completing transaction phases, before
initiating a new transaction is not called)

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 705

3. Misapplication of TLM operations (e.g., setting a write command for reading
data instead of read)

4. Misapplication of blocking/non-blocking primitives
5. Misapplication of timed/untimed primitives
6. Erroneous handling of the generic payload (e.g., failing to set or read the packet

fields)
7. Erroneous polling mechanism (e.g., infinite loop)

Other design errors could be added to the previous list to expand the proposed
mutation model without altering the methodology. Each of the previous error classes
has been associated with at least a mutation of the EFSM models representing TLM
primitives, as described in the next paragraphs.

According to the classification of errors that may affect the specification of finite-
state machine, proposed by Chow [32], different fault models have been defined for
perturbing FSMs [25, 89]. They target, generally, Boolean functions labeling the
transitions and/or transition’s destination states. Mutated versions of an EFSM can
be generated in a similar way, by modifying the behavior of enabling and update
functions and/or changing the destination state of transitions.

Hereafter, we present an example of how the EFSM of Fig. 22.11a can be
perturbed to generate mutant versions of the TLM primitive according to the design
errors previously summarized. Figure 22.12 shows how such kinds of mutations are
used to affect the behavior of primitive b_transport(). Numbers reported in
the bottom right part of each EFSM identify the kind of design errors modeled by
the mutation with respect to the previous classification.

Mutations on destination states. Changing the destination state of a transition
allows us to model design errors #2, #4, and #7. For example, let us consider
Fig. 22.12. Cases (a)–(d) show mutated versions of the EFSM that affect the des-
tination state of the transition. Mutation (a) models the fact that the designer forgets
to call b_transport() (design error #2), while (b) models the misapplication of
a non-blocking primitive instead of a blocking one, since the wait on channel event
is bypassed (design error #4). Cases (c) and (d) model two different incorrect uses
of the polling mechanism (design error #7).

Mutations on enabling functions. Mutation on the truth value of enabling functions
model design errors of type 1 and 4. For example, Fig. 22.12e shows a mutated
version of the EFSM corresponding to primitive b_transport(), where the
transition from A to B is never fired and B is never reached. Such a mutation
corresponds to a deadlock in the communication protocol (design error #1), for
example, due to a wrong synchronization among modules with the socket channel.
The primitive can also be mutated as shown in case (f), which corresponds to using
a non-blocking instead of a blocking primitive, since the wait in B for the channel
event is prevented by an always true enabling function (design error #4).

706 G. Pravadelli et al.

(a)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(b)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

)d()c(

false

(e)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(f)

(g)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(h)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

2 4

4,7 7

1 1,4

3,4,5 6

Fig. 22.12 Mutations on EFSM representing the TLM-2.0 primitive b_transport()

Mutations on update functions. Changing the operations performed in the update
functions allows us to model design errors #3, #4, #5, and #6. Mutation on
operations (shown in case (g)) corresponds to a misapplication of the communi-
cation primitives, like, for example, calling a transaction for writing instead of
a transaction for reading (design error #3), a b_transport() instead of an
nb_transport() (design error #4), setting the time parameter instead of not
setting it (design error #5). On the other hand, mutations on data included in the
payload packets (shown in cases (h)) model design errors corresponding to an
erroneous handling of the payload packet (design error #6).

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 707

22.6.2 Property Qualification

In the last years, research topics investigated how to assess the quality and the
comprehensiveness of a set of properties to increase the efficiency and effectiveness
of assertion-based verification. Three approaches have emerged:

1. Detection of properties that pass vacuously. Properties are vacuously satisfied if
they hold in a model and can be strengthened without causing them to fail. Such
properties may not cover any behavior of the golden model thus they can lead
to a false sense of safety. The vacuous satisfaction points out problems either in
property or in environment definition or in the model implementation.

2. Analysis of the completeness of a set of properties. A set of properties could
be incomplete since some requirements could be only partially formalized into
properties. As a consequence behaviors uncovered by properties can exist, so
implementation could be wrong even if it satisfies all the defined properties.

3. Identification of over-specification. The set of properties could be over-specified
if it contains properties that can be derived as logical consequence of other
properties. For example, it is possible to define a property whose coverage is a
subset of the coverage of another defined property. Thus, all behaviors modeled
by the first property are also modeled by the latter. The presence of such over-
specification yields the verification time to be longer than it is required to be.

Current approaches to vacuity analysis, rely on the pioneering work of Beer
et al. [10], where a formula ' is said to pass vacuously in a model M if it passes
in M , and there is a sub-formula of ' that can be changed arbitrarily without
affecting the passing of '. All of them, generally, exploit formal methods to search
for an interesting witness, proving that a formula does not pass vacuously [7,10,11,
69, 70]. In this context, an interesting witness is a path showing one instance of the
truth of the formula ', on which every important sub-formula affects the truth of
'. Such approaches are, generally, as complex as model checking, and they require
to define and model check further properties obtained from the original ones by
substituting their sub-formulas in some way, thus sensibly increasing the verification
time.

The analysis of the completeness of a set of properties addresses the question
of whether enough properties have been defined. This is generally evaluated by
computing property coverage, whose intent is to measure the percentage of DUV
behaviors captured by properties. Current approaches for property coverage can
be divided into two categories: mutant based [27–29, 60, 65, 71, 73, 103] and
implementation based [66, 82, 102]. The first references rely on a form of mutation
coverage that requires perturbing the design implementation before evaluating the
property coverage. In particular, [71] gives a good theoretic background with
respect to mutation of both specification and design. The latter ones estimate the
property coverage by analyzing the original implementation without the need to
insert perturbations. The main problem of these approaches is due to the adoption
of symbolic algorithms that suffer from the state explosion problem.

708 G. Pravadelli et al.

Finally, regarding the problem of over-specification, the analysis can be per-
formed by exploiting theorem proving. However, its complexity is exponential in
the worst case, and it is not completely automatized, since human interaction is very
often required to guide the proof. Fully automatic techniques for dealing with over-
specification removal have not been investigated in literature, while the problem
has been only partially addressed in [30]. The authors underline that given a set
of properties, there can be more than one over-specified formula, and they can be
mutually dependent; thus, they cannot be removed together. The authors show that
finding the minimal set of properties that does not contain over-specifications is a
computationally hard problem.

In general, by observing the state of the art in the literature, it appears that most
of the existing strategies for property qualification rely on formal methods, which
require a huge amount of spatial (memory) and temporal (time) resources, and
they generally solve the qualification problem only for specific subsets of temporal
logics. Given the previous drawbacks, the next section is devoted to summarizing
an alternative qualification approach [39], which exploits mutation analysis and
simulation to evaluate the quality of a set of formal properties with respect to
vacuity [42], completeness [48], and over-specification [21].

22.6.2.1 Mutant-Based Property Qualification
As shown on top of Fig. 22.13, the basic ingredients for the mutant-based property
qualification methodology are the model of the DUV, a corresponding set of
formal properties that hold on the model and, if necessary, the description of the
environment where the DUV is embedded in. The approach is independent from the
abstraction level of the DUV and the logics used for the definition of the properties.
Properties are then converted into checkers, i.e., monitors connected to the DUV
that allow checking the satisfiability of the corresponding properties by simulation.
Checkers can be easily generated by adopting automatic tools, like, for example,
IBM FoCs [2] or radCHECK [38].

According to the central part of Fig. 22.13, mutants are injected into either the
DUV or the checkers to generate their corresponding faulty versions. Faulty checker
implementations are generated for addressing vacuity analysis, while faulty DUV
implementations are necessary for measuring property coverage and detecting cases
of over-specification.

Entering in the details, the vacuity analysis for a property ' is carried on in
relation to the effect of mutants that affect the sub-formulas of '. In particular, the
methodology works as follows:

1. Given a set of properties that are satisfied by the DUV, a set of interesting
mutants is injected in the corresponding checkers. Intuitively, an interesting
mutant perturbs the checker’s behavior similar to what happens when a sub-
formula is substituted by true or false in ' according to the vacuity analysis
approach proposed in [11]. Thus, for each minimal sub-formula (i.e., each atomic
proposition) of ', a mutant is injected in the corresponding checker, such that
the signal storing the value of is stuck at true or stuck at false, respectively,

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 709

Specification
Formalization and
Implementation

Properties
Mutations

Identification

List of
mutations

Checker
Implemen-

tation

Design
Implemen-

tation

Environment

Faulty Faulty

Generation of
Faulty

Implementations

Muta�on analysis

Vacuity analysis Completeness
analysis

Overspecifica�on
analysis

checker
implemen-

tantions

DUV
implemen-

tantions

1 2 3

Fig. 22.13 Overview of the property qualification methodology

when has a negative or a positive polarity. (Intuitively, in a logic with polarity, a
formula has positive polarity if it is preceded by an even number of not operators;
otherwise, it has negative polarity).

2. The faulty checkers are connected to the DUV and the related environment. Then,
testbenches are used to simulate the DUV. The vacuity analysis relies on the
observation of the simulation result. A checker failure due to the effect of an
interesting mutant f corresponds to proving that the sub-formula perturbed
by f affects the truth value of '. Consequently, the sequence of values generated
by the testbench that causes the checker failure is an interesting witness proving
that ' is not vacuous with respect to its sub-formula . On the contrary, a mutant
that does not cause checker failures (i.e., an undetected mutant) must be analyzed
to determine if either the property is vacuous with respect to the corresponding
sub-formula or the vacuity alert is due to the inefficiency of the testbenches
that cannot detect the mutant during the simulation. The latter happens when
there exists a test sequence (i.e., an interesting witness) for detecting the mutant,
but the testbenches are not able to generate it. In case of an undetected mutant,
the verification engineer can manually investigate the cause of undetectability to
discriminate between a vacuous property and a low-quality testbench. However,
it is also possible to make the disambiguation in an automatic way, by means of
a formal approach. In fact, a new property '0 can be generated from ', where

710 G. Pravadelli et al.

the sub-formula inside ' is substituted with either true or false, depending on
the polarity of , to reproduce the same effect caused by injecting the mutant
f on the checker of '. Then, the satisfiability of '0 is verified on the DUV
by using a model checker. If the model checker returns a successful answer,
it implies that ' is vacuous, because does not affect '; otherwise it means
that ' is not vacuous while the testbench is ineffective. In this second case, the
counterexample generated by the model checker represents the input sequence
that must be added to the testbench to prove the non-vacuity of ' by simulation.

3. Finally, the analysis of interesting mutants that actually correspond to vacuous
passes allows the verification engineer to determine the exact cause of the
vacuity, which can be either an error in the property, a too strict environment
for the DUV, or an error in the model of the DUV itself that does not implement
correctly the intended specification.

At the end of the vacuity analysis, it is possible to measure the degree of
completeness of the remaining properties on the basis of their property coverage.
According to the theoretical basis described in [48], property coverage is computed
by measuring the capability of a set of properties to detect mutants that perturb the
DUV. A low property coverage is then a symptom of a low degree of completeness.
In particular, if a mutant that perturbs the functionality of the DUV does not affect
at least one property in the considered set, it means that this set of properties is
unable to distinguish between the faulty and the fault-free implementations of the
DUV, and thus it is incomplete. In this case, a new property covering the fault
should be added. On the contrary, the fact that at least one property fails in the
presence of each mutant affecting the outputs of the DUV implementation represents
a positive feedback about the quality of the property set. Nevertheless, the quality
of the mutant model is the key aspect of the overall methodology. A low-quality
set of mutants negatively impacts the overall methodology, such that achieving
100% property coverage provides a false sense of security when mutant injection
is inadequate.

Independently from the adopted mutant model, the computation of the property
coverage consists of two phases:

1. Generation of faulty DUV implementations. Perturbations of the design imple-
mentation are generated by automatically injecting mutants inside the DUV
model. The obtained mutant list must include only detectable mutants, which
are mutants that, for at least one input sequence, cause at least one output of the
faulty implementation to differ from the corresponding output of the fault-free
implementation. Only detectable mutants are considered to achieve an accurate
estimation of the golden model completeness because undetectable mutants
cannot cause failures on the properties since they do not perturb the outputs of
the DUV. The set of detectable mutants can be identified by simulating the DUV
with either manual testbenches or by using an automatic test pattern generator.

2. Property coverage analysis. The presence of a detectable mutant implies that the
behavior of the faulty implementation differs from the behavior of the fault-free

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 711

implementation. Thus, while the defined properties are satisfied by the fault-
free implementation, at least one of them should be falsified if checked on a
faulty implementation. The property coverage is then measured by the following
formula:

PC D
number of mutants detected by the properties

number of detectable mutants

The computation of PC can be done by using a formal approach, i.e., by
model checking the properties in the presence of each mutant, or by means of
a dynamic strategy, i.e., by simulating the faulty DUV connected to the checkers
corresponding to the properties under analysis. The formal approach is generally
unmanageable for a large number of mutants, but the higher scalability provided
by the dynamic simulation is paid in terms of exhaustiveness. In fact, as for the
case of vacuity analysis, an undetected mutant during simulation can be due to the
ineffectiveness of the testbenches rather than an incompleteness of the properties.
Thus, formal analysis is restricted to the few mutants that remain undetected after
simulation.

3. In case of a low property coverage, the verification engineer is guided in
the definition of new properties by analyzing the area of the DUV including
mutants that do not affect any property till the desired degree of completeness is
achieved.

When the achieved degree of completeness is satisfactory (this measure depends
on the design team standards), a last process, still based on the property coverage,
can be applied for capturing the case of over-specification, i.e., the presence of
properties that can be removed from the final set because they are covering the same
behaviors covered by other properties included in the same set [21].

22.7 Automatic Stimuli Generation

The main purpose of dynamic verification is increasing the confidence of designers
in the ES behavior by creating stimuli and evaluating them in terms of adequacy
criteria, e.g., coverage metrics. In this context, an effective stimuli generation
is at the basis of a valuable functional qualification. Actual value inputs may
be either automatically generated or developed by engineers as stimuli suites.
Stimuli generation techniques fall into three main categories: concrete execution,
symbolic execution, and concolic execution. Concrete execution is based on random,
probabilistic, or genetic techniques [79]. It is not an exhaustive approach, but
it allows to reach deep states of the system space by executing a large number
of long paths. Symbolic execution [68] represents an alternative approach for
overcoming concrete execution limitations, where an executable specification is
simulated using symbolic variables, and a decision procedure is used to obtain
concrete values for inputs. Such approaches suffer from solver limitations in
handling either the complexity of formulas or data structures or the surrounding

712 G. Pravadelli et al.

execution environment. Such limitations have been recently addressed by proposing
concolic execution [77, 93] that mingles concrete and symbolic executions and,
whenever necessary, simplifies symbolic constraints with corresponding concrete
values. However, module execution is still represented as a symbolic execution tree,
growing exponentially in the number of the maintained paths, states, and conditions,
thus incurring in state space explosion.

Several tools on the market adopt these approaches and provide the user with au-
tomatic stimuli generation addressing coverage metrics. DART [54] combines ran-
dom stimuli generation with symbolic reasoning to keep track of constraints for exe-
cuted control flow paths. CUTE [93] is a variation of the DART approach addressing
complex data structures and pointer arithmetic. EXE [23] and KLEE [22] are frame-
works for symbolic execution, where the second symbolically executes LLVM [72]
bytecode. PEX [99] is an automated structural testing generation tool for .NET code
developed at Microsoft Research. [77] describes a hybrid concolic stimuli genera-
tion approach for C programs, interleaving random stimuli generation with bounded
exhaustive symbolic exploration to achieve better coverage. However, it cannot
selectively and concolically execute paths in a neighborhood of the corner cases.

22.7.1 EFSM-Based Stimuli Generation

This section presents an EFSM-based concolic stimuli generation approach for ES.
The approach is based on an EFSM model of the ES and leads to traverse a target
transition t (i.e., not-yet-traversed transition) by integrating concrete execution and
a symbolic technique that ensures exhaustiveness along specific paths leading to the
target transition t .

Algorithm 1 is a high-level description of the proposed concolic approach. It
takes as inputs the EFSM model and two timeout thresholds: (i) overall timeout,
i.e., the maximum execution time of the algorithm (MaxTime), and (ii) inactivity
timeout, i.e., the maximum execution time the long-range concrete technique can
spend without improving transition coverage (InaTime).

Algorithm 1 The EFSM-based concolic algorithm for stimuli generation

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 713

RInf keeps track of the EFSM configurations used for (re-)storing system status
whenever the algorithm switches between the symbolic and concrete techniques. At
the beginning, both Stimuli and RInf are empty (line 2). The algorithm identifies
the dependencies between internal and input variables and EFSM paths. EFSM
transitions allow to determine dependency information (DInf, line 3), used in the
following corner-case-oriented symbolic phases, when further dynamic analysis
between EFSM paths is performed. Such a dependency analysis selectively chooses
a path for symbolic execution whenever the concrete technique fails in improving
transition coverage of the EFSM. The stimuli generation runs until the specified
overall timeout expires (line 4–5). First, the algorithm executes a long-range
concrete technique (line 6), then a symbolic wide-width technique, which exploits
the Multi-Level Back Jumping (MLBJ) (see Sect. 22.7.1.3) to cover corner cases
(line 7). The latter starts when the transition coverage remains steady for the user-
specified inactivity timeout (line 5). The algorithm reverts back to the long-range
search as soon as the wide-width search traverses a target transition. The output is
the generated stimuli set (line 9). The adopted long-range search (line 6) exploits
constraint-based heuristics [40] that focus on the traversal of just one transition at
a time. Such approaches scale well with design size and, significantly, improve the
bare pure random approach. The following sections deepen the single steps of the
algorithm.

22.7.1.1 Dependency Analysis
Without a proper dependency analysis, the stimuli generation engine wastes con-
siderable effort in the exploration of uninteresting parts of the design. Thus, the
proposed approach focuses on dependencies of enabling functions, i.e., control
part, on internal variables. As a further motivating example, consider the EFSM
in Fig. 22.2. Let t8 be the target transition. We want to compare paths �1 D t2 WW t6
and �2 D t3, where t WW t 0 denotes the concatenation of transitions t and t 0. The
enabling function of t8 involves the variables “ova” and “pva.” Both are defined
along �1 by means of primary inputs. Along �2 only “pva” is defined by means
of primary inputs. Thus, to traverse t8, MLBJ will select �1 instead of �2, since
t8 enabling function is more likely to be satisfied by the symbolic execution of �1
rather than of �2. We will consider again this example at the end of the section.

We approximate dependencies as weights. Indirect dependencies, as the depen-
dency of d2 on i1 in the sequence of assignments “d1 WD i1 C i2I d2 WD d1 C i3,”
are approximated as flows of weights between assignments. Given a target transition
Nt , we map each path ending in Nt to a nonnegative weight representing data control
dependencies. Intuitively, the higher the weight, the greater is the dependency of
Nt ’s enabling function, i.e., eNt , on inputs read along such a path, and the higher is the
likelihood that its symbolic execution leads to the satisfaction of eNt . An initial weight
is assigned to eNt , then we let it “percolate” backward along paths. Each transition
lets a fraction of the received weight percolate to the preceding nodes and retains
the remaining fraction. The weight associated with a path � is defined as the sum
of weights retained by each transition of � . The ratio of the weight retained by a
transition is defined by its update function.

714 G. Pravadelli et al.

22.7.1.2 Snapshots of the Concrete Execution
The ability of saving the EFSM configurations allows the system to be restored
during the switches between concrete and symbolic phases. This avoids the time
consuming re-execution of stimuli. Algorithm 1 keeps trace of the reachability
information, i.e., RInf, and maintains a cache of snapshots of the concrete execution.
Each time a stimulus is added to the set of stimuli, the resulting configuration
is stored in memory and explicitly linked to the reached state. The wide-width
technique searches feasible paths that both start from an intermediate state of the
execution and lead to the target transition. Moreover, during the MLBJ, for a
given configuration and target transition, many paths are checked for feasibility,
as described in Sect. 22.7.1.3. Thus, caching avoids the cost of recomputing
configurations for each checked path. Both the time and memory requirements of
each snapshot are proportional to the size of D (see definition in Sect. 22.4.1.1).

22.7.1.3 Multilevel Back Jumping
When the long-range concrete technique reaches the inactivity time-out threshold,
the concolic algorithm switches to the weight-oriented symbolic approach; see
line 7 in Algorithm 1. Typically, some hard-to-traverse transitions, whose enabling
functions involve internal variables, prevent the concrete technique goes further
in the exploration. In this case, the MLBJ technique is able to selectively address

Algorithm 2 The core of the MLBJ technique

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 715

paths, with high dependency on inputs, i.e., high retained weight, for symbolically
executing them. Such paths are leading from an intermediate state of the execution
to the target transition; thus the approach is exhaustive in a neighborhood of the
corner case.

Algorithm 2 presents a description of the core of the MLBJ procedure. A
transition Nt is selected in the set of target transition, and then a progressively
increasing neighborhood of Nt is searched for paths � leading to Nt and having
maximal retained weight, i.e., R�.�;w0/. If the approach fails, another target
transition is selected in the set, and the procedure is repeated.

Describing in an elaborate way, a visit is started from Nt that proceeds backward
in the EFSM graph. The visit uses a priority queue p, whose elements are paths
that end in Nt . In particular, each path of p is accompanied by its weight tuple, i.e.,
w D P �.�;w0/ and retained weights, i.e., r D R�.�;w0/ and r 0 D R�.t WW �;w0/.
At the beginning, the queue p contains only Nt and the associated initial weight w0

(lines 2–3); no weight is initially retained (line 4). At each iteration, a path t WW �

with maximal retained weight is removed from p (line 6). The decision procedure
is used to check if the path t WW� can be proved unsatisfiable in advance (line 9), e.g.,
it contains clause conflicts. In this case t WW � is discarded so the sub-tree preceding
t WW� will not be explored. Otherwise, if the transition t has yielded a positive retained
weight (line 10), and then for each configuration associated with the source state of
t , the decision procedure checks the existence of a sequence of stimuli that leads to
the traversal of t WW � and thus of Nt (lines 12–13). In particular, the path constraint
is obtained by the identified EFSM path, i.e., t WW � , and the concrete values of the
internal variables, i.e., k, (line 12). In case a valid sequence of stimuli has not been
identified, for each transition t 0 that precedes t , the path t 0 WW t WW � is added to the
priority queue p (lines 14–17).

22.8 Conclusion

This chapter focused on the realization of an effective semiformal ABV environment
in a Model-Driven Design Framework. First it provided a general introduction
to Model-Driven Design and Assertion-Based Verification concepts and related
formalisms and then a more detailed view on the main challenges concerning
their combined use. Assertion-based verification can hypothetically provide an
exhaustive answer to the problem of design correctness, but from the practical point
of view, this is possible only if (1) the design under verification is stimulated with
testbenches that generate the set of all possible input stimuli and (2) a complete set
of formal properties is defined that totally captures the designer’s intents. Therefore
the chapter addressed assertion definition and automatic generation of checkers and
stimuli.

The key ingredient for an effective design and verification framework based on
MDD and ABV, is represented by the possibility of defining a model of the desired
system and then automatically deriving the corresponding simulatable description
to be used for virtual prototyping. This aspect was addressed in the chapter by using

716 G. Pravadelli et al.

automata-based formalisms, together with bottom-up and top-down flows, whose
combined adoption allows the generation of a homogeneous simulatable description
of the overall system.

Finally, the problem of property qualification was addressed by discussing about
property vacuity, completeness and over-specification.

References

1. 3S Software (2012) CoDeSys. http://www.3s-software.com
2. Abarbanel Y, Beer I, Gluhovsky L, Keidar S, Wolfsthal Y (2000) FoCs: automatic generation

of simulation checkers from formal specifications. In: Proceedings of international conference
on computer aided verification (CAV), pp 538–542

3. Aerospace Valley (2012) TOPCASED project. http://www.topcased.org
4. Alagar V, Periyasamy K (2011) Extended finite state machine. In: Specification of software

systems, texts in computer science. Springer, London, pp 105–128. DOI 10.1007/978-0-
85729-277-3_7

5. Alexander RT, Bieman JM, Ghosh S, Bixia J (2002) Mutation of Java objects. In: Proceedings
of IEEE ISSRE, pp 341–351

6. Alur R, Dill DL (1994) A theory of timed automata. Theoret Comput Sci 126(2):183–235
7. Armoni R, Fix L, Flaisher A, Grumberg O, Piterman N, Tiemeyer A, Vardi M (2003)

Enhanced vacuity detection in linear temporal logic (CAV). In: International conference on
computer aided verification, vol 2725. Springer, Berlin/Heidelberg, pp 368–380

8. Atego (2012) ARTiSAN. http://www.atego.com/products/artisan-studio
9. Batth SS, Vieira ER, Cavalli A, Umit Uyar M (2007) Specification of timed EFSM fault

models in SDL. In: Proceedings of FORTE, pp 50–65
10. Beer I, Ben-David S, Eisner U, Rodeh Y (1997) Efficient detection of vacuity in ACTL

formulas. In: International conference on computer aided verification (CAV), vol 1254,
pp 279–290

11. Beer I, Ben-David S, Eisner C, Rodeh Y (2001) Efficient detection of vacuity in temporal
model checking. Form Methods Syst Des 18(2):141–163

12. Belli F, Budnik CJ, Wong WE (2006) Basic operations for generating behavioral mutants. In:
Proceedings of IEEE ISSRE, pp 10–18

13. Black P, Okun V, Yesha Y (2000) Mutation operators for specifications. In: Proceedings of
IEEE ASE, pp 81–88

14. Bombieri N, Fummi F, Guarnieri V, Pravadelli G (2014) Testbench qualification of systemc
TLM protocols through mutation analysis. IEEE Trans Comput 63(5):1248–1261

15. Bombieri N, Fummi F, Pravadelli G, Hampton M, Letombe F (2009) Functional qualification
of TLM verification. In: Design, automation test in Europe conference exhibition, DATE’09,
pp 190–195. DOI 10.1109/DATE.2009.5090656

16. Borrione D, Liu M, Morin-Allory K, Ostier P, Fesquet L (2005) On-line assertion-based
verification with proven correct monitors. In: Proceedings of international conference on
information and communications technology (ICICT), pp 125–143

17. Boulé M, Zilic Z (2008) Automata-based assertion-checker synthesis of PSL properties. ACM
Trans Des Autom Electron Syst 13:1–21. http://doi.acm.org/10.1145/1297666.1297670

18. Boutekkouk F, Benmohammed M, Bilavarn S, Auguin M et al (2009) UML 2.0 profiles for
embedded systems and systems on a chip (SoCs). J Object Technol 8(1):135–157. DOI
10.5381/jot.2009.8.1.a1

19. Bradbury JS, Cordy JR, Dingel J (2006) ExMan: a generic and customizable framework for
experimental mutation analysis. In: Proceedings of IEEE ISSRE, pp 4–9

20. Bradbury JS, Cordy JR, Dingel J (2006) Mutation operators for concurrent Java (J2SE 5.0).
In: Proceedings of IEEE ISSRE, pp 11–11

http://www.3s-software.com
http://www.topcased.org
http://www.atego.com/products/artisan-studio
http://doi.acm.org/10.1145/1297666.1297670

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 717

21. Brait S, Fummi F, Pravadelli G (2005) On the use of a high-level fault model to analyze
logical consequence of properties. In: Proceedings of ACM/IEEE international conference
on formal methods and models for co-design, MEMOCODE, pp 221–230

22. Cadar C, Dunbar D, Engler D (2008) KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of USENIX symposium on
operating systems design and implementation (OSDI)

23. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2006) EXE: a system for
automatically generating inputs of death using symbolic execution. In: ACM conference
on computer and communications security, pp 322–335

24. Cadence (2012) Assertion-based verification. http://www.cadence.com/products/fv/pages/
abv_flow.aspx

25. Cheng KT, Jou JY (1990) A single-state-transition fault model for sequential machines. In:
IEEE ICCAD’90, pp 226–229

26. Cheung P, Forin A (2007) A C-language binding for PSL. In: Proceedings of international
conference on embedded software and systems (ICESS). Springer, pp 584–591

27. Chockler H, Kupferman O, Kurshan R, Vardi M (2001) A practical approach to coverage in
model checking. In: Proceedings computer aided and verification, pp 66–78

28. Chockler H, Kupferman O, Vardi M (2006) Coverage metrics for formal verification. Int J
Softw Tools Technol Transfer (STTT) 8:373–386

29. Chockler H, Kupferman O, Vardi M (2006) Coverage metrics for temporal logic model
checking. Formal Methods Syst Des 28:189–212

30. Chockler H, Strichman O (2007) Easier and more informative vacuity checks. In: Proceedings
ACM/IEEE international conference on formal methods and models for codesign, pp 189–198

31. Choi BJ, DeMillo RA, Krauser EW, Martin RJ, Mathur AP, Pan AJOH, Spafford EH
(1989) The Mothra tool set (software testing). In: Proceedings of IEEE HICSS, vol 2,
pp 275–284

32. Chow T (1978) Testing software design modeled by finite state machines. IEEE Trans Softw
Eng 4(3):178–187

33. Dahan A, Geist D, Gluhovsky L, Pidan D, Shapir G, Wolfsthal Y, Benalycherif L, Kamidem
R, Lahbib Y (2005) Combining system level modeling with assertion-based verification. In:
Proceedings of international symposium on quality of electronic design (ISQED), pp 310–315

34. Das S, Mohanty R, Dasgupta P, Chakrabarti P (2006) Synthesis of system verilog assertions.
In: Proceedings of design, automation & test in Europe conference & exhibition (DATE),
vol 2, pp 1–6

35. De Simone R, André C (2006) Towards a “synchronous reactive” UML profile? Int J Softw
Tools Technol Transfer 8(2):146–155

36. Delamaro ME, Maldonado JC (1996) Proteum – a tool for the assessment of test adequacy
for C programs. In: PCS’96, pp 79–95

37. DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the
practicing programmer. IEEE Comput 11(4):34–41

38. Di Guglielmo G, Di Guglielmo L, Foltinek A, Fujita M, Fummi F, Marconcini C, Pravadelli
G (2013) On the integration of model-driven design and dynamic assertion-based verification
for embedded software. J Syst Softw 86(8):2013–2033. DOI 10.1016/j.jss.2012.08.061

39. Di Guglielmo L, Fummi F, Pravadelli G (2009) The role of mutation analysis for property
qualification. In: IEEE/ACM international conference on formal methods and models for
co-design, MEMOCODE, pp 28–35

40. Di Guglielmo G, Fummi F, Pravadelli G, Soffia S, Roveri M (2010) Semi-formal functional
verification by EFSM traversing via NuSMV. In: Proceedings of IEEE international high
level design validation and test workshop (HLDVT), pp 58–65

41. Di Guglielmo L, Fummi F, Orlandi N, Pravadelli G (2010) DDPSL: an easy way of defining
properties. In: 2010 IEEE international conference on computer design (ICCD), pp 468–473

42. Di Guglielmo L, Fummi F, Pravadelli G (2010) Vacuity analysis for property qualification by
mutation of checkers. In: Design, automation test in Europe conference exhibition (DATE),
pp 478–483

http:// www.cadence.com/products/fv/pages/abv_flow.aspx
http:// www.cadence.com/products/fv/pages/abv_flow.aspx

718 G. Pravadelli et al.

43. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2012) A formal support
for homogeneous simulation of heterogeneous embedded systems. In: IEEE international
symposium on industrial embedded systems (SIES), pp 211–219

44. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2013) UNIVERCM: the
universal versatile computational model for heterogeneous system integration. IEEE Trans
Comput 62(2):225–241

45. Ebeid E, Fummi F, Quaglia D (2015) HDL code generation from UML/MARTE sequence
diagrams for verification and synthesis. Des Autom Embed Syst 19(3):277–299. DOI
10.1007/s10617-014-9158-1

46. Ebeid E, Fummi F, Quaglia D (2015) Model-driven design of network aspects of distributed
embedded systems. IEEE Trans Comput Aided Des Integr Circuits Syst 34(4):603–614

47. Ebert C, Jones C (2009) Embedded software: facts, figures, and future. Computer 42(4):
42–52

48. Fedeli A, Fummi F, Pravadelli G (2007) Properties incompleteness evaluation by functional
verification. IEEE Trans Comput 56(4):528–544

49. Ferrari A, Gaviani G, Gentile G, Stara G, Romagnoli G, Thomsen T (2004) From conception
to implementation: a model based design approach. In: Proceedings of IFAC symposium on
advances in automotive control

50. Ferro L, Pierre L (2010) ISIS: runtime verification of TLM platforms. Adv Des Methods
Model Lang Embed Syst SoCs 63:213–226

51. Foster H, Krolnik A, Lacey D (2004) Assertion-based design. Springer, New York
52. Foster H, Larsen K, Turpin M (2006) Introducing the new accellera open verification library

standard. In: Proceedings of design and verification conference (DVCON)
53. Gentleware (2012) Poseidon for UML embedded edition. http://www.gentleware.com/uml-

software-embedded-edition.html
54. Godefroid P, Klarlund N, Sen K (2005) DART: directed automated random testing. In:

Proceedings of ACM SIGPLAN conference on programming language, design, and imple-
mentation (PLDI), pp 213–223

55. Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: the state of the
practice. IEEE Softw 20(6):61–69

56. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2011) UNIVERCM: The
UNIversal VERsatile computational model for heterogeneous embedded system design. In:
Proceedings of IEEE HLDVT, pp 33–40

57. HAL – Inria (2012) Gaspard2 UML profile documentation. http://hal.inria.fr/inria-
00171137/en

58. Henzinger T (1996) The theory of hybrid automata. In: Logic in computer science (LICS).
IEEE Computer Society, New Brunswick, pp 278–292

59. Hiller M (2000) Executable assertions for detecting data errors in embedded control systems.
In: Proceedings of IEEE international conference on dependable systems and networks
(DSN), pp 24–33

60. Hoskote Y, Kam T, Ho P, Zhao X (1999) Coverage estimation for symbolic model checking.
In: Proceedings ACM/IEEE design automation conference, pp 300–305

61. Hyunsook D, Rothermel G (2006) On the use of mutation faults in empirical as-
sessments of test case prioritization techniques. IEEE Trans Softw Eng 32(9):
733–752

62. IAR Systems (2012) IAR visualSTATE. http://www.iar.com/Products/IAR-visualSTATE/
63. IBM (2012) Rational Rhapsody. http://www.ibm.com/software/awdtools/rhapsody
64. IEEE Computer Society (2010) IEEE Standard for Property Specification Language (PSL)

(IEEE Std 1850-2010)
65. Jayakumar N, Purandare M, Somenzi F (2003) Dos and don’ts of CTL state coverage

estimation. In: Proceedings of design automation conference (DAC)
66. Katz S, Grumberg O (1999) Have I written enough properties? – a method of comparison

between specification and implementation. In: Proceedings ACM advanced research working
conference on correct hardware design and verification methods. Springer, pp 280–297

http://www.gentleware.com/uml-software-embedded-edition.html
http://www.gentleware.com/uml-software-embedded-edition.html
http://hal.inria.fr/inria-00171137/en
http://hal.inria.fr/inria-00171137/en
http://www.iar.com/Products/IAR-visualSTATE/
http://www.ibm.com/software/awdtools/rhapsody

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 719

67. Kim M, Kim Y, Kim H (2011) A comparative study of software model checkers as unit testing
tools: an industrial case study. IEEE Trans Softw Eng 37(2):146–160

68. King JC (1976) Symbolic execution and program testing. Commun ACM 19(7):385–394
69. Kupferman O, Vardi MY (1999) Vacuity detection in temporal model checking. In:

Conference on correct hardware design and verification methods, pp 82–96
70. Kupferman O, Vardi M (2003) Vacuity detection in temporal model checking. Int J Softw

Tools Technol Transfer 4(2):224–233
71. Kupferman O, Li W, Seshia S (2008) A theory of mutations with applications to vacuity,

coverage, and fault tolerance. In: Proceedings IEEE international conference on formal
methods in computer-aided design

72. Lattner C, Adve V (2005) The LLVM compiler framework and infrastructure tutorial. In:
Proceedings of international workshop on languages and compilers for high performance
computing (LCPC). Springer, pp 15–16

73. Lee T, Hsiung P (2004) Mutation coverage estimation for model checking. In: Pro-
ceedings international symposium on automated technology for verification and analysis,
pp 354–368

74. Lettnin D, Nalla P, Ruf J, Kropf T, Rosenstiel W, Kirsten T, Schonknecht V, Reitemeyer S
(2008) Verification of temporal properties in automotive embedded software. In: Proceedings
of design, automation & test in Europe conference & exhibition (DATE). ACM, pp 164–169

75. Lyu MR, Zubin H, Sze SKS, Xia C (2003) An empirical study on testing and fault tolerance
for software reliability engineering. In: Proceedings of IEEE ISSRE, pp 119–130

76. Ma YS, Offutt J, Kwon YR (2005) Mujava: an automated class mutation system. Softw Test
Verif Reliab 15(2):97–133

77. Majumdar R, Sen K (2007) Hybrid concolic testing. In: Proceedings of IEEE international
conference on software engineering (ICSE), pp 416–426

78. Mathur AP (1991) Performance, effectiveness, and reliability issues in software testing. In:
COMPSAC’91, pp 604–605

79. McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verif
Reliab 14(2):105–156

80. Mentor Graphics (2012) Assertion-based verification . http://www.mentor.com/products/fv/
methodologies/abv

81. Mischkalla F, He D, Mueller W (2010) A UML profile for SysML-based comodeling for
embedded systems simulation and synthesis. In: Proceedings of workshop on model based
engineering for embedded system design (MBED)

82. Mishra P, Dutt N (2002) Automatic functional test program generation for pipelined
processors using model checking. In: Proceedings IEEE high-level design validation and
test, pp 99–103

83. Object Management Group, Inc. (2012) MARTE resource page. http://www.omgmarte.org/
84. Object Management Group, Inc. (2012) OMG specifications. http://www.omg.org
85. Object Management Group, Inc. (2012) UML resource page. http://www.uml.org
86. Offutt AJ, Untch RH (2001) Mutation 2000: uniting the orthogonal. In: Wong WE (ed)

Mutation testing for the new century. Kluwer Academic Publishers, Boston, pp 34–44
87. Offutt AJ, Rothermel G, Zapf C (1993) An experimental evaluation of selective mutation. In:

ICSE’93, pp 100–107
88. Olsson T, Runeson P (2001) System level mutation analysis applied to a state-based language.

In: Proceedings of IEEE ECBS, pp 222–228
89. Pinto Ferraz Fabbri SC, Delamaro ME, Maldonado JC, Masiero PC (1994) Mutation analysis

testing for finite state machines. In: IEEE ISSRE’94, pp 220–229
90. Riccobene E, Scandurra P, Bocchio S, Rosti A, Lavazza L, Mantellini L (2009) SystemC/C-

based model-driven design for embedded systems. ACM Trans Embed Comput Syst 8(4):1–
37

91. Seger C (2006) Integrating design and verification – from simple idea to practical system. In:
Proceedings of ACM/IEEE MEMOCODE, pp 161–162

92. Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19–25

http://www.mentor.com/products/fv/methodologies/abv
http://www.mentor.com/products/fv/methodologies/abv
http://www.omgmarte.org/
http://www.omg.org
http://www.uml.org

720 G. Pravadelli et al.

93. Sen K, Agha G (2006) CUTE and jCUTE: Concolic unit testing and explicit path model-
checking tools. In: Proceedings of international conference on computer aided verification
(CAV). Springer, Berlin/New York, pp 419–423

94. Society IC (2009) IEEE standard for system verilog-unified hardware design, specification,
and verification language (IEEE Std 1800-2009)

95. Sparx Systems (2012) Enterprise architet. http://www.sparxsystems.com.au
96. STM Products (2012) radCHECK. http://www.verificationsuite.com
97. SysML Partners (2012) SysML resource page. http://www.sysml.org
98. The MathWorks, Inc. (2012) Simulink. http://www.mathworks.com/products/simulink/
99. Tillmann N, De Halleux J (2008) Pex: white box test generation for. NET. In: Proceedings of

ACM international conference on tests and proofs (TAP), pp 134–153
100. Winterholer M (2006) Transaction-based hardware software co-verification. In: Proceedings

of forum on specification & design languages (FDL)
101. Xie F, Liu H (2007) Unified property specification for hardware/software co-verification.

In: Proceedings of international computer software and applications conference (COMSAC),
pp 483–490

102. Xu X, Kimura S, Horikawa K, Tsuchiya T (2005) Transition traversal coverage estimation for
symbolic model checking. In: Proceedings ACM/IEEE international conference on formal
methods and models for co-design, pp 259–260

103. Xu X, Kimura S, Horikawa K, Tsuchiya T (2006) Transition-based coverage estimation for
symbolic model checking. In: Proceedings ACM/IEEE Asia and South Pacific conference on
design automation, pp 1–6

http://www.sparxsystems.com.au
http://www.verificationsuite.com
http://www.sysml.org
http://www.mathworks.com/products/simulink/

	22 Semiformal Assertion-Based Verification of Hardware/Software Systems in a Model-Driven Design Framework
	Contents
	22.1 Introduction to Model-Driven Design
	22.2 Introduction to Assertion-Based Verification
	22.3 Integrating MDD and ABV
	22.4 Models and Flows for Verification
	22.4.1 Automata-Based Formalisms
	22.4.1.1 Extended Finite-State Machines
	22.4.1.2 Hybrid Automata
	22.4.1.3 UML Diagrams
	22.4.1.4 The UNIVERCM Model of Computation (MoC)

	22.4.2 Top-Down and Bottom-Up Flows for System Verification
	22.4.2.1 Bottom-Up: Mapping Digital HW to UNIVERCM
	22.4.2.2 Bottom-Up: Mapping Embedded SW to UNIVERCM
	22.4.2.3 Bottom-Up: Mapping Hybrid Automata to UNIVERCM
	22.4.2.4 Top-Down: Mapping UML Diagrams to UNIVERCM
	22.4.2.5 Top-Down: Mapping UNIVERCM Automata to C++/SystemC

	22.5 Assertion Definition and Checker Generation
	22.5.1 Template-Based Assertion Design

	22.6 Mutant-Based Quality Evaluation
	22.6.1 Testbench Qualification
	22.6.1.1 Mutant-Based Qualification of TLM Testbenches

	22.6.2 Property Qualification
	22.6.2.1 Mutant-Based Property Qualification

	22.7 Automatic Stimuli Generation
	22.7.1 EFSM-Based Stimuli Generation
	22.7.1.1 Dependency Analysis
	22.7.1.2 Snapshots of the Concrete Execution
	22.7.1.3 Multilevel Back Jumping

	22.8 Conclusion
	References

