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Abstract

In this chapter, we give an overview on timing models which provide an abstract
representation of the timing behavior for a given software. These models can
be driven by a functional simulation based on the simulated control flow. As
the timing model itself can reach a level of accuracy that is comparable to a
classic timing simulation of the represented software, these approaches enable a
fast yet accurate software performance analysis. In this chapter, we focus on the
generation and structure of various models but also provide a brief introduction
into their integration with a functional simulation. The presented approaches are
targeting software executing on current and future system-on-chips with a wide
range of embedded processors – including Graphics Processing Units (GPUs).
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RTL Register Transfer Level
SoC System-on-Chip
VIVU Virtual Inlining and Virtual Unrolling
VLIW Very Long Instruction Word
WCET Worst-Case Execution Time

Contents

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
21.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

21.2.1 Challenges in Performance Evaluation of Modern Embedded Systems . . . . . 658
21.2.2 Static Software Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
21.2.3 Simulation-Based Software Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 659
21.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

21.3 Modeling Using Hardware-Independent Execution Cost Estimates . . . . . . . . . . . . . . . 663
21.4 Modeling Using Partial Architectural Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

21.4.1 Static Timing Estimation Using Pipeline Execution Graphs . . . . . . . . . . . . . . 666
21.4.2 Timing Annotation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

21.5 Modeling Using Detailed Microarchitectural Knowledge . . . . . . . . . . . . . . . . . . . . . . . 669
21.5.1 Framework Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
21.5.2 Static and Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
21.5.3 Enhancing Accuracy by Considering Execution Contexts . . . . . . . . . . . . . . . 671

21.6 Case Study: Modeling the Performance of a GPU-Based Microarchitecture . . . . . . . . 672
21.6.1 Applying the Simulation Approach to GPU Cores . . . . . . . . . . . . . . . . . . . . . 672
21.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

21.7 Approaches to Include a Cache and Memory Simulation . . . . . . . . . . . . . . . . . . . . . . . 678
21.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

21.8.1 Comparison of Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
21.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

21.1 Introduction

The ever increasing demand for new and more advanced features in products
including embedded systems is leading to an increased relevance and complexity
of embedded software to be used to realize these features. In addition, the growing
computational demand of embedded software can only be served by more and
more complex hardware architectures. Furthermore, for many embedded systems,
software performance or even strict adherence to timing requirements is a serious
factor, in particular for safety-critical products. Therefore, it is essential to integrate
efficient timing and performance analysis methods and tools into the development
process.

Software timing simulations are one approach to software timing and perfor-
mance analysis. In contrast to a direct evaluation of software on the target hardware,
simulations offer many advantages; the most important are reproducibility and
greatly enhanced observability. In contrast to static analysis, using simulation is
more natural to a developer and does not suffer from the overly conservative
approximations necessary to avoid state space explosion in static analysis.



21 Timing Models for Fast Embedded Software Performance Analysis 657

Besides these decisive advantages, there are a number of factors that must be
considered for simulation to achieve a high practical value: Firstly, a detailed
simulation of the underlying hardware greatly impairs simulation performance, up
to a degree where a simulation is essentially useless in many use cases. Therefore,
an abstraction is necessary. Secondly, there is an inherent loss of simulation
accuracy when raising the abstraction level. However, this accuracy loss needs to
be kept within acceptable limits; otherwise, simulation results become meaningless.
Thirdly, creating a complex simulation can take a considerable modeling effort.
Consequently, when choosing a simulation approach, the time-to-model must be
considered.

In this chapter, we discuss timing models that enable high-performance yet
accurate timing simulation. Essentially, these models provide a target platform-
specific model of the temporal behavior of the embedded software based on the
internal control flow. As the control flow of software programs can be tracked
very efficiently during fast functional simulation, these model can enable timing
simulation with a very low overhead. Since many factors that influence software
timing can be represented as a direct or an indirect function of the control flow, a
very high simulation accuracy can be achieved. While these models can be generated
automatically, additional knowledge of the target platform is required and needs to
be modeled and generated.

A wide range of sources can be applied during model generation, ranging
from observing code execution on prototyping hardware, where modeling effort is
negligible, to complex analytical models used in abstract interpretation.

Use cases for these models can be mainly found in the domain of embed-
ded software engineering and systems development. For example, they can be
applied in early evaluations of nonfunctional properties or to select components
in heterogeneous multiprocessor systems-on-a-chip. The need to regenerate the
model when the target platform changes limits their use in microarchitecture
design.

This chapter is organized as follows: In Sect. 21.2, we discuss software per-
formance analysis in general but with a particular focus on simulation and a
comparison of control-flow-driven timing models to other approaches. Afterward
we give an overview of three different approaches to control-flow-driven timing
models. These models differ in the necessary knowledge of the target platform and
the modeling effort. In Sect. 21.3, we discuss an approach that allows target platform
independent performance characterization during simulation. Target-specific timing
estimates are then generated after the simulation using an analytical target model.
In Sect. 21.4, we discuss an approach that employs a generic platform model, that
only has to be parametrized for a given target platform. In Sect. 21.5, we discuss an
approach that employs a specific platform model, that requires a detailed description
of the target hardware. In Sect. 21.6, we focus on a case study on modeling
GPU-based architectures as these kinds of architectures cannot be represented by
related models. In Sect. 21.8, we compare the presented approaches to modeling the
generation of software performance models. The main conclusions of this chapter
are summarized in Sect. 21.9.
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21.2 Background

21.2.1 Challenges in Performance Evaluation of Modern Embedded
Systems

As the main challenges for performance modeling and evaluation, we see software
complexity and code reuse, hardware complexity and heterogeneity, as well as speed
of performance analysis, which are briefly discussed in the following.

21.2.1.1 Software Complexity and Code Reuse
Current embedded software is large and complex. For example, Boeings 787 is
estimated to contain 6.5 Million Lines of Code (MLoC) for its avionics and on-
board support systems, while current premium class automobiles even run more
than 100 MLoC [8]. This high software complexity leads to an extensive reuse
of software components across different products. Considering these complexities,
performance modeling techniques need to be applicable to large software projects.
In cases of code reuse in different target systems, it would be beneficial if the
timing models could be reused if a software component is reused in a different
product.

21.2.1.2 Hardware Complexity and Heterogeneity
Many embedded systems contain complex hardware architectures. The ARM
processors from the Cortex-A series contain superscalar pipelines often with out-
of-order execution. But not only complex general purpose Central Processing Units
(CPUs) are used in current embedded systems, there are also a wide variety of
specialized processors like Digital Signal Processors (DSPs), Application-Specific
Instruction-set Processors (ASIPs), or Very Long Instruction Words (VLIWs)
processors. Moreover, in recent years, different Graphics Processing Unit (GPU)-
based architectures for embedded systems are offered [28] that combine standard
embedded processor architectures with GPUs. These are suitable as accelerators for
specific software tasks. Therefore, performance models should be able to represent
the timing-relevant behavior of the components of these complex, heterogeneous
systems.

21.2.1.3 Development Cycles and Modeling Effort
Embedded system designers face tight deadlines. This means that the development
process needs to be parallelized and has to support timing analysis and timing
error detection as early as possible. While hardware software codesign approaches
allow to start software development before the developed hardware is available,
performance models allow to expose performance relevant errors very early in the
development of an embedded system [44].

To reach this goal, the effort for model generation should be as low as possible,
and the generated models should be available very early in the development
process.
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21.2.1.4 Speed of Performance Analysis
When using timing models to evaluate the performance of embedded systems, the
speed of performance analysis is always an important optimization goal. The appli-
cation of high-level performance simulation increases the development productivity
and acceptance as simulation can easily be integrated into the development process.
There exist also some applications of performance models like Software-in-the-
Loop simulation [47] where the performance simulation needs to be faster than the
execution of the software on the target hardware.

21.2.2 Static Software Timing Analysis

Static software execution time analysis mostly uses a combination of abstract
interpretation [11] and Programming (ILP) [48] to determine an estimate of the
execution time of an embedded software without actually executing the software.

In static analysis, the modeling of timing behavior is only part of the analysis,
while a reconstruction of program structure [26, 46], program values, and loop
bounds is also an important aspect of the analysis. The usage of caches in embedded
architectures further complicates the static timing analysis of embedded systems.

Static analysis has the advantage that, using properly designed analysis, certain
properties of the timing estimation can be guaranteed. Especially a formally safe
Worst-Case Execution Time (WCET) estimate is currently not possible using the
other analysis techniques. On the other hand, static analysis is problematic as some
architectures such as many-core processors and GPUs are currently not analyzable
using a static analysis tool.

21.2.3 Simulation-Based Software Timing Analysis

In the following sections, we give an overview of methodologies that provide
some notion of time while simulating the execution of software on a processor. In
particular, we exclude trace-driven simulation [20] where only a prerecorded trace
of instructions is replayed.

21.2.3.1 RTL Simulation
In principle, a simulation can be generated from the Register-Transfer Level (RTL)
description of a system. While obtaining Register Transfer Level (RTL) code for
a full system is not practical for most application developers, such models are
sometimes available commercially. For example, ARM recently acquired Carbon
Design System and plans to market models compiled from the RTL descriptions as
ARM Cycle Models. However, even when accelerated using specialized compilers
such as Verilator [19], these simulations have a very low performance and therefore
are not a good choice for application performance analysis, unless exact results are
absolutely required.
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21.2.3.2 Fixed Throughput Simulation
Many commercial simulators, such as Imperas OVP [18] and ARM FastModels [1],
as well as mainline QEMU, provide a simple timing simulation that is based on
an user-specified instruction throughput. The main use case of these simulations is
functional analysis, where the simplified timing simulation only serves to ensure a
linear progression of time. As the throughput is assumed to be constant during a
simulation but can vary significantly for nontrivial applications on real processors,
these models are not appropriate for software performance analysis.

21.2.3.3 Microarchitectural Simulation
Microarchitectural simulation focuses on the interaction between hardware compo-
nents of the system microarchitecture such as individual processor pipeline stages,
functional units, or caches. Individual component models abstract implementation
details and only aim at approximating timing characteristics. The simulation is
usually cycle driven. For classical Systems-on-Chips (SoCs), well-known examples
of this class of simulators are Simplescalar [2] and Gem5 [4]. GPGPUsim [3] applies
this approach to GPUs.

While the low-abstraction level of these simulations suggest a near-exact simu-
lation, this is usually not achieved. Reported simulation errors when modeling real
processors [5, 16, 35] are, at best, equal to other approximate approaches, while
performance is significantly lower [2,10,35]. The main benefit of these simulations
is the ease of modifying low-level details (e.g., branch predictor policies). Therefore
this approach is mainly useful for computer architecture research but not a good fit
for software performance analysis.

21.2.3.4 Analytical Performance Estimation
Analytical performance models consist of a profiling phase and an estimation phase.
In the profiling phase, performance metrics such as instruction count, cache miss
rates, or the number of mispredicted branches are extracted during the execution of
a program. During the estimation phase, the performance models then integrate the
performance metrics to estimate program execution times using an analytic formula.
Analytical models for performance estimations of GPU cores were presented in [22]
and [31].

21.2.3.5 Phase-Based Performance Estimation
Another analytical approach is trying to reduce the simulation to phases of a
program representative for the behavior of the whole program. Sampling-based
analytical simulation models use a cycle accurate simulation but try to restrict the
simulation to parts of a program. Very simple applications of this principle are
just simulating the first n instructions of a program run and using the number of
instruction per cycle obtained from this simulation to interpolate the timing behavior
of the remainder of the program. A slight improvement can be reached when the
representative phase from the middle of the execution trace [49].

An application of this simulation technique is SimPoint [37, 38]; it divides the
program execution in phases of 100 million instructions. Phases are characterized
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by the basic block vectors capturing the number of executions of each basic block
during a phase. These basic block vectors are used to identify similar phases using
a clustering algorithm. The performance of the programs is estimated from the
results of a cycle accurate simulation of each phase closest to a cluster center.
Other approaches combine a sampling-based model with a higher-level analytical
performance model [43].

21.2.3.6 Interval-Based Simulation
Interval-based analytical performance models combine the profiling phase and the
estimation phase in one run.

As shown in Fig. 21.1, these performance models divide the execution of a
program in parts with a constant instruction throughput divided by stall events
like branch mispredictions or cache misses. These models therefore allow a more
accurate simulation of the interleaving in the processor pipeline compared to
analytical models considering the whole program execution.

In simple interval-based models [12], the duration of an interval is approximated
by the number of instructions in the interval divided by the dispatch width of the
simulated processor pipeline and a miss penalty of the miss event at the end of
the pipeline stage. Interval-based simulation is extended by Sniper [6] to improve
the execution time estimation of an interval by incorporating information on the
number of available functional units and allowing out of order execution of data
cache miss events. GPUMech [17] is an interval-based GPU performance model. It
uses interval-based simulation claims to simulate the timing behavior of GPU-based
systems. Their methods are comparable to the ones used in Sniper for CPUs. This
model has been applied to complex processor pipelines in [21].

21.2.3.7 Control Flow-Driven Simulation
Control flow-driven timing simulation is performed based on a priori estimations of
the execution time for small portions of the program code, as shown in Fig. 21.2.

CPI

Time
Intervall 1 Interval 2 Interval 3

Branch
Misprediction

Cache
Miss

Fig. 21.1 Simulation by dividing time into intervals between miss events
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Fig. 21.2 Control flow-driven simulation uses static execution time estimates for small portions
of programs

Most approaches use an a priori timing estimation to get the execution times for the
basic block of the Control-Flow Graph (CFG).

For example, Tach, Tymiya, Kuwamura, and Ike [45] presented an approach
where instruction block timings are first estimated assuming no cache misses or
branch mispredictions. Timing is simulated by accumulating the block timings of all
executed blocks and further penalties for cache misses and branch mispredictions.

Recent research [7,13,14,29,30,32–34,39,41,42] has demonstrated that simula-
tion accuracy of this approach can be improved by differentiating different situations
in which an instruction block is executed. In the most simple case [7, 13, 14],
block timings are selected based on the preceding block. In contrast to a single
block timing, this improves the consideration of instruction dependencies and
instruction scheduling. Accuracy can be increased by considering more than one
preceding block [33]. Besides an approach that implements this scheme, we also
discuss a consideration of the preceding control flow using so-called Virtual Inlining
and Virtual Unrolling (VIVU) context [29, 30, 42] in this chapter. These context
enable a block timing granularity that allows an accurate simulation of complex
applications on complex processor architectures without any online modeling of
microarchitectural components, such as caches.

21.2.4 Summary

From the presented approaches especially control flow-driven simulation models
combine many advantages. They clearly separate the functional simulation from
the timing simulation. This allows a combination of these models with functional
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simulation by source-level simulation (cf. �Chap. 17, “Parallel Simulation”) or
binary-level simulation (cf. �Chaps. 19, “Host-Compiled Simulation” and � 20,
“Precise Software Timing Simulation Considering Execution Contexts”). This
separation also allows to choose different styles of timing models. In the following
sections, we present three approaches to generate timing models for these kinds of
systems at different abstraction levels.

21.3 Modeling Using Hardware-Independent Execution Cost
Estimates

This approach to performance modeling of embedded systems tries to use the bare
minimum of target specific information to produce a still meaningful result. While
many approaches to generate performance models operate on the target-specific bi-
nary of a software, this approach aims to extract and quantify hardware-independent
computational demand (HIC) from software source code and define a transition
to gain hardware-specific execution costs (HSE). One main characteristic of our
approach is that we extract computational demand for each software component
from the source code. This has to be done only once. There is no need for target
compilers or binary tools. We execute the application on the development platform
to obtain data-dependent but hardware-independent execution characteristics of the
application. If the developer changes components of the hardware platform or their
configuration, only the transition to the HSE needs to be recalculated. The basic
approach of the analysis is shown in Fig. 21.3.

The hardware independent computational demand is initially calculated on each
basic block of the source-level control-flow graph of the original application. As
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short i;
unsigned result = 1;

i = EXP_BITS;
while(i > 0){
if((exponent & 1) == 1){
result = (result * base) % mod;
}
exponent >>= 1;
base = (base * base) % mod;
i--;
}
return result;

}

#define EXP_BITS 32

unsigned modexp(unsigned base,
unsigned exponent,
unsigned mod) { computational demand

BB1:
= (int) 1 = (short) 1
BB2:
cond_branch 1 > (short) 1
BB3:
cond_branch 1 & (unsigned) 1 == (unsigned) 1
BB4:
= (unsigned) 1 * (unsigned ) 1 % (unsigned) 1
BB5:
» 1 * (unsigned ) 1 % (unsigned) 1
= (unsigned) 2 – (short) 1
BB6:
ind_branch 1

Fig. 21.4 Calculating computational demand for a simple example

shown in Fig. 21.4, the approach extracts the computational demand by counting
the operation type and the data types it operates on.

The HSE determination is based on abstract hardware specifications. The
transition from HIC to HSE calculates the HSE for the considered pair of hardware
and software. This estimation requires only an abstract hardware specification that
can be extracted from the data sheets of the hardware platforms.

To calculate the hardware-specific execution costs, the target platform is specified
with processor-specific and operation-specific attributes. The processor-specific
attributes are:

1. The clock frequency at which the processor operates.
2. The branch predictor configuration, e.g., type and size of the target branch

predictor
3. The used cache sizes and associativities and replacement strategies and cache

miss penalties
4. A superscalar factor specifying the maximum number of instructions executed in

parallel

In contrast to the general processor-specific attributes, the operation-specific
attributes do not specify general behavior of the processor but give an execution
cost attribute for the

1. The operation that is executed by this branch predictor.
2. The data type this operation operates on.
3. The number of cycles this operand needs for execution.
4. The number of parallel FUs that can execute this instruction type.
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This means much less effort than implementing virtual models or using target
compilers and binary tools for WCET analyzers. The transition only needs seconds
which makes the approach much faster than the determination of HSE via virtual
prototypes or ISS and can speed up the design process in complex software systems
on heterogeneous hardware components before the initial mapping configuration
is available. The HSE values can be used for an initial mapping determination
approach. Experimental results show that the estimation is very fast and accurate
enough to help designers making initial system configuration decisions.

21.4 Modeling Using Partial Architectural Knowledge

In this approach, we assume that the information available is comparable to the
microarchitecture description given in architecture reference manuals of current
microprocessors. This information is not sufficient to build a detailed cycle accurate
simulator but can be used to derive analytic performance models of the microarchi-
tecture. As generation of these kinds of models needs only partial knowledge of the
modeled microarchitecture, we refer to them as partial microarchitectural models or
microarchitecture-aware models.

The complete flow of the performance modeling and simulation using partial
microarchitecture models is shown in Fig. 21.5. The method starts with the source
code and the binary code of an application. We then extract the structure of the
binary code CFG and do a structural matching of the source-level and binary-level
control flow graphs and automatically annotated with function calls which reference
the matched binary codes. Together with a generated path simulation code, this
allows a simulation of binary-level paths through execution of the annotated source
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code. The source to binary-level matching and path simulation code generation is
not part of this chapter. Details of these steps are given in �Chap. 17, “Parallel
Simulation” and in [39–41].

The application-specific timing model is generated using an offline analysis of
the binary-level control-flow graphs. It calculates for each basic block an estimated
execution time depending on its predecessor. We additionally calculate a resource
usage histogram for the instructions in each basic block. The results of the offline
analysis are then added to the path simulation code and accumulate the per basic
block matrix during execution of the instrumented source code. After the execution
of the instrumented software, the accumulated performance metrics are used by
a target-specific analytical performance model to produce a final estimate of the
execution time.

Parts of the following subsections are based on our preceding publications
[13, 14]. In these publications, we specifically focused on the application of this
modeling style on GPUs. The following description is split in a part describing
the modeling of GPU architectures (Sect. 21.6.1) and Sects. 21.4.1 and 21.4.2
describing the target agnostic parts of the model generation and simulation.

21.4.1 Static Timing Estimation Using Pipeline Execution Graphs

The static basic block timing analysis determines an optimistic execution time for
each basic block in the binary-level control-flow graph. The effects of resource
contention on the execution time can be incorporated by an analytical model after
the timing simulation (Sect. 21.6.1). The analysis uses pipeline execution graphs
[24] to model the timing behavior of each instruction on the pipeline. Our pipeline
execution graph EGB for a basic block is defined as

EGB D .SB; DB; lat; use; res/

where the nodes in SB represent each execution step for each instruction on the
pipeline. DB � SB �SB represents the dependence relation. It contains an edge for
each dependence corresponding to the instructions in the basic block. In our model,
an execution step might not directly correspond to a pipeline stage. The minimum
latency between the start of an execution step and the start of a dependent execution
step is given by the function lat W DB ! N0. Latency is expressed in cycles.

To incorporate the dynamic resource usage into the timing model, we extend
the pipeline execution graph model with an estimation of the resource usage. The
resource usage function use W VB ! N0 labels each step in the execution graph by
the number of cycles the resources in this step are taken. The function res W SB !

N0 maps each execution step to a unique identifier for the resource used in this step.
In Fig. 21.6, we show an example for a pipeline execution graph that is built for

the analysis of an Bolero-3M-based microcontroller [36]. These microcontrollers
are based on a PowerPC instruction-set architecture. Depending on the number of
instructions in a PPC processor. The front end of the processor pipeline allows

http://dx.doi.org/10.1007/978-94-017-7267-9_19
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IF DE WBMEI1: load r1, 0x15

IF DE WBEXI2: add r3, r1, 2

IF DE WBEXI3: add r4, r2, 5

IF DE WBMEI4: store r4, 0x15

+1 +1 +1

+1 +1 +1+1

+1

+1

Fig. 21.6 Pipeline execution graph-based timing analysis

fetches of up to two 32-Bit instructions at once. This is indicated by the edges
between the IF (instruction fetch) nodes of I1 and I3 and I2 and I4. So that every
instruction is fetched one cycle after the instruction that is two positions ahead in
the instruction stream. As the decode stage can handle two instructions as well,
its representation is similar to the IF stage. In the third stage, the instructions
are executed on multiple execution units. The instructions accessing memory are
executed on a single memory unit (MEM), while there are two execution units for
arithmetic and logic instructions available. This means there is a potential resource
conflict between the MEM nodes of instruction I1 and I4. There is no potential
resource conflict between I1 and I2 as the pipeline has two execution units for
this instruction type available. The writeback to register file is handled for two
instructions in parallel on this pipeline. The edges between the WB and DE nodes
of the graph indicate a true data dependency. I1 loads data from memory that is used
as an operand by the next instruction. In this case, the DE phase of instruction I2

needs to wait for the cycle after the writeback of node instruction I2. The same kind
of dependency also exists between instruction I3 and I4.

Provided a pipeline execution graph, the timing analysis is done as a fixpoint
iteration on the pipeline execution graph. The algorithm iterates over each state in
the pipeline execution graph and calculates the earliest start times for each node by
the maximum over the start times of the predecessors added with the corresponding
latencies. The fixpoint iteration is finished when the start times for each state do not
change anymore. To accelerate the convergence of the fixpoint iteration, we iterate
over the states in topological sort order, but the result of the iteration is independent
of the order in which the states are visited. The termination of the algorithm follows
from the absence of cycles in the execution graph. For the static execution time
analysis, we build the pipeline execution graph for the instructions of each basic
block and calculate the fixpoint. It delivers a static timing analysis for the duration
of the basic block by the maximum start time of each node in the execution graph.
The analyzed execution time for a basic block vi is called tvi . Building the execution
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time of a kernel during simulation by summation over the basic block times ti would
overestimate the execution time of the kernel, because the execution of instructions
from adjacent basic blocks can overlap. To incorporate this effect into the static
timings, we also build pipeline execution graphs for the instructions from each pair
of adjacent basic blocks. The analyzed execution time for each pair of basic blocks
vi ; vj is called t.vi ;vj /.

The results of this static analysis are then used for a simulative approximation of
the timing behavior of a program.

21.4.2 Timing Annotation and Simulation

The timing information and resource information from static timing analysis is back
annotated to the original source code, by inserting function calls to timing functions
in the original source code and generating the corresponding timing function
implementations. The algorithm for timing annotation is shown in Algorithm 1.

Algorithm 1 Algorithm for timing annotation
for vS 2 VS do

if 9vB 2 VB W map.vB/ D vS then
insert function call to timing simulation in vS

create function for timing simulation
for paths p between a mapped block v

0

B and vB do
Add code to function for:
if last simulated block = v

0

B then
tthread C D

P
vi 2p=v0

B
t.vi�1;vi / � tvi�1

for resources ri do
uthread .ri /C D

P
vi 2p=v0

B
use.ri ; vi /

end for
end if

end for
end if

end for

As the timing analysis has been done on the binary-level code and the simulation
is based on annotations in the source code, the algorithm depends on a good
mapping of binary basic blocks to source-level basic blocks. An example for a
good method for mapping of source-level to binary-level control flow is given in
�Chap. 17, “Parallel Simulation”. The algorithm first iterates over all mapped
basic blocks in the source-level control-flow graph and inserts function calls that
do the timing simulation according to the static analysis. The functions for timing
simulation are generated in the inner loop of Algorithm 1. In this loop, the algorithm
iterates over all binary-level paths between matched blocks and calculates the
estimated execution time for this path by the sum over the pairwise execution times
of the nodes in the path t.vi�1;vi /. As the summation would count the execution time
for each start node twice, we subtract the execution time for each basic block tvi�1 .

http://dx.doi.org/10.1007/978-94-017-7267-9_19
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When doing simulations of GPU-based architectures, in addition to the execution
times, we also annotate the threads resource usage for all resources in the pipeline.
The results of an execution of the annotated source code on an OpenCL compatible
device are an optimistic timing estimation of each thread and each accumulated
resource usage of the thread for each resource in the pipeline. The final execution
time of the kernel is estimated from these values using an analytical model. Details
on an analytical model for GPUs are given in the following section.

21.5 Modeling Using Detailed Microarchitectural Knowledge

A complete, detailed description of the microarchitecture can be utilized to achieve
an exact performance simulation. However, due to their extremely low performance,
such simulations are, in practice, not a good choice for software performance anal-
ysis. Therefore, a simulation that achieves a high performance while maintaining an
acceptable accuracy is preferable for this purpose, even if complete knowledge of
the microarchitecture is available.

One concept for such a simulation is to shift most or all evaluations regarding
the microarchitecture to an offline analysis that is executed before the simulation.
The result of a single analysis can be reused by multiple simulations; the analysis
cost is distributed among these simulations. This approach is therefore attractive for
exploring software performance in different scenarios, such as over a wide range of
input values. In this section, we give a brief overview of our simulation framework
that realized this concept. More details can be found in �Chap. 19, “Host-Compiled
Simulation”.

21.5.1 Framework Overview

An overview of our current framework is shown in Fig. 21.7. At first, the application
binary code for the target processor is analyzed either statically or dynamically. In
both cases, analysis results are stored in a software-specific timing model which is
sometimes referred to as a timing database (TDB). A comparison of both analysis
approaches is given in Sect. 21.5.2.

The timing model contains a description of the binary code control flow and
timings for basic blocks of the program. Multiple timings are available for each
block and differentiated by context. A context is an abstraction of the control flow
leading to a block. The main advantages of using contexts is that the instructions
that were executed before a block can be reflected in the context-dependent block
timing. More details on this approach are given in Sect. 21.5.3.

A timing model can then be used in multiple simulations, where the timing
simulation is driven by events indicating the execution of target basic blocks as
defined by the control flow stored in the timing model. In a simulation of binary
code execution (cf. �Chap. 19, “Host-Compiled Simulation”), this can be achieved
by instrumenting the first instruction of each basic block, whereas in a source-level

http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_18
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Fig. 21.7 Overview of the simulation framework

simulation (cf. �Chap. 17, “Parallel Simulation”, Section 21.4), a so-called path
simulation is necessary, which simulates the target binary control flow based on the
source-level control flow.

21.5.2 Static and Dynamic Analysis

The need for a precise microarchitectural model is the main drawback of detailed
timing simulation. To limit the impact of this drawback, our framework is flexible in
the kind of models that can be used by the offline analysis and supports both static
and dynamic analyses. Thereby a model that was originally intended for a different
purpose can be utilized by our simulation.

However, there are also various differences between static and dynamic analysis
that lead to different advantages and disadvantages of one approach compared to
the other. In principle, multiple timing models can be combined, which could also
enable a hybrid analysis, but this topic is currently beyond the scope of our research.

In static analysis, the timing of the software is analyzed without executing
the software. To avoid the halting problem, the actual states the software can
get into have to be over-approximated. Firstly, this complicates the calculation of
block timings. In practice, this currently restricts the application of static timing
analysis to complex microarchitectures, in particular those including out-of-order
execution. Secondly, it can lead to coverage deficits for programs containing
asynchronous (e.g., interrupts) and indirect (e.g., function pointers) control flow
changes. We developed a methodology to run multiple static analyses and combine
their results to remove this issue.

In dynamic analysis, the timing of the software is analyzed by observing its
execution. This avoids the issues of static analysis but makes it necessary to choose

http://dx.doi.org/10.1007/978-94-017-7267-9_19
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program inputs that provide sufficient coverage. However, our experimental results
demonstrate that selecting such inputs manually is feasible. Currently we observe
software executions on target hardware, which removes the need for an additional
model during the analysis.

21.5.3 Enhancing Accuracy by Considering Execution Contexts

On most modern embedded processors, the timing of an instruction sequence
depends on the state of the microarchitecture before its execution, for example, due
to instruction dependencies or cache contents. This state is heavily influenced by
the already executed instructions. As aforementioned, this factor can be leveraged
to improve simulation accuracy by obtaining multiple possible timings for each
instruction block during the offline analysis and selecting an appropriate value for
each execution of a block during the simulation.

More specifically, timings are differentiated by the preceding control flow.
However, as the set of paths to block can in general be infinite and is likely
excessively large for nontrivial programs, it is not possible to calculate a distinct
timing for every path. Instead, the set of control flow paths is divided into a
finite number of subsets, which are referred to as contexts, and block timings are
differentiated by context.

In our framework, we apply the so-called VIVU contexts [26], which were
originally developed for static analysis. Figure 21.8 shows a simple example for
a VIVU contexts. This kind of context information captures the call stack and
the loop iteration counts on the way from the start of the program to each basic
block. The fact that this approach allows to distinguish the timing behavior of
basic blocks depending on the call stack and the loop iteration count is reflected
by its full name. Our experimental results demonstrate [30] that VIVU context
coupled with a dynamic analysis by observing hardware executions enables a
highly accurate timing simulation. This simulation is capable of simulating complex

Fig. 21.8 An example for
VIVU-context-based timing
selection 1
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5 6
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9 8
7

f() g() g.l1
Contexts
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f;
g():

f>g;
g.l1():

f>g>g.l1,0
f>g>g.l1,1
f>g>g.l1,2
...
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software executing on complex processors at an error of typically less than 10%
without any further modeling of microarchitectural elements including data caches.

21.6 Case Study: Modeling the Performance of a GPU-Based
Microarchitecture

In this case study, we show the application of the timing model from Sect. 21.4 to a
complex microarchitecture.

21.6.1 Applying the Simulation Approach to GPU Cores

To generate timing models for GPUs, the static analysis is run on the PTX assembly
code and currently models the microarchitecture of a NVIDIA GTX 480 core. The
analysis assumes that the pipeline is occupied by one warp exclusively.

As shown in Fig. 21.9, the static analysis models each instruction’s execution on
the given pipeline as a graph with five nodes. The first node (IF) corresponds to
the front-end part of the pipeline up to the instruction buffer. The second part (IS)
models the issue stage and the scoreboard. The latency of register accesses in the
operand collector units is modeled by the node labeled OC. The fourth node (ALU)
models the timing effects of the actual execution. This node is labeled according
to the used execution unit (ALU, SFU, MEM). The last node models the writeback
stage of the pipeline. This node is labeled WB.

Figure 21.10 shows an example of a pipeline execution graph for three add
instructions on the pipeline of a GeForce GTX480 which is quite similar to the GPU
core used in NVIDIAs embedded SoC Tegra K1 [25]. The latencies inherent to the

ICache

Program
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Decode

IBuffer

Scoreboard

Issue

SIMT-
Stack

Operand
Collector

Register
File

ALU

SFU

Memory

Write
Back

IF IS OC ALU WB

Fig. 21.9 GPU microarchitecture and the pipeline model
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Fig. 21.10 Example of our pipeline analysis

pipelined execution of each instruction on the pipeline are shown by black edges.
Instructions always take two cycles from instruction fetch to issue. The latency from
issue to the operand collectors is one cycle for all instructions. The latency of the
operand collectors depends on the number of registers read by the operation. The
best case is always the number of registers read by the operation. The latency from
execute to writeback can vary greatly depending on the instruction type. Load/store
instructions show one cycle under the assumption of a cache hit and full coalescing
of memory accesses, while double precision floating point division has a latency of
330 cycles. Resource dependencies between instructions are modeled by the blue
edges in Fig. 21.10. As the front end fetches two adjoining instructions at a time
in program order, each instruction is connected by an edge with latency zero in
program order. To integrate the additional latency that every instruction is only
fetched when the two entry instruction buffer is empty, we add additional edges
between every second instruction. These edges have a latency of three cycles as this
is the best-case instruction fetch latency. The issue stage issues one instruction a
cycle in program order; this is modeled by an edge with latency one between each
successive instruction. Resource dependencies in the execute stage are modeled in
the same way. If there are multiple copies of a resource, the modeled pipeline has
two ALUs, and the resource dependency edges skip instructions to account for the
multiplicity of the resource. The same applies to the writeback step, as the pipeline
can writeback two results at a time, there is only a dependency between every second
node in WB. Data dependencies are always modeled by an edge with latency one
from the writeback of the preceding instruction to the issue state of the depending
instruction.

21.6.1.1 Analytical Timing Approximation for GPUs
Due to the inherent parallelism of GPU architectures, the cycle times and resource
usages obtained from executing the annotated source code are specific to individual
threads of the executed kernel, the levels of parallelism handled within the pipeline
of a GPU core, simultaneous multi-threading, and warp-level parallelism.

Warps consist of the instructions of multiple threads from the same local work
group. While the warp size may vary depending on the size of local work groups,
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Fig. 21.11 An example of branch divergence

the preferred and maximum warp size on NVIDIA GPUs has been 32 threads for
several generations. The threads of a warp always execute the same instruction in
lockstep but are allowed to branch independently. As the instructions are allowed to
branch independently, a so-called branch divergence can occur. Branch divergence
is handled in hardware by executing each path sequentially and masking those
operations which did not take the currently selected path. Figure 21.11 shows an
example of branch divergence.

Apart from branch divergence, warps execute the instructions of several threads
in lockstep. Each streaming multiprocessor handles multiple warps concurrently
using fine-grained multi-threading.

The timing model uses the per thread execution times and resource usages as
determined by the native execution of the annotated source code to calculate an
estimate of the execution time of the whole kernel. The analytical model follows the
hierarchy of parallelism of the multi-threaded execution. The algorithm starts with
the execution time of the threads as determined by the source-level simulation. The
execution time of a warp is then calculated from the execution time of the threads
that form this warp. The execution times of all warps in a work group are combined
to form the execution time of a work group. The execution time of the whole kernel
is then estimated from the execution times of all work groups in the kernel. Timings
up to this point do not consider the resource contention due to parallel execution
of warps in the pipeline. This resource contention is taken into account by a final
correction step.

The first step of the timing estimation calculates the execution time of each warp.
This is done by first determining which threads form a common warp and then
calculating the execution time of a warp tWi by taking the maximum execution time
of all threads in the warp.

tWi D max
ti 2Wi

.tti /

This calculation is motivated by the fact that all threads in a warp are executing the
same instruction in lockstep. Due to branch divergence, it is still possible that the
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simulated execution time of the threads in warp shows different execution times. The
effects of branch divergence are approximated by taking the maximum execution
time of all threads in the warp. This does not fully simulate all timing effects
of branch divergence but accurately handles the most important case, of branch
divergence at an if statement without an else or branch divergence at a loop exit
condition. Real branch divergence in an if-else statement is not fully handled by our
current model, but taking the maximum execution time still approximates the timing
effects of this case. The execution times of a local work group W Gj is modeled by
the end time of the last warp tlastj in the work group. All warps in a local work
group are started at the same time. So we can calculate the end time of the last warp
by taking the maximum execution time of all warps in the local work group.

tlastj D max
twi 2W Gj

.twi /

Due to the limited bandwidth of the issue stage, the threads of a local work group,
the i -th warp of a local work group issues at least bi=2c cycles after the first thread
of the local work group. To incorporate this in our model, we add this to the finish
time of the last warp. This leads us to the final equation for the execution time of the
last warp

tlastj D max
twi 2W Gj

.twi C bi=2c/

The finish time of the last warp in each local work group is used to calculate the
execution times of a kernel. The local work groups of a kernel can be executed
in parallel, but due to constraints of a GPU’s hardware, not all local work groups
might be able to run in parallel. Given the number of parallel work groups npar ,
we estimate the finish time of each work group. The first npar work groups are
started in parallel. The next work group is started when a work group finishes. This
is expressed by the following equation:

tW Gj D

(
tlastj W j < npar

mink2fj �npar ;:::;j �1g.tW Gk
/ C tlastj W j � npar

The upper part of the equation calculates the finish times for the first npar work
groups, by using the finish time of the last warps. All further work groups are
simulated by taking the minimum over the npar predecessors and adding the finish
time of the last warp in this work group. The optimistic execution time of the whole
kernel is then the maximum finish time over all work groups:

tkernel_opt D max
W Gi

.tW Gi /

The kernel execution time so far does not consider any delays due to resource
conflicts between multiple warps on the same pipeline. These resource conflicts
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are modeled by the last step of our analytical model. The analytical model first
calculates the resource usage useWj .ri / of a warp Wj as the maximum resource
usage over all threads in the warp:

useWj .ri / D max
tk2Wj

.usetk .ri //

The resource usage is calculated for each resource ri . We then calculate the resource
usage of the whole kernel by summation over the resource usage of all warps in the
kernel:

usekernel .ri / D
X

Wi 2Warps

useWi .ri /

The optimistic execution time is then combined with the kernel’s maximum resource
usage to form the final execution time estimate. The most successful combination
of resource usage and optimistic execution time we have found is the maximum of
both values.

tkernel D max.tkernel_opt ; max
ri 2R

usekernel .ri//

This model is surprising as it only takes resource contention into account when
it is certain that there must be resource conflicts in the pipeline. But as GPUs
are optimized for a high throughput, this model seems a reasonable choice. The
accuracy of these models can be improved by doing a probabilistic approximation
of the resource conflicts [14].

21.6.2 Results

We evaluated the performance model using several synthetic and real world
benchmarks. All simulations were run on an Intel Core i7-4770 K CPU at 3.5 GHz
with a NVIDIA GTX780 GPU with 12 streaming multiprocessors at 952 MHz.
For the execution of the instrumented source code, we used either the CPU using
Intel’s implementation of OpenCL for CPUs or on the GPU using NVIDIA’s
implementation of OpenCL for GPUs. For comparison, we used the cycle accurate
GPU simulator gpgpu-sim. Our configuration is based on the configuration for a
NVIDIA GTX480 GPU as delivered by gpgpu-sim, but we reduced the model to
more closely resemble an NVIDIA embedded gpu core. We also activated the so-
called perfect memory mode of gpgpu-sim. This mode handles all memory accesses
as cache hits. We choose to use a simulator for our evaluation as only limited
information on the internal architecture of actual GPUs is available, and we needed
to verify the results of the pipeline model ignoring influences from the memory
subsystem.
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Fig. 21.12 Accuracy of the GPU performance simulation

The proposed simulation framework has been implemented as a shared library
implementing the run-time API for translation and running of OpenCL kernels.
For performance simulations, the library can be preloaded using the standard Unix
LD_PRELOAD mechanism, so no changes to the host binaries used for simulation
are needed. The kernels were translated to PTX code using clang as compiler [23].
All benchmarks were run with most compiler optimizations enabled (-O3), and we
used the compiler switch to enable debug information in the compiler-generated
assembly files (-g). We evaluated the performance model with benchmarks from
the Rodina [9] and polybench-gpu [15] Benchmarks.

Figure 21.12 shows the execution times as estimated by our method divided
by the execution times provided by gpggpu-sim. All our execution times
underestimate the execution time as is expected by the best-case assumptions made
by the performance modeling. For all but two kernels, the proposed simulation
technique provides an accuracy of 80% or higher.

The accuracy results do not change between execution of the instrumented source
code on a CPU or GPU as the performance simulation can be run on any OpenCL
compatible device. The speedups in terms of the simulation time are shown in
Fig. 21.13. The simulation time of our tool includes the time for data transfers
from and to the OpenCL device, the execution of the kernel on the device, and
the execution time of the analytical resource conflict model. As our goal is to
support the simulation of long running application scenarios, the speedups do not
include the time used for the static analysis of GPU kernels and binary to source
matching. When instrumented source code is run on a CPU, speedups range between
140 for oclVectorAdd and 24061 for kmeans2. If the instrumented source code is
run on a GPU, the speedups range between 477 for oclVectorAdd and 67750 for
COVAR. The variation of execution speeds is partly explained by different basic
block sizes in the applications. The other important factor considering speedups
is the proportion of execution time of a thread to the number of threads. In our
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Fig. 21.13 Speedup of the simulation compared to the ISS gpgpusim

model, threads are simulated with the parallelism of the OpenCL device used for
the simulations but our analytical performance model is run on the host without the
use of parallelism. All benchmarks except kmeans1 show an improvement of the
simulation speed when the instrumented source code is executed on the GPU. The
simulation performance of kmeans1 degrades slightly as this benchmark does not
fully utilize the available parallelism on the GPU.

21.7 Approaches to Include a Cache and Memory Simulation

The models so far assume that the latency of instructions can be statically deter-
mined. There are three basic approaches to integrate the simulation.

The simplest approach is an offline cache simulation. Prerequisite for an offline
cache simulation is an approximation prior to the performance analysis. In an
offline cache simulation, the cache miss rates of the application can be estimated
using an external cache simulator. Either by executing the target binary code of
the application on an instruction-set simulator or by executing the application on a
host-compiled cache simulator like cachegrind [27]. Cache miss rates might even
be provided as estimates by the developer using the performance model. The effect
of the memory performance can then be incorporated into the model generation by
increasing the latencies for each memory accessing instruction using an adoption of
the standard formula to approximate the average memory access time:

Average Memory Access TimeDCache Hit Time C Cache Miss Rate � Miss Penalty
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This is the approach that is most compatible with the hardware-independent
computational demand simulation, as the average memory access time can be used
to dynamically determine the hardware-independent computational demand.

In contrast to an offline analysis that is run ahead of the simulation time, an online
analysis that is run concurrently to the timing simulation might be carried out.

In the case of context-sensitive models based on hardware tracing, the memory
subsystem often does not need to be modeled, as the timing impact of the memory
subsystem is already part of the timed basic block traces, and a context-sensitive
performance model reflects the timing impact well enough for many applications.

When higher accuracies or safe bounds are required. The timing relevant
behavior of the memory subsystem can be analyzed by using a fully static analysis.
In this case, the cache analysis is run in before the pipeline analysis and the results of
the cache analysis are integrated with the pipeline analysis by changing the latencies
of each individual instruction. If context-sensitive analyses are used, the pipeline
analyses use individual latencies for each pair of instruction and context.

21.8 Discussion

The modeling techniques presented in this chapter represent models at different lev-
els of abstraction and different trade-offs considering the challenges from Sect. 21.2.
In this section, we briefly compare different modeling techniques addressing these
challenges.

21.8.1 Comparison of Modeling Techniques

All of the considered modeling techniques have some specific drawbacks. For early
platform component selection and task mapping onto different cores, it is probably
the best solution to use hardware-independent execution cost estimates taken from
Sect. 21.3 as these models require the least development effort and allow a good
performance approximation for a wide variety of hardware components. However,
the main drawback of these models are their quite low simulation accuracy.

The highest accuracy can be achieved by using context-sensitive perfor-
mance models with detailed knowledge about the underlying microarchitecture
(Sect. 21.5). These models often come up with an average simulation error below
1% and a maximum simulation error below 10%. The main drawback of this
technique is the modeling effort and the need of a detailed microarchitectural model
in terms of a cycle accurate simulator, a static WCET analysis tool, or a hardware
implementation using a complex tracing unit. At least one of these approaches
is generally available for standard embedded CPUs, but these are not generally
available for application-specific processors or GPUs. If none of these approaches
are available, the generation of a performance model would become necessary
which requires an effort of several person months.
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The technique using partial knowledge about the microarchitecture (Sect. 21.4
tries to balance the modeling effort and the model accuracy. Timing models can
be developed in less than a month, and these models can represent most of the
microarchitectural timing behavior of modern pipelined architectures. So these
models are available very early on in the design process. This modeling style is
also the only one that has been successfully applied to GPU-based microarchitec-
tures, making it currently the correct choice for modeling of application-specific
processors especially GPUs and GPU-based architectures.

21.9 Conclusions

In this chapter, we have discussed three different approaches to provide models
for software performance analysis and compared their drawbacks. None of these
techniques are able to fulfill all characteristics desired from a software performance
model. Future research will need to allow an easier integration and seamless switch-
ing between different modeling techniques. Furthermore, an easy optimization of a
performance model toward a timing characteristics of a desired target application
has to be considered.
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